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Abstract 

 

This paper aims to demonstrate the use of Speech-to-Text technology to convert Bangla 

spoken in a natural and continuous state into Bengali UNICODE font with good accuracy. This 

achievement required the usage of the open sourced framework Sphinx 4 created by Carnegie 

Melon University (CMU) which was written in Java and provides the required procedural coding 

tools to develop an acoustic model for a custom language like Bangla. It takes help of algorithms 

like Baum-Welch to create an Acoustic Model from training data which we gathered ourselves. Our 

main objective was to ensure that the system was adequately trained on a word by word basis from 

various speakers so that it could recognize new speakers fluently. We used a free digital audio 

workstation (DAW) called Audacity to manipulate the collected recording data via techniques like 

continuous frequency profiling to reduce the Signal-to-Noise-Ratio (SNR), vocal levelling, 

normalization and syllable splitting as well as merging to ensure an error free 1:1-word mapping of 

each utterance with its mirror transcription file text. The result is a speech to text recognition system 

with an acceptable accuracy of around 75% that was trained using recorded speech data from 10 

individual speakers consisting of both males and females using custom transcript files that we 

wrote. 
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CHAPTER 01 

Introduction 

 

The main idea for this project revolves around the conversion of natural speech in the 

Bengali language into its respective text in UNICODE characters. Speech to text recognition 

technology has been around for over a decade and speech is the most basic form of human 

communication. Modern algorithms and processors enable to us to extract text data from speech 

directly using specialized engines and over the years we‟ve been able to optimize all the phases 

involved to polish the speeds required to achieve this [1]. It has been made possible to do on a 

smartphone today which was thought to be difficult to do on a desktop computer just years ago [2]. 

One of the other challenges is to ensure that the recognition worked for a variation of speakers 

which is difficult to achieve without the proper abstract levels of feature extraction from the data 

being trained. The specific features to extract from a recording becomes more refined as more data 

is given to system to learn from for the same set of words being uttered [3, 4]. The framework we 

used called Sphinx uses the Hidden Markov Model (HMM) [13, 18, 20]. It is seen as the vastly 

standard method for recognition as it is an efficient algorithm [5]. This design within the framework 

is different compared to past implementations as it constructs a graph that enables parallelism of 

decoding at multiple levels. This allows simultaneous feature recognition. The Viterbi algorithm 

works in conjunction with the Hidden Markov Model to find the most likely sequence of hidden 

states [21]. This granular abstraction of the different detection phases allows for a more modular 

and efficient modelling of speech detection. 

 

1.1 Motivation 

Bangla is one of the richest languages in the world. Typing in Bangla can be difficult 

especially for those who cannot type fast. Being able to convert the spoken word to text is the 

easiest form of typing any language and we want Bangla to be a part of that digital realm by offline 

means rather using an online service. We have laid the foundation needed to improve the speech 

detection accuracy which can be used for future work for universal applications. 

Bangladesh has masses of people who do not know how to read or write but merely speak, 

this can be a game changing tool for them as their medium of communication will improve. The 
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possibilities are endless when a language like Bangla which is used by over 164 million people is 

fused with speech recognition technology [28]. Figure 1 shows a simplified visual process of the 

various phases of conversion from speech to waveform to phone sets to “Banglish” which is the 

phonetic form of Bengali written in English and then finally Bengali text. For example, the Bengali 

word “আভায” can be written as “Amar” in “Banglish” form. 

 

Figure 1. Vocal to Phone Set Conversion 

 

1.2 Contribution Summary 

The only research in this arena of speech recognition for Bangla was previously performed 

with old tools like Microsoft SAPI, Festival and others [4, 14]. At the time of our starting no other 

such system existed for proper natural and continuous speech recognition in the Bengali language. 

Thus, we decided to research speech to text recognition for our mother tongue with a more updated 

approach such that it can be spoken and recognized continuously in real time to match modern 

processing speeds. Our paper also showcases how the training process can be streamlined using the 

scripts we wrote to automate many of the process like unique word finding and required training file 

generation. 
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1.3 Thesis Outline 

 Chapter 2 covers the literature review of the paper which describes the techniques and 

algorithms applied in this thesis. 

 Chapter 3 defines the proposed model including the implementation specifics. 

 Chapter 4 displays the experimental results based on collected data sets and their 

performance comparisons. 

 Chapter 5 concludes the paper specifying its difficulties and limitations while stating 

possible future work for this system. 
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CHAPTER 02 

Literature Review 

 

2.1 Detection Files 

The CMU Sphinx framework relies on three key models in order to begin detecting any new 

language which are the language model (LM), acoustic model (AM) and dictionary file [9, 10]. 

Each play a key role in the final detection phase of continuous speech recognition in real-time, both 

in terms of speeding up the detection as well as finding the best accuracy. The main phone sets for 

any word‟s syllables are all constructed in English ASCII letters but the underlying words to be 

recognized need to be in UTF-8 encoding for the language being trained. Speech to text (STT) 

occurs at the final step when training of the acoustic model files has been completed. 

During the training process of the AM (acoustic model), other files are also needed like the 

transcript, file IDs and phones which are discussed in more details below. These are the basic 

training building blocks of telling the framework where the audio files are, and what were the words 

uttered in them. There are quite a few pitfalls in this setup that need to be faced before training 

commences and numerous error possibilities such as words not aligning to audio or words missing 

from the unique dictionary. So, we designed specific automation scripts to handle these problems 

more fluently since the training is an iterative process and needs to be checked and repeated with 

each iteration before finally obtaining an error free trained model [10]. 

 

2.1.1 Detection Model Flowchart 

Figure 2 shows the various steps of how the detection model is working starting with voice 

input which goes onto being dissected at the silence points. Phone sets for each sample are detected 

and then after cross referencing with the acoustic model, language model and dictionary, the best 

possible word match is found. This process repeats iteratively until the full duration of the given 

input waveform has been converted to text. It may require trial and error to get the individual model 

files right based on the final detection accuracy being represented so during this process, 

simulations are performed to check the validity of how accurate the detection models are on a word 

by word basis. 
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Figure 2. Detection Model Flowchart 
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2.1.2 Language Model (LM) 

The language model (LM) also known as the statistical model contains probabilistic values 

for what the next word may be given the recognition of the first. It is created using a tool that has 

rule sets applied to how a sequence of phone sets may align up based on the trained model and this 

helps it calculate the statistics of the closest occurrence of a series of utterances detected in a given 

audio file. Table I shows a sample of our language model with its statistical values on the first gram. 

The first column shows the probability in terms of logarithm (base 10) of conditional 

probability „p‟ thus giving a negative result. The second column shows the actual word. The 

probabilities are usually the same for the same first letter in this case „আ’. 

 

TABLE I: Sample Language Model 

Probability Word 

-0.7782 </s> 

-0.7782 <s> 

-3.4763 আছি 

-3.4763 আদরয 

-3.4763 আইন 

-3.4763 আকা঱ 

-3.4763 আকার঱য 

-3.4763 আজ 

-3.4763 আররারে 

-3.4763 আররাষ 

-3.4763 আরু 

-3.4763 আভ 

-3.4763 আভারদয 

-3.4763 আভারক 

-3.4763 আভায 
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2.1.3 Acoustic Model (AM) 

During the training phase of the detection system, a set of files called feature vectors are 

generated that consist of the Mel-Frequency Cepstral Coefficients (MFCCs) which collectively 

form the Mel-Frequency Cepstrum (MFC) for storing the binary files. These files work together as 

the Acoustic Model (AM) which can vary greatly in accuracy depending on the number of hours of 

recording data given to it. The required files to generate these feature vectors are primarily the audio 

files as well as some helper files that aide with the training such as the Dictionary, Phones, 

Transcript, File IDs and Language Model (LM). In order to maximize the IO (Input-Output) 

efficiency only the static features are stored. The dynamic features however are computed at 

runtime. Figure 3 shows all of the generated acoustic model files. The first file for instance 

“feat.params”, as the name suggests, defines the parameters of the features that were extracted 

during training such as the upper frequency “upperf 6800” or noise filter frequency “nfilt 25”. The 

file “noisedict” defines the silence tag SIL which is used to avoid silences. The remaining files 

“mdef”, “means”, “misture_weights”, “noisedict”, “transition_matrices” and “variances” handle 

keeping track of statistical probability of phones that appear for specific audio frequencies which 

are gathered from the training data and stores them in binary format to be read at very fast speeds 

when detecting real-time speech. They are not human readable. 

 

Figure 3. Acoustic Model Files 
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2.1.4 Acoustic Model Generation Flowchart 

Figure 4 shows the various processes by which the acoustic model files are generated from 

the initial input files like transcript, language model, dictionary, file ID and of course the training 

WAVE files which all play a role in the training process for feature extraction in order to better 

detect speech. This training process is very highly error prone as the slightest error in any of the 

input files can make it terminate and fail the training. The duration needed for training increase with 

increase of more hours of input data as does the risk of creating errors that become hard to track 

down. 

Thus, it is usually a better idea to dissect and train small durations at a time and slowly add 

on. This makes debugging a lot simpler. It goes through a series of 7 phases followed by 90 

modules of checks in order to determine whether the training succeeded or failed. 

 

Figure 4. Acoustic Model Generation Flowchart 
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2.1.5 Dictionary 

The dictionary file as the name suggests acts as the main lookup source to translate the 

detected phone set of an audio sample into its consecutive word in Bangla UNICODE. Sphinx 

samples the input audio by splitting it at the silences and for each split portion it consults the 

Acoustic Model to look at past training data and determine what the individual phones may be. 

After that it cross references the detected phones with the dictionary file to see which sequences 

best match the word list. It may not always find a 100% match for the phone sequence to word but 

this is where probability is used from the language model to determine the closest match. An audio 

sample for continuous speech contains multiple words. So, for example if a stream of phones for 3 

individual words are detected, at first it will find a combined sequential phone set for the 3 words 

but the words aren't known yet. Then the phones are cross matched with the language model and 

dictionary and the best possible match for the 3 words is printed. 

This dictionary file must only contain words that exist in the transcript and vice-versa thus it 

is very error prone to create manually and also very hectic to get right with each training phase. 

Thus, we created scripts to automate the process such that no matter what text passage we give as 

input, it converts them into a transcript as well as a unique word list which are discussed in more 

details in chapter 3 along with the algorithms we made. 

The following table II shows an example of the dictionary file where each new line contains 

a unique Bengali word followed by a tab in the actual text file and then its respective phone sets 

sequence separated by spaces. Some words as shown like “আভায” may have multiple variants of 

phone set sequence. This is because when often uttered, the recorded waveform‟s beginning portion 

for this particular word may sometimes generate the phoneme “AH” or “AA” depending on the 

breath released after uttering „আ‟. We have deduced this through trial and error. Listing these 

variations within the dictionary allows a greater chance for the word to be detected correctly. This is 

not a hard and fast rule as all words do not apply. Usually it is the more common ones that may 

need a variant and often it is found through trial and error iteratively. A word can have 3 variations 

at most as that is supportive limitation of the framework. These are represented as n grams in the 

Language Model (LM) where „n‟ is either 1, 2 or 3. The probability values are calculated 

accordingly for each variation. 
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TABLE II: Sample Dictionary with Phone Sets 

Bengali Word Phone Set 

আছি AE CH IY 

আদরয AE D AH R 

আইন AH IH N 

আকা঱ AE K AH SH 

আকার঱য AE K AH SH AH R 

আজ AE JH 

আররারে AH L OW T 

আররাষ AE L OW IY 

আরু AA L UW 

আভ AE M 

আভারদয AH M AE D ER 

আভারক AH M EY K 

আভায AH M AA R 

আভায (2) AA M A R 

 

2.1.6 Transcript 

The transcript file is required during the training phase of the Acoustic model to map the 

spoken words to its respective audio file. It contains a list of sentences or words or both that define 

with tags the consecutive audio file where those particular words or sentences were uttered. This 

file plays a very important part in the final accuracy of the word detection as its 1:1-word mapping 

with each respective audio training file is crucial to perfecting the Acoustic model needed for 

accurate phone detection [15, 16]. If a certain sentence has even a single word more or less, the 

Baum-Welch algorithm will attempt to split the audio provided for that sentence in order to achieve 

a 1:1 match of audio samples to word count [6, 17, 19]. So, at every stage of training this file 

requires extensive revisions based on the collected training data. Table III shows a sample transcript 

with the sentence tags “<s>” similar to HTML with its respective audio file name. These two must 

match word per word without any errors no matter how minor. For example, if an audio file 
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contained the recording for the words “আছভ গ্রারভ আছি” but the transcript contained only “আছভ 

গ্রারভ” then this will increase the error rate dramatically. There can even be other cases where the 

word count is in 1:1 ratio with the audio but the exact word was not uttered. For example, if the 

recording is “আছভ খেরছি”, but the transcript reads “আছভ খেররছি”, then the wrong word is being 

trained with the wrong sound which immensely decreases the accuracy. 

TABLE III: Sample Transcript 

Tag Sentence Tag Audio File Name 

<s> বফ঱াে এয ঝর঵ আলাশ এয খভরে শ্রাফণ এয কা঱পুরর </s> (Ruhan1) 

<s> চায যাস্তায খভার঵ ঩ারকে খদাকারন ঱঴য গ্রারভ এোরন </s> (Ruhan2) 

<s> আভ জাভ করা আঙু্গয কাঠার জামু্বযা আর঩র খ঩ষাযা </s> (Torab1) 

<s> খেেুর ঩াছন ঩ান দই দুধ খরফু ঱঱া কাচ্চি ছফছযষাছন </s> (Torab2) 

<s> ডার </s> (Nasib1w1) 

<s> ঩টর বাচ্চজ ছডভ ছ঳দ্ধ কাচা খচষায খটছফর খভাফাইর </s> (Nasib2) 

<s> জাভা কা঩঵ প্রথভে ছিেীষে েৃেীষে খ঱ল ঩ম েন্ত </s> (Nasib3) 

 

2.1.7 File ID 

This file handles keeping track of all the audio files being used for training and their 

respective directories inside the training folder. The transcript file uses this to map its sentences 

with the provided audio WAVE file. During the training process it is also used to keep track of all 

the files to convert into a special format called MFC (Mel-Frequency Cepstrum) which represents 

the short-term power spectrum of a sound that is required for training efficiency. The initial files 

need to all be in a specific format of RIFF (Resource Interchange File Format) data stored as a 

Microsoft PCM (Pulse Code Modulation) WAVE audio file with parameters of 16-bit, mono and 

16,000 Hertz [5]. Figure 5 shows an example of the folder structure on the left side and the file ID 

text file on the right. Files like “arafe1” and “arafe2” are the “.wav” files within its respective 

folder. The file “sil.mfc” is basically a binary file containing a few seconds of silence such that the 

system can recognize it easily. In this manner every WAVE file must be included here. In our 

model B of data collection, we split up every sentence uttered into individual “.wav” files per word 

and this file ID text file had to keep track of each one as did the transcript. We automated the 

process via scripting. 
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Figure 5. File ID Example 

 

2.1.8 Phone Set 

This is a file containing a list of every unique phone used for every word in the dictionary. 

These phones are the fundamental building blocks of syllables of words in a recording. They are 

written one per line, often as either two characters or a single character and their combination form 

the pronunciation of the full word. There‟s a special phone called SIL present no matter which 

language is required to be detected as it represents the silenced parts of an audio recording. This is 

also a very fundamental file to get right as it drastically affects the final accuracy of detection. It is 

not always clear what the individual phones of a word may sound like in broken form and 

sometimes may not be possible to be automated by the dictionary tool as it can lead to very bad 

WER (Word Error Rate). So, often the correct conversion of words to phonemes can be an iterative 

process with certain languages, especially ones as complex as Bangla which contains symbols used 

as conjunctions with base characters in order to modify the utterance [7, 8]. There can also be 

conjunctions of two base characters which are known as “juktakkhor” in Bangla that make the 

conversion even trickier but, with fine tuning the result, this error is reduced. 
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As figure 6 shows, our file contains all of the phones we found to be relevant amongst all 

the vowels and consonants present in the Bengali language. Some of them aren‟t necessary for 

computation during utterance so were left blank whereas others are similar or can even be a 

compound of more than 1 phone. The 39 consonants and 11 vowels sum up to 60 phones as shown 

in figure 6. 

 

 

Figure 6. Phone Set Example 

 

2.2 Transcription to Audio Map 

In order to ensure that the transcript mapped 1:1 with every transcript line, some manual 

editing steps needed to be performed on every single audio file to ensure it was as error free as 

possible. The first objective for each audio file was to remove the background noise from each of 

the received recordings from our volunteer speakers which involved sampling a continuous 

recognizable frequency of noise and then profiling it to remove it from the vocals. Sometimes 

exception frequencies like random car horns or people in the background came up and those needed 

to be dealt with manually as well. 

Figure 7 shows a constant frequency portion of the audio on the top before the first word it 

uttered is profiled in order to clean the entire audio as shown at the bottom. All noises do not 

disappear as some frequencies do not follow a constant noise pattern and need to be handled 

manually. Thus, the silences between every two sets of utterance are selected as accurately as 

possible and then set to 0 amplitude in order to get a clean visual track of only the words uttered and 

nothing else. This step makes it simple to break up the entire audio file into multiple “.wav” files 
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containing one word each with at least 0.2 seconds of silence before and after each word. 

 

Figure 7. Waveform Noise Removal 

 

The next step was to normalize the vocals which involved boosting the low frequencies 

while ensuring that the high ones were not over amplified. There are automated approaches to this 

with our DAW Audacity but more often we needed to check on a word by word basis on both left 

and right channels to ensure the highest possible quality for each uttered word [22]. Since the 

system only accepts mono channel audio, we either selected the best one of the two available or 

merged them into one. 

As figure 8 shows, the top two waveforms represent the left and right channels of the same 

audio recording and each wave differs vastly based on the distance of the speaker from the channel 

splitter of the microphone. During normalization certain words may peak more than others based on 

the max neighboring amplitude. This is evened out through equalization and compression 

techniques. 
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Figure 8. Waveform Normalization 

 

Sometimes certain words that contained multiple syllables, were uttered with a small silence 

in the middle whereas other words were spoken too continuously that it ended up as a merged single 

waveform without a silent gap in the middle. During the training process the words needed to be 

split and a singular waveform for each utterance so that the system could recognize and map each 

audio partition to its respective transcript word. So, sometimes we had to zoom in very close to see 

the fine granularity of the wave shifts to determine the best positions to split or merge a word at 

because if this was done poorly, the neighbouring syllables might have been affected which would 

damage the resulting sound and hence the training procedure. Figure 9 displays the merging and 

splitting of words that were too separate or too close respectively. 



17 | P a g e  

 

Figure 9. Syllable Split and Merge 

 

Finally, after each word was cleaned, normalized and syllable-wise corrected, they were 

required to be split up into separate WAVE files and this portion could be automated by fine tuning 

the settings to automatically detect words at a set threshold value of silence apart. We also needed 

to ensure at this stage that each word selected area had at least 0.2 seconds of silence before and 

after it otherwise it would cause training issues if the waveform was too compacted. 

Figure 10 shows how the label layer is separate and synced perfectly with each individual 

waveform while ensuring about 0.2 seconds of silence before and after. The labels are numbered 

which makes exporting easier with the prefix being the name of the speaker and the sentence 

number. 

 

 

Figure 10. Word by Word Split 
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2.3 Bengali Language Complexity 

The Bangla language has various degrees of complexity when it comes to writing but this is 

due to the fact that it is a very phonetically worded language where each word is spelt as it should 

sound like, unlike languages like English where pronunciations can vary greatly from the spelling 

[26]. Thus, its construct in digital form represents a larger challenge. 

 Figure 11 shows 11 vowels or “shorborno” in Bengali which are “অ, আ, ই, ঈ, উ, ঊ, ঋ, 

এ, ঐ, ঑, ঒” and also the consonant ‘ক’ in its diacritic form of the vowels. 

 

Figure 11. Bengali Vowels 
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Figure 12. Bengali Consonants 

Figure 12 shows all the consonants in the Bengali language. But there‟s another way to form 

special consonants from these base ones through conjunction. Bengali conjunct consonants are a 

form of fusing two or more base consonants to form a letter called “juktakkhor” which literally 

means combined character in Bengali and this enables a powerful way to form new syllables to 

form more complex words that sound exactly as spelt. Figure 13 shows some examples of the 

conjunct forms of a few consonants. There can be many more. 

 

Figure 13. Conjunct Consonants 

 

Bengali UNICODE is often composed together with the diacritic form of the vowels as 

shown in figure 14 in order to get a modified sound of the original consonant. This also helps create 

new syllables that affect words in different ways which pose computational problems as well. In 

code once the characters are composed, they become a single character and even small variances in 

the decomposed form may lead to a single character still appearing the same but being of different 

UNICODE. This problem was precisely handled with our unique UTF word finding algorithm. 
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Figure 14. Bengali UNICODE Composition 

 

2.4 Existing Works 

Speech to text for any language is the process of dissecting discrete syllables or phonemes 

of recorded vocal audio and converting them to their literal transliteration [11]. Then it‟s just a 

matter of cross referencing the converted text which is usually in English letters with an acoustic 

model dictionary of the custom language to decipher its respective text, usually in its native 

UNICODE font. 

Contributions in this exact field were previously achieved using old tools like Microsoft 

SAPI but it was very much limited in being slow in recognizing continuous speech without proper 

word gap [4]. We hope to achieve faster performance using Sphinx 4. 

Speech recognition has vast fields of applications, the most beneficial today being 

automation of smart phone or household tasks via virtual assistants. This is already available 

worldwide in multiple languages via virtual assistants like Siri on the iPhone, Google Now on 

Android or Cortana on Windows. Bengali unfortunately has been missing from this arena but with 

our research helping to bring speech to text for this language, it allows for a future possibility of an 

assistant that can understand spoken commands in Bengali. 

The purpose of our approach is to use a modern engine like the CMU Sphinx 4 that allows 

far more functionality than old engines like SAPI to deliver faster continuous speech recognition via 

improved algorithms [24, 25]. If the language takes a more modern approach than previous older 

technology then it will be possible for implementation into mobile phones as part of a virtual 

assistant or even an app. 
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The reason that the Bengali language has fallen behind in this regard is because it is a very 

tricky language with a lot of challenges to overcome to do correctly. First and foremost, the Bengali 

language is one of the most accurate in terms of pronunciation based on how each word is written 

compared to any other language because each letter has numerous variations that can be done to 

achieve almost any sort of word desired. Thus, computationally this becomes a challenge in terms 

of developing the phonetic dictionary which is used to match portions of the audio to their 

respective phonemes that get jointed into syllables to finally form the desired word [12]. As Sphinx 

was designed for English based letters our key approach was to convert the spoken Bengali speech 

into the modern widely renowned “Banglish” form which is essentially Bengali written with 

English letters. Then it‟s just a simple matter of using something like the Avro‟s conversion chart to 

decode the Banglish syllables into the final Bengali UNICODE text form. 
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CHAPTER 03 

Proposed Model 

 

3.1 System Design 

In our proposed technique, we can divide the whole system into two different segments 

named „Training‟ and „Testing‟. Firstly, in the training segment, we train our system using a 

number of modules. The technique takes text input using two methods. One is „Transcript‟ which is 

shown in table IV and „file name tagged text‟ is the other which is in the format 

“<<<SpeakerName>>> Text <<AudioName>>” which parses an input text to collect the respected 

speaker name and audio name for the spoken text to train. We interchanged between the two based 

on our needs. The way we input transcripts is, the tags such as <s> ডার </s> (Nasib1w1) where 

“ডার” is tagged with the speaker name „Nasib‟, script line number 1 and word number 1 gets 

removed and stored in this phase. Before that, when we took the audio input as data set for training 

we had to divide the vocal recordings into words. Therefore, splitting the wave in parts to train the 

system was the first phase. The following figure 15 shows how a sentence 5 words may appear in 

waveform. 

 

 

Figure 15. Word Mapping 

 

 We trained using 10 different speakers both male and female so that several variations of the 

same uttered word existed in the system. Each word can vary vastly based on the speaker‟s vocal 

range and this can easily be seen in the following diagram. 
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Figure 16. Vocal Variation Training 

 

 As shown in figure 16, the nature of the waveforms varies greatly for the same two uttered 

words “আছভ” and “ফাাংরাষ”. Differences in pitch and timing are precisely what the system needs to 

build a good model. By training with multiple variations of vocals, we not only eliminate errors but 

also help the system recognize new speaker‟s voices who weren‟t involved in the training process 

which is essentially the goal [23]. 

 

3.2 Algorithm 

We created two algorithms to correct word spellings that appear the same but are vastly 

different in order to obtain the most unique form of each word as well as their Banglish equivalent 

in order to generate the phone sets. 
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3.2.1 Unique UTF Word Finder Algorithm 

List of Bengali Tokens is input that contains duplicates 

For Each Bengali Token 

 Convert to Bengali Phonetic English using algorithm in Section 3.2.2 

 Add to Banglish Token List 

End 

Create Unique and Duplicate Hash Sets //Hash Sets do not contain duplicates 

For Each Banglish Token 

 If it does not exist in Unique List 

     Add to Banglish Unique List 

 Else 

     Add to Banglish Duplicate List 

End 

For Each Banglish Duplicate 

 Create new Lines Integer List //Stores the lines with duplicates 

 For Each Banglish Token 

     If Banglish Token Equals Banglish Duplicate 

    Add iteration value to Lines List 

 End 

 Create new Bengali Duplicate List //Stores all duplicates of same word 

 For Each Lines value 

     Get Bengali Tokens value at position [Lines value] 

     Add the returned value to Bengali Duplicate List 

 End 

 For Each Bengali Token 

     For Each Bengali Duplicate 

    If Bengali Token Equals Bengali Duplicate 

    Set this Bengali Token to first value of Bengali Duplicate 

     End 

 End 

End 

Return new Bengali Tokens List //No Duplicate Entries 
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The following figure 17 shows the unique UTF word finder algorithm in flowchart form 

which uses various nested loops and lists in order to determine which words are duplicates and 

replaces them with a single unique copy. 

 

Figure 17. Unique UTF Word Finder Algorithm Flowchart 
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Figure 18. Unique UTF Word Finder 

 

 As figure 18 shows, the unique UTF word finding algorithm corrects the spelling mistakes 

by converting them to “Banglish” to unify the spelling and then replacing them with the correct 

version. This is performed iteratively for every variation of every word to only have a single unique 

spelling for each at the end. 

 

3.2.2 Bengali UNICODE to Bengali Phonetic English Algorithm 

Create Bengali Token and Banglish Token List 

For Each Bengali Token 

Remove Special Characters that are not needed 

 Fix Special Exceptions in Certain UNICODE Characters 

 Cross Reference Character Sequence with Stored Phonetic English Equivalent 

 Replace Matching Character Sequences 

 Add to Banglish Token 

End 

Return Banglish Token 

 

The following figure 19 shows a flowchart form of this algorithm where the Bengali text is 

input which is turned into a token list. A separate “Banglish” token list is also created where each 

respective Bengali word is added after conversion. Then the final token list is returned as output. 
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Figure 19. Bengali UNICODE to Bengali Phonetic English Algorithm Flowchart 

 

The following flowchart in figure 20 shows how different types of input are used by our 

system to generate the required files for the detection models. The LM however is generated by a 

separate tool which is specific to the Sphinx framework but the rest of the files are created by our 

own automated scripts. 
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3.3 Flowchart 

 

Figure 20. System Training File Generation Flowchart 
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CHAPTER 04 

Experimental Results 

 

4.1 Experimental Setup and Data Collection 

 

4.1.1 Experimental Setup 

The experimental setup involved starting with a single speaker to learn the training process 

and then moving up to multiple speakers to see how the accuracy levels changed. We used various 

methods of data collection techniques to see how we could improve the final output to increase 

accuracy. Some proved more useful than others as discussed below. 

 

4.1.2 Data Collection 

The first method of data collection that we attempted was to gather audio recordings of 

Bengali books as well as their text file to create the transcript. Unfortunately, the Bengali books 

were only available in scanned image form. So, we needed to find a quick way to convert the full 

books into text and for this purpose we used a separate Optical Character Recognition (OCR) 

system to convert the extracted image files from PNG (Portable Network Graphics) format to text 

[27]. But this technique of collection proposed various difficulties one of which was the fact that the 

images had artefacts as a result of scanning and these caused poor recognition of text in the image. 

This caused a lot of incorrect spellings to occur as shown in figure 21 where a blurred mark caused 

an incorrect spelling for the word “আভায” to be generated which shouldn‟t have the symbol „  ঁ‟. 

 

Figure 21. OCR Artefacts 
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 The book recordings also posed problems in the form of too fast reading. The speech wasn‟t 

in natural form as it was too fast paced and this caused problems for the Baum-Welch algorithm to 

properly detect which part of the waveform maps to which word in the transcript. This wasn‟t a 

good first approach to train the model as it gave very poor accuracy. But it did allow us to learn the 

process by which the training method worked and it also gave as an insight into which parts of the 

training we could automate by scripting in order to improve our workflow to get faster iterations of 

simulating our models to determine their performance changes. 

The next methods involved creating our own written transcripts which we then perfected to 

have as many unique words as possible. We gathered volunteers willing to lend some time and their 

voices to make recordings out of the transcripts we wrote. The recording data that they provided had 

errors such as words missing in the audio file or different words uttered than what was written in the 

transcript. We still attempted to train this data by performing manual corrections. So, we divided 

each of their recorded wave files into individual words and also change the transcript accordingly. 

We manually checked for errors until the complete data set was ready. 

 

4.1.3 Tools Used 

We used various sets of tools depending on our needs like the DAW called Audacity for 

audio correction and manipulation. We required the use of a software called “Bulk Rename Utility” 

to be able to quickly rename multiple audio files based on our needs which offered the use of 

regular expression based editing. We primarily used the Eclipse integrated development 

environment to write our scripts and also used text editors like Notepad++ and Sublime text to edit 

the UNICODE text in the files. We also used two separate modules of the framework Sphinx, the 

“sphinx train” module for training the system and the “Sphinx 4” detection module for simulating a 

live data feed and measuring the performance. 

 

4.2 Experimental Result and Analysis 

 

4.2.1 Experimental Result 

The following experimental results were obtained via our simulations as shown in table IV 

in table form and also in figure 22 in a chart form. As we increased the number of speakers and 

hours the accuracy gradually increased and perhaps further increase up to 50 hours of data would‟ve 

enabled us to get the best accuracy. 
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TABLE IV: Result Data 

Model 
Training Testing 

Number of Speakers Training Hours Number of Speakers Accuracy 

A 2 3.0 1 35% 

B 5 7.0 2 53% 

C 7 9.0 2 70% 

D 10 12.0 10 75% 

 

 

Figure 22. Accuracy Chart 

 

1. Model A: Dataset of 2 male speakers containing 3 hours and 380 unique words. 

2. Model B: Dataset of 5 speakers containing 7 hours and 503 unique words of which four 

were males and one was female. 

3. Model C: Dataset of 7 speakers containing 9 hours and 503 unique words of which six were 

males and one was female. 

4. Model D: Dataset of 10 speakers containing 12 hours and 553 unique words of which eight 

were males and two were females. 
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For our machine configuration, we used an Intel Core i5-4200M model processor with 4 

CPUs clocked at 2.50 Gigahertz each with an Intel HD integrated graphics processor. For memory 

we used 8 Gigabytes of Random Access Memory running on Windows 10 professional 64-bit. 

 

4.2.2 Analysis 

As shown in table IV and figure 22, in experimenting with the book recordings in Model A, 

the accuracy rate was very poor, 35% to be exact. Testing with Model B containing the voices of 

four male and one female speaker of 7 hours data set gave a better accuracy. The experimental 

result was 53% which was much better than Model A as shown in Figure 22. But still the low 

amount of data was decreasing the accuracy rate. using our third dataset Model C, having 503 

words of 7 speakers and almost 9 hours in length, we managed to get an accuracy of 70%. Then our 

final dataset which is Model D gives the best accuracy rate of 75%. Our analysis shows that 

increasing number of speakers and hours does increase accuracy but it also has a limitation. 

People all over the world pronounce the same word differently so it stands to reason that if 

we could train our system with every spoken variation for each word, it could definitely work much 

more accurately. Ideally, we would want 200 different speakers with around 10 minutes of data per 

speaker to get the optimum accuracy which the sphinx 4 documentation says would be the optimum 

amount for a well-trained model [5]. We couldn‟t obtain such a large amount of data but based on 

our result a greater variety of speakers would definitely improve accuracy [4]. 

We used a Java program to calculate the accuracy of our models which checks if our given 

input word is 1:1 mapped with our output word and also if the content of each word matches or not.  

While testing, we knew about the content of the sentences uttered in the recorded wave files. We 

wrote it down in a text file line by line with its respective audio file name tagged at the end of each 

sentence. Then we ran our system to go through the entire list of 300 audio files individually while 

saving each detection text output in a different text file. It was named with the file name tag at the 

end of each line mentioned earlier. After we finished detecting all the files, we ran our accuracy test 

script to check the accuracy. This script matched each word from the audio detection text file with 

each word that we wrote manually knowing what was actually uttered in the audio. If any word was 

found to not match, we incremented the error rate variable. After the process completes, we output a 

single percentage of correct words detected to total number of words. The following figure 23 

shows this entire process in the form of a flowchart. 
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Figure 23. Accuracy Calculation Flowchart 

 

To our knowledge the best work done in this arena was using Microsoft SAPI which 

obtained a 78% accuracy [4]. But that detection was only on a word by word basis which was a 

major limitation and the accuracy was for a specific data. Our system not only recognizes the word 

but also the sentence due to our better training model as well as the newer Sphinx 4 framework. 
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CHAPTER 05 

Conclusion and Future Work 

 

5.1 Conclusion 

In this paper we have presented a model for voice to text conversion method for Bengali 

language using various techniques to refine the data and adapt it for the complexities of 

implementing Bengali characters. An open source frame work called CMU Sphinx 4 was used to 

generate Bengali UNICODE font. A digital audio workstation called Audacity was used to 

manipulate the recorded data. The performance of the proposed model was tested using a dataset 

where both male and female voices were recorded. The proposed model showed around 75% 

accuracy for the tested dataset. 

 

5.2 Future Work 

If the number of training hours were increased with more speakers then the detection level 

can be increased dramatically. A good target would be 50 hours of data since the framework 

recommends that to be the optimum number of hours for a well-trained model. Additionally, this 

framework supports the Unity game engine in the C# language which opens up many possibilities. 

Since the Unity engine is able to cross compile C# code to generate native C++ libraries using their 

own custom IL2CPP technology for over 20 different platforms, it has a much wider support net 

than Java because it makes the export of native packages very simple [29]. So, if our system were to 

be deployed through Unity, it could potentially be applicable for almost any platform of our choice 

with ease, including but not limited to iOS, Android and Windows phone. Custom UI for the 

interface of usage for our system can easily be built with great flexibility and thanks to the ease of 

portability, it can be deployed to everyone‟s hands regardless of which device they have in their 

pocket. 
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