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Abstract

This thesis addresses non-perturbative phenomena and techniques to analyze non-

perturbative problems. First, we discuss the simplest non-perturbative example in

quantum gravity: blackholes, and how they non-perturbatively emit Hawking Radi-

ation. This is directly linked to the blackhole information paradox. We then discuss

non-perturbative phenomena in quantum field theory. In particular, we discuss in-

stantons in Yang-Mills and large-N sigma models. We discuss Borel summation as a

technique to capture non-perturbative terms in a perturbative expansion. We apply

Borel summation to the simple Painleve-I system and solve it numerically.
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Chapter 1

Introduction

The idea of a blackhole or a spacetime singularity dates back to the eighteenth

century when Mitchell and Laplace discussed the possibility of a formation of a

singularity when a star collapses at the end of its life span. The theoretical existence

of blackholes was first predicted in general relativity when Karl Schwarzchild first

solved the Einstein equations of general relativity in vacuum. However, he did not

know that the singurality that arose from his solution was merely a problem with

regard to the choice of coordinates and not a real spacetime singularity. After that,

many scientists like Weyl, Flam, Eddington, Finkelstein, Rindler contributed to the

solution, when Kruskal and Szekeres finally found a solution that has no coordinate

singularity and leads us to the spacetime singularity. The name ”blackhole” was

first coined by Wheeler in 1967 in a public talk that he gave.

Throughout that era, the scientific community believed that blackholes have

such a mighty gravitational force that nothing can come out of it, not even light.

They also believed that blackholes are eternal. This idea is partially true. Stephen

Hawking revised this idea in the 1970s and showed that blackholes do emit some-

thing and that they ’evaporate’ and come to an end. He discovered that blackholes

emit thermal radiation and diminish in size in the process. Nowadays, through the

advancement in our understanding of Quantum Field Theory, we know that the

radiation escapes from the blackhole by the process of Quantum Tunneling.

When quantum tunneling problems are tackled with perturbation theory, we

end up finding power series solutions. These power series are dependent upon a

parameter that controls the strength of the perturbation. In order to find a better

approximation to our non-exact solution, we add all the corrections in the higher

orders.

However, most of the series that we find are only convergent upto a certain num-

ber of terms and then diverge uncontrollably. It was later understood that quantum

tunneling is actually non-perturbative in nature, so we have to resort to instanton

contributions and other calculation techniques to find a better approximation to our

2



CHAPTER 1. INTRODUCTION 3

solution.

In this thesis, we begin by deriving the process of hawking radiation. After that,

we move on to descibing the first clues of the existence of instantons and explain

a very useful summation technique devised by Emile Borel. Then we give a brief

outline of the basics of quantum chromodynamics, focusing on Yang-Mills theories

and various Sigma models. We also show how instantons arise in these theories.

Moreover, we explore the properties of these theories at the Large-N limit.

In the last chapter of this dissertation, we apply the Borel summation technique

from the first part of the thesis to solve the Painleve-I equation. This equation

is manifest in two-dimensional quantum gravity, where it gives us the all genus

solution. We also discuss very briefly the resurgence theory in the end. This theory

connects the perturbative QFT with its nonperturbative counterpart.



Chapter 2

The Quantum evaporation of

Blackholes

2.1 The Free Scalar Field quantized

The Klein-Gordon equation, with the coavriant derivative D, for a real scalar field

φ(x) is [1]:

(Dµ∂µ −m2)Φ(x) = 0 (2.1)

Suppose, the solution space S is spanned by the set of solutions φα. It is assumed

that there exists a Cauchy surface Σ, i.e, the spacetime is globally hyperbolic. Hence,

the initial conditions on Σ directly affects the points on the space S. It has a

naturally symplectic inner product.

φα ∧ φβ =

∫
Σ

dSµ(φα∂
µφβ − φβ∂µφα)

=

∫
Σ

dSµφα
↔
∂µφβ

= −φβ ∧ φα

(2.2)

Here, ’natural’ refers to the fact that ∧ is independent of the value of Σ chosen. The

indices α and β are internal space indices. Thus,

(φα ∧ φβ)Σ − (φα ∧ φβ)Σ′ =

∫
Σ

d4x
√
−gDµ(φα∂

µφβ − φβ∂µφα)

=

∫
Σ

d4
√
−gDµ(φα

↔
∂µφβ)

(2.3)

4
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However,

Dµ(φα
↔
∂µφβ) = Dµ(φα∂

µφβ − φβ∂µφα)

= φα(Dµ∂
µφβ)− (Dµ∂

µφα)φβ

= φα(m2φβ)− (m2φα)φβ

= 0

(2.4)

Here, the Klein-Gordon equation 2.1 is used in the last step.

Using the Darboux’s theorem, the antisymmetric form φα ∧ φβ can be written

as a canonical block diagonal form (
0 1

−1 0

)

Therefore, pairwise the real solutions φ, φ′ to the Klein-Gordon equation can

be written as (φ, φ′). Now, the norm of the complex solution ψ = (φ − iφ′)/
√

2 is

defined as ||ψ||, such that ||ψ||2 = φ ∧ φ′ = 1. Equivalently,

||ψ|| = |ψ ∧ ψ| (2.5)

Analogous to equation 2.2, a similar complex valued symplectic form is

||ψ||2 = i

∫
Σ

dSµψ
∗
↔
∂
µ

ψ (2.6)

In general, the Klein-Gordon equation can be written in terms of a solution set

ψi of complex basis. The Hermitian inner product is defined as

(ψi, ψj) = i

∫
dSµψ

∗
i

↔
∂
µ

ψj (2.7)

and that (ψi, ψj) = δij. However, since ||ψ||2 = −||ψ∗||2, the inner product is not

positive definite. Moreover, the basis ψi can be taken such that (ψi, ψj) = δij (ψi, ψ
∗
j ) = 0

(ψ∗i , ψj = 0 (ψ∗i , ψ
∗
j ) = −δij

 (2.8)

The complex solution Ψ = Σiaiψi can be thought of as the wavefunction of a free

particle. This is because when the inner product (, ) is confined to these solutions,

it is positive definite, but fails in the presence of interactions. Only the free particle

solutions have positive inner product. Also, it is only valid for complex scalar fields.
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A real solution Φ of the K-G equation can be expressed as

Φ(x) =
∑

[aiψi(x) + a∗iψ
∗
i (x)]. (2.9)

When quantizing φ, ∗ becomes † for the ai since the ai become operators instead of

complex numbers.

Φ(x) =
∑

[aiψi(x) + a†iψ
∗
i (x)] (2.10)

Here, ai are operators in a Hilbert space H, having Hermitian conjugates a†i ,

which satisfy the following commutation relations [1]

[ai, aj] = 0,

[ai, a
†
j] = δij

(2.11)

Here, ~ is taken to be equal to 1.

This Hilbert space is chosen to be a Fock space. It is built from a ’vacuum’ state

|vac〉. A vacuum state is the lowest energy quantum state. Among the different

classifications of vacuum states, such as the QED and QCD vacuum states, the

Bunch-Davies is a convenient vacuum state in a curved spacetime, such as near a

blackhole’s event horizon. In curved spacetime there is a set of choices of vacuum

state. Alpha vacua is an isometry invariant set of choices for the background de

Sitter space. One special case of Alpha vacua is the Bunch-Davies vacuum, which

satisfies the Hadamard condition. [2]

Now, the Hilbert space satisfies the following:

ai |vac〉 = 0, ∀i (2.12)

〈vac|vac〉 = 1 (2.13)

Thus, H has the basis

{|vac〉 , a†i |vac〉 , a
†
ia
†
j |vac〉 , ...} (2.14)

On this space, the inner product 〈 | 〉 is positive definite. The complex basis ψi

of solutions for the K-G equation chosen, that satisfies 2.8, determines the choice of

|vac〉, which in turn affects the Hilbert space H’s basis.There are a lot of such bases.

Consider ψ′i where

ψ′i =
∑
j

(Aijψj +Bijψ
∗
j ) (2.15)

If the inner product of ψi satisfy equation 2.8, then the coefficients A and B
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satisfy:

AA† −BB† = 1

ABT −BAT = 0
(2.16)

When 2.16 is inverted, the result is

ψj =
∑
k

A′jkψ
′
k +B′jkψk∗′ (2.17)

where

A′ = A†, B′ = −BT (2.18)

Also, A′ and B′ must fulfill the same conditions as A and B, thus

A′A′† −B′B′† = 1 (2.19)

A′B′T −B′A′T = 0 (2.20)

Equivalently,

A†A−BTB∗ = 1 (2.21)

A†B −BTA∗ = 0 (2.22)

These conditions do not automatically follow from 2.17, 2.18. These also imply

that a change of basis is invertible. [1–3]

There is no favored choice of vacuum because there is no favored choice of basis

that satisfies 2.9 in general spacetime. However, the basis of positive frequency

eigenfunctions ui of the Killing vector k can be chosen in a stationary spacetime.

Thus,

kµ∂µui = −iωiui, ωi ≥ 0 (2.23)

It is to be noted that the Klein-Gordon equation is mapped to its solutions

by k. Also, k can be diagonalized with pure-imaginary eigenvalues since it is anti-

hermitian.

Also, eigenfunctions whose eigenvalues are distinct are orthogonal, thus

(ui, u
∗
j) = 0 (2.24)

Furthermore, ui can be chosen so that 2.8 can be satisfied, by normalizing it such

that (ui, uj) = ∂ij. The functions with ω = 0 are omitted.
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Figure 2.1: Particle production in non-stationary spacetime

The vacuum state |vac〉 is as a matter of fact the lowest energy state. The

one-particle states are represented by a†i |vac〉, the two-particle states are written as

a†ia
†
j |vac〉, and so on. The number operator is defined to be

N =
∑
i

a†iai (2.25)

2.2 Particle Creation in Non-Stationary Space-

times

For a ’sandwich’ spacetime M = M− ∪M0 ∪M+. Here sandwich spacetime means

that in the regions M− and M+ there is no interaction present, but in the region

M0, gravitational interaction is considered to be turned on, briefly.

A scalar field solution to the Klein-Gordon equation can be expanded in M− as

Φ(x) =
∑
i

[aiui(x) + a†iu
∗
i (x)] (2.26)

The functions ui(x) are unable to solve the K-G equation in M0 unlike what

they do in the M− region. The eigenfunctions ui change in M0 from that of in M−,

then it changes again in M+. This gives rise to some new function ψi(x) in M+

when it is continued through M0. Thus, in M+

Φ(x) =
∑
i

[aiψi(x) + a†iψ
∗
i (x)] (2.27)

The inner product matrix remains unchanged as the inner product on the

Cauchy surface Σ. For some matrices A and B, this means that

ψi =
∑
j

(Aijuj +Biju
∗
j) (2.28)
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Therefore, in M+

Φ(x) =
∑
i

(aiψi + a†iψ
∗
i )

=
∑
i

[
ai
∑
j

(Aijuj +Biju
∗
j) + a†i

∑
j

(A∗iju
∗
j +B∗ijuj)

]
=
∑
i

[a′iui(x) + a′†i u
∗
i (x)]

(2.29)

Here,

a′j =
∑
i

(aiAij + a†iB
∗
ij) (2.30)

is the Bogoliubov transformation. A and B are the Bogoliubov coefficients, which

follow the following properties:

[a′i, a
′†
j ] = 0

[a′i, a
′†
j ] = δij

(2.31)

If B = 0, then A†A = AA† = 1, which means that the definition of the vacuum

remains unchanged when the basis ui is changed to ψi. In this case, only the

annihilation operators are permuted, hence it is a unitary transformation.

For the ith mode of k, the particle number operator is

Ni = a†iai in M−

N ′i = a′†i a
′
i in M+

(2.32)

|vac〉 is the zero particle state in M− such that ai |vac〉 = 0 ∀i. Thus the
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expectation value for the number of particles in the ith mode in M+ is

〈N ′i〉 ≡ 〈vac|N ′i |vac〉 = 〈vac| a′†i a′i |vac〉

=
∑
j,k

〈vac| (akBki)(a
†
jB
∗
ji) |vac〉

=
∑
k,j

δk,jBkiB
∗
ji

=
∑
j

B∗jiBji

=
∑
j

(B∗ij)
TBji

= (B†B)ii

(2.33)

Therefore, the expected value of the total number of particles is tr(B†B), which is

generally non-zero. This implies even though there were no particles in M−, there

will generally be particles in M+. [2–4]

2.3 Hawking Radiation

The blackhole causes a collapse in spacetime and has a non-stationary metric. Thus

it is expected that the non-static spacetime would cause particle production. How-

ever, particle production is necessarily a temporary event which depends on the

properties of the collapse because the spacetime is stationary at late times. More-

over, in the region of the blackhole horizon, the particles experience an infinite time

dilation, and hence might take unpredictably long durations to escape from the point

of view of the outside observer. This implies that there might be particles coming

out of the horizon at late times just because there exists an event horizon. It turns

out that particles do come out of the horizon in the form of blackbody radiation.

This is called Hawking Radiation. For a massless scalar field Φ in a Schwarzchild

blackhole spacetime, near future null infinity, I+, the positive outgoing modes have

the property [5–7]

Φω ∼ e−iωu (2.34)

Since it is a wave it has e−ikx form, and the convenient null coordinate is u, where

u = t− r∗, and r∗ is like r. Suppose, when the approximation is a geometric optics

one, the particle with a null ray, γ as the world line, has its ray traced back in time

from I+. Here, u and v are related to U and V as follows:

U = −e−u/4M , V = ev/4M (2.35)
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Figure 2.2: The geometric optics approximation

Figure 2.3: Parallel transport of n and l

As t approaches infinity, the ray γ becomes a free field. The ray γ can be parame-

terized by null coordinates u and v. Similarly, at future null infinity, u→∞, which

means U → 0. Now, let U = −ε, so that u is

u = −1

κ
log ε (on γ near H+) (2.36)

and the excitation becomes

Φω ∼ exp
(iω
κ

log ε
)

(2.37)

For small ε the frequency of oscillation increases quickly, and thus at late times

the geometric optics approximation is reasonable.

The excitation parallel transported back to I− will have a similar form to the

excitation at I+. Therefore,

Φω ∼ exp

(
iω

κ
log(−(−ε))

)
(2.38)
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Figure 2.4: Branch cut along the complex plane v

Suppose, on I−, v = −ε (for ε being positive), then

Φω ∼ exp

(
iω

κ
log(−v)

)
(2.39)

However, for outgoing excitations, v > 0. Thus an ingoing null ray from I− does

not reach I+ because it will never come out of the event horizon, H+. Thus the

Fourier transform from −∞ to +∞ is actually a transform from −∞ to 0:

∼
Φω =

∫ ∞
−∞

eiω
′vΦω(v)dv

=

∫ 0

−∞
exp
[
iω′v +

iω

κ
log(−v)

]
dv

(2.40)

Fourier transform Φ̃ω(ω) satisfies the following

Lemma

∼
Φω(−ω′) = −exp

(
− πω

κ

)
∼
Φω(ω′) for ω′ > 0 (2.41)

Proof Suppose, a branch cut is chosen in a complex v-plane which lies on the

real axis as follows

Firstly, the contour is rotated to the positive imaginary axis and then v = ix is

set for ω′ > 0. This yields

∼
Φω(ω′) = −i

∫ ∞
0

exp

[
− ω′x+

iω

κ
log
(
xe−iπ/2

)]
dx

= −exp
(πω

2κ

)∫ ∞
0

exp

[
− ω′x+

iω

κ
log(x)

]
dx

(2.42)

Corollary At late times, a positive frequency mode on I+ is equivalent to
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mixed positive and negative modes on I−. The forward transmitted part is the

positive frequency part of the wave in M+. This is like the Aij coefficient in equation

2.17. Thus

Aωω′ =
∼
Φω(ω′) (2.43)

The reflected part of the ingoing wave is like the Bij coefficients of the same equation

2.17. Thus Bij correspond to −ω′. Hence,

Bωω′ =
∼
Φω(−ω′) = −eπω/κ

∼
Φω(ω′) (2.44)

are the Bogoliubov coefficients. Thus the Bogoliubov coefficients are related by

Bij = −e−πωi/κAij (2.45)

Because of 2.16 the Bogoliubov coefficients satisfy

δij =
(
AA† −BB†

)
ij

=
∑
k

AikA
∗
jk −BikB

∗
jk

=
[
eπ(ωi+ωj)/κ − 1

]∑
k

BikB
∗
jk

(2.46)

Setting i = j yields

(
BB†

)
ii

=
1

e2πωi/κ − 1
(2.47)

Now, the inverse Bogoliubov coefficients relative to a positive frequency mode

on I− are required. They are identified with a mixed positive and negative frequency

modes on I+. It was shown before (2.18) that the inverse B coefficient is [3, 4]

B′ = −BT (2.48)

If there is a vacuum on I−, then the particle flux at late times through I+ is

given by

〈Ni〉I+ =

((
B′
)†
B′

)
ii

=

(
B∗BT

)
ii

=

(
BBT

)∗
ii

(2.49)

However, (BBT )ii is real, therefore,

〈Ni〉I+ =
1

e2πωi/κ − 1
(2.50)

This is the energy spectrum of an object radiating as a blackbody. The black-
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body factor for a blackbody radiator is 1
ehν/kT−1 . Thus a blackhole corresponds to a

blackbody with temperature
hν

kBTH
=

2πω

κ
(2.51)

which implies that the Hawking Temperature is

kBTH =
~κ
2π

(2.52)

Using the Stephan-Boltzmann law the blackbody radiates energy as:

dE

dt
' −σAT 4

H ,

(
σ =

π2k4
B

60~3c2

)
(2.53)

Here, the area of the blackhole is represented by A. Since

E = Mc2, A =
MG

c2

2

, kB ∼
~c3

GM
(2.54)

this yields
dM

dt
∼ ~c4

G2M2
(2.55)

from which the lifetime of a blackhole is found to be

τ ∼

(
G2

~c4

)
M3 (2.56)

It is to be noted that in deriving the Hawking radiation, M was taken to be

fixed. This is good for large blackholes. This approximation does not hold in the

final phases of evaporation, when dM/dt�M does not hold.

2.4 Thermodynamics of Black Holes

Analogous to the first law of thermodynamics, dU = TdS−PdV , there exists a first

law of black hole thermodynamics can be written as

dM = TdSBH + ΩHdJ + ΦHdQ, (ΩH ,ΦH intensive, J,Qextensive) (2.57)

Where, Q is the charge, J is the angular momentum, ΦH is the electric surface

potential, ΩH is the angular velocity and T is the Hawking Temperature.

T =
~κ
2π

(2.58)
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Beckenstein guessed and Hawking gave persuasive arguments that the blackhole

entropy is proportional to the area as

SBH =
A

4~
. (2.59)

This is known as the Beckenstein-Hawking entropy or the entropy of the black hole.

The second law of black hole mechanics violated through the process of black

hole evaporation since the SBH decreases. However, the total entropy is

S = SBH + Sext (2.60)

where the entropy of the matter in the exterior region of black hole spacetime is

represented by Sext. But, since black hole radiates itself away in the form of heat, the

exterior entropy increases, thus causing an overall increase in the total entropy S as

a function of time. From this, the second law of thermodynamics can be generalized

as S = SBH + Sext is always a non-decreasing function of time (in any process)

According to Beckenstein, if an encyclopedia is thrown into a black hole the

entropy of the exterior spacetime could decrease. However, unless the black hole

itself has an entropy, the second law of thermodynamics would be violated. Hence,

the above equation was first put forward by him. [3, 4, 8, 9]

The Information Paradox

By the process of Hawking Radiation, a black hole will eventually evaporate away

and the event horizon will disappear, as shown in the Carter-Penrose diagram 2.5.

The diagram shows that the singularity disappears and the top part of the Penrose

diagram looks like a Minkowki space.

For this spacetime, Σ1 is a Cauchy surface. However, the black hole region is not

included in the past domain of dependence D−(Σ2), therefore, Σ2 is not a Cauchy

surface, from where information can not reach the black hole region, unlike that of

Σ1. Thus it seems like information has lost into the black hole. This puts the basic

idea of quantum mechanics in conflict to the QFT of curved spacetime as it implies

a non-unitary evolution from Σ1 to Σ2. On the contrary, the information might

not be really lost, since a static observer does not ’see’ anything passing through

H+. One solution to this problem might be to do all the calculations regarding

the back-reaction effects, while some argue that an understanding of Planck scale

physics might be necessary. Moreover, the idea that when kT becomes the Planck

energy (~c
G

)
1
2 c2 then the prediction by QFT that at the horizon of the black hole

the local temperature Tloc→∞ should be rendered invalid. This is because in this

region the quantum gravity effects are significant and the temperature becomes of
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Figure 2.5: Evaporation of a black hole

the maximum order or the Hagedorn temperature in string theory.[4]



Chapter 3

Borel’s Trick in Non-Perturbative

QFT

3.1 First Hints of Non-perturbative effects

Perturbation theory in quantum mechanaics usually results in diverging series, with

zero radius of convergence. This is manifest in even the elementary aspects such as

that of harmonic oscillator with a quartic potential. The Hamiltonian is as follows

[10–13]:

H =
p2

2
+
q2

2
+
g

4
q4 (3.1)

Here, g is the coupling constant. If we now calculate the ground state energy,

which is a function of g, around g = 0, stationary perturbation theory gives us this

divergent series:

E0(g) ∼
∑
n≥0

ang
n =

1

2
+

3

4
(
g

4
)− 21

8
(
g

4
)2 +

333

16
(
g

4
)3 +O(g4) (3.2)

where ~ = 1. It can be seen that the coefficients of g in the above expansion are

factorially increasing as,

an ∼ (
3

4
)nn!, n� 1 (3.3)

Now, from the eigenvalue equation

H |ψn〉 = En |ψn〉 , n = 0, 1, ... (3.4)

the ground state energy can be said to have a perturbative definition because it

can be written as an asymptotic series, since any well defined function, f(z) has a

17
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non-perturbative definition if f(z) has φ(z) as its asymptotic series as such:

f(z) ∼ φ(z) =
∑
n≥0

anz
n (3.5)

However, as was shown above, the coefficients in the later terms increase and

the series diverges as z increases. To counter this problem, one possible solution is

to sum up only the first few terms up to which the series converges. This process is

called optimal truncation. [14, 15]This is illustrated as follows.

Let us consider the series

an ∼ A−nn!, n� 1. (3.6)

When N is minimum, the smallest term in the series, for |z| constant is obtained

from the following equation:

|aNzN | = cN !| z
A
|N . (3.7)

This can be written using the Stirling approximation as

cexpN(logN − 1− log|A
z

)|. (3.8)

When N is large, the saddle point of the above function is

N∗ = |A
z
|. (3.9)

Now, at large N optimal truncation can be performed for small |z|. Howeve, as

|z| increases, lesser number of terms can be used. This results in an error, which

can be estimated to be

ε(z) = CN∗+1|z|N∗+1 ∼ e|A/z| (3.10)

This is the maximum resolution that can be obtained when a function f(z) is

reconstructed asymptotically. This problem appears exclusively in non-pertubartive

field theory, hence it is called ”non-perturbative ambiguity,” and the absolute value

of A determines the ”strength” of the ambiguity. This is in fact the first clue of the

existence of a non-perturbative effect.

3.2 Borel Summation to the Rescue

In order to resolve this ambiguity, Borel simply divided the equation

an ∼ A−nn! (3.11)
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by n! and wrote it as a summation as

φ̂(ζ) =
∞∑
n=0

an
n!
ζn. (3.12)

Due to the factorial term in the denominator, this series converges at large N with

a radius of convergence ρ = |A|, and an analytic function in the circle |ζ| < |A|
is defined by this. This is called the Borel transformaiton. Here, a singularity is

present at ζ = A. This is illustrated in the following examples:

Example 3.1 Suppose the series

φ(z) =
∞∑
n=0

(−1)nn!zn (3.13)

can be identified as an asymptotic series of the form

an ∼ A−nn! (3.14)

where A = −1. This can be Borel transformed as

φ̂(ζ) =
∞∑
n=0

(−1)nζn (3.15)

Here, the radius of convergence ρ = 1. Moreover, this series can be analytically

continued to a meromorphic function shown below, with only one pole at ζ = −1:

φ̂(ζ) =
1

1 + ζ
(3.16)

It can be seen off that there is a singularity of the Borel transformation, which is

namely a pole at ζ = A = −1.

Example 3.2 The Borel transform for the series

φ(z) =
∞∑
k=0

Γ(k + b)

Γ(b)
A−kzk, (3.17)

where b is not an integer, is

φ̂(ζ) =
∞∑
k=0

Γ(k + b)

k!Γ(b)
A−kζk = (1− ζ/A)−b, (3.18)

with a brach cut singularity at ζ = A.
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Now, if b = 0 in the above series, it turns out to be

φ(z) =
∞∑
k=1

Γ(k)A−kzk (3.19)

with a Borel transform given by

φ̂(ζ) = −log(1− ζ/A) (3.20)

where, a logarithmic singularity exists at ζ = A.

Now, suppose that φ̂(ζ) can be analytically continued to a region near the posi-

tive real axis in the complex z-plane such that there exists the following Laplace

transformation

s(φ)(z) =

∫ ∞
0

e−ζ φ̂(zζ) dζ = z−1

∫ ∞
0

e−ζ/zφ̂(ζ) dζ. (3.21)

This is when the series is said to be Borel summable and the Borel sum of φ(z)

is given by s(φ)(z). It can be noted that s(φ)(z) can be asymptotically expanded

around z = 0, and this expansion is identified with the original series φ̂(ζ), since

s(φ)(z) = z−1
∑
n≥0

an
n!

∫ ∞
0

dζe−ζ/zζn =
∑
n≥0

anz
n (3.22)

For some values of z, the diverging series φz can be converted into a well de-

fined function s(φ)(z) using this method. As was mentioned above for the case of

the quartic harmonic oscillator, φ(z) is the asymptotic expansion of a well-defined

function f(z). If the Borel sum s(φ)(z) and the original function f(z) matches, then

Borel summation gives us the original non-perturbative solution.

Moreover, the generalized Borel resummation can be written as

sθ(φ)(z) =

∫ eiθ∞

0

e−ζ φ̂(zζ) dζ. (3.23)

along θ. This is done be doing the Laplace transform 3.21 along any direction θ, in

the complex plane as such:

Example 3.3 The Borel transform shown in example 2.1 can be analytically

extended on the complex plane C\{−1} as

s(φ)(z) =

∫ ∞
0

e−z

1 + zζ
ddζ (3.24)

which is valid for all z ≥ 0.
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Now even if we have a Borel summable series φ(z) and we expand it, we can only

know a few coefficients in it. Thus, the analytic continuation of the Borel trans-

formation around the positive real axis is very hard to do. A practical way to

accurately estimate the resulting function is to incorporate the Pade approximants.

Let us consider the series

φ(z) =
∞∑
k=0

akz
k. (3.25)

For this, the Pade approximant is given by

[l/m]φ(z) =
p0 + p1z + ...+ plz

l

q0 + q1z + ...+ qmzm
, (3.26)

where l, m, are positive integers and q0 = 1 is fixed. Now, the coeffecients are set

by

φ(z)− [l/m]φ(z) = O(zl+m+1). (3.27)

It is possible to reconstruct the analytic continuation of the Borel transform of

a given series φ(z) using the Pade approximants. One of the many procedures is to

use the Pade approximant given below:

Pφn (ζ) =
[
[n/2]/[(n+ 1)/2]

]
φ̂(ζ) (3.28)

which works if the first n + 1 coefficients of the original series is known. Now,

an approximation to the Borel resummation is given by the integral

s(φ)n(z) = z−1

∫ ∞
0

e−ζ/zPφn (ζ)dζ (3.29)

As n is increased, this gets better systematically. Since this integral connects

the Pade approximant to the Borel resummation, this is often called the Borel-Pade

resumamtion. This procedure is illustrated in the following example.

Example 3.4 The Borel transform of the series

φ(g) =
∞∑
k=0

akg
k, ak = (−4)−k

(4k − 1)!!

k!
. (3.30)

is given by

φ̂(ζ) =
2K(k)

π(1 + 4ζ)1/4
, k2 =

1

2
− 1

2
√

1 + 4ζ
, (3.31)
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Figure 3.1: The integral path evading the poles on the x-axis

where K(k) is an elliptic integral of the first kind. Now, we numerically show that

s(φ)(g) = I(g) (3.32)

for g = 0.2 and g = 0.4.

n s(φ)n(0.2) s(φ)n(0.4)

10 0.9079854376 0.8576207823

20 0.9079847776 0.8576086008

30 0.9079847774 0.8576085854

I(g) 0.9079847774 0.8576085853

In the above table, it can be seen that the values of the integral improves as the

value of n increases. The numerical solution for I(g) is written in the last line. The

underlined digits are those which agree with the numerical results of 3.29.

However, there are instances when the the Borel transformation defined above

does not exist. This is when there are poles on the positive real axis. The way to

get across this problem is to deform the contours and carry out the integration on

the paths C± such that they are slightly above or below the positive real axis so that

they dodge the singularities and branch cuts. This is illustrated in the figure 3.1.

Now, the lateral Borel resummations is defined as

s±(φ)(z) = z−1

∫
C±

dζe−ζ/zφ̂(ζ). (3.33)

We get a complex number with an imaginary piece O(exp(−A/z)) in this situ-

ation.

However, if the lateral Borel resummation of the perturbative series does not

give us the correct answer, some extra terms can be added to the series. A simple

example is the formal power series in the form

φl(z) = zble−lA/z
∑
n≥0

an,lz
n, l = 1, 2, ... (3.34)
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If we do perturbation theory around non-trivial saddle points of the (Euclidean)

path integral, such as instantons, we get this series. The non-perturbative effects

due to l-instantons is encoded in this series. A common example is the double-well

potential in QM, which is illustrated as follows.

Example 3.5 The Hamiltonian of the double well potential is

H =
p2

2
+W (x), W (q) =

g

2

(
q2 − 1

4g

)2

, g > 0. (3.35)

Around the minima, there exists two degenerate ground states in perturbation

theory, which are:

q± = ± 1

2
√
g
. (3.36)

Now, stationary perturbation theory gives us the ground state energy as a formal

power series as such:

φ0(g) =
1

2
− g − 9

2
g2 − 89

2
g3 − ... (3.37)

When we do a path integral around the constant trajectory q = q± we get this

series. Regardless, if a trajectory going from q− to q+ (or vice versa) is given, we

can write the saddle-point of the Euclidean path integral as:

qt0± (t) = ± 1

2
√
g

tanh
(t− t0

2

)
. (3.38)

From this we get the non-perturbative contribution to the ground state energy,

which is

φ1(g) = −
(2

g

)1/2 e−1/6g

√
2π

(1 +O(g)). (3.39)

Now, we write down the trans series of the form

Φ(z) = φ0(z) +
∞∑
l=1

C lφl(z) (3.40)

This series sometimes results in the function that we want, after we do the

appropriate (lateral) Borel resummations and choose a value for the constant C in

the form:

f(z) = s(Φ)(z) +
∞∑
l=1

C ls(φl)(z). (3.41)

However, there are situations when a perturbative series is not Borel summable.
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In such scenario, non-perturbative effects are inherently undefined, i.e, they are

dependent on how we choose the lateral resummations for the perturbative series.

The final answer and the underlying physical quantity has to remain unchanged,

so the way the lateral resummation of the perturbative series is chosen accordingly

affects the way the lateral resummation of the non-pertubartive effects are selected.

[14, 16–20]



Chapter 4

Non-perturbative Extension to

Yang-Mills

4.1 Elements of YM Theories

The first thing that is required to construct a Yang-Mills theory is to define a

gauge group G, more specifically, a simple Lie group with g as its Lie algebra.

This group will be of dimension d(G). Ta are the generators of the Lie algebra,

with a = 1, ..., d(G), which are required to be Hermitian and follows the following

commutation relations:

[Ta, Tb] = ifabcTc, a, b = 1, ..., d(G), (4.1)

here, fabc are the structure constants of the algebra.

Example 3.1 If the gauge group is SU(2), the generators of the Lie algebra

are

Ta =
1

2
σa a = 1, 2, 3. (4.2)

Here, σa are the Pauli matrices, and the structure constants are given by

fabc = εabc. (4.3)

Moreover, the trace of the product of two generators of the Lie algebra can be

found and defined in such a way that the generators are orthogonal to each other as

such:

Tr(TaTb) = αδab. (4.4)

Here, the coefficient α is the normalization constant. Note that , the Cartan inner

25
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product is defined as

(Ta, Tb) = δab (4.5)

The most elementary field in YM theory is the gluon field, also known as the

YM connection:

Aµ = AaµTa. (4.6)

This is a field in the adjoint representation of the Lie algebra, or in other words,

a vector field of Lie algebra values. Representations r of the Lie algebra are used

to identify the fields in a YM theory. Each r, which have dimension d(r), gives us

a matrix representation of the generators
(
T ra
)i
j
, where i, j = 1, ..., d(r). Moreover,

if r is the fundamental representation, we get back the basis Ta. Also, in this

representation, the covariant derivative acting on a field φ is defined as

Dµφ = ∂µφ− iAaµT
r
aφ. (4.7)

Let us label the adjoint representation as r = G, such that the components of the

matrices TGa are given by (
TGa
)
bc

= ifbac. (4.8)

Similar to 4.6, if a field φ is in the adjoint representation, it can be written as

φ = φaTa (4.9)

with the covariant derivatives having the components

(Dµφ)a = ∂µφa + fabcA
b
µφc. (4.10)

Side Note: In one-loop calculations, two important quantities of Lie algebra

tend to appear always are the Casimir and the quadratic Casimir operators of the

representation r, denoted by C(r) and C2(r) respectively, and defined as

C(r)δab = Tr(T raT
r
b ). (4.11)

C2(r)δij = (T ra )ik(T
r
a )kj (4.12)

We find the following relationship between these operators if we trace them, and

hence, they are not independent,

C(r)d(G) = C2(r)d(r), (4.13)

Moreover, in case of the adjoint representation, i.e, when r = G, the two operators

are equal and can be written in terms of the structure constants of the Lie algebra
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as

C2(G)δab = facdfbcd (4.14)

Also,

fabcfabc = d(G)C2(G). (4.15)

For example, if G = SU(N), we get

C(fund) =
1

2
(4.16)

for the fundamental representation r = fund, and for the adjoint representation we

get

C2 = (SU(N)) = N. (4.17)

Now, the YM field strength is defined as

Fµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (4.18)

The values of the curvature of the connection is found in the adjoint representation

of the Lie algebra. In terms of the Ta basis its components can be written as

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcA

b
µA

c
ν . (4.19)

Furthermore, it is often useful to write the components with Lie algebraic values

of the gauge connection Aµ and the field strength Fµν collectively into a one-form

and a two-form as

A = Aµdxµ, F =
1

2
Fµνdx

µ ∧ dxν . (4.20)

We define the exterior differential, with d as the exterior differential and ∧ being

the standard wedge product, as follows: if

ψ = ψµ1µ2...µpdx
µ1 ∧ dxµ2 ∧ ... ∧ dxµp . (4.21)

is a p-form, then

dψ = ∂µψµ1µ2...µpdx
µ ∧ dxµ1 ∧ ... ∧ dxµp (4.22)

From this, one gets

F = dA− iA ∧ A. (4.23)

The gauge connection is acted upon by a gauge transformation as

Aµ(x)→ AUµ (x) = U(x)Aµ(x)U †(x) + iU(x)∂µU
†(x). (4.24)
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Here, U(x) has values in the Lie group G and is a function of spacetime. Now, let

us suppose

U = eiφ, φ = φaTa. (4.25)

infinitesimally, we get

∂Aµ = Dµφ. (4.26)

Now, the transformation of YM field is as follows

Fµν(x)→ FU
µν(x) = U(x)FµνU

†(x), (4.27)

and infinitesimally,

δFµν = i[φ, Fµν ]. (4.28)

The Lagrangian of pure YM theory is

LYM = − 1

2g2
0

Tr(FµνF
µν) = − 1

4g2
0

F a
µνF

µνa. (4.29)

Here, the bare coupling constant is represented by g0. Due to the cyclic property

of the trace and the property 4.24 gauge connection, this Lagrangian is invariant

under gauge transformation. The equation of motion that this Lagrangian gives is

DµFµν = 0. (4.30)

Often it is suitable to rescale the fields such that the coupling constant is ab-

sorbed in the connection term and it is only seen in the interaction vertices, as

Âµ =
1

g0

Aµ (4.31)

and the field strength is written as

F̂ a
µν = ∂µÂ

a
ν − ∂νÂaµ + g0f

abcÂbµÂ
c
ν (4.32)

which gives the Lagrangian as

LYM = −1

4
F̂ a
µνF̂

µνa. (4.33)

Until now, we have shown all our calculations in Minkowski space. However, it

is vital to work these out in the Euclidean space to study instantons. Therefore, we

do the Wick rotation be redefining the time coordinate as follows

x0 = −ix4. (4.34)
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In our signature, the vector field in the Euclidean space will be written as

AEi = −Ai, i = 1, 2, 3, AE4 = −iA0. (4.35)

Accordingly, the field strength becomes

F aE
ij = F a

ij, F aE
0j = −iF a

4j. (4.36)

Finally, the Euclidean Lagrangian turns out to be

LEYM =
1

4g2
0

(F aE
µν )2 (4.37)

and in the Euclidean path integral e−S
E
YM is the field configuration’s weight, where

the Euclidean action is given by

SEYM =

∫
d4xLEYM . (4.38)

We can renormalize YM theories at the quantum level, and it shows a running

coupling constant and asymptotic freedom. In the MS scheme, after dimensional

regularization, the connection between the regular coupling constant g2
0 and the

renormalized constant g2 is as follows:

g2
0 = µ2ε

{
g2 +

∞∑
k=1

ak(g
2)ε−k

}
, (4.39)

in the dimensions d = 4−2ε and µ being the renormalization mass. Upto the quartic

order g4, one gets

a1(g2) = − g4

(4π)2

11C2(G)

3
, ak = 0, k ≥ 2. (4.40)

A one-loop calculation also yield this.

Now, we define the beta function as follows:

β(g) = µ
∂g

∂µ
= −

∞∑
n=0

βng
2n+3 = −β0g

3 − β1g
5 + .... (4.41)

The regularization does not affect the coefficients β0 and β1. This beta function

controls the conduct of the coupling constant as the renormalization scale µ is varied.

From 4.39 and 4.40, the one-loop coefficient β0 as ε→ 0 can be found, which is

β0 =
1

(4π)2

11C2(G)

3
. (4.42)
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and

β1 =
34

3
C2

2(G). (4.43)

Also, this is an asymptotically free theory because the beta function gives a negative

coefficient in the very first term. When the coupling constant is run, it is found that

the quantity

Λ = µ(β0g
2)−β1/(2β

2
0)e−1/(2β0g2)exp

(
−
∫ g

0

{
1

β(x)
+

1

β0x3
− β1

β2
0x

}
dx

)
(4.44)

actually depends on µ and hence, determines a renormalization group (RG) invariant

scale. The one-loop approximation of this quantity is

Λ ≈ µe−1/(2β0g2). (4.45)

The quantity λ is known as the dynamically generated scale of YM theory. This is

dependent upon the regularization scheme that the beta function is computed with.

Since, originally this theory had this coupling constant g which do not have any

dimension, and from this a dimensional scale Λ is generated, this process is called

dimensional transmutation. [1, 19]

4.2 Topological charge and θ vacua

In YM theory, another term called the topological charge can be added to the YM

action apart from the standard action. This is given by

Q =

∫
q(x)d4x. (4.46)

Here,

q(x) =
1

32π2
F a
µνF̃

µνa =
1

64π2
εµνρσF

µνaF ρσa. (4.47)

This term is renormalizable and gauge invariant, therefore it can be essentially added

to the action. This yields the Euclidean YM Lagrangian as follows:

LEYM,θ = LEYM − iθq(x)E (4.48)

where, a new parameter θ arises in the QCD Lagrangian. Moreover, the topological

charge is quantized for any classical, continuous field configuration having a finite

action.

Now, the observables of QCD has to be susceptible to the parameter θ. An

example of such a quantity is the vacuum energy density E(θ), which is calculated
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in the large, finite spacetime volume V as

E(θ) = − lim
V→∞

1

V
log Z(θ), (4.49)

where Z(θ) is the partition function in the presence of θ, which is in turn defined as

Z(θ) =

∫
[DA]e−

∫
d4xLEYM,θ (4.50)

There are two important properties of this energy density. Firstly, the path

integral that we calculate after the inclusion of eiθQ at θ 6= 0, should be smaller than

that of without this term, i.e, at θ = 0. This is because, at θ 6= 0 an oscillating

function is calculated, which leads to a smaller value of Z(θ). Therefore,

E(0) ≤ E(θ), θ 6= 0, (4.51)

and the vacuum energy takes an absolute minimum value at θ = 0. The second prop-

erty is that Q is quantized in finite action smooth field configurations. Therefore,

E(θ) should be harmonic, with period 2π:

E(θ + 2π) = E(θ). (4.52)

When the function E(θ) is expanded around θ = 0 we get the following power series

E(θ)− E(0) =
1

2
χtθ

2s(θ) (4.53)

where

s(θ) = 1 +
∞∑
n=1

b2nθ
2n. (4.54)

The quantity χVt is called topological susceptibility. It is an important quantity that

gives us the leading dependence on of E(θ) on the angle θ around θ = 0. It is defined

as

χVt =
(d2E(θ)

dθ2

)
θ=0

=

〈
Q2
〉

V
=

∫ 〈
qE(x)qE(0)

〉
d4(x). (4.55)

Here, the last equation comes from

〈
Q2
〉

=

∫
V

d4x

∫
V

d4y 〈0| qE(x− y)qE(0) |0〉 = V χVt (4.56)

after incorporating the translation invariance of the vacuum. As E(θ) has a mini-

mum at θ = 0, χVt ≥ 0. This quantity has an infinite volume limit, which is given

by

χt = lim
V→∞

χVt (4.57)
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The dependence of the YM observables on θ is very slight since the quantity q(x) is

fully divergent

q(x) = ∂µK
µ. (4.58)

Here,

Kµ =
1

16π2
εµνρσAaν(∂ρA

a
σ +

1

3
fabcA

a
νA

b
ρA

c
σ). (4.59)

The tensor above means that we use the three form, known as Chern-Simons form:

ωCS(A) =
1

16π2
Aaν

(
∂ρA

a
σ

1

3
fabcA

a
νA

b
ρA

c
σ

)
dxν ∧ dxρ ∧ dxσ (4.60)

=
1

8π2
Tr
(
A ∧ dA− 2i

3
A ∧ A ∧ A

)
(4.61)

This results in the Fourier transform

q̃(p) =

∫
eipxq(x)d4x (4.62)

vanishing at zero momentum as it is of the form pµK̃µ(p). However, the topological

susceptibily is written as

χt = lim
k→0

U(k), (4.63)

and

U(k) =

∫
d4xeikx

〈
q(x)q(0)

〉
=

∫
d4p′

(2π)4

〈
q̃(k)q̃(p)

〉
. (4.64)

This quantity vanishes order by order in perturbation theory since q̃(0) = 0. How-

ever, Witten noticed that this does not vanish in the whole theory. We may obtain a

nonzero solution after adding infinitely many diagrams and taking the limit k → 0.

Infact, in 1/N expansion, we find nonzero value of topological susceptibility if we

add an infinite number of planar diagrams.

The topological charge can be written using Stokes’ theorem as

Q =

∫
dΣµK

µ (4.65)

Let the surface of integration be two spatial planes at t = ±∞, such that

Q =

∫
d3→xK0(t→∞,→x)−

∫
d3→xK0(t→ −∞,→x) ≡ K+ −K−. (4.66)

These are Hermitian operators and are connected by time reversal, so their spectra

are identified with each other. Let, their eigenstates are denoted by

|ν±〉
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such that

K± |ν±〉 = ν |ν±〉 (4.67)

The physical vacuum can now be expanded as

|θ〉 =
∑
ν

cν(θ) |ν+〉 =
∑
ν

cν(θ) |ν−〉 . (4.68)

This is true because the vacuum is invariant if we apply time reversal operator and

the first sum and the second one is interchanged. Moreover, we get the following

identity:

i
∂

∂θ
〈θ| O |θ〉 = i

∂

∂θ
〈0| Oe−

∫
dxLEYM |0〉 (4.69)

=

∫
d4x 〈0| q(x)Oe−

∫
d4xLEYM |0〉 (4.70)

=

∫
d4x 〈θ| q(x)O |θ〉 , (4.71)

so the operator i∂θ is equivalent to the insertion of Q. However, we get

i
∂

∂θ
〈θ| O |θ〉 = 〈θ|K+O |θ〉 − 〈θ| OK− |θ〉 (4.72)

In this case, the time ordering prescription is used, which dictates that K+ and K−

should be inserted to the left and to the right respectively. Now, if we substitute

the expansion of the physical vacuum in to this, we get

i
∂

∂θ

∑
ν,k

c∗ν(θ)ck(θ) =
∑
ν,k

(ν − k)c∗ν(θ)ck(θ), (4.73)

which gives us

cν = Ceiνθ (4.74)

Now, for simplicity we set the overall constant C to 1, and in terms of the eigenstates

of K± we get, by forming a superposition:

|θ〉 =
∞∑

ν=−∞

eiνθ |ν〉 . (4.75)

This is the true vacuum of the theory, called the theta vacuum and ν is the winding

number that describes the tunneling between the two vacua |ν1〉 and |ν2〉 where

ν = ν2 − ν1. [21–23]
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4.3 YM theory instantons

The instantons in Yang Mills theory are defined as the field configurations which

solve the equations of motion and have finite action. These configurations can begin

some perturbative expansions, so these are crucial for semi-classical analysis.

The behavior of the fields at large distances is constrained by the condition of

finite action. Their behavior at r →∞ is seen by writing the Euclidean action as

SE ∼
∫

dr r3F 2 (4.76)

The integrand has to behave like 1/r2 at the least if we want a finite outcome. Let

us say, if we have

F ∼ 1

r3
(4.77)

as r →∞, and so A(r) would behave as such:

A(r) ∼ 1

r2
r →∞ (4.78)

But, A is only defined upto a gauge transformation, which gives us the general

behavior

Aµ → g∂µg
−1 +O(r−2), r →∞. (4.79)

This means that at infinity this gauge potential is pure gauge. As r → ∞ the

limiting behavior has to be well defined, and so the function g on the boundary at

infinity is defined to be S3 ⊂ R4. If g only depends on the angular variables of

R4, then we get this. Thus, a map from S3 to the gauge group is defined from the

solution shown above, i.e.

g : S3 → G. (4.80)

g will change under a gauge transformation. So, the homotopy type of mappings

from S3 to G are gauge invariant. For example, in the soliton theory, these homotopy

types are labelled by

π3(G). (4.81)

Example 4.1 Instantons in Euclidean two dimensional space with U(1) gauge

group is a toy example, which has the homotopy group π1)(S1) = Z. The integer ν

classifies the homotopy classes. If ν labels a map in the class, then this map is the

covering

g(ν)(θ) = eiνθ (4.82)

Example 4.2 In the case of G = SU(2), any element of SU(2) can be written
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as

g = a+ ib.σ, a2 + b2 = 1, (4.83)

thus SU(2) is homeomorphic to S3. Now, let us think about the map

g : S3 → S3 (4.84)

The homotopy group associated to it is

π3(S3) = Z (4.85)

which is true because

π1(S3) = 0. (4.86)

Hence this theorem connects the homotopy groups to the homology groups. For this

example,

π2(S3) = H2(S3), π3(S3) = Z. (4.87)

Now, 4.85 suggests that a winding number, ν labels the homotopy classes that are

related to the gauge group SU(2). Explicitly, the map

g : S3 → SU(2) (4.88)

with winding number ν is expressed as

g(ν)(x) =
(x4 + ix.σ

r

)ν
(4.89)

Here, if ν = 0, then this is the trivial map, and for ν = 1 this gives us the identity.

Furthermore, only angular variables can be used to express this.

To sum up, taking SU(2) as our gauge group, we can characterize every field

configuration of finite action by its winding number ν. Moreover, for a gauge field,

its winding number is the topological charge itself. In order to elucidate this fact,

we write

Q =

∫
dΣµK

µ (4.90)

Now we integrate it over the boundary at infinity, namely the three sphere S3 which

gives us

Q = − 1

48π2

∫
dΣµεµναβ(Aν , AαAβ) (4.91)

where

εµναβ∂
αAβ = −εµναβAαAβ (4.92)

By taking note of how the gauge potentials behave at the boundary, we can express
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this quantity as

Q =
1

48π2

∫
dθ1dθ2dθ3ε

ijk(g−1∂ig, g
−1∂jgg

−1∂kg). (4.93)

This is homotopy invariant and provides us with the winding number related to the

homotopy class of g.

Example 4.3 We can use the integrals above to show that g(1) actually has

n = 1. The inverse of the mapping is

g−1 =
x4 − i

→
x.
→
σ

r
. (4.94)

We get

Q = − 1

24π2

∫
dΣµ

(
− 12xµ

|x|4
)
. (4.95)

By using the expression

dΣµ = xµ|x|2dΩ3, (4.96)

we get

Q =
1

2π2

∫
dΩ3 = 1. (4.97)

We can tell from the above analysis that an integer winding number classifies

the field configurations of finite action. Now, we will construct field configurations of

the finite action that gives solutions to the equations of motion, and hence generate

the various vacua of the YM theory. There is a configuration that minimizes the

action in each topological sector, thereby solving the equations of motion, i.e, there

exists an infinite set of classical vacua labelled by the integer n. In this way, we

will find instantons as solutions to the first order differential equations. We will

elucidate this below.

Firstly, there is a gauge configuration with a fixed topological charge Q = ν.

Now, we write the following identity∫
d4xTr

{
(F ± F̃ )αβ(F ± F̃αβ

}
≥ 0. (4.98)

Since F̃αβF̃
αβ = FαβF

αβ, it gives us

1

2g2
0

∫
d4xTr

(
FαβF

αβ
)
± 1

2g2
0

∫
d4Tr

(
FαβF̃

αβ
)
≥ 0, (4.99)

which is

SEYM ±
8π2ν

g2
0

≥ 0. (4.100)
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Finally,

SEYM ≥
8π2|ν|
g2

0

(4.101)

It can be noted that SEYM needs to be positive all the time in order for the inequality

to be saturated. Thus, when ν > 0 we get

Fαβ = F̃αβ, SEYM =
8π2ν

g2
0

(4.102)

This means that we have a self-dual SD gauge field and a gauge theory instanton.

Similarly, negative ν gives us

Fαβ = −F̃αβ, SEYM = −8π2ν

g2
0

. (4.103)

which represents an anti-self-dual(ASD) gauge field and we get a gauge theory anti-

instanton. When any of these conditions are true, the action for a fixed topological

class ν is minimized by the corresponding gauge field, and also solves the equations

of motion. However, these are first order equations, unlike the standard YM theory

EOMs.

Now, let us consider for example the gauge group SU(2) and set n = 1 for the

one-instanton solution. We will write the aymptotic expression fot the gauge field.

Firstly, we set

Aµ = iU∂µU
†, (4.104)

where

U =
x4 + ix.σ

r
(4.105)

and x= (x1, x2, x3), σ = (σ1, σ2, σ3) with the σi being the Pauli matrices. Since

∂4U = −x4

r2
U +

1

r
, ∂kU = −x4

r2
U +

iσk
r
, k = 1, 2, 3, (4.106)

From this we get

A4 = −x · σ
r2

(4.107)

and that

Ak =
1

r2
(x4σk + εklmxiσm). k = 1, 2, 3, (4.108)

where the following identity is used

σjx · σ = xk + iεklmxlσm (4.109)
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Now, if we write the gauge connection in component form as

Aµ =
1

2
σaA

a
µ (4.110)

and define the ’t Hooft matrices ηaµν , a = 1, 2, 3 by

ηaij = εaij, η
a
i4 = ∂ai, i, j = 1, 2, 3, (4.111)

we get

Aaµ = 2ηaµν
xν

r2
. (4.112)

From this asymptotic form, we have the following ansatz for the connection

Aaµ = 2ηaµν
xν

r2
f(r2). (4.113)

when

f(r2)→ 1, r →∞ (4.114)

Moreover, at the origin, regularity requires that

f(r2) ∼ r2, r → 0. (4.115)

Substituting this ansatz in the gauge theory action gives us

S ∝
∫ ∞

0

dr
[r

2
(f ′)2 +

2

r
f 2(1− 2f)2

]
(4.116)

From the second order EOM of f we get

− d

dr

(
r

df

dr

)
+

4

r
f(1− f)(1− 2f) = 0 (4.117)

The three constant solutions are: the trivial gauge connection for f = 0, a pure

gauge transformation having a winding number 1 for f = 1 and finally, for f = 1/2

we get a half gauge transformation called a meron. Furthermore, this yields a space-

dependent solution

f(r) =
r2

r2 + ρ2
(4.118)

Thus, we have the one-instanton solution of SU(2) Yang-Mills theory which is ex-

pressed as

Aµ =
r2

r2 + ρ2
iU∂µU

† (4.119)

It can be noted that this configuration is an interpolation between the trivial vacuum

f = 0 at the origin and the homotopically non-trivial gauge transformation with
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n = 1 as r →∞. Also, when r is large, it takes the form of 4.78.

Here, ρ is an integration constant that represents the size if the instanton.

The interesting characteristic of the instanton in the YM theory is that it is a

free parameter, unlike that of the instantons in the scalar field theory where the

instantons were determined by the parameters of the potential. This is an example

of a collective coordinate and it exists because of a symmetry of the theory, which

is the scale invariance of the classical Yang-Mills action in this case. Moreover, the

above solution is centered at the origin, but a more general solution can be written

as

Aaµ = 2ηaµν
(x− x0)ν

((x− x0)2 + ρ2)2
(4.120)

Here, the centre of the instanton is at x0. Due to translation invariance, we get four

extra collective coordinates.

So far, we solved the second order YM EOM to find the space-dependednt action.

similarly, we can solve the first order equation and substitute the ansatz and get

f(1− f)− r2 df

dr2
= 0 (4.121)

which also gives us the solutions f = 0, 1 and the one-instanton solution 4.118.

However, the first order equation is not satisfied by the meron solution f = 1/2 and

we get an infinite action. [19, 24, 25]

4.4 Instantons and theta vacua

As in Quantum Mechanics, the Yang-Mills instantons can be also thought of as the

tunneling configurations between different vacua. For example, we can think of an

instanton field in a sector with winding number n to be a field that goes from a

vacuum in the infinite past τ = −∞ to a vacuum in the infinite future τ = +∞ in

the Euclidean theory. We show this as follows.

Let there be a gauge field where A0 = 0. An integral over an S3 at infinity

represents the winding number. Now, suppose that we get a cylinder by deforming

this boundary parallel to the x0 = τ axis. The curved surface of the cylinder does

not contribute in the axial gauge A0 = 0, so we get

n = n+ − n− (4.122)

where

n± = − 1

48π2

∫
d3xεijk(Ai, AjAk)

∣∣∣
τ=±∞

(4.123)

At τ → ±∞ the field configurations match the with the various vacua whose homo-
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topy numbers vary by the integer n, the instanton charge. We can choose the gauge

such that n− = 0. Thus, the semiclassical realization of all the vacua |n±〉, labelled

as integers, can be found. In fact, the amplitude of transition between two vacua is

given by

〈n| e−HT |m〉 =

∫
DAn−mexp

[
−
∫

d4xL(A)
]

(4.124)

where, the fact that the integration is done over all gauge fields, with the winding

number n−m being constant, is expressed by DAn−m. Here, we consider the limit

T →∞. We write the sector’s partition function having ν winding number as

Zν =

∫
DAνexp

[
−
∫

d4xL(A)
]
. (4.125)

From this, we get

〈θ′| e−HT |θ〉 =
∑
n,m

einθ−imθ′Zn−m =
∑
n,ν

eim(θ−θ′)+iνθZν = δ(θ − θ′)
∑
ν

eiνθZν

(4.126)

where the change of variables from ν = m = n is done in the second line. From this,

we get the theta dependent partition function

Z(θ) =

∫
[DA]e−

∫
d4xLEYM,θ . (4.127)

Here, the Lagrangian with a θ term has been introduced. The integration is done

over all possible gauge fields, i.e, those belong to all possible homotopy classes. Now,

we can write

〈θ′| e−HT |θ〉 = δ(θ − θ′)Z(θ). (4.128)

This shows that when we quantize the YM Lagrangian 4.48 we get the theta vacua.

In terms of this partition function, we get

V E(θ) = −log
{∑

ν

eiνθ

∫
DAνexp

[
−
∫

d4xL(A)
]}

= −logZ(θ) (4.129)

and also

χVt =
1

V

∑
ν

ν2Pν , Pν =
Zν
Z(0)

. (4.130)

It can be noted that the probability of finding a gauge field with charge k is denoted

by Pν . In these sums, we get the leading contributions from one instanton and one

anti-instanton, since both have

Sc =
8π2

g2
(4.131)
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but opposite ν = ±1. Thus we have

V E(θ) = −logZ0 − log
{

1 + e
iθ− 8π2

g2 K1 + e
−iθ− 8π2

g2 K−1 + ...
}

(4.132)

where we know that K±1 = KV at leading order in g, by the one-loop fluctuation

around the instanton/anti-instanton solutions. The volume V is factored out, which

we find when we integrate over the zero mode x0 due to translation invariance.

It is also noted that around the instanton and the anti-instanton, the one-loop

fluctuations are equal. Now, we get

E(θ)− E(0) =≈ 2(1− cosθ)Ke−
8π2

g2
(4.133)

From this approximation, the topological susceptibility is given by

χt ∼ Ke
− 8π2

g2 . (4.134)

When we calculate the path integral as a sum over instantons, we get the topological

susceptibility as fully non-perturbative and we do not see this in perturbation theory.

Now, being careful about the collective coordinates, we calculate K. For instan-

tons, there are eight of them in total, of which four of them represent the position of

the instanton. Integrating over them yields the total volume space-time V which has

been factored out above. One other collective coordiante is the instanton size ρ. The

last three parameters are given by guage rotations. From these eight parameters,

we get the factor

S4
C =

(8π2

g2

)4
. (4.135)

We have a constant factor when we integrate over gauge transformations. Therefore,

the integral over ρ has to be of the form∫ ∞
0

dρ

ρ5
f(ρµ) (4.136)

by dimensional analysis. The energy density is to be found out, hence this integral

has dimensions of l−4 since ρ has length units. In order to renormalize a quantum

gauge theory, we need µ, which f(ρµ is a function of. The final solution must have

renormalization group invariant quantities, and from this the form of f can be fixed.

Therefore, we can say that a running coupling constant g2(µ) must be used in the

above computation as

e
− 8π2

g2(µ) = e−
2π

αs(µ) . (4.137)
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Combining this with

µ(−4πβ0) (4.138)

an RG-invariant integrand is produced, and the form of f(ρµ) at leading order is

determined to be

f(ρµ) = (ρµ)−4πβ0 . (4.139)

Now,

e−
2π

αs(µ)µ−4πβ0 = e−
2π

αs(1/ρ)ρ4πβ0 = Λ−4πβ0 (4.140)

due to invariance of RG. The integral becomes

e−
2π

αs(µ)

∫ ∞
0

dρρ5

ρ5
(ρµ)−4πβ0 =

∫ ∞
0

dρ

ρ5
e−

2π
αs1/ρ . (4.141)

This is the RG invariant way of writing the integral over instanton sizes. When ρ

is smallm, the asymptotic freedom and the one-loop beta function can be used to

write the integral for pure Yang-Mills theory as∫ ∞
0

dρ

ρ5
(ρΛ)11Nc/3. (4.142)

In the UV ρ → 0 region this integral is convergent but in the IR ρ → infty this is

divergent, for all Nc ≥ 2. For the large sized instantons, this is known as the famous

IR embarrassment in instanton calculus.

In fact, in case of ρ → ∞ the integral above does no tgive the right answer

since we can not do reliable instanton computations. This is when the instanton

size increases andthe running coupling constant αs(1/p) enters the strong coupling

region. To get rid of the problems of strong coupling we can have an IR cutoff in the

instanton size. This is the only way to perform instanton calculus in gauge theory.

Suppose we do the instanton calculation in a finite volume V space-time, such as

a four sphere S4. Here, the instanton size ρ cuts off naturally because it can not

be greater than the characteristic scale of spacetime V 1/4. Now we can compute

P1 by instanton calculus. We know the natural scale in the problem is V , so from

dimensional transmutation we get

P1 ∼ exp
{
− 8π2

αs(ΛV 1/4)

}
∼ (V Λ4)

11Nc
12 . (4.143)

Natural cutoff can be obtained by one more way, that is if we have a Higgs-like

field with a large VEV which sets the scale (for example in supersymmetric gauge

theories), or by looking at the theory in finite temperature, in both cases we can

perform instanton calculus successfully. In any other cases, instanton computations

in QCD is ambiguous. In fact the dependence on θ is unaccepted in lattice calcu-
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lations even though it appears to be an universal property of instanton calculations

to the topological susceptibility. [20, 25, 26]

4.5 Renormalons

The large order behaviour in perturbation theory is dominated by instantons. The

perturbation theory behaves in a way dictated by the number of diagrams growing

factorially. Moreover, there is one more factor that affects the large order behavior

of perturbation theory in renormalizable QFT, which is renormalon divergences.

There is also a factorial growth due to this, which is not because of the rapid growth

of the number of diagrams, but bue to the momentum integrals in the special cases

of Feynman diagrams. As the loop order increases, these increase factorially.

Depending upon operator product expansion, analysis of diagrams or other in-

direct arguments, we can claim that renormalons exist. Now, we will show an hint

of the existence of non-perturbative effect which is not of the instanton type on the

basis of RG equations.

Suppose we have an RG invariant quantity in YM theory. In perturbation

theory, we can calculate its asymptotic expansion around g = 0, and also take

account of the non-perturbative effects, if any. Thus we write the general expression

as

φ(g) = φp(g) + φnp(g), (4.144)

where

φp(g) =
∞∑
n=0

ang
2(n+1) (4.145)

is the term that comes from perturbation theory and φtextnp(g) is that of non-

perturbative correction. The energy scale Q2 and the normalization scale µ will

also affect this quantity. Now. because φ(g) and φp(g) are both RG invariant

individually, we can say tha φnp(g) should be too, and so the following equation

must be satisfied (
µ
∂

∂µ
+ β(g)

∂

∂g
+ γ(g)

)
φnp(g) = 0. (4.146)

In this case, this quantity has an anomalous dimesion given by

γ(g) = γ1g
2 + ... (4.147)

Due to this equation and supposing that φnp(g) depends on a small coupling con-

stant, we get

φnp(g) = C
( µ2

Q2

)d
/2gδexp

(
− d

2β0g2

)
(1 +O(g)). (4.148)
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Here d is the dimension of the ovservable. In fact, we cam check that the RG

equation above is satisfied by this functional form because

µ
∂

∂µ
φnp(g) = dφnp(g), (4.149)

and that

β(g)
∂

∂g
φnp(g) = −(β0g

3 + β1g
5 + ...)

( d

β0g3
+

2δ

g
+ ...

)
(4.150)

= −
{
d+

(
2δβ0 +

dβ1

β0

)
g2 + ...

}
φnp(g). (4.151)

From this we can say that if RG is to be invariant, we need

δ =
γ1

2β0

− d

2

β1

β2
0

. (4.152)

Now, using the Borel summation techniques outlined before, we will analyze the

perturbative series 4.145 and also its non-perturbative counterpart. Let there be a

Borel transformation of the form

φ̂p(ζ) =
∞∑
n=0

an
n!
ζn, (4.153)

where we set g2 as the coupling constant. We also know that a singularity exists at

the Borel plane at

A =
d

2β0

, (4.154)

which is called the IR renormalon singularity. However, this causes a problem when

we try to do the Borel summation since the singularity lies on the positive real

axis, as β0 > 0. Therefore, we need to do the lateral Borel resummations with a

discontinuity, multiplied by the extra term g2. Thus an imaginary ambiguity arises

in the Borel summation of the perturbative series, which is of order

(g2)1−be−A/g
2

. (4.155)

For the full observable to be real, we need the imaginary part in the above equation

to be cancelled out by the imaginary part that arises from the non-perturbative

contribution, which must have been absorbed into the coefficient C. Due to this

cancellation and by matching the exponents in the leading terms in G2 we conclude

that the power b in the above expression must be expressed as

1− b = δ (4.156)
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Thus, we interrelate the perturbative and non-perturbative behaviors using the RG

arguments. Moreover, the coefficient of the one-loop beta function affects the posi-

tion of the IR renormalon and the value of d is determined by the quantity that is

being analyzed.

Now, similar to the fact that an instanton–anti-instanton pair is responsible for

the behavior of the double-well potential at large order, the leading singularity in

the Borel plane is due to the instanton configuration that has zero net topological

charge. Its action is double that of YM instanton action

S =
16π2

g2
(4.157)

From this the singularity of the Borel plane will be at

ζ = 16π2. (4.158)

Yet, when d is low, renormalon effects are more significant than instantons because

they generate singularities that ar nearer to the origin. In fact, for pure SU(N) YM,

the position of the IR renormalon singularity is found to be at [27–29]

ζ = 16π2 3d

22N
. (4.159)



Chapter 5

Sigma Models at Large N

5.1 The O(N) non-linear sigma model

In Quantum Field Theory there are many toy models, one of the best is the O(N)

non-linear sigma model in two dimensions. Two of its properties matches with that

of non-abelian YM theory. First of all, it is asymptotically free, and secondly it has

a mass gap. It is a theory which is defined on a sphere of unit size, and it has N

fields, σa, a = 1, ..., N . The unit sphere is such that

σaσa = 1. (5.1)

Since σa transform in the vector representation of O(N), an O(N) global symmetry

exists. We get the action to be

S =
1

2g2

∫
d2x∂µσ

a∂µσa =
N

2t

∫
d2x∂µσ

a∂µσa (5.2)

and

t = Ng2 (5.3)

is known as the ’t Hooft parameter. The limit is chosen such that t is fixed, and

for that we need g2 to be small and N to be large. If we solve the constraint 5.1,

we can see that the action above describes a theory of N − 1 independent fields.

Perturbation theory in two dimensions gives us a theory of N − 1 massless bosons,

namely the Goldstone bosons, which has an SO(N) symmetry. However, Coleman-

Mermin-Wagner showed that Goldstone bosons can not exist in two dimensions, so

the perturbative picture is not true in this case. In fact, in a vector representation of

O(N) we get N massive particles when we look at the non-perturbative spectrum.

Moreover, the mass gap of the theory is accounted for by their masses. Therefore,

large N solution of the model gives us those particles which we do not find in

perturbation theory. [25, 30, 31]

46
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The way large N calculations are done is as follows. Firstly, a canonically

normalizes kinetic term is obtained by renormalizing the fields as,

σa →
√

t

N
σa (5.4)

Now the constraint 5.1 is applied through an extra field α, which gives us the action

S =
1

2

∫
ddx
{
∂µσ

a∂µσa − iα
(
σaσa − N

t

)}
. (5.5)

The generating functional of the correlation function is calculated as

Z[J ] =

∫
DσDαexp

{
− S +

∫
d2xJa(x)σa(x)

}
(5.6)

We get an effective action for α by integrating σa

Z[J ] =

∫
Dαexp

{
− Seff +

∫
d2xd2yJa(x)(−∂2 − iα)−1(x, y)Ja(y)

}
(5.7)

where

Seff(α) =
N

2
Trlog(−∂2 − iα(x)) +

iN

2t

∫
d2xα(x) (5.8)

and

(−∂2 − iα)−1(x, y) (5.9)

is the Green function of the operator of −∂2− iα(x). It can be noted that N equals

1/~ in this effective action. We can see the stationary point α and calculate the

path integral for large N . We also get this from Lorentz invariance. The equations

of motion for α is give by

δ

δα

[ iN

g

∫
d2xα(x) +NTrlog

(
− ∂2 − iα

)
= 0 (5.10)

or
1

t
= Tr

1

−∂2
µ − iα

= 0. (5.11)

If we calculate the trace in momentum space we get

1

t
−
∫

d2k

(2π)2

1

k2 − iα
= 0. (5.12)

This integral is divergent, so a cutoff Λ needs to be used for |k|. Now, we do a
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coordinate transformation to polar coordinates and find∫
d2k

(2π)2

1

k2 − iα
=

∫
dk

2π

k

k2 − iα
(5.13)

=
1

4π
log
(
k2 − iα

)∣∣∣Λ
0

(5.14)

=
1

4π
log
( iΛ2

α
+ 1
)
≈ 1

4π
log

Λ2

m2
, Λ� 1. (5.15)

where it is assumed that 5.12 has the form

α = im2, m2 > 0. (5.16)

Now, we get
1

t
− 1

4π
log

Λ2

m2
= 0. (5.17)

The cutoff tells us that the coupling constant must be renormalized. We set the

renormalization scale to be µ, and write the running coupling constant as

1

t(µ)
=

1

t
+

1

4π
log

µ2

Λ2
. (5.18)

and we get
1

t(µ)
− 1

4π
log

µ2

m2
= 0. (5.19)

that is satisfied by

m2 = µ2e−4π/t(µ). (5.20)

This is a crucial outcome. Firstly, it is identified as the phenomenon of dimensional

transmutation in an asymptotically free theory. Similar to the model in Λ2
QCD we

have a dimensionful parameter m2 which is generated dynamically. Moreover, at

large N we have

β0 = −N (5.21)

Secondly, we can find that the mass of the fields σa is in fact given by m2. This

dynamical effect is obtained when we go to large N .

We can expand around the vacuum now that we have extracted the nonpertur-

bative effects by analyzing the constant field configuration. We call the fluctuation

around the α field as α too:

α→ im2 + α (5.22)

We find that the fluctuation α has a natural normalization as

α→ α/
√
N. (5.23)
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Now, we can write the effective action as

N

2
Tr log

(
− ∂2 +m2 − i

α(x)√
N

)
, (5.24)

or,
N

2
log(−∂2 +m2) +

N

2
log
[
1 + ∆

(
− iα(x)/

√
N
)]
. (5.25)

Here,

∆ = (−∂2 +m2)−1. (5.26)

α is a two point operator in this case, such that

α(x, y) = α(x)∂(x− y) (5.27)

and,

(∆α)(x, y) =

∫
d2z∆(x, z)α(z, y) = ∆(x, y)α(y). (5.28)

Then it is expanded in powers of N−1. It can be noted that there is no linear term

in α by the definition of saddle point, thus we get

−1

4
Tr(∆α)2 = −1

4

∫
d2xd2y(∆α)(x, y)(∆α(y, x) (5.29)

= −1

4

∫
d2x∆(x, y)α(y)

∫
d2y∆(y, x)α(x). (5.30)

Here,

∆(x, y) =

∫
d2p

(2π)2

eip(x−y)

p2 +m2
. (5.31)

When we take the Fourier transforms of the fields, we find this to be

−1

4

∫
d2p

(2π)2
α̃(p)γ̃s(p)α̃(−p). (5.32)

Here,

Γ̃s(p) =

∫
d2q

(2π)2

1

(q2 +m2)((p+ q)2 +m2)
. (5.33)

When we calculate the above integral we get

Γ̃α(p) = f(p) ≡ 1

2π
√
p2(p2 + 4m2

log

√
p2 + 4m2 +

√
p2√

p2 + 4m2 −
√
p2
. (5.34)

Now, we can write the calculation of correlation function in terms of 1/N expansion
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Figure 5.1: Feynman rules for the 1/N expansion of the O(N) sigma model

as follows. Given that there are N massive particles obeying the Green function

Gab(p) =
δab

p2 +m2
(5.35)

and and α particle with propagator

Dα(p) = − 2

f(p)
. (5.36)

The interaction of these particles occur through a trivalent vertex having

− i∂ab√
N
. (5.37)

Thus, we can see that if the coupling constant is 1/N , the interactions are suppressed,

while 1/
√
N acts as the effective coupling constant of the theory. The 1/N expansion

for the O(N) sigma model theory, the Feynman rules are illustrated in the diagram

below. In the diagram, the α particles are represented as the dashed lines.

5.2 The PN−1 sigma model

Let us consider another toy model in nonperturbative QFT that involves resumma-

tion of an infinite number of diagrams. Here, it will be shown that we can get a two

dimensional analogue of the topological susceptibility, which is a purely nonpertur-

bative outcome.
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5.2.1 The model and its instantons

An N -component vector with unit norm forms the basic field of the PN−1 sigma

model. If the spacetime is two dimensional, we express this as

z1(x), ..., zN(x),
N∑
i=1

|zi|2 = 1. (5.38)

We also have an U(1) gauge symmetry

zi → eiα(x)zi. (5.39)

From the zi we get a gauge field since the real composite field

Aµ =
i

2

(
zi∂µzi − (∂µzi)zi

)
, (5.40)

has a transformation property such as

Aµ → Aµ − ∂µα(x). (5.41)

We can check this as follows:

∂µzi → zi∂µzi + i∂µαzizi = zi∂µzi + i∂µα. (5.42)

The PN−1 sigma model is defined by the gauge invariant action below, which

tells us how this field behaves.

S =
1

g2

∫
d2xDµzD

µz, Dµ = ∂µ + iAµ. (5.43)

It can be noted that since a kinetic term is absent here, it is an auxiliary field. The

Lagrangian of this action is

L = DµzD
µz (5.44)

and when we expand it, we get

L = ∂µzi∂µzi − iAµzi∂
µzi + iAµ∂

µzizi + AµA
µzizi (5.45)

or,

L = ∂µzi + A2
µ − Aµi

(
zi∂

µzi − (∂µzi)zi
)
. (5.46)

We know that

zizi = 1 (5.47)
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and that

(∂µzi)zi + zi∂
µzi = 0. (5.48)

Therefore,

Aµ = izi∂
µzi = −i(∂µzi)zi, (5.49)

and

L = ∂µzi∂µzi − A2
µ = ∂µzi∂µzi − (zi∂

µzi)(zj∂µzj). (5.50)

Or

L = ∂µzi∂µzi + (zi∂
µzi)(zj∂µzj). (5.51)

Interestingly, there are many similarities of the instanton solutiuons of the PN−1

model to that of the Yang-Mills theory. These instantons have finite action and are

topologically nontrivial configurations. Also, it is implied by the finite action that

Dµzi = 0, at|x| → ∞, i = 1, ..., n. (5.52)

thus, zi becomes covariantly constant when it goes to infinity. This means, upto a

phase, it has to be a constant vector. Now,

zi = nie
iσ(x), |x| → ∞, nin

i = 1. (5.53)

This implies that

−iAµ =
∂µzi
zi

=
∂|zi|
zi

+ i∂µφi. (5.54)

Here the phase of zi is represented by φi. Because iAµ does not depend on the index

i, we can say that, at infinity

∂µ|zi| = 0, φi = σ(θ), i = 1, ..., N. (5.55)

Instantons are classified by the topological charge

Q =
1

2π

∫
d2xεµν∂µAν . (5.56)

Since we know

εµν∂µAν = iεµν∂µzi∂νzi (5.57)

the topological charge can be written as

Q =
1

2πi

∫
d2xεµν∂ν(zi∂µzi). (5.58)

Now, the topological charge must be quantized before we deal with instantons. Since
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our boundary is at infinity, we apply Stokes’ theorem to write down the integral as

Q =
1

2πi

∮
dxµzi∂muzi. (5.59)

Substituting the boundary condition from 5.53, we get

Q =
1

2π

∮
dxµ

∂σ

∂xµ
=

1

2π
∆σ. (5.60)

Here, σ varies as we go around the integral loop, the change is given by ∆σ. We

can tell that ∆σ is quantized since a phase is only defined as multiples of 2π.

Furthermore, the action in the topological sector is minimized by instantons. To

show that this is also true in this toy model, we first express the topological density

as follows

q(x) =
1

2π
εµν∂µAν =

i

2π
εµνDµzDνz. (5.61)

Now, we note that the last term is equal to

i

2π
εµν(∂µzi − iAµz)(∂νz + iAνzi) (5.62)

and since εµν is antisymmetric, we just confirm that the following term becomes zero

−iεµν(Aµzi∂νzi + Aνzi∂µzi). (5.63)

From 5.48, we write the above expression as

−iεµν(Aµzi∂νzi + Aνzi∂muzi) = 0. (5.64)

Thus, we now write the topological charge as

Q =
i

2π

∫
d2xεµνDµz ·Dνz. (5.65)

The inequatlity ∣∣Dµz ∓ iεµνDνz
∣∣2 ≥ 0 (5.66)

gives us

Dµz ·Dµz + εµρεµσDµz ·Dσz ∓ 2iεµνDµz ·Dνz ≥ 0, (5.67)

and hence εµρεµσ = δρσ we finally find

Dµz ·Dµz ≥ iεµνDµz ·Dνz, (5.68)
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and after integration we then have

1

g2

∫
d2xDµz ·Dµz ≥

i

g2

∫
d2xεµνDµz ·Dνz, (5.69)

that is,

S ≥ 2π

g2
|Q|. (5.70)

This is known as the BPS bound. Only when the bound is saturated this equality

is true, and from this we get the equation that tells us about the model’s instanton

configuration, which is

Dµz ∓ iεµνDνz = 0. (5.71)

From this equation, we get the instanton and anti-instanton solutions when we

consider the ± signs respectively. These are analogous to the (anti) self-duality

conditions for QCD instantons. [26, 32]

5.2.2 The effective action at large N

We write the Euclidean action for the PN−1 model as

S =

∫
d2x
[ 1

g2
Dµz ·Dµz −

iλ

g2
(zizi − 1) +

iθ

2π
εµν∂µAν

]
(5.72)

where a Lagrange multiplier λ and a theta term analogue is used. Now, once again

we define the ’t Hooft parameter such that t is constant, and for that we go to the

limit where N is large and g2 is small. Aµ and λ are auxiliary fields in the above

equation. After performing the integration, we get the action for the fields zi along

with the constraint 5.38. However, the action takes a quadratic form over zi as

follows ∫
d2xzi∆zi. (5.73)

Here,

∆ = −N
t
DµD

µ − N iλ

t
, (5.74)

and the N bosonic, complex variables zi can be integrated out. We get a factor of

1

det∆
(5.75)

from each of them. We get N such factors, and from that we write the determinant

as the exponential of a trace of a log as

exp
[
− nTr log

(
− (∂µ + iAµ)2 − iλ

)]
. (5.76)
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From this we get the following effective action

Seff = NTr log
(
− (∂µ + iAµ)2 −−iλ

)
+

inλ

t
− iθ

2π
εµν∂µAν (5.77)

that is dependent upon the fields Aµ and λ. The Fourier transform of the field is

λ̃(p) =

∫
d2xe−ipxλ(x). (5.78)

N represents 1/~ in this effective action too. We evaluate the path integral from

the stationary points for large N

Aµ = 0, λ = constant (5.79)

This is infact given by Lorentz invariance. We get the EOM of λ from

δ

δλ

[ iN

t

∫
d2xλ+NTr log

(
− (∂µ + iAµ)2 − iλ

)]
= 0 (5.80)

which is the same as that of the α in the O(N) sigma model, and of the form

λ = im2, m2 > 0. (5.81)

Here, m2 is the scale of the theory, which is dynamically generated. A running cou-

pling constant t(µ) is also present that satisfies the O(N) sigma model RG equation

m2 = µ2e−4π/t(µ. (5.82)

Moreover, the PN−1 theory is an asymptotically free one. The mass for the zi fields

is given by expectation value for λ in 5.72.

Now, let us express the fluctuation around the vev 5.81 of the field λ by λ also.

We get the natural normalization for Aµ and the fluctuation λ to be

Aµ →
1√
N
Aµ, λ→ λ/

√
N. (5.83)

Now,

NTr log
(
− (∂µ + iAµ/

√
N)2 +m2 − i

λ√
N

)
(5.84)

can be written as

NTr log(−∂2 +m2) +NTr log
[
1 + ∆

(
A2/N − iλ/

√
N − i{A, ∂}/

√
N
)]

(5.85)

where ∆ is defined in 5.26. Expanding this in inverse powers of N we get at leading
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order

∆A2 +
1

2
∆2(∂A+ 2A∂)2 +

1

2
(∆λ)2. (5.86)

In case of the O(N) sigma model, the last term is

1

2

∫
d2p

(2π)2
λ̃(p)Γ̃s(p)λ̃(−p), (5.87)

where (̃γ)s is given by 5.33. Now, for the quadratic terms of the Aµ fields, we get

1

2

∫
d2p

(2π)2
Ãµ(p)Γ̃Aµν(p)Ã

ν(−p), (5.88)

in which

Γ̃Aµν(p) = 2δµν

∫
d2q

(2π)2

1

(q2 +m2
−
∫

d2q

(2π)2

(pµ + 2qµ)(pν + 2qν)

(q2 +m2)((p+ q)2 +m2)
. (5.89)

If we calculate this we get

Γ̃Aµν(p) =
(
δµν −

pµpν
p2

){
(p2 + 4m2)f(p)− 1

π

}
, (5.90)

where f(p) was defined in 5.34. Because of the fact that

f(p) =
1

4πm2
− p2

24πm4
+O(p4) (5.91)

around p2 = 0, we have the quadratic term in Ã to be of the form

(δµνp
2 − pµpν)(c+O(p2)) (5.92)

where

c =
1

12πm2
. (5.93)

This results from gauge invariance and gives us the kinetic energy of the standard

gauge field

(∂µAν − ∂νAµ)2 (5.94)

expressed in momentum space. This means that a kinetic energy has been generated

for Aµ by the quantum corrections. This is another dynamical effect that is manifest

at large N . Also, if we add up an infinite number of large N dominating diagrams,

we see this effect in the original z variables.

Furthermore, in this model the quarks and anti-quarks are given by z and z

respectively, which interact through the gauge field Aµ. However, in two dimensions,

Coulomb’s law gives us a linear potential, so the gauge field U(1) in two dimensions
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is confining. Thus, the appearance of a dynamical gauge field in this theory confines

the charges, that only forms singlets or triplets. [33–35]

5.2.3 Topological susceptibility at large N

One unique aspect of large N is that in it the value of topological susceptibility

is nonzero. Now, we know from YM theory that the topological susceptibility is

written as

χt = lim
k→0

U(k) (5.95)

We now calculate

U(p) =

∫
d2xeipx〈q(x)q(0)〉 =

∫
d2p′

(2π)2
〈q̃(−p)q̃(p′)〉 (5.96)

with q(x) being the topological density. When we normalize Aµ we get the factor

1/N in this quantity. We write the Fourier transform of q(p) as

q̃(p) = − i

2π
√
N
εµνpµÃν . (5.97)

Finally,

〈q̃(−p)q̃(p′)〉 =
1

4π2N
εµνερσpµp

′
ρ〈Ãν(−p)Ãσ(p′)〉. (5.98)

We want to calculate the two point function of the gauge field, and for that firstly

the Lorentz gauge is chosen

∂µAµ = 0. (5.99)

We get the two-point function from 5.90 which is

〈Ãν(p)Ãσ(−p′)〉 = (2π)2δ(p− p′)
(
δµν −

pµpν
p2

)
DA(p), (5.100)

where

DA(p) =
{

(p2 + 4m2)f(p)− 1

π

}−1
. (5.101)

The kinetic term 5.88 in momentum space causes the factor (2π)2 to arise in the

above expression. Because of the fact that

εµνερσpµpρ
(
δνσ −

pνpσ
p2

)
= (δµρδνσ − δµσδνρ)pµpρ

(
∂νσ −

pνpσ
p2

)
= p2 (5.102)

we get

〈q̃(−p)q̃(p′)〉 =
p2

4π2N
(2π)2DA(p)δ(p− p′). (5.103)
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Figure 5.2: Lattice calculations of χtζ
2 in the CPN−1 model

Thus, ∫
dp′

(2π)2
〈q̃(p)q̃(p′)〉 =

p2

N
DA(p) =

3m2

πN
+O(p2), (5.104)

and so, finally we have the topological susceptibility to be

χlarge N
t =

3m2

πN
(5.105)

at leading order when 1/N is expanded. In perturbation theory this quantity goes

to zero order by order, which makes this an important outcome of nonperturbative

theory. What we have done here is that we did the resummation procedure over an

infinite number of large N dominating diagrams, before we considered taking the

limit p → 0. This ensured that the quantity does not vanish. Another interesting

factor is that the above result was experimentally verified in lattice calculations of

the topological susceptibility. The results are given in the graph in figure 5.2.

In this graph, the results for the lattice calculations of χtζ
2 in the CPN−1 model

for different N values are shown. These are represented as a function of 1/N . The

length scale is determined by the quantity ζ2 = (6m2)−1. From this it can be clearly

seen that for N ≥ 10 the calculations highly agree with theory.

To sum up the nonperturbative effects at large N , we can say mention the few

points: 1. In the coupling constant and the ’t Hooft parameter of the perturbation

theory the masses of the quarks zi and zi are absent, in contrast, which is manifest in

nonperturbative analysis at large N . 2. The Aµ field appears to be a dynamic gauge

field in this theory. On the other hand, this was just a spare field in perturbation

theory. 3. Finally, the topological susceptibility is found to be of order O(1/N)

instead of zero. [20, 21, 36]



Chapter 6

The 1/N expansion in QCD

6.1 Fatgraphs

Just as a small recap, we write the QCD Lagrangian as follows

L =
N

t

[1

4
(Fµν , F

µν) +

Nf∑
f=1

qf (i /D −mf )qf

]
(6.1)

where the t’ Hooft parameter is set to be

t = g2N. (6.2)

Also, the large N limit is written as

N →∞, g2 → 0. t fixed. (6.3)

Thus the theory remains nontrivial. One hint that this is true is the one-loop β

function of QCD which we write as

µ
dg

dµ
= −

(11

3
N − 2

3
Nf

) g2

16π2
. (6.4)

After we multiply by N
1
2 , we have

µ
dt

dµ
= −

(11

3
N

3
2 − 2

3
N

1
2Nf

)t3/N 3
2

16π2
= −

(11

3
− 2

3

Nf

N

) t3

16π2
. (6.5)

Therefore, we can see that in the large N limit, it is well defined. It can also be

seen that the effect of quark loops do not appear. Moreover, different important

quantities in QCD can be expressed in terms of the expansion in terms of 1/N , with

the leading term preserved my the large N limit.
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Now, the rescaled fields below

Aµ = gÂµ, q = gq̂, (6.6)

that were mentioned earlier, can be written in terms of the ’t Hooft parameter as

follows

Aµ =
t√
N
Âµ, q =

t√
N
q̂. (6.7)

The main factor that determines the behavior that we observe in the 1/N ex-

pansion is the presence of a latent variable N , which is the rank of the gauge group

SU(N), along with the other quantities such as g, etc. In fact, a polynomial in N

with various powers of N arise for each Feynman diagram that we calculate. Thus,

the group factors related to the Feynman diagrams causes the N dependence in the

perturbative expansion to appear. So we can use Feynman diagrams to account for

the powers of the coupling constants, but we can not say what powers of N do the

diagrams give us. Therefore, in order to know how our diagrams depend on N , we

break them up in various parts, each of which represent a particular power of N .

This was first shown by ’t Hooft. He drew the Feynman diagrams as double line

graphs, which we now call ”fatgraphs.” This is illustrated as follows.

We write the quark propagator as

〈ψi(x)ψ
j
(y)〉 =

t

N
δijS(x− y), i, j = 1, ..., N. (6.8)

We denote this by a single line as shown below.

Due to the Kronecker delta in the above equation, we have the color at the beginning

and at the ending of the line to be equal. Now, the gluon propagator, with a and b

being the indices in the adjoint representation, is written as

〈Aaµ(x)Abν(y)〉 =
t

N
δabDµν(x− y). (6.9)

Now, it is better that we treat a gluon as a N ×N matrix having two indices in the

N and N representations, rather than considering it as a field with a single adjoint

index. Mathematically,

(Aµ)ij = Aaµ(Ta)
i
j, (6.10)

where (Ta)
i
j is a Lie Algebra basis satisfying the normalization condition below

(Tr)(TaTb) = δab, a, b = 1, ..., N2. (6.11)
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Another condition that, for U(N) these bases fulfill∑
a

(Ta)
i
j(Ta)

k
l = δilδ

k
j (6.12)

and for SU(N) they fulfill

∑
a

(Ta)
i
j(Ta)

k
l = δilδ

k
j −

1

N
δijδ

k
l . (6.13)

Thus, the U(N) gluon propagator can be written as

〈Aiµj(x)Akνl(y)〉 =
t

N
Dµν(x− y)δilδ

k
j . (6.14)

The figure below shows the group structure of this propagator, which is represented

by the double line notation.

The interaction vertices are expressed in the double line notation too. There are

structure constants fabc present in the three-gluon vertices, defined as

[Ta, Tb] = fabc. (6.15)

When it is multiplied by Td and the trace is taken, we get

fabc = Tr(TaTbTc)− Tr(TbTaTc). (6.16)

We can construe the trace of the three generators of Lie algebra as a cubic vertex.

In fact, it yield from

Tr(AµAνAρ) = AaµA
b
νA

c
ρTr(TaTbTc). (6.17)

However, when we consider this in terms of the double line notation, we have∑
i,j,k

(Aµ)ij(Aν)
j
k(Aρ)

k
i (6.18)

which is illustrated diagrammatically as follows:
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Moreover, there is also a commutator, so we get an extra term

−
∑
i,j,k

(Aν)
i
j(Aµ)jk(Aρ)

k
i , (6.19)

which is drawn as a ”twisted” double-line vertex such as

The last rule that we need to know is that of the interaction between a quark bilinear

and a gluon. This vertex is represented by the group structure

ψi(x)(Aµ)ji (x)ψ
j
(x), (6.20)

thus we denote this using the double line notation as

Here, the vertical line represents the quark and the horizontal line represents the

gluon.

The topological characterization of the fatgraphs are usually done by three vari-

ables E, V , and h, which represents the number of propagators or edges, vertices,

and closed loops respectively. Moreover, the propagators and the interaction ver-

tices give the factors and the powers of g respectively. Lastly, the factor of h results

from the closed loops having sums over color indices. Thus we get the overall factor

Nhg2(E−V ), (6.21)
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which, when written in terms of the ’t Hooft parameter, looks like

NV−E+htV−E. (6.22)

Now, the fatgraphs can be thought of as Riemann surfaces. If no quark loops are

present, we call them closed. To illustrate this, let us consider each closed loop to

be the perimeter of a polygon. Then, a double line tells us to attach the polygons

by identifying one edge of the polygon to that of the other, provided that they both

lie on the same double line. Lastly, the boundary of the surface is represented by

the closed quark loop (single-line).Now, the Euler’s relation can be used to write

h+ V − E = χ = 2− 2g − b. (6.23)

Here, b is the number of boundaries and g denotes the genus of the Riemann surface.

Thus it turns out that N has a factor of

N2−2g−b = Nχ. (6.24)

Planar diagrams are those which have g = 0 and the nonplanar are those which have

g > 0. Different Feynman diagrams give us different fatgraphs with varying genera.

Now, we show how to find the group factor of any diagram in QCD. Considering

the group theory structure we can decompose the Yang-Mills quartic vertex into

two cubic vertices connected by an extra edge, thereby converting each diagram

to trivalent diagrams. Therefore, if we have a trivalent diagram G, consisting of

V vertices, we do a summation over 2V possible ”resolutions” of the vertices by

incorporating 6.16, as shown in the diagram below.

Each of these diagrams is a fatgraph Σ, the weight of which will be given by the

number of closed loops, namely N to the power h(Σ). Mathematically,

r(G) =
∑

Σ

Nh(Σ). (6.25)

Also, a factor of g2(E−V ) will be present in the contribution of the diagram to

the large N expansion. Here, E − V remains unchanged.
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Example 5.1 Suppose we have the theta diagram, which is formed as two-loops

connected by cubic vertices. When we resolve the vertices using the 6.16, we get two

separate diagrams. One of them is twisted and the other is untwisted, both having

a multiplicity of 2, as illustrated in the figure below.

Thus, we get the group factor

2N3 − 2N. (6.26)

The first fatgraph has g = 0, and so its weight in the 1/N expansion is

N3g2 = N2t2. (6.27)

On the other hand, the second one in nonplanar, so it has g = 1 and weight

Ng2 = t. (6.28)

Example 5.2 Below is a diagram with a closed quark line and its respective fat-

graph.

We can see that the number of closed cycles, vertices and propagators are three,

four and six, respectively and hence, we get the diagram’s weight to be [19, 37–40]

N3g4 = Nt2. (6.29)

6.2 Large N rules for correlation functions

Now we illustrate the counting rules for large N correlation functions by using the

fatgraphs. In fact, we can also conduct these calculations for any quantum theory
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that had an U(N) symmetry with the fields being in the adjoint and fundamental

representations.

We have mentioned before that the Feynman diagrams can be considered to be

two dimensional surfaces when we denote the perturbative expansion in terms of

fatgraphs. These surfaces are characterized by two topological quantities, namely

the genus g and the number of boundaries with a weight given by 6.24. When the

surface is a closed one, we have g = 0 and so the value of χ = 2, that is the largest.

However, if the surface has boundaries, the value of χ becomes equal to 1 because

then we have g = 0 and b = 1. Therefore, we can say

1. The order of the leading vacuum-to-vacuum connected graphs is N2. They

are composed of gluons and are planar in nature.

2. On the other hand, the order of the leading connected vacuum-to-vacuum dia-

grams in N if their boundary is made up of only one quark loop. They are also

planar graphs.

Finally, the free energy of the pure U(N) gauge theory (that is, all connected

vacuum-to-vacuum diagrams summed over) is written as

F (N, t) =
∞∑
g=0

Fg(t)N
2−2g, (6.30)

Here,

Fg(t) =
∑
h≥0

ag,ht
2g−2+h (6.31)

in which we have summed over all the fatgraphs with a fixed topology. When N

becomes large, only the planar diagrams with g = 0 remains.

Now we discuss about correlation functions. We consider the gauge-invariant

operator Gi formed solely from gluons, such as

TrFµνF
µν , TrRUγ, (6.32)

where

Uγ = P exp

∮
γ

A (6.33)

γ is a closed loop and Uγ is a Wilson line operator. Now with the action we add

S → S +N
∑
i

JiGi (6.34)

where the sources are given by Ji. The counting rules for the Lagrangian do not
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change due to the presence of the overall factor N . Now, the connected correlation

functions are generated by a functional which is the sum of connected vacuum-to-

vacuum diagrams along with these sources. Therefore we write

〈G1...Gr〉(c) =
1

N r

∂rΓ(J)

∂J1...∂Jr

∣∣∣
J=0

. (6.35)

Now that the generating functional has its leading contribution of order N2, we can

say that at leading order in N we get

〈G1...Gr〉(c) ∼ N2−r (6.36)

Moreover, if this correlation function is expanded fully in 1/N , we have

W (r)(N, t) = 〈G1...Gr〉(c) =
∞∑
g=0

W (r)
g (t)N2−2g−r (6.37)

in which

W (r)
g (t) =

∑
n≥0

W (r)
n,gt

n (6.38)

is all the fatgraphs contributing to the correlation function with a fixed topology

being summed over.

We can also think of gauge-invariant operators Mi that involve quark bilinears,

such as

ψψ, ψ(y)Pe
∫ y
x Aψ(x) (6.39)

and so on. Now, the action is perturbed as follows

S → S +N
∑
i

JiMi (6.40)

where the sources are given by bi, and

〈M1...Mr〉(c) =
1

N r

∂rΓ(b)

∂J1...∂Jr

∣∣∣
J=0

. (6.41)

The order of the leading contribution to the generating functional is N . It also

includes a quark loop at the boundary where the bilinears are put in. This is

illustrated in the figure 6.1.

Here, g = 0 and b = 1. Therefore we can say that

〈M1...Mr〉(c) ∼ N1−r. (6.42)

From these we get the counting rules for the amplitudes of meson and glueball
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Figure 6.1: Quark bilinears

scattering. The glueball states are made by the gluon operators Gi, and the meson

states are made by the quark bilinears Bi as follows

Gi |0〉 ∼ |Gi〉 , Mi |0〉 ∼ |Mi〉 . (6.43)

When we try to appropriately normalize the states, we get

〈G1|G2〉 ∼ 〈G1G2〉(c) ∼ O(N0). (6.44)

Thus the amplitude of the glueball states created by Gi is unitary. Also,

〈M1|M2〉 ∼ 〈M1M2〉(c) ∼ O(1/N). (6.45)

Thus, the appropriately normalized meson state becomes

√
NMi |0〉 . (6.46)

Therefore we say that the interactions by the mesons and glueballs are suppressed

by factors of N . The order of suppression of an r−glueball vertex is N2−r and

subsequent glueballs have additional 1/N orders of suppression. Furthermore, the

suppression of a normalized r meson vertex will be as

〈
√
NM1...

√
NMr〉(c) ∼ N1−r/2 (6.47)

and suppressions of order 1/
√
N are added by each extra meson. Lastly, the sup-

pression of the mixed glueball-meson correlators will be as follows

〈G1...Gs

√
NM1...

√
NMr〉(c) ∼ N1−s−r/2. (6.48)

This means that if we consider 1/N to be a coupling constant, from QCD we derive

a theory of glueballs and mesons weakly interacting with each other. Also the rescal-

ing 6.6 gives us the counting rules for the original fields of the Lagrangian. [30, 41, 42]
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Example 5.3 Suppose we have the following

〈0|Tr(FF ) |M〉 , 〈0|Tr(FF ) |G〉 . (6.49)

From the rules given above we get

〈0|Tr(FF ) ∼ 1√
N
, 〈0|Tr(FF ) |G〉 ∼ O(1). (6.50)

When we write them in terms of the rescaled fields we get Tr(F̃ F̃ ) ∼
√
NTr(FF ),

and so

〈0|Tr(F̃ F̃ |M〉 ∼
√
N, 〈0|Tr(F̃ F̃ ) |G〉 ∼ N. (6.51)

Example 5.4 Large N scaling of Fπ. The constant for the pion decay is given

by

〈0|Aµud(x) |π(p)〉 = ipµCπe−ip·x, (6.52)

where Cπ is a constant which is parameterized by

√
2Fπ

(2π)3/2
√

2Ep
(6.53)

and we get

Fπ ∼ 93MeV. (6.54)

Now the decay constant has the structure

〈0|M1 |M2〉 ∼ 1/
√
N. (6.55)

Because q̂ ∼
√
Nq, we have Âud ∼ NAud, and finally we get

Fπ ∼
√
N. (6.56)

6.3 QCD spectroscopy at Large N : mesons and

glueballs

The analysis of mesons and glueballs and the above mentioned properties of QCD

tell us the following:

1. Both mesons and glueballs are stable and do not interact at large N . They

are infinite in number and their masses have a smooth large N limit.

2. The order for the meson decay amplitudes is 1/
√
N . The tree diagrams of an
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Figure 6.2: The appearance of one quark-antiquark pair in QCD spectroscopy

effective local Lagrangian that involves meson fields can illustrate the large N limit.

3. When we decouple mesons, we get the glueball states in the lowest order in

1/N . When the mesons and the glueballs are mixed, the order in 1/
√
N , and the

order of mixing solely the glueballs is 1/N .

Now, in order to show that the first point above holds, we suppose that we have

a two-point function of a current J which are formed from quark bilinears and can

also create a meson. Just like any other two-point functions, We can express this

two-point function, by its spectral representation, in terms of a sum over poles and a

more involved term given by the multiparticle states. Now, the punch line is that we

only get the contribution from the poles summed over, at large N . Mathematically,

〈J(k)J(−k)〉 =
∑
n

a2
n

k2 −m2
n

(6.57)

where the one particle meson states |n〉, which have masses mn are summed over,

and up to a kinetic factor, we have

an = 〈0| J |n〉 . (6.58)

This is true because, when N is large, only the Feynman diagrams that have only

one quark loop at the boundary contribute to this correlator. Thus, we get exactly

one qq pair as shown in the figure below, when we try to detect the intermediate

states by cutting this diagram (figure 6.2). Now, this must be a single meson state

given that the confinement is assumed to be true.

The equation 6.57 also tells us that at large N we have a spectrum of mesons

with well defined masses since the r.h.s of this equation is well-defined in this limit.

Suppose that we normalize the current as we have done in 6.47, both the r.h.s of the

equation and the masses of the mesons m2
n with a smooth limit do not depend on

N . There are infinite number of states because as k2 becomes large, the two-point

function becomes logarithmic in k2. We would have a k−2 dependence instead of

the k2 dependence if the number of terms in the summation was not infinite.
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Figure 6.3: N counting rules for the Baryon graphs

6.4 Baryons at large N

Quarks form the color singlet hadrons called the Baryons. This is an N -quark state

because there are N indices in the SU(N) invariant ε-symbol. It is expressed as

εi1...iN q
i1 ...qiN . (6.59)

Since all the indices in the ε symbol must be different for the quantity to be nonzero,

we can consider the baryons to be made up of N quarks, each one having a differnt

color. Quarks are fermions and the baryons are antisymmetric in color since the

ε itself is antisymmetric. Therefore, in other quantum numbers such as spin and

flavor, the baryons must be completely symmetric.

The number of quarks in a baryon increases asN increases, so we may mistakenly

think that large N baryons do not have much in common with the baryons with

N = 3. However, if we expand in 1/N in a systematic way, we can retrieve the

characteristics of baryons. The outcome that we get are also backed by experimental

data, and also give us information regarding the spin-flavor structure of baryons.

Furthermore, we can use the results from the meson graphs to deduce the N -

counting rules for that of the baryon graphs. For this, firstly the incoming baryons

are drawn as N -quarks with color arrangement being in the order 1...N . We also

need to find the N -counting rules for the connected diagrams. To get this, we

consider the incoming and outgoing quark lines to be ending up on independent

vertices. This is shown in the figure 6.3. In this figure we can see that the connected

component of the diagram on the left is given by the diagram on the right side.

An n-body interaction is a connected piece that has n quark lines. When we

permute the colors on the incoming quarks, we get the distinct colors of the outgoing

quarks in an n-body interaction. We uniquely identify each outgoing line with an

incoming line if they have the same color. Now, the planar diagrams with a single

quark loop can be compared to the connected diagrams for the baryon interactions.

[20, 39, 43]



Chapter 7

Painleve Equation I

We know that resurgence is the theory which tells us information about non-perturbative

aspects of a theory from its perturbative information. Now, we attempt to show

whether the predictions about the large-order relations given by the resurgence the-

ories are actually valid by using the PI equation. We choose this equation since this

enables us to use both analytical and numerical approaches, whereas in other cases

only numerical solutions are obtainable. We start of with the power series method,

and then apply Borel summation in order to set a value for the resulting divergent

sum. After that, We will analytically figure out a full solution to the instanton ac-

tion and instanton sectors. Finally, we will use numerical methods to determine the

instanton action and the instanton sector by incorporating the large-order relations

on the perturbative coefficients. The Painleve-I equation is given as

φ(z)2 − 1

6
φ′′(z) = z (7.1)

This is a second order, non-linear differential equation. One of its use is in two

dimensional quantum gravity, in which it gives the all-genus solution.

7.1 Power Series Method

By the method of dominant balance, we get the following ansatz, which we substitute

into the PI equation to find the power series solution

φ(z) = z1/2

∞∑
n=0

φnz
−5n/2 (7.2)

71
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Then we find the derivatives and put them into the PI equation. Finally,

z
( ∞∑
n=0

φnz
−5n/2

)( ∞∑
n=0

φnz
−5m/2

)
− 1

6

∞∑
n=0

φn

(1− 5n

2

)(−1− 5n

2

)
z(−3−5n)/2 = z

(7.3)

or,

z
∞∑
n=0

( n∑
m=0

φmφn−m

)
z−5n/2 − 1

6

∞∑
n=0

φn

(1− 5n

2

)(−1− 5n

2

)
z(−3−5n)/2 = z. (7.4)

Now, for the z1 in both the sides of the above equation to be equal, it is required

that φ2
0 be equal to 1. Therefore, φ0 = ±1, from which we take the positive part.

Since our ansatz is a formal solution, we let the factor z1/2 to absorb the sign, and

also all the powers of z gets cancelled. Now, shifting the second term in the above

equation gives us

∞∑
n=0

φmφn−m =
1

6
φn−1

(1− 5(n− 1)

2

)(−1− 5(n− 1)

2

)
(7.5)

n−1∑
m=1

φmφn−m + 2φ0φn =
φn−1

24
(25(n− 1)2 − 1) (7.6)

and,

φn =
φn−1

48
(25(n− 1)2 − 1)− 1

2

n−1∑
m=1

φmφn−m (7.7)

We have solved this recursion relation for the perturbative coefficients numerically

in Mathematica using the code:

We have also listed the first twenty one terms in the table below.
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φ0 1

φ1 − 1
48

φ2 − 49
4608

φ3 − 1225
55296

φ4 − 4412401
42467328

φ5 −73560025
84934656

φ6 −245229441961
21743271936

φ7 −7759635184525
36691771392

φ8 −2163099334469560445
400771988324352

φ9 −243352176577765537625
1352605460594688

φ10 −126154825844683612669806743
16620815899787526144

φ11 −307996788703417873806157775
779100745302540288

φ12 −3816216508144039222348410175181221
153177439332441840943104

φ13 −4472139245793702477426700875742975
2393397489569403764736

φ14 −38696591099873124857049434941939129661339
235280546814630667688607744

φ15 −964424273633376898869916951295739728975
57441539749665690353664

φ16 −51195699113580566795890665133374493301709419998829
26020146233323634801018507624448

φ17 −123446505376125845632773451311847912219530644725
470561093629261335377215488

φ18 −526064900158055138672145575120768324304423587659007490115
13322314871461701018121475903717376

φ19 −292588405902060761650020802263641165325093413461343087375
43908996768733633726718731616256

φ20 −153826755199111168165377148033589321824957153628482409642089627159
122778453855391036583007521928659337216
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n

Figure 7.1: Perturbative coefficients, φn (y-axis) diverges when n increases

When the absolute values of these coefficients are plotted in the y-axis against the

values of n in the x-axis, we get a graph as follows:

As we can see above, the series is divergent, and we would not be able to do

anything with it if we did not know how to do Borel summation. Now, we will apply

this technique to get finite values for z. [17, 18, 44, 45]

7.2 Power series solution to the PI equation Borel

summed

We have at hand the series 7.2, the coefficients of which are given by the 7.7. Now,

we take the Borel transformation of this series and we get

B[φ](ζ) = ζ1/2

∞∑
n=0

an
n!
ζ−5n/2. (7.8)

Then, the original sum for a z is given a value by taking the inverse Borel transform

of the series. For that, we need to use the technique of Pade approximant in order

to approximate the Borel transformation, which would otherwise be required to be

tediously done term by term. However, now we get convergent values for large-order

N in n, using Pade approximant. If we have a polynomial of even degree N , this

function is expanded by the Pade approximant as a ratio of two power series in

degrees N/2 such that the first N + 1 derivatives are unchanged.

B[N ][φ](ζ) ≈ P [N/2][φ](ζ)

Q[N/2][φ](ζ)
. (7.9)
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From this, we can see off that the value of the polynomial on the l.h.s grows quickly

as ζ → ∞ but that of the ratio of the polynomials in the r.h.s remains fixed since

both of them are of the same degree. The integration is done along a given path,

after a convenient value of the order N in n, and the Pade approximant is taken.

We use the built-in Mathematica function called the PadeApproximant for taking

the Pade approximants of polynomials. Now, a value for z is chosen in the original

series, which we want to sum. After that, we put everything into the mathematica

function NIntegrate, and try to evade the singularities on the positive real axis of the

PI equation. We do this by first integrating from 0 to ε.i followed by the integration

from ε.i to ∞. In this case, we have taken the values z = 10, N = 100 and ε = 1,

which yielded:

φ(10) ≈
∫
C
B[100][φ](10) ≈

∫
C

P [50][φ](10)

Q[50][φ](10)
= 0.316207− 4.16334× 10−16i (7.10)

We can show that there lies a non-perturbative ambiguity around the singularity,

by computing the same integration again, except now with the value of ε taken to

be −1, in which case the result would be 0.316207 + 4.16334× 10−16i.

7.3 Transseries Solution

In this section, we will show how to find an exact solution for the instanton action.

We will also determine the coefficients of the one-instanton sector of the transseries.

Now, although the power series expansion of the perturbative expansion was of

the order z−5/2, but string theory requires that that the powers should be of the

order z−5/4 for the PI equation to be physically plausible. Thus, we now have our

transseries ansatz to be

φ(z) = z1/2

∞∑
n=0

σn1 e
−nAz5/4z−

5nβ
4

∞∑
g=0

φ(n)
g z−5g/4 (7.11)

After differentiating it twice with respect to z, we substitute it into the PI equation

and set the scaling to be x = z−5/4 so that the expression is clean. Now, we have

x−4/5

∞∑
n=0

n∑
m=0

σn1 e
−nA/xxnβ

∞∑
g=0

g∑
k=0

φ
(m)
k φ

(n−m)
g−k xg

− 1

96

∞∑
n,g

σn1φ
(
gn)e−nA/xxnβ+g−2/5

[
25(nA)2x−2/5 − 5nAx3/5

− 10nA(−5nβ − 5g + 2)x3/5 + (−5nβ − 5g + 2)(−5nβ − 5g − 2)x8/5
]

= x−4/5
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Perturbative Sector

We now test whether we get our perturbative coefficients back to check our transseries

ansatz. When we choose n = 0 and g = 0, we get φ
(
00) = 1, and

x−4/5

∞∑
g=0

∞∑
k=0

φ
(
k0)φ

(0)
g−kx

g − 1

96

∑
g=0

φ(0)
g xg+6/5(−5g + 2)(−5g − 2) = x−4/5 (7.12)

Let, g → g − 2 and we have,

g∑
k=0

φ
(0)
k φ

(0)
g−k =

1

96
φ

(0)
g−2(−5(g − 2) + 2)(−5(g − 2)− 2) (7.13)

φ(0)
g =

1

192
φ

(0)
g−2(25(g − 2)2 − 4)− 1

2

g−1∑
k=1

φ
(0)
k φ

(0)
g−k (7.14)

From this we can see off the recurrence formula that gives us the perturbative

coefficients, which yields us

φ(0)
g =

{
φg/2, even g

0, odd g
(7.15)

which is just because of the rescaling of the perturbation parameter to z−5/4 from

z−5/2.

One-instanton Sector

Now we will find an exact solution of the instanton action and a recurrence formula

for the one-instanton coefficients. We choose n to be equal to 1 to get

2σ1e
−A/xxβ−4/5

∞∑
g=0

g∑
k=0

φ
(0)
k φ

(1)
g−kx

g

=
1

96

∞∑
g=0

σ1φ
(1)
g e−A/xxβ+g−2/5

[
25A2x−2/5 − 5Ax3/5 − 10A(−5β − 5g + 2)x3/5

+ (−5β − 5g + 2)(−5β − 5g − 2)x8/5
]

Setting the powers of xβ−4/5, we can see that

2 =
25

96
A2 =⇒ A = ±8

√
3

5
(7.16)

which is the instanton action’s exact solution. Now, we cancel the negative part

since in the transseries, the exponential part is suppressed. However, had we tried
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to determine the two-parameters transseries, we would also take the negative value

of A. Now, we do the same thing with the powers of xβ+1/β to find the values of β.

We get

2φ
(1)
1 −

25

96
A2φ

(1)
1 =

25A

96

(
1− 2β

)
φ

(1)
0 , (7.17)

and we find that β = 1/2.

With A and β at hand, we now proceed to reduce the expression into a recurrence

formula for the one-instanton sector coefficients.

2σ1e
−A/xx−3/10

∞∑
g=0

g∑
k=0

φ
(0)
k φ

(1)
g−kx

g

=
1

96

∞∑
g=0

σ1φ
(0)
g e−A/xx1/10xg

[
192x−4/10 + 80

√
3gx6/10 + (25g2 + 25g +

g

4
)x16/10

]
Using similar calculations as to derive the recurrence relation for the perturbative

sector, we obtain

φ
(1)
2g+1 =

−1

320
√

3(g + 1)

(
(100g2 + 100g)φ(1)

g − 768

g+2∑
k=2

φ
(0)
k φ

(1)
g+2−k

)
(7.18)

Finally, the first two sectors of the transseries solution of the PI equation are as

follows:

φ(0) = 1− 1

48
x2 − 49

4608
x4 − 1225

55296
x6 − ... (7.19)

φ(1) = 1− 5

64
√

3
x+

75

8192
x2 − 341329

23592960
√

3
x3 + ... (7.20)

So far, we have used the transseries ansatz to find the instanton action and the

different instanton sectors of the result. Now, we will take our results to show how

resurgence theory gives us large-order relations to a high precision. [15, 18]

7.4 Large-order relations

In the cases where it is not possible to derive the exact solutions for the instanton

action analytically, we resort to the large-order relations given by resurgence theory.

Here, we will test its outcome by comparing it to the results given by the analytic

solutions.

To begin, we present the large order relation

φ(0)
g '

+∞∑
k=1

Sk1
2πi

Γ(g − kβ)

(kA)g−kβ

+∞∑
h=1

Γ(g − kβ − h+ 1)

Γ(g − kβ)
φ

(k)
h (kA)h−1 (7.21)
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When we write out the first few terms of the above equation, we have

φ(0)
g ≈

S1

2πi

Γ(g − β)

Ag−β

(
φ

(1)
1 +

A

g − β − 1
φ

(1)
2 + ...

)
+

+
S2

1

2πi

Γ(g − 2β)

(2A)g−2β

(
φ

(2)
1 +

2A

g − 2β − 1
φ

(2)
2 + ...

)
+

S3
1

2πi

Γ(g − 3β)

(3A)g−3β

(
φ

(3)
1 +

3A

g − 3β − 1
φ

(3)
2 + ...

)
+ ...

After modifying the above equation to the PI equation, we get

φ
(0)
2g ≈

S1

2πi

Γ(2g − 1/2)

A2g−1/2

(
φ

(1)
0 +

A

2g − 3/2
φ

(1)
1 + ...

)
S2

1

2πi

Γ(2g − 1)

(2A)2g−1

(
φ

(2)
0 +

2A

2g − 2
φ

(2)
1 + ...

)
+O(3−g)

Now, we can find the instanton action and the different instanton sector coefficients

from this expression. For that, we take the known sequence of the perturbative

coefficients and set up a new sequence such as

χg =
φ

(0)
2(g+1)

4g2φ
(0)
2g

(7.22)

We know,

χg =
1

A2

(
1 +

1

g
+O

( 1

g2

))
(7.23)

This means that we need to see how χ
−1/2
g converges as g →∞. Since this conver-

gence is very slow, the technique of Richardson transform is incorporated to make

it faster. In case of the twenty fifth Richardson transform
(
χ

[25]
1

)−1/2

we have a

huge improvement in accuracy from the first coefficient of the original series, with

an error of only 1.646 × 10−7 from the exact value of 8
√

3
5

, whereas previously the

error was as large as 11.085. We can improve the precision further by taking the

fifth Richardson transform’s hundredth element
(
χ

[25]
100

)−1/2

, where the uncertainty

is only 1.553 × 10−31. Due to the fact that the previous errors are carried forward

in every subsequent calculations, it is important that these uncertainties be as low

as possible.

Now, let us find the first coefficient of the one-instanton

2πiA2g−1/2

Γ(2g − 1/2
φ

(0)
2g ∼ S1φ

(1)
0 . (7.24)

However, because we have the freedom to take φ
(1)
0 = 1, adapting the trasseries

parameter with respect to it, and since we know that the Stokes factor S1 = −i 31/4

2
√
π
,



CHAPTER 7. PAINLEVE EQUATION I 79

we immediately find the coefficient after that. We thus have

2g

A

( 2πiA2g−1/2

Γ(2g − 1/2)
φ

(0)
2g − φ

(1)
0

)
∼ φ

(1)
1 . (7.25)

When we plot the above equation, we can see that it converges as we approach

φ
(1)
1 = 5

64
√

3
= 0.045105.... We repeat the same procedures to find all the other

coefficients. First, a term is approximated and the its difference with that of the

left had side is calculated, after which the next term is approximated and so on.

So far it was shown how we can find out the instanton action and the coefficients

of the instanton sectors by using the large-order relation, which is itself a verified

outcome of resurgence theory. This technique can be used to perform calculations

in physical problems like that of the quantum anharmonic oscillator, etc. [15, 17,

45–47]



Chapter 8

Conclusion

Nonperturbative phenomena are very important elements of modern physics. This

is apparent in many modern physical phenomena such as the blackhole evaporation.,

instantons in field theories, topological defects, spharelons, string theory, etc.

The perturbative expansion for all but the simplest systems are divergent. This

is mainly because the expansion might be done about the wrong point. It might also

be due to the fact that the correct spectrum of excitations is unknown. Moreover,

non-perturbative effects are generic.

In this thesis, we explained the Borel summation technique along with the Borel-

Pade approximation, and applied them to Painleve-I equation to solve it numerically.

Apart from that, these techniques are being applied to all types of non-perturbative

problems such as the blackhole information paradox, calculating amplitudes, topo-

logical field theories, etc. The key breakthrough in the twenty-first century physics

will likely be in understanding how to calculate the nonperturbative terms in a

perturbative expansion.
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Appendix A

Richardson Transform

When we wish to converge a sequence quickly, we can use the technique of Richard-

son transform. Suppose we have the following series:

χg = a0 +
a1

g
+
a2

g2
+
a3

g3
+O

( 1

g4

)
. (A.1)

First we generalize the problem that we are dealing with into a general structure

like this. We have already shown this in 7.23. After that, we compute the N -th

Richardson transformation of the sequence χg. We get:

χ[N ]
g ≡

N∑
k=0

(−1)N−k
(g + k)N

k!(N − k)!
χg+k (A.2)

Then Richardson transformation converges this series to the limit by simply throwing

away the terms before the second last term, which raises the negative exponent of

g in A.1. This results in the following:

χ[N ]
g = a0 +

aN+1

gN+1
+O

( 1

gN+2

)
. (A.3)

Now, since the number of terms in the series χg is limited, we can take only a limited

numbers of Richardson transforms. For example, if the number of elements is K,

we can only take K −N elements for the N -th Richardson transform. [17, 48]
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