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ABSTRACT

Among some new methods, these were introduced to find the exact solution of Non-Linear

Partial Differential Equations (NLPDEs), (G'/G) expansion method proposed by Mingliang

Wang, is straightforward and easy to handle as it gives rich new solutions. On the other hand,
Solitons play a dynamic role in the field of engineering applications and, nonlinear science and it
delivers more perception into the related nonlinear scientific occurrences by leading to
forthcoming scientific research. So, to check the validity and effectiveness of our method we

have implemented the extended (G' G)expansion method to the (2+1) dimensional breaking

soliton equation. The outcomes we have found here, are more common, successfully recovered
the most of the earlier recognized results which have been established by other sophisticated
methods. We have found some new results as well which will lead us to study some new
phenomena in future. We have stated the travelling wave solutions here by three types of family.
They are the hyperbolic family, the trigonometric family and, the rational family. The results
along with the graphical illustration have revealed the high productivity of this algorithm with

trustworthiness.
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CHAPTER ONE

INTRODUCTION

1.1 Mathematical Preliminary

A dynamic and significant branch of modern mathematics is organized by the subject of
differential equation. From the ancient time of the calculus, the subject has provided the
mathematicians a proper neighborhood of countless hypothetical investigation and applied
applications. Differential equation first came into the light with the invention of calculus by

Newton and Leibnez. Isaac Newton had listed three kinds of differential equations as follows:

v _ f(X) (1.1.1)
dx
ﬂ: f(x,y) (1.1.2)
dx
and xlgﬂxl+x2%:y. (1.1.3)

He solved these difficulties (1.1.1, 1.1.2 and 1.1.3) and others connected to these by using

infinite series and deliberated about the non-uniqueness of the results.

Jacob Bernoulli recommended an ordinary differential equation, the Bernoulli differential

equation in 1695 which was as follows:

y+P(x)y=Q(x)y" (1.1.4)



Differential Equation:

An enormous amount of real world phenomena involve moving quantities like the speed of a
missile, the number of bacteria in a medium, the increase of currency, the voltage of an electrical
signal, the intensity of an earthquake, the growth rate of population of species and so on. One of
the most valuable successes of calculus is its’ ability to capture continuous motion
mathematically and giving us the opportunity to analyze that motion instantaneously. Differential
equations infiltrate the science and let us use it as a tool by which we can try to bring out the
laws of motion of nature in an abridged mathematical language. We have heard a lot about
differential equation for radioactive decay in nuclear physics[1] but there are also many other
numerous differential equations like Newton’s law of cooling in thermodynamics[2], the Navier-
Stokes equations in general relativity[3], the Blacke-Scloles equation in finance[4], the heat
equation in thermodynamics[5], the Cauchy-Riemann equations in complex analysis[6],
Schdinger equation in quantum mechanics[7], the wave equation[8], the Lotka-Volterra equation
in population dynamics[9], Maxwell’s equations in electromagnetism [10], Laplace’s equation

and Poisson’s equation[11], Einstein’s field equation in general relativity[12] and so on.

Definition of the differential equation: An equation connecting derivatives or differentials of
one or more dependent variable with respect to one or more independent variable is defined as
differential equation (DE). For example, an expression as follows -

d _du dv

— =—+—=0
dx(uv) dx+dx

is the form of differential equation.



Classifications of Differential Equation:

Ordinary Differential Equations (ODEs) and Partial Differential Equation (PDEs) are two
major classification of Differential equation. We will shortly discuss about this two classification

shortly in below:

Ordinary Partial Differential Equations (ODE) - A differential equation is said to be an
ordinary differential equation (ODE) if it involves ordinary derivatives of one or more dependent
variables with respect to only one independent variable. For example, an expression as follows -

ﬂ+%:0
dx dx

is the form of ordinary differential equation where y = X+sinx and z = x> +2X

Partial Differential Equation (PDE) — A differential equation is said to be a partial differential
equation (PDE) if it contains one or more partial derivatives of one or more dependent variable

with respect to more than one independent variable. For example, an expression as follows -

dz dz

—+—=0
dx dy

is the form of partial differential equation where z = X’ +sin y.

In this paper we will discuss about the field of partial differential equation. So, here we will talk
about the classifications of the partial differential equations only. Partial differential equation is
classified as Linear Partial Differential Equations (LPDEs) and Non-Linear Partial

Differential Equations (NLPDEs).



Linear Partial Differential Equations (LPDEs) - A partial differential equation will be linear if
the power of the dependent variable and each partial derivative contained in the equation is one,
and the coefficients of each variable as well as the coefficients of each partial derivative are

constants or independent variables. For example, an expression as follows -
yV+a ()Y +.4a (X)y +a,(x)y=0
is the form of a non-linear partial differential equation.

Non-Linear Partial Differential Equations (NLPDEs) - The equation is said to be non-linear if

any of the condition for being linear is not satisfied. For example, an expression as follows-
yVra, ()Y 4 e (X)y +a, (X)y+y =0
is the form of non-linear partial differential equation.

Homogeneous Partial Differential Equations (HPDEs) - If every term of the P.D.E. contains
the dependent variable x or one of its derivatives then it is called homogeneous partial

differential equation. For example, an expression as follows-

y"+a ()Y +. e (X)y +a,(x)y=0
is the form of homogeneous partial differential equation.

Non-homogeneous Partial Differential Equations (IPDEs) -_The equation is said to be non-
homogeneous if any of the condition for being homogeneous is not satisfied. For example, an

expression as follows —

YW ra,, ()Y 8 (X)Y +a (x)y =b.



1. 2 Waves

According to physics, a wave is a fluctuation accompanied by energy transmission. Wave motion
actually transfers energy from one place to another by moving particles of the communication
medium by amount of little or no related form of transportation. There are two main types of
waves and one of these is Mechanical wave and the other one is Electromagnetic wave.
Mechanical waves need a medium to continue the molecules travelling where the
Electromagnetic wave does not require any medium. Electromagnetic wave is consist of periodic

alternations of electrical and magnetic fields that is produced by charged particles.

The modest wave circulation is of the following form:

=V

XX

where u(x,t) is the amplitude of the wave, and v is the wave speed. This equation can be

represented through general d’Alembert’ solution and that is-
u(x,t)=a(x—vt)+b(x+wt)

where a and b are uninformed constraints that denotes the left and right circulating respectively

and this two individual waves circulate without altering its uniqueness.



1. 3 Soliton

Many physical occurrences have shown the appearances of solitons and been arisen as the
solutions of an extensive session of weakly nonlinear dispersive partial differential equations
which describes physical systems. The differences between solitons and solitary waves is
indistinct in physical phenomena because soliton like solutions can define solitary waves of
nonlinear equations. It describes wave actions in dispersive and dissipative media. A single
soliton solution is often referred as a solitary wave, but for appearing more than one solution
they are count as soliton. A nonlinear partial differential equation defines a soliton precisely if

that shows the following properties:
(1) the solution should establish a wave of stable form;

(i1) the solution is localized, that means the solution either converges to a constant at infinity
such as the solitons given by the Sine-Gordon equation or decays exponentially to zero such as

the solitons provided by the KdV equation;
(ii1) By preserving its own character, the soliton interacts with other solitons.

A solitary wave of basic form is as follows-
u(x,t)=f(x—wvt).

where v is the wave speed of circulation. For v > 0 , the wave travels in the positive X direction,

while the wave travels in the negative X direction for V< 0. The solutions of nonlinear equations

may be written in the form of sech?,sech,or arctan(ei(xf"t)) function. Various types of method

have been introduced to observe solitons.



1.4 Solitary Waves

The solitary waves was firstly observed by John Scott Russel in 1844. He observed “great wave
of translation”, a large bulge of water that was slowly traveling along the Edinburgh-Glasgow
canal holding its original shape for a long period. The finding is described here in Scott Russell's

(1844) own words:

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair
of horses, when the boat suddenly stopped — not so the mass of water in the channel which it had
put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large
solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour,
preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one or two miles I lost it in the windings of the
channel. Such, in the month of August 1834, was my first chance interview with that singular

and beautiful phenomenon which I have called the Wave of Translation.”

Russel was inspired by the surprising discovery to conduct physical laboratory experiments so

that he can highlight his observance and study these solitary waves.



He empirically derived the relation in the following form:
c’=g(h+a).

here C is the speed of solitary wave, a is the maximum amplitude above the water surface, h is

the finite depth and g is the acceleration of the gravity. When solitary wave was observed

moving with the group velocity of the wave in the reference frame, the solitary wave was seen
circulating without any sequential evolution in shape or size. The cover of the wave includes one
universal peak and decays far away from the peak. Solitary waves arise in many circumstances,

with the advancement of the surface of water and the intensity of light in optical fibers.



CHAPTER TWO

LITERATURE REVIEW

2.1 Analytical Methods:

The area of differential equation is vast enough to discuss about. Nonlinear occurrences exist in
most of the fields of scientific or engineering field like fluid mechanics, optical fibers, chemical
kinematics, plasma physics, biology, solid state physics, chemical physics, hydrodynamic,
nonlinear optic, chemistry, geochemistry, ocean engineering, and meteorology and so on. In
recent years so many effective expansion methods have been proposed to construct, develop and
extend exact solutions of nonlinear evolution equation, such as the tanh-function expansion and
its various extension[13], the Jacobi elliptic function expansion[14], the F-expansion[15], the
sub-ODE method[16], the homogeneous balance method[17], the sine-cosine method[18], the
Exp-function = method[19,58], inverse scattering  method[20], Hirota’s  bilinear
transformation[21], the tanh-coth method [22], extended tanh method[23], the Darboux
transformation[24], Backlund transformation[25], Bethe Ansatz method[26], Wrongskian
technique[27], truncated Painlevé expansion method[28], symmetry method[29], the generalized
Riccati euation method[30,57,59-61], the variational iteration method[31], the direct algebraic
method[32], the homotopy perturbation methods[33], the rank analysis method[34], various

types of (G G) expansion method[35-40,42-56], and others, but we cannot deal with every

nonlinear evolution equation with one unified method only. We will discuss about the extended

(G'/G) expansion method in this paper for finding out the analytical solution of nonlinear partial

differential equation.



2.2 Basic (G '/ G) Expansion Methods:

Wang has introduced the (G G)Expansion method to solve nonlinear problems and construct

traveling wave solutions of different kinds of NLEEs, which is one of the strongest methods. In

(G G)expansion method a second order linear ordinary differential equation is executed that is
G"+AG+uG =0
where A and p are arbitrary constants.

For showing the effectiveness of the (G'/G) expansion method many researchers have carried
out many researches i.e. Zhang has extended the (G'G) expansion method and named it
improved (G'/ G) expansion method. The difference between the original and extended (G G)

expansion method is that,

In original method- u(£)=>"8,(G"G)', where a, #0, on the other hand

i=0

In Zhang’s method- u($) = z a(G/G)',where a_ #0 or a_ #0 but both cannot be zero

i=—m

instantaneously.

The extended (G' G)expansion method for getting traveling wave solution of the Whithsm-

Broer-Kaup-like method and couple Hirota-Satsuma KdV equations are acquaint with Guo and

Zhou in the form, u(&) = a, +i{ai (G/G) +b(G/G)"™" a(1+(l)(G 1G)*)}
y7i

i=1

10



Here, the basic (G'/ G)expansion method will be described for finding travelling wave solutions

of nonlinear evolution equation.

Considering a nonlinear equation of two independent variables X and t, is in the form of-
P(U,U, Uy, Uy, Uy, Uy,,...) =0 (2.2.1)

T X T TIXt ) TIXx 20t

here u(x,t):u(f) is unidentified function, a polynomial function P is in U :u(X,t) and

nonlinear terms and the highest order derivatives are related to its several partial derivatives. We

will show the basic steps of the (G G) expansion method in the following steps.

Step-1: we have joined two independent variables X and t into one variable £ = x—vt and then

we have presume that,
u(x,t)=u(¢), E=x-wt (2.2.2)

We reduced Eq. (2.2.1) to an ODE with the help of the travelling wave variable (2.2.2) for

u=u(¢)
P(u,—vu Lu',viu",—vu ",u",...)=0 (2.2.3)

Step-2- We expressed the ODE (2.2.3) by a polynomial in (G G) as follows:

u(¢)=a, (—jm +... (2.2.4)

Where G =G(&) satisfies the second order LODE in the form

G"+AG'+ uG =0 (2.2.5)

11



a,,....A4 and u are constants to be determined later, a, # 0, the unwritten part in (2.2.4) is also

'

a polynomial in (%j, but the degree of which is generally equal to or less than (m—l), the

positive integer can be observed by considering the homogeneous balance between the highest

order derivatives and nonlinear terms performing in ODE (2.2.1).

Step-3- By replacing (2.2.4) into Eq. (2.2.3) and using second order LODE (2.2.5), gathering all

terms with the same order of (%j together, and the left hand side of Eq. (2.2.3) is converted

'

into another polynomial in(aj. Calculating each co-efficient of this polynomial to zero,

produces a set of algebraic equations for a_,...,v,4 and x .

Step-4- Supposing that the constraints a_,...,V,A andzcan be acquired by resolving the

algebraic equations in Step 3, meanwhile the general results of the second order LODE (2.2.5)

have been well identified for us, then switching a_,...,v and the general solutions of Eq. (2.2.5)

into (2.2.4) we get more travelling solutions of the nonlinear evolution equation (2.2.1)

12



Chapter Three

Methodology
Extended (G'/G) Expansion Method with Non-Linear Auxiliary Equation:

A NLPDE has been considered as of the following form:
P (U, Uy, Uy Uy U Uy, Uy U Uy ) = O, (3.1)
here P is a polynomial function of U (X, y,t) whose partial derivative U=U (X, y,t) is an

unidentified function of X, Y and t that includes the highest number of derivatives and

nonlinear terms.
The most significant procedures of the method are as follows:

Step 1- Assume that, £ is the combination of real variables X, y and t such that

u(x,y,t)=u(¢&), &=x+y=ct (3.2)
and Cis the speed of the travelling wave.

The travelling wave transformation Eq. (3.2) lets us to transform Eq. (3.1) into an ODE form for

u= u(;‘) , denoted by:
Q(u,u’u",u",...)=0 (3.3)
here Q is a polynomial of u(§) and the superscripts specify the ordinary derivatives with

respect to &.

13



Step 2- Allowing to option, we can integrate Eq. (3.3) for one or more times term by term and
that produces constant(s) of integration. We will consider the integral constant possible to zero
for easiness.

Step 3- we may accept that, the solution of Eq. (3.3) can be stated in the subsequent form:

(&)=Y ] 20 [s)]" 6.4

where f(&)=|d+4(&)] and A(&) is:

2(2)=(6'(6)/6(£)). 6.5)
Here, a,, or b,, may individually be zero, but a,, and b,, cannot be zero at the same time.Here,
a, (r =0,1,2,....M ) ,b, (r =12,..,.M ) and d are arbitrary constants which will be determined

later.

Now, G=G (f ) satisfies the second order NLODE:
AGG”—BGG’—C(G’)2 ~EG’ =0, (3.6)

here prime of G signifies the derivative with respect to&. A B,C and E are real parameters.
Step 4- By taking the homogeneous balance between the highest degree nonlinear terms and the
highest derivatives acting in Eq. (3.3), we can find the limiting value, M .

Step 5- By switching Eq. (3.4) together with Eq. (3.5) and Eq. (3.6) into Eq. (3.3) and gathering
polynomials in (d+4(¢))" (M=0,1,2,..) and(d+2A(&)) " (M=123,..), we set all
coefficients of the resulted polynomials to zero which produces a set of algebraic equations for

a, (r=0,12,..,M),b(r=12..,M),d and c.We can get the values of unknown parameters

by resolving the system of algebraic equations.

14



Step 6- From the general solution of Eq. (3.6), we find the following form,

Family 1- Hyperbolic function:
6, sinh —Qé + 6, cosh —Q,f
(G j B JO 2% 2P
+

2e)=[2 )2 ,
a2 7 cosh(\/a.f}tﬁz sinh(Jafl
2¥ 2¥

- (3.7)

when B#0,% =A-C and Q=B*+4E(A-C)>0and 6,0, are arbitrary constants.

Family 2- trigonometric function:

e 6 B ﬁ—ﬁlsm[ p §J+chos( p é] ,
(5)_(3)_§+ 2 [«/—_Q } . (\/5 ] ’ 9
0, cos & |+6,sin &
2% 2%

when B#0,¥ =A-C and Q=B*+4E(A-C)<0and 6,0, are arbitrary constants.

Family 3- rational form:

G B 6
”5)‘[6}5%%5’ 39)

when B#0,¥ =A-C and Q=B’+4E(A-C)=0and 6,6, are arbitrary constants.

15



Family 4- hyperbolic form:

6, sinh[\/Z §j +6, cosh[\/Z§j
Y 4

G A

ﬂ(f){—j: : (3.10)
G b4

6, cosh(\/KgZ] +6, sinh(\/sz
b 4 Y
when B=0,%¥ =A-C and A=YE >0 and 6,6, are arbitrary constants.
Family 5- trigonometric form:
s \/_—91 sin( ;A §j+92 cos[ \;A f]
' —-A
ﬂ(@{gj: 3.11)

¥ QCOS(ﬁ§J+92 sin(ﬁgJ
v Y

when B=0,%¥=A-C and A=¥YE <0 and 6,06, are arbitrary constants.

we have got these five types of family for the solution. We will use this families by providing the

values of (%j for finding the result in chapter Four.

16



Chapter Four

Application of the method

4.1 (2+1) dimensional breaking soliton equations:

Solitons have a vital role in nonlinear science and engineering applications as it provide more
insight into the relevant nonlinear science phenomena that leading us to the future scientific

features. At present, many mathematicians and physicists have been attracted through breaking

soliton equations and to describe the (2+1) dimensional interaction of Riemann wave

propagation, these equations have been used with the long-wave propagation. The initial soliton
equation was KdV equation which was derived by Kortweg and de Vries to model the evolution

of shallow water in 1985. Yet Zabusky and Kruskal had presented the concept of soliton in 1965.

Some of the nonlinear evolution equations are integrable that provide multiple soliton solutions
and holds sufficiently large number of conservation laws which plays a vital role in solitary

waves theory.

The (2 + 1) dimensional breaking soliton equation can be written as:
U, —4u,u, —2u,u, +U,. =0 (4.1.1)

This equation was used to describe the (2+1) dimensional interaction of the Riemann wave

propagation along the y —axis with a long wave propagated along the X —axis. For y =X and by

integrating the resulting Eq. (4.1.1), the equation can be reduced to the KdV equation.

17



Even, Eq. (4.1.1) is studied using the homogeneous balance principle followed by the Hirota’s

method.

4.2 Algebraic equations of the (2+1) dimensional breaking soliton equations by the method:
Let us assume that the (2+1)-dimensional Breaking Soliton equations in the form:

u+au, +4auv, +4au v =0,
Y " " (4.2.1)
u, =Vv,,

where U=U (X, y,t) , V= V(X, y,t) and ¢ is an arbitrary function.

Eq. (4.2.1) demonstrates the (2+1)-dimensional relations of the Riemann wave circulating along
the y -axis with a long wave transmission along the X -axis.

Now, we use the wave transformation Eq. (3.2) into the Eq. (4.2.1), which produces:

m

—cu'+au” +4auv' +4au'v =0,

i (42.2)
u=yv.

We can integrate Eq. (4.2.2). After that, setting all the constant of integration to zero and
integrating twice with respect to &, we can find that:
u=v
—CU+4au’ +au”=0. (4.2.3)
Taking the homogeneous stability between the highest order derivative termu” and the highest

non-linear termu?, we attain that, M = 2.

Therefore, the result of Eq. (4.2.3) goes into the following form:

u(€)=a,+aB(&)+a,{B(E) +b{B(&)} +b,{B(E)} . (4.2.4)
Where a,,a,,a,,b, and b, are constants which we will determine later.

We will discuss about the five types of families which is mentioned in methodology section.

18



Replacing Eq. (4.2.4) together with Eq. (3.5) and (3.6) into Eq. (4.2.3), the left-hand side has
transformed into polynomials in (d +A)M (M =0,1,2,...) and (d +ﬂ)_M (M =1,23,..).

We gather all coefficients of these resulted polynomials to zero, produces a set of algebraic

equations for a,,a,,a,,b,,b,,d and c are as follows:

Gv
(d +E)4 :6aC’a, —12aCa, A+6aNa, +4aN'a,

(d +%>3 :—20aA’a,d +2aA’a, +10aBa,C +2aC’a, +40aCa,Ad —4aCa A

+8aA’a,a, —20aC’a,d —10aBa, A,

(d +GE)2 :8aCa,E +24aC’a,d’ —8aAa,E —48aCa,Ad’ +4aB’a,

+12aCa Ad —3aBa,A—24aBa,Cd +8aA’a,a, + 4aA’a] +3aBaC
—CcA’a, +24aA’a,d’ —6aC’a d +24aBa,Ad —6aA’ad,

«d +G—)1 :6aBa, Ad —6aBa,Cd + 6 A’d’a, + 24aCd*a, A—12aCd*a, A+ 6aBa,E
G 1 1 1 2 1 2

~18aBa,Ad” + 2aEa,C —12aC*d’a, —cA’a, —12aA’d’a, + 6aC’d*a, +18aBa,Cd’
+8aA’a,a, +12aAda,E —6aB*a,d + aB’a, +8aA’a,b, —12aCda,E - 2aEa A,

(d +%)0 daN’a; +2aC’h, —cA’a, +2aA’D, +2aa,E* + 2aB*d*a, —aB’da, —2aC’bd + aCh,B

—4aCb,A+2aC’d*a, —2aC’d’a, —2aA’hd —aAb B +2aA’d*a, —2aA’d’a, + aEa,B
+8aA’ab, +8aA’a b, —4aCd*a,A+4aCd’a, A+4aCd’a,E —4aAd’a,E +2aEa,Ad — 2aEa,Cd
—-4aBd’a,C +4aBd’a,A-3aBd’a A+3aBd’a,C —4aBda,E + 4aCb Ad,

d +%)l :6aBb,C —12aA’h,d + 6aA’hd’ + 6a:Bb, Ad —6aBb, A+ aB’b, —12aCh,d

+8aA’a b, —12aCh Ad® +8aA’ab, +24aCh, Ad —cA’b, +6aC’bd* —2aAb E —6aBb,Cd +2aChE,
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(d +%)_2 :24aA’b,d* +4aB’b, +4aA’b} —48aCh,Ad’ —6aCdbE —8aAb,E —3aB’h,d +12aCd’b, A

+240.C%b,d’ +8aCh,E —6aCd’b, —9aBb, Ad> —cA%b, +3aBb,E +8c:A’a b, — 24aBb,Cd + 6o Adb,E
+90:Bb,Cd’ +24aBb, Ad — 62 A%d’b,

(d +%)‘3 :8a A% b, + 200 Adb, E +4a:Cd b E + 4aBd’b, A—4aCd *b, A+10aBb,E

—30aBb,Ad’ +2ab E* +40aCd’b,A+2aA’d*b, —4aBd’b,C —20aC>d’b, + 2aB*d b,
—4aAd*b E —20aCdb, E +30aBb,Cd* + 2aC*d *b, —4aBdb E —10a:B*b,d —20aA’d"b,

(d +%)4‘ :—12aBdb, E + 6ah,E> +6a:B*d b, —12aBd’b,C +12aCd *b,E +12aBd b, A

+6aC*d*b, + 6 A’d*b, —12a Ad’b,E + 4a A’b; —12aCd *b, A

4.3 Results:
Result 1:
_3(d°¥*+Bd¥-EY) 3(20%* +BY) _3 g2
a,=— . ,a=—~——>5—>%,8,=——,b =0,b,=0,
2 A 2 A 2 A 43.1)
(B’ +4EY)
C:—z, — M
where ¥ = A—C,A,B,C.d and E are free constraints.
Result 2:
B’ +4EY _3(B*+4E¥Y
ao ZEQ’ a1 =0’a2 =0,b1 :()’b2 :_3¥a
8 A 32 AW 4.3.2)
a(B*+4E¥) 1B
C: , :——’

where ¥ = A-C, A B,C.d and E are free constraints.
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Result 3:

3 (d*W +BAY-EW)

3(2d°¥? +3d°BW - 2Ed ¥ +dB’ - BE)
a0:7 A2 ,a1=O,8.2=0,b1=E A2 )
(B’ +4EY) _3(d*¥? +2d°BW - 2Ed*¥ +d’B’ - 2dBE + E’)
cC=————>,d=d,b,=— 5 : (4.3.3)
A 2 A

where ¥ = A—C, A B,C.d and E are free constraints.

Result 4:
_1 (B*+4E¥ _3 g2 _
a o BT iy gl
4 A 2 A 2 ¥ 43.4)
— 4a (B’ +4E¥) 3 (16E*W* +8EB*¥ +B')
C= 2 b =— 2 )
A 32 ATy

where ¥ = A—C,A,B,C.d and E are free constraints.

Result 5:
B2 +4EV a2 _
a3 BHIEY) ¥ g a-T1B
4 A 2 A 2 43.5)
4a{Bz+4E‘I’} —3{16E2‘P2+B4+8E‘PBZ}
Cc= 2 ’b2: 2q,2 )
A 32 A2

where ¥ = A—C,A,B,C.d and E are free constraints.

Result 6:-
2 242 2
:_%(B 2‘PE+6;’dB+6‘Pd ),al:0,a2:O,d:d,c:—a4\PE+B

A2

3 (2¥d* +3¥d’B - 2WdE + Bd - BE) 3 (Y2d* +2¥Bd® - 2WdE + E* + B*d* - 2BdE)
b1 25 A2 ,b2 :—5 A2 (436)

where ¥ = A—-C, A B,C.d and E are free constraints.
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4.4 Solutions of the mentioned equations by applying the method:

Solution 1: Hyperbolic Function solutions:

Substituting Eq. (4.3.1) to Eq. (4.3.6) including Eq. (3.7) into Eq. (4.2.4) and simplifying, we get

following travelling wave solutions:

when, B#0,%¥=A-C,Q=B*+4E(A-C)>0,&=x+yxct and 6,06, are arbitrary constants.

6, sinh @5 +6, cosh Ef
3(YdB+WP2d2-WE) 3 (2¥d+¥B) B JQ 2y
ul,(x,y,t)y=—= e += e d +ﬁ+ >y 5
6 c sh(§]+9 smh[ J

[\

_3‘{]2 . ] +J§951nh(£§]+02005h[£§] qjd\/_t‘)smh[;/;gfjwzcosh[;/gfjB\/_Hsmh[ ]+0 COSh[;/S§]

PR H leelcosh(\/aﬁ]+ﬁzsinh[\/5§] chosh[\/aé]wzsinh[\/afj ’ Hcosh[ ]+9smh[\/5§]
¥ 297 ¥ ¥ ¥

(V@
3 B2 Qcosh "

= YE + 3 {\E ] [when 6, =0 but 6, 0]

sinh”| —¢&
L 2\II -
. N [0
..ull(x,y,t)_zA{E\PJr‘L(B —Qcoth [ fJJJ
_ _ 3 e Y B _geome[ Y2
vl (X, y,t)_ull(x,y,t)_zAz{E\P+4[B Qcoth LZ‘I’ §DJ (4.4.1)

-2

& a
E £0 smh[ §]+92 cosh[ijfj

3(B +4EY) 3(Bz+4E‘P) 1B
N R AV | 2¥ 2% 2w

@cosh[@§]+025inh[@§]

2y 2y

UIz(Xa yat) = g
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.

(B°+4EW) 3 (B*+4E¥) @COSh(;/_GZJ

- when 6, =0 but 6, #0
A’ 32 A2 2¥ [Ja J [ : »#0]
sinh| —¢&

3
:>UI2(X7 yat) = g

SuL(x,y,t) :§ X

B +4E B*+4E
VL, (X, Y, t) =ul,(X,y,t) = %%Ll —%(Jr—g‘{])talnzh(gi2 é‘n (4.4.2)

3(B +4E‘P)[1_(Bz HIEY) [Efj
Q 2¥

3(0°9 +BAY-EY) (2% +30°BY-2EdY+0B'-BE)| | B |
uLy(x,y,t)=-= ; += 5 d+| —+
2 A 2 A Wy [ng

-2

3(d*¥?+2d'BY -2Ed"¥ +d°B’ - 20BE + E°) B O

> +—+
2 A ¥ 2%

2‘P(2d3\Pz +3d*BY —2EdY +dB> - BE
\/_ J

(dZ‘P2+Bd‘P—E‘P)—
0

209 + B ++/Qecoth| -
+B++Qco [2\}’5

N EA | EE— [when 6 =0 but 6, #0]

2N 4‘P2(d4‘1ﬂ+2d3B‘P—2Ed2‘P+dzBZ—2dBE+E2)
2
[2le+ B +\/ﬁcoth[\/§§]]
2y
2‘1’(2d3‘{’2+3dzB‘{’—2Ed\P+dBZ—BE)_

3

Q
2d¥ + B+4/Qcoth| —
\/_co [le

(dZ\P2+Bd\P—E\P)—

3
2N 4‘P2(d4‘P2+2d3B‘P—2Ed2‘P+dsz—2dBE+E2)
+

\E 2
[2le+ B+y/Q coth[zlyfjj

VL (X, y,t) =uly(x, y,t) =~ (4.4.3)
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Q Q
6, sinh{f]ﬂ? cosh(f}
2 2 1 ¥ 2
- LEHED 3¥ 18 | 8 0

2P
A2 DA 2W | 2% 2v
cosh @é‘ + 0, sinh @5
: 2P 2 2

W—Z
6, sinh @9‘ +6, cosh Ef
3 (B*+16E’Y’+8¥YB’E)| 1B | B JQ 2% 2%

———+| —+
32 A2 2% |29 Q¥
6, cosh @5 + 6, sinh Ef
2% 2%

2 2
@5 3wtanh2 (@gj [when 6, =0 but 6, =0]
¥ § AQ 2¥Y

1 (B*+4EY) 3Q
sSuL(xy,h= o
4( y ) A2 4A2

A 4N 2¥ 8§ AQ

Ly =UL X Y. == i(Bz+4E‘I’) 30 thz[\/_éj 3B +4EY) ( 44.4)

o, smh(\/_ﬁ}rﬁ cosh(\/_ j
ul(xyt)_3(4‘PE+B) 39| 1B B Ja
A 2A 2¥ 2¥ 2 91cosh(m§}+ﬁzsinh(@§]
2V 2¥

———t+—
32 Ay’ 2¥Y 2% 2¥
o, COSh{\/afJ+02 sinh(mfj
2¥ 2¥
2 2
Suly(x, y,t)_%@_é Q[ coth? [@5] jw[mhz [£§

-2
6, sinh @f + 6, cosh @f
3 (16Y°E’+8YEB’+BY)| 1B B O 2¥ 2Y

¥ 8§ AQ

[when 6, =0 but 6, #0]

VI (X, y,t) =uly(x,y,t) = 3(4‘14'56\—;[3)_%2 coth’ [g%}%%{taﬂh{gfn (4.4.5)
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en|
Hsmh \Eé +6, cosh @4‘
1(B'-2¥E+6%dB+6%'d") 3 (29°d’+3%d’B-2¥0E +B'd-BE) 2 2¥
Ul(%,y,t) =~ , - : d+—+—
4 A 2 A ¥ Y 0 0
6 cosh| —¢& |+6,sinh| —¢
¥ ¥
-2
6, sinh \/5 & |+6, cosh Qf
_3(¥d'+2¥Bd’-2WIE+E'+B'd*-2BdE)| B VO 29
2 N 2‘1’ 2¥
6, cosh V@ & |+06,sinh Qf
2‘1’ 2Y¥
1 (B’ —2¥E+6'¥dB + 6%’ o2 ) 3Q¥d’ +3¥d’B-2%dE + B - BE)Z‘P
Sulg(x,y,t) =— > +=
4 A 2 Jo
A2 2d\P+B+\/§COth ﬁé

69’ (W’d" +2¥Bd’ -2WdE + E® + B’d’ - 2BdE)
2
A {2d‘1’+ B+JQ coth(\z/agﬂ

2 3
VI (X, y,0) = Ul (X, y, 1) = - i(B —2¥E +6¥dB + 6¥*d> ) 3(2‘P d® +3¥d’B-2¥dE + B*d - BE)2¥

[when 6, =0 but 6, #0]

A2
A 2d‘P+B+\/5coth[\/_§]]
2
224 3 2, R242 _
6P(P7d* +2'¥Bd’ - 2¥dE + E” + B’ 2 2BdE) (4.4.6)
A2 2d‘P+B+J§coth[J5§]
2¥
- ) fﬁsinh[f§J+6’2cosh[\2€f
u17(x,y,t)=_§(‘PdB+‘Pd ~¥E) 3Q¥d+¥B)[, B VO

A’ 2 A’ ¥ 2¥
6, cosh @f +6, sinh @5
2¥ 2¥

| Q
6,sinh| —¢& |+ 6, cosh
3y? 4+ B +¢Q { J (2‘}’ J

2 A 29 2¥ Q
6 cosh —f +6,sinh| ——
Z‘P

3 1 Ja
SUL (X, Y, t) = e {E‘}HLZLBZ Qtanh{z‘{] §DJ [when 6, =0 but 6, =0]
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3 1 Jao
VL, (X, y,t) =ul, (X, y,t) = e {E‘IMZLBZ —Qtanh’ (E §BJ (4.4.7)
-2
& 5
h h| —
3(B+4E¥) 3 (B +4E¥)| B, B J‘HSIH [ o [rercosh| ¢
uly (X, y,t)y== > - — 4=
8 A 32 AW 2 ¥ 2‘1’ 2Y \/_ ] Jﬁ
6, cosh —5 +6,sinh| — &
2¥Y 2¥Y
3(B*+4E¥)( | (B’ +4EVY) Ja
uly(X, y,t)—T£1—Z—coth2 o & | [[when 6,0 but 6,=0]
B® +4EY B’ +4EY¥Y
vlg(x,y,t):ulg(x,y,t):g( X )Ll—( )coth2 [gfn (4.4.8)

5 &
9 h 0. cosh| ==
oLy = 3(¢°%* +BdY -EY) 3(2d3‘P2+3dzB‘P—2Ed‘P+dBZ—BE)d sin [2q,5+ cosh| - ¢
Xy» 3 +- > ]
A 2 A TR
Hcosh[\E j+0smh[f§j
A Y
& &
6 sinh| — 0. cosh| =22
3(0'9° +20°BY 2B Y +d°B* - 20BE4EY)| | B \/— sin l},f +6, cos Naf
E A HETARTY ) s
6 cosh| —¢& |+0,sinh| —¢&
A 2¥
| ‘P(2d3‘P2+3dzB‘P—2Ed‘P+de—BE)_
(d>¥? +BdW —E¥)-
2d‘P+B+\/5tanh(\2/§§j
: ___3
Suly(xy,t) = 2 A2 4T2(d4\P2+2dSB\P_2Ed2‘P+dZBZ—2dBE+E2)
(2d‘P+B+\/5tanh(\2/§§j]

[when 6, =0 but 6, =0]
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2% (20°%2 +3d"BY - 2EdY + 0B’ - BE)_
(d2‘P2+Bd‘P—E‘P)— %
24 + B+\/§tanh[2$§j

449
4‘1’2(d4‘P2+2d3B\P—2Ed2‘P+d2B2—2dBE+E2) (4.4.9)

\/5 2
[2qu+ B+«/§tanh[2qj§]]

Vl()(x9 y’t) = UI9(X3 yst) ==

6, sinh —Q + 6, cosh @f
1(B*+4E¥) 3¥?| 1B J_ 2‘1' 29
B Y BT BT & )
Hcosh — & |+0,sinh| —¢
2 2%
- -2
Hsmh —5 + 6, cosh —f
_ 3 (B'+16E°Y’ +8¥B’E) 1B, £+
32 A2 2¥ |29 2¥
Qcosh£f§}+6’2sinh[\/_§J
29 29

2 2
~ul (x,y,t):—lw—gtamh2 \/_f 3% oth’ \/_ & [when 6,#0 but 6,=0]
o 4 A 4N 29

W) 8 A
LB’ H4EY) 30 L(VQ ) 3(B’+4EY)
vl (X,y,0)=ul, (x,y,1)= tanh coth 4.4.10
(6 YD =Uly (6 .0 == =5 N 2\{,5 T g 5 ( )
6,sinh| ——¢& |+ 6, cosh @
3(4YE+B’) 3% 1B B Ja o 2w °
U6y, =0 5577 73 +
A A 29 2w ow @
6, cosh —f + 6, sinh 2—

N
"G

6, sinh —f + 6, cosh Q§
3 (I6Y°E*+8YEB*+BY)| 1B B JQ 2%

— + +
Q
32 AW 2% 2% 2%
0, cosh| ——
Z‘P

(X y,t)_g%je’z)_gfz[ [£§jJ 3(82;%[ coth’ [ggjj[when 6,#0 but 6,=0]
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VI, (%, y,0) =l (%, y,t)_éw—ég[tanhz[ggjj 2(82;?5{]) [ thz[ggh 4.4.11)
f]

|(B-2VE+6Y0B+6°F) 3 (24 +3V4'B-2V0E +B'd-BE)
Ut 3= I8 5 e v 2‘1’

\5 12
z\y‘f]

3(P2d*+2¥Bd —2WdE+E* +B*d*-2BdE)| , B JQ
2 N AT Ja Ja
6 cosh| —¢ [+6,sinh| —¢&
2y 2y

1(B*-2YE+6Y¥dB+6¥"d’ ) 3 (2¥°d’ +3¥d’B-2WdE + B*d - BE)2¥
sul,(xy,t) =— 2 e += \/_
2d‘P+B+\/§tanh£2\P§ﬂ

A2

3 (¥d* +2¥Bd’ - 2'WdE + E* + B’d” —2BdE)4 ¥’
2 2
A {2d‘1’+ B+«/6tanh[\2/§§ﬂ

1 (B’ —2W¥E +6WdB +6¥°d’
V1, (X, y,t) =ul,, (X, y,t):_z( I )

E(Z‘I’zd3 +3¥d’*B-2WdE +B°d - BE)2¥ 3 (¥?d* +2¥Bd’ - 2¥dE + E* + B*d” - 2BdE)4¥”

2 2
2d‘P+B+J5tanh[£§]] A 2dT+B+J5tanh[£§j]

[when 6, =0 but 6,=0]

(4.4.12)
A2
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Solution 2: Trigonometric solutions:

Substituting Eq. (4.3.1) to Eq. (4.3.6) including Eq. (3.8) into Eq. (4.2.4), we attain the explicit

soliton solutions as follows:

when, B=#0,¥=A-C, Q=B’+4E(A-C)<0,&é=x+y*ct and 6,60,are arbitrary

constants.
. [N-Q J-Q
. 5 -6 sin| ——¢& |+6,cos| —¢
_3(d y +Bd‘I’—E‘P) 3(2d\P +B‘P) B JQ 29 2¥
U21(X,y,t):— ) +— 5 d+—+
2 A 2 A ¥ 29 J-Q (o
0, cos E|+0,sin| ——&
2¥Y 2¥Y
2
—6,sin ;Qf + 6, cos ;Qf
—3 y? ds B +,/_Q 2¥ 2¥
+__ —_—
2 A 29 2¥ J=0 NNES
6, cos E|+0,sin| ——¢&
¥ 2¥
2 \I_Q
cos &
=) u2,(x,y,t) = > ‘{’E+B—2+9i [if 6,=0 but 6, 0]
= 1 ,y: _2A2 4 4 . z[m J 1 2
sin| ——¢&
2¥
3 1 2 2 \/_Q
Su2 (X y,t)= YE +—| B°+Qcot”| ——
3 1 NEY
V2, (x,y,t)=u2,(x,y.t) = Y {‘PE +Z[B2 +Qcot’ [WQKJJJ (4.4.13)

— -2
2 -0, sin _Qf + 6, cos _Qé
2 (it 3(B*+4E¥) 3 (B*+4E¥) | 1B B JQ 2% 2 2¥
uz,(x,y,t)=—= —— ——+—+
: (%3.0) 8 A 32 AW 29 2% ¥ J=0 (=0
0, cos P & |+ 0,sin o &

3(B”+4E¥ B® +4E¥ J=0 )
.-.u22(x,y,t):§( o )[1+( o )tan{ﬁi [if =0 but 6,=0]
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V2, (X, y,t)=u2,(x,y,t)= 3

3(52+4E\P)(1+(Bz +§;1E\P)tan2(ﬁ§j] (4.4.14)

A’ 2¥Y
-1

(V= J-0

ey N ) =G sin| ——& [+6,c08| ——¢&
(0¥ +BdY-EY) 3(20°W7+3d°BY-2EV+dB’-BE)| B (O 2 2¥

u2,(xy,t)=— - += . d+—+

2 A 2 A 29 2% J0 (o

fcos| ——&|+0,sin| ——¢
¥ 2¥

+—
2

-2

[a /o
[

-0 sin| ———& |+6
_3(d¥? +2d°BY - 2Ed°¥ +d°B’ - 20BE + E7) . B o lsm( 2¥ §]+ g

o S QCOS[E§]+92 sin(mfj
2Y 2¥

2‘P(2d3‘}’2+3dzB‘P—2Ed‘P+de

- BE)

(d°¥ +Bd¥ -E¥)- N ]

2d¥ + B +v-Qcot ;Qg
2¥

.'.u23(x,y,t):_—2 [if 6 =0 but 6, iO]
2A 4\P2(d4\1’2+2d3B‘P—2Ed2‘P+dZBZ—2dBE+E2)
+ 2
2d‘P+B+«/ﬁcot[\/__Q§j
2¥
2\1’(2d3‘1’2+3dzB‘{‘—2Ed‘P+dBZ—BE)
(d2T2+BdT—ET)— =
2d¥+B+ —Qcot(z_\;)f]
V2, (% y.t) = U2, (k) = (4.4.15)
2A 4‘}’2(d4‘1’2+2d3B‘P—2Ed2‘P+d282—2dBE+E2)
+ 2
209 +B+ —Qcot(J__Qéj
2
2
5 -0, sin _95 + 6, cos ;ng
-1 (B +4E‘P) 392 1B B J-OQ 2¥Y 2¥Y
u24(x,y,t):?— L

+
32

+ ——+—+
A’ 2 A 29 29 2¥ J-Q (V=
0, cos & |+6,sin p &

30

-2

RS J-0

. 5 . —0, sin & |+6,cos &
3(16E*¥? +8EB*'W+B')| 1B B O 2¥ 2%

— ——+—

A2 2% 2¥  2Y Nas) J-Q

6, cos & [+0,sin &
2¥ 2%



LUz Gy =—

8§  AQ

-1 (Bz+4E‘P)+3 Q Z(Eéj 3<Bz+4E\P)2tan2[«/2—_Q

e ng [if 6,=0 but 6, =0]

4.4.16
A 8 A’ 2¥ ( )

1 (B +4EVY - B2 +4EW) -
v24(x,y,t)=u24(x,y,t)=£g 3 Qcotz[\/_ggf}+3( ) tan{\/_Q ]

-6, sin(\ffj +6, cos[ﬁfJ

(B*+4E¥) 39| 1B B JQ 2%

| ——+—
A 2 AN 2Y 29 2% J-Q NS
6, cos & , &
2Y¥ 2¥

3
u2,(x, y,t)=Z

. (J=Q N=IA
pry o4 5 —6, sin & |+6,cos &
-3{16E*¥* +B*+8EWB’}| 1B B O 2Y 2Y
+ ——+—+
32AMY? 2 ¥ 2¥9 2% NS NES
6, cos & |+6,sin s
2% 2%
2
3 (Bz+4E‘P) 30, J=0 3(BZ+4E‘P) 5 J-0 )
u2. (X, y,t)==————~+=—-=cot + t —_— if 6 =0but @ %0
s(030) 4 N gAT 2‘P§ sAQ 2\?5 [it & :#0]
3 (BHEY) 30 (V@) 3(B+4EY) (o
V25<X,y,t)=U25(X,y,t)ZZT‘FgFCOt p 5 + 8A2Q tan 2\P§ (4417)

(3]
“‘5@

u2,(x, yt)——

«/_
-6 sin| ——¢& |+6,cos
1 (B> -2¥E +6¥dB +6¥*d )+§(2‘I’2d3+3‘I’dZB—Z\PdE+BZd—BE) d+£+\/_
+

. ) » L 22y s [w Qsm[ j
) 5]

4 3 2 2 - esul ZIP
_3(¥'d+2¥Bd’ -2WdE+E’ +B'd’ ~2BdE)| . B VO

".C)

2 A 2‘P 2¥ J- J=
0, cos Qf +0,sin Qf
2¥ 2¥
1 (B> —2¥E +6WdB +6¥2d?) 3¥(2¥%d*+3W¥d>B-2¥dE + Bd — BE)
SU2(K Yt =—— X +
A [2d‘1’ B+JQ co{;{) gn

6P (¥d* +2¥Bd’ —2'WdE + E* + Bd* - 2BdE)

A (2d‘{’+ B +\/Ecot[2q]§D

[if 6,=0but 6, #0]
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2_ 242 243 p 2
V26(X,y,t):u26(x,y,t):_%(B 2TE+?;’dB+6‘Pd ), 3P(Q¥°d’+3¥d°B-2¥dE + B'd - BE)
AZ[zd‘{’+B+\/—_Qcot[\/2§§j]

2 244 3 2 292
¥ (Pd' +2¥Bd’ - 2WdE +E’ + B'd’ ~26dE) 4.4.18)
A? (Zd‘l’ +B+-Q cot( 2_11? fB

jan(

-0, sin
N2 2 1
_3(d*W? +BdY-EY¥) 3(2d¥*+BY B O [2\1!
u27(x,y,t)=—( )+—( ) d+—+
2 A 2 A ¥ 2¥ J-Q i «j_Q
6 cos| ———¢& |+6,sin &
2¥ 2¥

3y Ja 2y
+—3\P—2 d+£+ {2
2 A ¥ 2¥ J-Q . [N-Q
0, cos & [+0,sin o &

10 JJJ it 640 but 6,~0]
2¥

3
Su2,(xy,t)= e

o 5]“ 44.19)

YE +l B? +Qtan’| ——
4 2¥

V2, (%, y,t)=u2,(x,y,t)= e

2 6 sin J__Qé + 6, cos @f 72
3(Bz+4E‘P) 3 (Bz+4E‘P) —_IE+£+‘/5 ! 29 2 Y
\/__f}rﬁzsin(mé]

2 t)=2 -
u2; (xy.t) 8 Al 32 AWg? 29 29 Q¥ ) )
19981 Ty 2y
(B*+4EW)( (B’+4EV) Nare) _
-+ cot’ ch [if 6 =0 but 6, =0]

S (%, y.t) R

3(B*+4E¥)
V28(X7yat)ZU28(X’y’t):§ A2 1 2%

[ s (82 +4E\P)C0t2 LE%} (4.4.20)
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u2,(%,y.t) =

3(d"¥P+2d'BY - 2BV +d°B*-2dBE+E’) B @

(Y +BAY-EY) 3(2"V+30°BY-2Ed¥+dB’-BE) B (o |

+= d+—+

sin[ff]wz cos[mfj _

2¥

A 2 N A SVA 4

6 cos[\fé}ﬁz sin[mgj

2¥

¥
+— d+—+
2 A 2 Q¥ NG) (=
O cos| —¢ |+06,sin| ——¢&
¥ 2y
- 2%(2d"¥* +3d°BY - 2Ed'¥ + dB’ - BE
(d*¥*+Bd¥-EY)- =
24¥+B- —Qtan(_sz]
~ ¥
L2 (XYt =—

V2, (X, y,t)=u2,

A 4‘P2(d4‘PZ+2d3B‘P—2Ed2‘P+dZBZ—2dBE+E2)
_|_

=)

A*| 2d¥ + B -\-Qtan ;Qg
29

2‘P(2d3‘1ﬂ+3d BY - 2Ed¥ +dB> - BE)

[if 6,#0 but 6, =0]

(dz‘Pz +BdY - E‘P)—

-3

Xa at =7
(1) 2A? 4‘P2(d4‘1’2+2d3B‘P—2Ed2‘P+d282—2dBE+E2)

Ia 5}

2d¥ +B-+-Qtan
2¥

2

2d¥ + B-+-Qtan
2y

(4.4.21)

2
5 -0, sin Q.f + 6, cos Q§
2 (o) 1 (B°+4E¥) 32| 1B B JQ 2¥ 2%
u2,(xyt)=— ——| ==t
(%Y A? 2 A2 29 2% J=0 NS
| cos & |+6,sin ¢
2¥ 2¥
-2
(V=0 J-Q
yerya ) 4 —6 sin & |+6,cos ¢
_3(16EW* +8EB’Y+B*)| _1B B O 2¥ 2¥
+— ——+—+
32 A2 2¥ 2¥ 2¥ J=0 NS
6, cos y & |+0,sin T &
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&| [if 6 #0but 6,=0]

+ 4.4.22
8 AQ 2¥ ( )

2@]

me-i-ezCOS[me

_3(BraEY) NI il il

4 A 2 A 2 2 2w 1 (\lﬁg}%sm(@é]
29 29

-2
(V= NS
P 5 -0, sin & |+ 6, cos &
- 3{16E*¥’ + B* +8EWB’} __1§+£+,/__Q 2% 2¥
32A2Y? 29 2% oY J—0 (o
0, cos vy & |+6,sin vy &

u2, (x,y,t)=

(82 +4E‘P) 30 tan{\/__gﬁ}- 3(52 +4El}!)z COtz(m

3 .
A A ¥ SA’O) ¥ 5] [if & =0 but 0, =0]

V2, (xy.t)=u2, (X, y,t)= é (4.4.23)

3
4 A’ 8 IS 2¥Y SA'Q 2¥Y

(B2 +4E‘I’) 30 anz[J__Q§]+3<BZ+4EqJ)z COtz[m

U212(X5 yat) =

1
-0,sin Qf +92cos;Q§
1(B°-2¥E +6Y0B+6¥'d") 3(2¥°d"+3¥d'B-29dE+B'd-BE) . B Jao ol 2¥
4

; ) § e [J’g} [mj
+0,sin ng

P
-6 sin[J__Qéj +0, COS[J__Qéj
2¥ 2¥

_3(¥'d‘+2¥Bd’ -2WdE + E’ + B0’ -2BdE)| , B +«/—Q

2 A 29 2y N N
0, cos Qf +6,sin Q§
2¥ 2¥
1 (B2 —2¥YE +6¥dB +6‘P2d2) 3‘1"(2‘{’2d3 +3%¥d’B-2WdE + B*d — BE)
nu2 2(X yat) = _Z

A’ J—O
A’ (2d‘l’+ B-J-Q tan[ £ fJJ
2%
6W? (W d* +2¥Bd’ —2WdE + E* + B°d” —2BdE) [if 6,0 but 6, =0]
- 1

A2(2d‘1’+ B—J—_Qtan(*/z;_ggnz
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1 (B> -2YE +6¥dB +6¥*d*) N 3¥(2¥*d’ +3¥d’B-2¥dE + B*d - BE)

N )

V212(X’ yat) = U2|2(X, y’t) ==

A? [2d‘1’+ B-vV-Q tan[
2¥

2 244 3 2 242
67 (¥7d* +2¥Bd® —2'PdE + E* + B*d® ~ 2BdE) (4.4.24)

A (2d‘P+B—x/—_Qtan( y 5}}

Solution 3: Rational Form Solutions

Considering Eq. (3.9) composed with Eq. (4.3.1) to Eq. (4.3.6) to the Eq. (4.2.4) the following

solutions have been constructed.

when, B#0,¥ =A-C,Q=B’+4E(A—c)=0,£ =x+y=*ct and 6,6, are arbitrary constants.

+—+

__3(d2‘P2+Bd‘I’—E\P) 3(2d‘P2+B‘P)[d B 0, J+_3\P2[d B 0, T

3, (% y,t) = 2 ST
U3 (¥ =3 A RS 2¥ g+60,) 2 A 2% G+6,¢
G yt)__3 (dQ‘PZ+Bd‘{’—E‘P)+§(2d‘P+B)Z(HI+62§)+(2d‘P+B)2‘P92 _§((2d\P+B)(9] +02§)+2\P02)2
o HYIUM ) 2 Az 4 A2(91+92§) 8 A2(€1+92§)2
d*¥* +BdY -EY :
V3I(X’y’t):u%(x’y’t):_g( ! ) 3(20¥+8) (01j92§)+(2d‘{1+ B) 2w,
2 A 4 A (6,+6,¢)
) (4.4.25)
3((2d¥+B)(6,+6,£)+274,)
8 A (6+6,¢)
B’ +4E¥) _3(B2+4E¥) (_ 2
.0y (BHEY) —3(B1raEY) (e o)
8 A 32 AV 2 W 2¥ 6 +6,¢
B2 +4EW B2 +4EW¥)(6, +6,&)
.'.U32(X,y,t):§( . ){1_( 2( 21 25) J
8§ A 4920,
3(B*+4EY B’ +4E¥) (6, +6,8)
v3,(X, Y,t) =u3,(X, y,t)=§( e )[1( 4\1129;1 = (4.4.26)
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2 (d*¥? +BdY -E¥ 2d°¥? +3d*BY - 2EdY + dB? — BE
u33(x,y,t)=73( L )( 8 ,_ %

Al 2 Al 2V 6 +6,E
_3(d*W? +2d°BY - 2Ed*¥ +d°B* - 2dBE + E*) B 0. )
+— +—t—2
2 Al 2V 6 +6,E
3(d®¥? +BdW-EW) 3¥(6+6,£)(2d’¥’ +3d°BW - 2Ed ¥ +dB’ - BE)
Su3, (X yt)=—

+
2 A A (2dW (6, +60,€)+B(6, +0,6) +2¥6,)
6W’(6,+6,&) (d*¥” +2d°BY —2Ed°¥ + d°B* - 2dBE + E”)
A (2d¥(6,+6,6)+B(6, +6,6)+2¥6,)

3(d*W? +BdY-EY) 3¥(6 +6,£)(2d° ¥ +3d*BY -2EdY +dB” - BE
V33(X,y’t)=u33(X,y,t):_3( 5 )+ ( 12 25)( )
2 A A (2dW (6 +6,6)+B(6, +6,¢) + 296,
69’ (6, +6,&) (d*P” +2d°BY —2Ed°¥ + d°B* - 2dBE + E”)

- (4.27)
A (2d¥ (6, +6,6)+B(6, +6,E) +2%6,)
_1 (B*+4EY¥Y) _3y2(_ 2
u34(x,y,t):—l(—2)+_3lP_2 _IE+£+ 0,
4 A 2 N 2W 2¥ 6+6¢
_3(16E°¥*+8EB*W+B*)(_1 B B 0 )
vy 2 ~ ot 2
32 AP 2 2¥ G +V,¢
3.0 y.0) 1 (Bz+4E\P) 3w 3 (Bz+4E‘~P)2 (91 +92§)2
Su3,(%y,) =—— = =
! 4 A 2 A (6,+0,6) 32 AP
B’ +4EY 20,2 B2 +4EY) (6, +6,¢)
00y -, oy - L LB 3 s 3 (BHEY) (0+08) g
4 A 2N (g +6,¢) 32 AP0,

(B°+4E¥) 392(ciB B 6 Y 3[I6EMW+B4SE¥B}(_1g B g )
u3s(x,y,t)= vyt - v gt

3
T e o mloe’ o ot
4 A QA 2Y 2¥ G +6¢ RAY QY ¥ G+0¢
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3 (B+4E¥) 3 wegp 3(B* +4E¥) (6, +6,£)
4 A 2R(G+6,8) AP0

Su3i(x,y,t) =

(B2 +4E¥) 3 w2 3(B*+4E¥) (4+6,8)

3
2 _2 - 4.4.29
4 Al 2N (4, +92§)2 32ATY0, ( )

V35(X, y,t) = U35(X7 yat) =

ud . (xy,t)= —
(xt) A 2 A ¥ 6 +6¢

3(¥d'+2¥Bd’ -2¥dE+E +B'd*-2BdE)(, B 6 |
2 S 29 6 +0,2

_l(Bz—2‘PE+6\PdB+6‘P2d2)+§(2‘P2d3+3‘Pd28—2‘PdE+BZd—BE)[d+ B 0, ]‘1

U3 (XY = 1 (B -2¥E+6¥dB+6¥’d?) 3¥(2¥°d"+3¥d"B-2¥dE +B'd - BE)(4 +0.0)
SU3 (XY t) = 4 A2 A2(2d‘P+B(01+02§)+292\P)

6W2(Wd* +2¥Bd’ —2WdE + E* + B*d* ~2BdE) (6, + 6,¢)’
A (2dY +B(6, +6,8)+20,¥)

1 (B -2¥E +6¥dB+6¥d?) 3¥W(Q¥’d’ +3¥d’B-2WdE +B’d -BE)(4,+6,¢
V36(X’ yat) = U36(X9 y’t) = __( 2 ) + ) ( l : )
4 A A (20 +B(6,+6,¢)+26,%)
6> (2d* +2WBd’ —2WdE + E? + B2d* —2BdE)(6, + 6,¢)’
A*(2d¥ +B(v, +6,6)+26,%)

(4.4.30)
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Solution 4: Hyperbolic function

Picking Eqn. (3.10) as a group of Eqn. (4.3.1) to Eqn. (4.3.6) for the Eqn. (4.2.4) the formed

travelling wave solutions are as follows:

when, B=0,%¥=A-C ,A=YE >0, =Xx+Yy*ct and 6,6, are arbitrary constants.

JA JA
—3(d*¥* +Bd¥-EV) 3(2d‘P2+B‘P) J—QSIHh[ §J+HZCOSh[‘P§j
uh ()= ety |y
@cosh{JZfJﬂ%sinhL\/Zgj
b d ¥
QSIHh(\E§)+92cosh \/Eégj
Hcosh(f§j+0 sinh \/Egj

3 {E‘P+ Bcoth(%f —‘chothz[ggJJ [if =0 but 6, #0]

Soud (X y,t) =
1( y ) 2A2

3L A
¥

2 A

3 JA JA
va, (X, y,t) =u4,(X,y,t) = A {E\P + Bcoth(?fJ—‘Pz coth’ (?5” (4.4.31)
(B> +4EW) _
[if 6 =0 but 6, #0]

(Bz+4E‘P) 1-

3
u4, (x,y,t Soud (X, y,t) =
2( y) 2( y) 8A2

(—B +24/A coth(*ggnz

(BZ+4E‘P)

[—B +2A coth [{EQZDZ

3

e (B*+4E¥) 1- (4.4.32)

V42(X7 yst) = U42(X> yat) =
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JA A
) (W BV EY) 3(20°+30°BY 260+ 0B BE) Jgesmh[tpg +;cosh ?5
XY, 3 += :
2 A 2 A 11/
Hcosh[\g ]+9 smh[\g j

6, sinh 6, cosh| Y2
_3(d“‘I’z+2d3B‘I’—2Ed2\I’+dZBz—2dBE+E2) B Sm[ ]+ cos }

+_
2 A2 ¥
QCOSh[J_fj+9 smthj
(d ¥ +BdY-EW) 3¥(2d%P+3d’BY-2Ed¥+dB’-BE)
S U4 (X Y.t = ; += [ if 6 =0 but 6, 0]
A 2 JA
A2 d¥ ++/A coth ?§
3 W (d*¥? +2d°BY - 2Ed*W +d°B’ — 2dBE + E*)
- -
AZ(dT+Ecoth(*/§§D
_3(d*¥?+BdW-E¥) 3W(2d W’ +3d°BY-2EdY +dB’ - BE)
V43(Xa yat) = U43(X9 y:t) == P) +—
2 A 2 . JA
A%| dW ++/A coth v
3 W (d*¥? +2d°BY - 2Ed*¥ +d’B’ — 2dBE + E*) 4433
A d‘P+\/Zcoth(\P§]
2
(A JA
h| X2 =
i gy -1 LEAEY) 3w e B0 )
== | — - —
Ry A QA2 ¥
chosh(ﬁg}tezsinh Ef]
Y Y
-2
(A JA
hl X2 =
3 (16E>¥* +SEB*W +B*)| _1 B Jasn (‘P & J+Ohcosh| “y e
__+_
32 AN 2Y v
Qcosh(ﬁ§]+ﬁz sinh(ﬁé
¥ Y
3 (8 +4E¥)

_[if 6,=0 but 6, 0]

ud,(x,y,t) = _ﬁ(82+4ET) A [B+ZJ_ th[J_ D 8A2[ \F [\/K ]]
B+2yAcoth| —¢
b g
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: B2 +4EY)
v44(x,y,t):u44(x,y,t):—ﬁ(BQ+4E\P)—$[—B+2«/Zcoth(§§)j _ﬁ ( + ‘P) : (4.4.34)
[-B+2Ecoth(€§]]

7 Sinh(JZ§J+92 cosh(ﬁél
v Y

B> +4EW) _3y2|_
i O 2 ST I
Glcosh[Af}Lezsinh(Ag]
¥ ¥
-2
(A JA
nh| X2 h| X2
3{16E°¥ +B' +8E¥B}| _1 B \/ZHISI [\y & |Focosh) e
— __+_
2AY Q¥ W
0, cosh Lﬁij + 6, sinh (\/ng]
N7 ¥
2
JA
3| -B+2y/Acoth| 1=
3(B? +4EY) [ Yae [‘Pg 3{16E™Y" +B* +8E¥B’}
U45(X9y)t)= 4A2 - 8A2 - 2 [ |f 01 :0 but 92 750]

gA’ [—B +24A coth[‘ggjj

2
A
3 -B+2JAcoth| V>
3(B*+4E%) [ +laco (qlf 3{16EW’ + B +3EVB?)

v (X, y,t) =ud. (X, y,t) = 4.4.35
5( y ) 5( y ) 4A2 8A2 \/Z 2 ( )
gA’ —B+2«/Zcoth[\y.§
\F -1
i ﬂsmh & |+0,cosh —Aé
|(B'-2YE+6%B+6¥'d") 3 (40 +394'B-2YGE +B'dBE) A Y
Ud(x,y,t) = - + :
4 A 2 A (\x
Hcosh & |+6,sinh| —¢
¥
\F -2
6, sinh 5 + 6, cosh —Aé
3 (P3d* +2¥Bd’ ~2WdE+E*+B%d* ~2BdE)| , VA b
2 A2 I+ JA JA
chosh[\yé‘jﬂ% sinh ‘Péj
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1(-B*+2¥E-6¥dB—6¥’d’) 3¥(2¥°d’ +3¥d’B-2¥dE + B’d - BE)
4 4N
2A{d\y+\/Kcoth(‘{§gn

_3W2(¥3d* +2¥Bd’ —2PdE + E* + B*d® —2BdE)

oA (d‘P + \Ecoth(‘gfjjz

Sud (XYt =

[ if 6,=0but 6, =0]

1(-B’ +2VE-6¥dB-6¥°d") 3¥(2¥’d’ +3¥d’B-2VdE +B'd - BE)
4 4N’
2A2[d‘l’+«/Zc0th[\l/§§]]

C3¥A(¥d* +2¥Bd’ ~2'PdE + E* + B*d* - 2BdE)

2A? (d‘lf + \/Zcoth[x‘/{’zét]]z

VA (X, Y,t) =ud (X,y,t) =

(4.4.36)

| ] ] [ ] J
6, sinh| —¢& |+6,cosh| —¢&

2 (d*¥? +BdY -EY 2d¥? + BY Ja [\P 2 ¥
u47(x,y,t)=73( )+§( ) d+¥8

A . A ¥ Qcosh[ﬁfleezsinh[ﬁgj
b4 b4

. VA VA ’
_E\PZ d+ﬁ0131nh[\yé +02005h ?5
2 A ¥ Qcosh[m§]+6’2 sinh(mfj
b4 b

. _3 VA ) e e[ YA L) g _
Sud (X y,h) = X {E‘P+Btanh(?§] Y* tanh ( v §JJ [ if 6 =0 but 6, —O]
_ _3 VA L) g e[ YA
V4, (X, Y,1) =u4,(X,y,t) = 2A{E‘P+Btanh( v fJ Y~ tanh ( v §JJ (4.4.37)
(A j [JZ ) )
5 5 2 Qsmh[f +0,cosh| —¢&
u48(x’y’t)=§(5 +4E‘P)_i(B +4EY) —_1E+ﬂ ¥ N

A 32 AW 2y Y
o, cosh(fé}—@z sinh[\/qixgj

(52 +4E‘P)

{—B +2JA tanh(\{EfBz

U4 (X, Y t) = 822(Bz+4E‘P) 1- [if 6 %0 but 6, =0]
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(B2 +4E‘P)
(4.4.38)

(—B +2JA tanh[‘ggnz

3 (Bz+4E‘P) 1-

v4 (X, ¥,t)=ud. (X, y,1) =
s(% Y, D) =udg (X, y,1) Az

-1
[ NA JA
g sinh| —¢& |+6, cosh| —
(0" +BAY-E¥) 3(20°%" +30°BY - 260 +dB’-BE)| |} lsm[qﬁ} ,cos \1!5]
U49(X: yat) :? A2 +E A2 d +? \/Z \/Z
@cosh[ﬁ +6,sinh 5]
¥ ¥
-2
(& &
6 sinh| —— 6. cosh| 1=
3(d*¥? +2d°BY - 2Ed’W +d°B’ ~2dBE+E*)| A 18I [q, ¢ |*bycosh| ¢
5 e d+? N i
Blcosh[A§]+02sinh —Ag
¥ ¥

_3(d*W?+BdY-E¥) 3W(2d"¥*+3d’BY-2EdY +dB’ - BE)
SUdy (X, Y,t) = 7 X +5 \/Z
Az(d‘P+«/Ztanh(\P§D

3 W (d'P? +2d°BY - 2Ed*W +d’B’ —2dBE+ E*)
= _ [if 6,#0 but 6, =0]
A {d‘Pﬂ/Ztanh[\\/PZfB
3(d*¥? +Bd¥Y-E¥) 3¥(2d’W’+3d°BY -2Ed¥ + dB” - BE)
+_

V4, (X, Y,t) =ud, (X, y,t) =— 5
A
? ? Al [d‘l’ +JA tanh(‘ggn

2 4 2 3 2 2p2 2
3 W (d*P’ +2d°BY —2Ed”¥ + d*B’ —2dBE + E?) (4.4.39)

? A2 (d\P+»\/Ztanh[\/§§jJ2

Ja

X 2
6, sinh| — 0. h| —
1 (BP4EW) 392|_1p JA [\P é} 2008 (‘P ‘“‘ZJ
B v R
4

b
6, cosh Ef +6,sinh| —
b4 v
-2
(A JA
h| — h| X2
3 (16E2‘P2+8E82‘I’+B4) 1B \/Zglsm (‘I—’ & |+6,cos v £
2, Na

32 A2 2W ¥
6, cosh[gfj +0, sinh(fé}

>

>
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2 2
B’ +4EVY
(Y. = BZ+4E\P)—i[ B+t nh[gf]] NN CRis) _[if 6#0 but 6, =0]

" " [-B+2E tanh[‘gg]]

2 2
1 3 JA 3 B’ +4EY
v410(x,y,t):u4m(x,y,t):-m(52+4E‘P)—8?(—B+2\/Ktanh[?§j] - ( )

§A2 [_B +2«/Ztanh[\§§]]2

4N (

(4.4.40)

(A B
w a9l 1B \Eélsmh[\y§ + 6, cosh ?g

_ — 4 —

A 2 A 2Y VY
Qcosh[f§}+92sinh[€§]

2
(A JA
n| YA n| YA
3(16E°W +B*+8EWB’}| .1 g VA Osin [‘I’ & |+ Orcosh| g6
— __+_

u4, (x,y,t)=

B w

RAY 2w
Qcosh[ﬁ§}+02 sinh[ﬁfl
¥ ¥
2

N

3| B+ 2/A tanh| V>

3(B7 +4EV) [ faan (‘P | = A
Sud (Yt = - -~ [if 6,#0 but 6,=0]

4N gA’ )
gA [—B NI tanh(ggj]

2
JA
3| B+ 24/A tanh| >
3(B +4EY) [ Jaan [\P‘f 3{16E7W! +B* +8E W’
VA, (%Y, =ud (X y,t) = - - (4.4.41)

4N 8A” :
gA> (—B +24A tanh[ggjj

>

Hsmh & [+0,cosh \/_f
1(82—2‘{’E+6‘PdB+6‘P2d2)+3(2‘P2d3+3‘I’dZB—Z‘I’dE+Bzd—BE)d \/Z

v
ud, (xy.t)=-- 5 ) 8 i
6 cosh[ ]ﬂ? smh[f]

+
&
>

b
6, sinh E +6, cosh| —
3(¥°d’+2¥Bd’ ~2'PdE + E* +B'd’ ~2BdE)| , | Ja v ©
2 A b g
6, cosh[\/‘;: j+¢9 smh[ fj
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, 1 (-B>+2¥E -6¥WdB-6W2d’) 3W(2¥’d’ +3¥d>B-2¥dE + B’d - BE)
Sud, (X y,t)ZZ 4A2 + \F
2A2[d\P+JZtanh($§N

_3‘112(‘1’2d4 +2¥Bd’ - 2WdE + E* + B*d* —2BdE)

2A2 [d\l’+x/Ztanh(\§§JJz

[if 6,0 but 6, =0]

(-B? + 2¥E - 6WdB—6¥d?) 3¥(2¥*d’ +3¥d’B - 2WdE + Bd - BE)
e i N

_3WA(¥d* +2'¥Bd’ ~2WdE + E* + B'd* - 2BdE)

2A? [d\P +\/Ztanh[\{§§jjz

V412(X, y,t) = U412(X, y,t) =

(4.4.42)

Solution 5: Trigonometric Solutions
Substituting Eq. (4.3.1) to Eq. (4.3.6) into Eq. (4.2.4), along with Eq. (3.11) and simplifying, we

get following travelling wave solutions:

when, B=0,¥=A-C,A=YE,{=x+Yy*ct and 6,6, are arbitrary constants.

—0,sin _A§ + 6, cos _A§
_3(d2‘P2+Bd‘P—E‘P) 3(2d‘P2+B‘P) J-A vy 2 Y
USI(X,y,t)Z— 2 +—= 2 d+
2 A 2 A ¥ 6, cos _Aé +6, sin _A§
1 ¥ ? ¥

32 ﬁ—ﬁlsin(?g}Lﬁzcos(?gj
2 A ¥ chos(\/__AfJ+925in(\/__A§J
b4 v

U5 (XY, = 23Az {E‘Pjt BV-A cot[%é}rAcotz (%g]} [if 6 =0 but 6, ;tO]
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V5, (X, y,t) =u5,(X,y,t) = i(E‘PJer/ COt[_“Pg]JFACOtZ(_“PAgD (4.4.43)
-2
J=-A J=A
oy 3(B2+4E¥) _3(B’+4E¥)| 1 g ,/__A_Hlsm( g o) reces| Ty
X, Y, — ——+
y A 32 AW? 2 V¥ JoA J-A
6, cos & |+6,sin 4
8y
B’ +4EY B’ +4EY
.'.u52(x,y,t)=§( e ) 1- ( ) = | [if 6,=0 but 6, 0]
(—B+2 —Acot[“_%D
¥
3(B* +4EY) (B*+4EY)
V5,(X, Y, t) =uS,(X,y,t) == 5 1- > (4.4.44)
8 A H
—B+2\/—A00t[qj§)
-1
s 5 Nany
) a1 ) sin| ——¢ |+6, cos —5
3(0°W +BAY-EY) 3(2d°¥ +3d°BY -2Ed¥ +dB -BE) ﬂ y
XY, —
)= 5 A N ey
6, cos| ——¢& |+6,sin| —¢
y y
J-A J2\)
e 3 5 ya s —fsin| ——¢& |+6,cos| ——&
3(d*¥?+2d°BY -2Ed°¥ +d°B’ - 2dBE + E*) e y ¥
-= +
6,cos| ~——& [+0,sin| ~——¢&
¥ ¥
3(-d*W? -BdW+EW) 3W(2d"W’ +3d’BY -2EdY +dB’ - BE)
SuS (XYt = X + \/_
2A{d‘1’+x]—Acot(;lA§H
3W?(d*¥? +2d°BY - 2Ed* ¥ + d’B’ — 2dBE + E*)

[if 6,=0but 6, 0]

ZA{d‘PJrMcot(\/?gﬂz
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3(-d’¥?-BdW+EW) 3¥(2d°¥’+3d’BY - 2Ed¥ +dB’ - BE)

V53(X’ yat) = US3(X5 yat) = 2 +
2A ~
2A{d‘1’+ﬁcot(?§ﬂ
3W?(d*¥? +2d°BY - 2Ed*W +d’B’ —2dBE + E*)
_ _ (4.4.45)
2A° {d‘l’ +J-A cot[ “;}A gﬂ
2
J=-A J-A
( t O (Bz+4E\P) vl 1B S —Glsm( v & |+6,cos ¥ &
Xa H —_— | ==t
) A? 2N |29 ¥ (JTA j _ [JTA ]
) cos & |+06,sin &
Y ¥
-2
J-A J=A
3(16E°¥* +8EB* ¥ +B*)| _1 8 "A _elsm( g ¢ |Toeos ¢
) A2 P {«/_—A J ' [,/__A J
0, cos & |+6,sin &
¥ ¥
2
2 3| -B+2v=Acot Bg : :
-1 (B +4E\P) v 3(B*+4EY) _
us,(%.y,t) = ; ; - - [if 6, =0 but 6, #0]
4 A 8A Ny
gA” —B+2Hcot[l}]§}
2
[3
B+ 2J-Acot| *
[ (B +4EY) [ ' ﬁco[ v e 3(B° +4E¥)
v54(x,y,t)=u54(x,y,t)=? O T (4.4.46)

[ B+2Fc0t 5]]2

-0, sm( A j+t92 cos[J__Afj
b4 b4

3 (B*+4EY¥Y) 3¢?| 1B J=A
“55(‘”):1%‘5? 2w’ = A
A _(N-A
6, co s( Jﬂ%sm[ §J
¥ ¥
— — -2
s o4 5 -0, sin A§ +6, cos _A§
3{16E°¥* +B* +8EWB’}| 1B J"A ¥ NG

- RAY 29w

I2.) . ({2
Glcos( v §]+9231n( v 5]
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3{—B+2Hc0t[? 5}]2

3 (B +4EY) 3(B* +4E¥) _
U (%Y==~ 2 - -[if 6,=0 but 8, =0]
4 A 8A G
SA{—BHECO{T,ﬁﬂ
2
Nany
-B+2y-Acot| —
3 (B’+4EY) J_CO[ y © 3(Bz+4E‘P)2
V5,(X, Y, t) = us, (X, y,t) == - 2 B : 4.4.47)
4 A 8A oy
sA! —B+2«/§cot[\y§}
1
2 ~0;sin & |40, cos Eg
5, yt)__l(B“—2‘PE+6‘PdB+6l}ﬂd2)+3(2\P2d3+3‘Pd2B-2‘PdE+B2d-BE) d+E 2
6\ ™) 4 A2 2 A2 l}] H . _A
6 cos| ——¢ |+6,sin| ——¢
¥ ¥
2
-6, sin| ——¢& |+ 6, cos Eg
3 (¥d*+2¥Bd’ -2WdE + E* + B’d’ - 2BdE) d+J__A N 7

2 A? b d 91 COS[E§]+HZ Sm[ﬁgJ
¥ ¥

(B* —2¥E +6WdB + 6¥*d?) N 3W(2¥°d’ +3¥d’B - 2WdE + B*d — BE)

v el )
2A?| dY¥ ++/—Acot 75

3W(¥d* +2'Bd’ —2WdE + E* + Bd ~ 2BdE)

SUSg(X,y,t) =—

[if 6 =0 but 6, 0]

2
2A{d‘1’+«/—Acot("l;A§D
2_ 242 243 2 2
V56(X,y,t)=u56(x,y,t)=—(B 2‘1’E+46::dB+6‘P d*)  3¥(2¥'d’ +3¥d’B-2¥dE +Bd - BE)
2A2(d\P+«/—_Acot[\?§D
4.4.48
3¥°(¥d* +29Bd’ - 2WdE + E” + B'd’ - 2BdE) ( )
2
2A2[dky+«/1cot(*§gj]
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-6, sin[ A §]+ 0, cos(_A é‘]
b bd
J-A . [N-A

6’1005(1{] §]+¢9251n{ ¥ f}

us, (X, y,t) = 7 +5 e

_3(d*W*+BdY-E¥) 3(2d¥’+BY) | J-A
+
¥

32 d H—HI sin(\/\;_Aij+Hzcos(\/3§}

~d+
2 A ¥ 0, cos[ A §J+92 sin[ A 5}
v v

3 [E‘P BV—A tan [£§]+At L%gn[if 6, #0 but 6, =0]

S US(X, Y, =
(%, Y,0) e

V5, (X, Y,t) = U5, (X, y,t) = 3A [E‘P Bv-A tan [—J§J+At (—“_\PA(:J] (4.4.49)
(A N= AN

3(B7+4EW) _3(B7+4EW) | 1 B J__glsm( 7 ‘“‘EJWZCOS( v 5]

uSy (X, y,t)== - _ — _°
A 32 AV Tv v (ﬁA ] .(ﬁA J
6, cos & |+6,sin| ——¢&
¥ ¥

.'.u58(x,y,t):§(B +421E‘P) 1- (B +4E‘P) = | [if 6 =0 but 6,=0]

8 A [ vy

—B—2«\/—Atan( ¥ §J

3(B* +4E¥) (B> +4EVY)
VSS(X’ y’t) = USS(X’ yat) =3 B 1- 2 (4450)
g8 A —
-B-2 —Atan[ 5]
p
-l
J-A Ny
3(¢°W +BAP-EY) 3(20"%+30°BY - 2E4¥ + B’ - BE) g e [Wt B
uS, (X, y,t)=- _ 2 : i+
6, cos ?5 +0,sin 75
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A
O sin| X2
3(d°9? +2d°BY - 2Ed°Y + d°B’ ~20BE+E7)| A ‘Sm[\lf 5} 2

2 A’ v J=A J-A
chos( A§]+6’2 sin[ Afj
7 7
3(—d2‘P2 _Bd¥ + E‘P) 3‘1’(2d3‘112 +3d°BY —2Ed¥ + dB> — BE)
SUSg (X, y,t) = A + «/_
2A° {d‘{’— —A tan( ;’A 5]}

3\1’2(d4\P2 +2d°BY —2Ed°¥ + d*B? - 2dBE + Ez)
- 2
2A{d\}’— -A tan( “;A gﬂ

3(—d2‘P2 —Bd¥ + E‘P) 3‘P(2d3‘1’2 +3d’*BY —2EdV¥ +dB* - BE)
V5, (X, Y,t) =u5,(X, y,t) = +

A ZA{d‘P— —Atan[\/l;_AafH

3‘P2(d4\P2 +2d°BY —2Ed*¥ + d>B> - 2dBE + E2)

[if 6 =0 but 6,=0]

. (4.4.51)
ZAZ[d‘P— —Atan( _Acfﬂ
¥
Ny =l
» (Bz+4E‘P) 3wl 1B ﬁ—ﬁlsm( > & |+6,cos &
USIO(X,y,t)z——2+__2 ——t
4 A 2N 2Y ¥ (JTA ] _[a/__A J
0, cos & |+6,sin &
¥ ¥
— ,__ 2
3 (16E"W +8EBW+B*)| _1 g ﬁ_glsln[ S |Focos| Ty
Y AP’ 29w (Q/_A‘ J , [ﬂ/__A j
0, cos & |+6,sin &
¥ ¥
3| -B-2v-Atan ig 2
_p (B2 +4EY) Y 3(8° +4EY _
LS, (%Y, =— — - : - - [if 6,#0 but 6,=0]
4 A 8A [ \/1
gA’ —B—Z«/Etan[\yfj
5,
1 (B2 +4EY¥) 3[_8_2Mtan[qlg 3(8° +4EY
V5,5(%,Y,8) = U5, (X, Y, t) = — = ; - - (4.4.52)
4 A 8A ( \/E
gA’ —B—2ﬁtan[q]§j
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M§J+QQCOS[H§J
3 (B +4EY) E+ 4 4
4 A 2R 2y ¥ Glcos[J\;_AfJ+92sin(J\;_A§]

-0, sin[M§J+Hz COS[HfJ
A b v

_ 3{16E™¥’ +B' +8E'¥B’ -18_\=A

32A2Y? 2V V¥ JA (A

0, cos & |+6,sin &
Ne Ne
A 2
3| -B—2y~Atan| —
3 (B +4EY) J_an[ ¥ (5] 3(B2 +4EY) _
U611(Xayat):_ P - 2 - 7 [lf 91 7’50 but 92 :0]
4 A 8A H
gA’ —B—2ﬁtan[l{’§j
2
[z
3| -B—2y-Atan| “=
3 (B2 +4E%) J_an( ] 3B +4E%)
V5, (X, Y,t) =u6,, (XY, ) =— - ; - - (4.4.53)
4 A 8A \/I
gA’ —B—Z«/Jtan[\yf]
1
6 sin| ~——& | +6, cos Eﬁ

1 (B*-2VE+6YdB+6¥d®) 3(2¥d’+3¥d’B-29dE +B*d-BE)| , v-A Y y
uS, (%, y,t)=- - + 2 d+ 32

4 A 2 A ¥ iy ({2

6 cos T&f +0,sin TQE

A V=N
\Ptf}r@z cos[qu]

244 3 2 242 _HISin
_3(¥’d*+29Bd’ ~2WdE + E + B’d’ - 2BdE) d+ﬂ

2 A ¥ J-A JA
6, cos[ A §]+ o, sin( = fJ
¥ v
(B> —2¥YE +6WdB +6¥°d*) 3¥(2¥’d’ +3¥d’B-2W¥dE + B°d — BE)
USIZ(Xa yat) == 4A2 + ﬁ
ZAZ(d‘P—x/—Atan( \;A gn

_?)‘I’z(\Ifzd4 +2¥Bd® —-2WdE + E* + B’d* —2BdE)

: [if 6 =0 but 6, =0]
2A2[d\lf— —Atan[*/\;_AgD
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(B -2WE+6¥dB+6%°d") 3P(Q¥'d" +3¥d°B-2%E + B - BE)
4N _
ZAZ[d\P—«/Etan[\T.f]]

_3»\I’Z(LP2d4 +2¥Bd’ -2WdE + E* +B°d* - 2BdE)

2A2(dtp_ﬁtan[?§]]2

V512(Xa yat) = USIZ(X7 y:t) =

(4.4.54)

These are the solutions we have found by applying this method.
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4.5 Numerical Explanation:

We have taken some different values of constraints A,B,C,d,E,& and &, for finding out the

values of U and have found the graphical presentation of U in maple. For different types of family
we have found different types of graph. Even we have found difference between the two graphs
for the same equation when we have changed the values of the arbitrary constants. The graphical
figure that have been found in maple for a particular value of the constraints are shown as

follows:

Taking the values of A=5.5, B=2.2, C=2.5, d=3.8, Then, taking the values of A=5, B=3.2, C=3.5,
3 ) 4 )
E=1.4, c=—,y=2.8 and &=x+y-ctin d=2.8, E=4.4, c=—=,y=4.2 and &{=x+ty+ctin

% %

Eq. (4.4.3), we get the following graph: Eq. (4.4.2), we get the following graph:

Figure 1: Hyperbolic form of solution of the Figure 2: Hyperbolic form of solution of the

(2+1) breaking soliton Equation (2+1) breaking soliton Equation
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now, taking the values of A=5.5, B=3.56, C=1.67,

4 .
d=3.8, E=5.44, c=—,y=1.48 and &=x+y-ctin

N

Eq. (4.43), we get the following graph:

Figure 3: Hyperbolic form of solution of the

(2+1) breaking soliton Equation

now, we have taken the values of A=4.33,

4
,y=3.13

NG

and &=xt+y-ctin Eq. (4.4.13), we get the graph:

B=3.63, C=1.75, d=3.8, E=3.53, C=

Figure 5: Trigonometric form of solution of the

(2+1) breaking soliton Equation
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here, taking the values of A=3.47, B=4.68,

8
C=5.88, d=2.96, E=4.65, C=—=,y=6.35 and

J7
E=xty+ctin Eq. (4.4.5), we get the following

graph:

Figure 4: Hyperbolic form of solution of the
(2+1) breaking soliton Equation

Then, taking the values of A=6.75, B=4.92,
C=3.78, d=1.98, E=3.94, c=5.44,y=2.76 and
&=x+y-ctin Eq. (4.4.14), we get the following

graph:

Figure 6: Trigonometric form of solution of

the (2+1) breaking soliton Equation



now, taking the values of A=5.56, B=3.46, then, taking the values of A=4.66, B=5.98,

4 3
C=4.98, d=2.69, E=4.65, C=-—=,y=2.43 and C=1.34, d=2.69, E=3.65, C =—=,y=4.23,6, =3,

g )

E=x+y+ctin Eq. (4.4.34), we get the following 6, =7and &=xty+tctin Eq. (4.4.26),we get the

graph: graph:

Figure 7: Hyperbolic form of solution of the Figure 8: Rational form of solution of the

(2+1) breaking soliton Equation (2+1) breaking soliton Equation

4.6 Comparison

We will compare the extended (G G) expansion method that used here to find the exact

solutions of (2+1)-dimensional breaking soliton equation with the Bekir and Uygun’s [41]

acquired exact solutions by basic (G'/ G) expansion method.

First, we will discuss about the Bekir and Uygun’s found exact solutions of the (2+1)-

dimensional breaking soliton equation using basic (G ' G)expansion method.
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when 2> —4u>0,

C sinh{ A ;4”§J+Czcosh[«/ﬂ ;4”§]
, 317 3
vi(&)=2 (4# 2?) 5 : . o
C cosh[ A _4’u§j+czsmh( A ;4,u§J
where, &=x+y—a (A’ -4u)t.
Clsinh[ ’12_4”§J+Czcosh[~/’12_4”§J
. 2 2 A u
u,($)=5 (4# A ) 1 _4 ,42 4 82
C, cosh{ — #§J+Czsinh£ ; 'ufJ
2 2 ’
C, smh( A 4#§J+C2(:osh[y’}L ;4#‘?} 2
, A
V() =3 (4u-2) 2 z Ye: o2
C]cosh( 4 4’U§J+Czsmh{ < ;4;15}

N—

where, & =x+Yy+a(A’ —4u)t

When, 1> -4 <0,

2
¢ | [H=2 5}0260{ WQEJ

3
uy (&) =2 (4" —4u TR T
8( ) Clcos( 4#;/12 §J+Czsin[ 4”;}3 fj ° ?
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2 2 2
—C, sin Ap—2 & [+C,cos =2 &
2 2 L3 3u (4.6.3)

2
2 2
—C, sin Au—2 J+Czcos[ 4;1;2 é] ,
v, (§)=2(2° —4u) LA u (4.6.4)
C, cos & |+C,sin > &
where, &=x+y+a (4> —4ut
When A° —4u=0,
3c; 347 3 3c? 312 3
Uy (&)= 2 = —7” and, v, (&)= 2 = —7”, (4.6.5)
2[c +c,(x+y)] 2[c +c,(x+y)]

_ 3¢, Ar g _ A u 4.6.6
Us (8) 2[cl+cz(x+y)]2+8 S and v (¢) + (4.6.6)
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The comparison in table:

Solutions acquired in this process

Solutions obtained by Bekir and Uygun’s

1.If A=1,B=-4,C=0,E=-1,¥=1,C=0,6,=0
and 6, =0, then we get from equation (4.4.8)

3% 3u 3 , 24
uly (&)= ?—2" < (42 )cot [ Tﬂ‘fj

342 3u 3 N .| [A7-4
18(5)_T—7”+—(4y A%)coth [ ”.»:J

If A=1,B=-1,C=0,E=—1,¥=1,C=0,6,#0 and
and 6, =0, then we get from equation (4.4.2)

1.If C,=0and C, #0, the solutions of eqn.
(4.6.1) become:

u (5):%(4y—/12)coth2[

3u
2

24y 5] 3

o)+

the solutions of eqn.

A —4u
2

w
8

_3u
2

v, (§)=§(4y—/12)coth2£

If C,#0and C, =0,
(4.6.1) become:

3 2 2 A —4u 312 3/1
g u (&)==(4u—2*)tanh’| ,|—5&
ul, (£)= £—3ﬂ+§(4y—lz)tanh2{ 2 4“5] (6) =5l ) [ 2 J 8 2
8 2 8
2 2| AT —4u 34 3u
\'A 5)— (4,u A )tanh &
3123;13 ) | (AP —4u ( [z]sz
1 =— - 4 — A% )tanh
VL, ($) 3 > 8( H— ) g
2. If A=1,B=-4C=0E=-x¥=1C=0,4=0and | 2If C =0and C,#0, the solutions of
and 6, =0, then we get from equation (4.4.20) | eqn.(4.6.3) becomes as follows:
3 3u 3 4u—A° > Au—2 32 3
o e e I O N
2 2 3 4#_12 3/12 3/1
V23(98)=—32L —37#+§(22—4,u)c0t2[ Ap—4 gJ Vg(ﬁf):g(ﬂz—{u)cotz[ s §J+?_7
If A=1,B=-2,C=0,E=—u,¥=1,C=0,§ =0 and IfC,#0and C,=0, the solutions of
) ) ) ) ) »U1
and 6, =0, then we get from equation (4.4.14) eqn.(4.6.3) becomes:
30,2 S| 4u—A7 307 3u
2 U, (&)=2(A% —4u)t .f—(g c2L 2K
u22(§)—3)L 3” 312—4 tan[ §] (€) 8( ﬂ) an[ 2 J 8 2
30,2 2 “',Ll—/’t2 347 3u
==(A"—4u)tan E |+ _ 2
34 3u 3., | 4u—27 V3(§) 8( ,u) { 5 J 3 5
2 =T (A —4u)t /
v2,($) 2 2+8< y) an > 3
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From the table, it can be said that, from this two method we have got almost the same results for

the new extended (G'/G) expansion method. But here in this extended (G'G) expansion
method we have even got more solution than the basic (G G)expansion method used by Bekir
and Uygun’s. So, it can be predicted that, the extended (G'/G) expansion method is better and

easier to find more exact solutions of (2+1)-dimensional breaking soliton equation.

4.7 Conclusion

The extended (G'/G)- expansion method provides many new solutions with reliability and

simplicity. So, it is more powerful and efficient method to examine the exact solutions of Non-

linear Partial Differential Equations. In this work, by using the extended (G'G)- expansion

method, we have found more enriched types of explicit and exact travelling wave solutions of the

(2+1)- dimensional breaking soliton systems. The travelling wave solutions have been

included through these travelling wave solutions. During the solving procedure we have obtained
five types of travelling wave solutions in terms of hyperbolic, trigonometric and rational families
to work with and six different types of sets of solution for each of the family. It should be
pointed out that some of our solutions are matched with previously published results when
parameters are taken in particular values which has authenticated our solutions. The arbitrary
functions in obtained solutions indicate that these solutions have rich native configurations. The
solutions of the strategic nonlinear evolution equations in this work have many prospective uses
in physics and engineering. Finally, the method delivers a strong mathematical instrument to
gain more common exact results of an excessive countless nonlinear PDEs in Mathematical

physics.
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Chapter Five

Future study

The extended (G Y/ G) expansion method that is used in this work, is a standard, straight forward

and, computerized method which will allow us to solve complex and tedious algebraic

calculation in future. Therefore, by choosing the appropriate arbitrary functionf(x, y,t) , that is

included in its solutions, one can study various interesting localized soliton excitations and the
wide applications of the solitary theory. Furthermore, this recommended method can be
functional to solve various nonlinear PDEs with higher dimensional and higher order nonlinear
evolution equation, which often get up in mathematical physics, engineering sciences and many
scientific real time application fields. In one words, it will let us to handle more critical NLPDEs

for different types of evolution equation in an easy and standard way in future.
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