
  

GENRE CLASSIFICATION OF MOVIES 
USING THEIR SYNOPSIS 

SUBMISSION DATE: 14.12.17 

 

Submitted by: 

Ramiz Ihteshamur Rahman (17241007) 

Department of Computer Science and Engineering 

Sk. Sajidul Kadir (17241006) 

Department of Computer Science and Engineering 

 

 

 

Superviser: 

Amitabha Chakrabarty, Ph.D 

Assistant Professor 

Department of Computer Science and Engineering 



 

i 

 

DECLARATION 

 

We, hereby declare that this thesis is based on results we have found 

ourselves. Materials of work from researchers conducted by others are 

mentioned in references. 

 

 

 

 

Signature of Supervisor 

 

 

 

 

 

 

Amitabha Chakrabarty, Ph.D 

Assistant Professor 

Department of Computer Science 

and Engineering 

BRAC University 

 Signature of Authors 

 

 

 

 

 

 

Ramiz Ihteshamur 

Rahman(17241007) 

 

 

 

 

Sk. Sajidul Kadir  

(17241006) 

 

  



 

ii 

 

ABSTRACT 

 

Movies have been classified into genres since the inception of the 

medium. However, even till this day, the process of classifying movies 

into genres has been a manual, time consuming task requiring human 

expertise. Some work has been done in trying to automatically classify 

movies into genres using machine learning techniques and classifiers, and 

some success has been achieved. However, little work has been done in 

this field with regards to Indian movies specifically. In this paper, 

multiple supervised learning algorithms including Naïve Bayes, Logistic 

Regression, K Nearest Neighbor, Decision Tree and Linear SVM were 

used to classify a set of Indian movies including but not limited to 

Bollywood and South Indian movies. Naïve Bayes and Logistic 

Regression were found to be the better performers and K-Nearest 

Neighbors was the worst performer. Genres with high positive examples 

such as ‘Drama’ were classified correctly more often and 0.7 for 

precision and 0.7 for recall scores was obtained. Performance degraded 

drastically as the number of positive examples fell with the ‘Musical’ 

genre having precision scores close to 0.1 and recall scores nearing 0. 

  



 

iii 

 

ACKNOWLEDGEMENT 

 

This thesis would not have been possible without the help and mentorship 

of our thesis supervisor Dr. Amitabha Chakrabarty. We would like to 

offer our sincere gratitude towards him for guiding us throughout this 

project. 

 

 

  



 

iv 

 

TABLE OF CONTENTS 

LIST OF FIGURES ................................................................................. vi 

LIST OF TABLES ..................................................................................vii 

Chapter 1  INTRODUCTION ................................................................. 1 

1.1 Goals .............................................................................................. 2 

1.2 Motivation ...................................................................................... 3 

1.3 Methodology ...................................................................................... 3 

1.4 Thesis Outline .................................................................................... 4 

Chapter 2  LITERATURE REVIEW ..................................................... 6 

Chapter 3  MODELS AND ALGORITHMS ....................................... 11 

3.1 Machine Learning ............................................................................ 11 

3.1.1 Supervised Learning .................................................................. 11 

3.1.2 Classification Algorithms .......................................................... 12 

3.2 Classifiers ..................................................................................... 12 

3.2.1 Naive Bayes ............................................................................... 12 

3.2.2 Logistic Regression ................................................................... 14 

3.2.3 Support Vector Machines .......................................................... 16 

3.2.4 Decision Trees ........................................................................... 19 

3.2.5 K-Nearest Neighbors ................................................................. 20 

3.3 Measuring Accuracy ........................................................................ 21 

Chapter 4  THE DATASET ................................................................... 24 

4.1 Acquiring the Dataset ................................................................... 24 

4.2 Analysis and Cleaning of Dataset ................................................ 24 

4.3 Training and Test Dataset ............................................................ 27 

4.4 Analysis of the Features ............................................................... 28 

4.4.1 Exploring Parts of Speech ......................................................... 28 

4.4.2 Processing description features for classification ..................... 30 

4.5 Implementation steps ................................................................... 32 

Chapter 5  RESULTS ............................................................................. 33 



 

v 

 

5.1 Multinomial Naïve Bayes ................................................................ 33 

5.2 Logistic Regression ......................................................................... 37 

5.3 K Nearest Neighbors (KNN) ........................................................... 39 

5.4 Decision Tree ................................................................................... 41 

5.5 Linear Support Vector Machine (SVM) .......................................... 43 

5.6 Comparison of Algorithms .............................................................. 44 

5.7 Comparison against existing work .................................................. 54 

Chapter 6  CONCLUSION .................................................................... 59 

6.1 Conclusion ....................................................................................... 59 

6.2 Future Work ..................................................................................... 60 

Appendix A POS Tag List ...................................................................... 62 

Appendix B Software Packages Used ................................................... 64 

REFERENCES ....................................................................................... 65 



 

vi 

 

LIST OF FIGURES 

 

Figure 4.1.  Frequency of genres. ..................................................................27 

Figure 4.2.  Frequency of POS tags. ..............................................................29 

Figure 4.3.  Flow chart for classification project. .........................................32 

Figure 5.1.  Chart for Naïve Bayes. ...............................................................36 

Figure 5.2.  Chart for Logistic Regression. ...................................................38 

Figure 5.3.  Chart for K Nearest Neighbors. .................................................40 

Figure 5.4.  Chart for Decision Trees. ...........................................................42 

Figure 5.5.  Chart for Linear SVM. ...............................................................44 

Figure 5.6.1  Algorithm Comparison. ...........................................................53 

Figure 5.7.1  Comparison against existing project. .......................................55 

Figure 5.7.2  Comparison for Drama. ............................................................56 

Figure 5.7.3  Comparison for Action. ............................................................57 

Figure 5.7.4  Comparison for Family. ...........................................................58 

 

 

 

 

  



 

vii 

 

LIST OF TABLES 

 

Table 4.1 First five rows of the raw dataset ..................................................25 

Table 4.2 Top 15 genres and their frequency. ...............................................26 

Table 5.1 Classification report for Naïve Bayes ...........................................35 

Table 5.2 Classification report for Logistic Regression. ...............................37 

Table 5.3 Classification report for K Nearest Neighbors. .............................39 

Table 5.4 Classification report for Decision Tree. ........................................41 

Table 5.5 Classification report for linear SVM. ............................................43 

Table 5.6.1 Results for Drama. ......................................................................45 

Table 5.6.2 Results for Comedy. ...................................................................46 

Table 5.6.3 Results for Romance...................................................................47 

Table 5.6.4 Results for Action. ......................................................................47 

Table 5.6.5 Results for Thriller. ....................................................................48 

Table 5.6.6 Results for Short. ........................................................................49 

Table 5.6.7 Results for Family. .....................................................................50 

Table 5.6.8 Results for Crime. .......................................................................50 

Table 5.6.9 Results for Music. .......................................................................51 

Table 5.6.10 Results for Musical. ..................................................................52 

Table 5.6.11 Average/ Total for different algorithms. ..................................53 

Table 5.7.1 Average results over all genres. .................................................54



 

1 

 

Chapter 1 

 
INTRODUCTION 

 

Classifying bodies of text into pre-defined groups has been very 

useful for lots of different purposes e.g. spam detection, sentiment 

analysis etc. The goal of our investigation was to collect a dataset of 

Indian movies from IMDb [5] and use it to teach text classification 

algorithms how to automate the process of genre classification of movies.  

We want to see if limiting our dataset to just Indian movies 

improves the performance of traditional supervised classification 

algorithms. As we all know, visual media has become one of the most 

prominent forms of art after the introduction of television, followed by 

online video services like Youtube and Netflix. Most countries have their 

own unique cultures and customs that are heavily reflected in their works 

of art. The focus of our investigation will be to see if this uniqueness can 

be used to detect movie genres from this region with acceptable accuracy. 

In 2014, Tanenbaum. tried to classify movies into genres by using a 

decision tree classifier and plot keywords as the input feature. He 

managed to achieve about 31% accuracy using a training set of 9,643 

movies and concluded that there is a correlation between certain narrative 

features and film genre[1]. Earlier in 2011, KaWing Ho trained 4 



 

2 

 

different classifiers — neural networks, SVM, K-nearest neighbors and 

the Parametric Mixture Model — on 80% of a dataset acquired from 

IMDB consisting of 16,000 unique movies and TV shows. The remaining 

20% of the dataset was used to test the trained models; a precision of 

0.695, and a recall of 0.736 as obtained for ‘Drama’ using SVM[2]. 

All of the researchers used large datasets consisting of movies from 

all over the world and did not make use of two simple text classification 

algorithms — Naïve Bayes and Logistic Regression. We are diverging 

from this trend by restricting our dataset to one specific geographical 

location, India and using default implementations of the aforementioned 

simple algorithms.  

1.1 Goals  

For our project, we have decided to keep our dataset limited to 

include only Indian movies. The key motivation behind this project was 

to answer the following questions: 

▪ Does the IMDb database contain enough data about Indian movies 

to train machine learning algorithms to detect their genres? 

▪ Which machine learning technique or algorithm can yield the best 

results? 



 

3 

 

1.2 Motivation 

Most online repositories of movies require movies to be manually 

tagged by its users or editors. This task is quite difficult because of the 

sheer number of movies released all over the world. The problem is 

compounded even further because of the variety of languages of the 

movies. 

The objective of our research was to create a system that can 

automatically tag these movies with the proper genres so that it does not 

require any manual inputs. 

1.3 Methodology 

 The previous works done in this field have never focused on 

movies originating from India, and therefore that has been the primary 

focus of the thesis. To conduct the research, similar works done by 

Tanenbaum[1] and Ka-Wing Ho[2] were reviewed along with other 

papers that used the same algorithms for different classification 

tasks[6][7][8][9][10][11] and drawing inspiration from these previous 

works, a dataset comprised exclusively of movies originating from India 

was gathered, cleaned, and processed. Then, the classic supervised 

machine learning classification algorithms were used to classify an 

unknown movie from India into well-defined genres using only the 



 

4 

 

movie’s textual description. The ‘Scikit-Learn’ library of the Python 

programming language contains implementations for all of the 

classification and algorithms and therefore, the aforementioned library 

and programming language was used to carry out the research. The 

results were then visualized with the help of another Python library, 

‘Matplotlib’ and visualized results were then explained in the paper.  

1.4 Thesis Outline 

Chapter 1 is the introduction of the thesis where the motivation and 

objectives are described.  

Chapter 2 is the background study which covers the literature review. 

Existing work that has implemented similar ideas are discussed in this 

section. 

Chapter 3 is dedicated to the algorithms that have been used for the 

analysis. Equations, pseudo code, and explanation of the algorithms are 

presented along with key terms that are useful for understanding the 

results of the experiments.  

Chapter 4 is the implementation section where the procedure of work is 

discussed at length. The analysis and exploration of the dataset is 

presented along with a flowchart describing the steps taken to acquire the 

results.  



 

5 

 

Chapter 5 is dedicated to the presentation of the results using graphs and 

tables, attained after training and testing the classification algorithms.  

Chapter 6 provides a conclusion to the thesis, and discusses future work 

that can be carried out.   

  



 

6 

 

Chapter 2 

 
LITERATURE REVIEW 

 

Utilizing different machine learning classification algorithms to 

classify text has previously been looked at by quite a few researchers. 

However, classifying movies using their synopsis data has had very little 

attention from the Machine Learning community so far. For this thesis we 

have looked at a number of papers that have been published in this topic. 

Ka-Wing Ho collected information from IMDb about 16,000 

unique titles and ran a number of binary classification machine learning 

algorithms on it - for detecting their genres based solely on their synopsis 

- with various degrees of success [2]. The data was split into 80%-20% 

sets for training and testing respectively. The data for his paper was 

processed using the NLTK library. NLTK, short for “Natural Language 

Toolkit” is a set of libraries for natural language processing[4].  The data 

processing step began by removing the stop words using the NLTK stop 

words list and all the numerical words were mapped to the same index 

because they hardly ever influence the results in these kinds of problems. 

The data was then filtered even further by putting it through the Python 

stemmer library. This resulted in a library of 63,840 words. Out of them, 



 

7 

 

only the words which appeared more than 15 times throughout the dataset 

were kept, the rest were ignored. As a result, only 10,656 words 

remained. These words were finally used to generate representation 

matrix, each synopsis was described by a vector generated by the tf-idf 

vectorizer[2]. Tf-idf is short for “term frequency–inverse document 

frequency”, is a numerical statistic that measures how important a word is 

to a document by using the frequency of its occurrences.[13] 

A number of algorithms were used to classify synopsis text data. 

Four different approaches were evaluated, One-Vs-All approach with 

SVM, Multi-label K-nearest neighbor (KNN), Parametric mixture model 

(PMM) and Neural Networks. The most accurate among these algorithms 

were SVM and Neural Network. They performed almost equally in terms 

of average precision, recall and f-measure scores. What is notable is that 

the scores varied wildly for different genres, even for the same algorithm. 

In this paper[2], SVMs had 0.66 precision, 0.39 recall and 0.47 F-

measure. kNN provided 0.41 precision and 0.73 recall with a 0.52 F-

measure score. 

But these movies were not filtered based on geographical location 

or language. For our project we wish to see if limiting our dataset to 

movies from a certain geographical area makes any noticeable 



 

8 

 

improvements to the results that he received because specific 

geographical areas often have unique cultures and customs that are often 

reflected by the movies from those locations. 

Joshua Tanenbaum exclusively used Decision Trees to detect 

genres of movies [1]. Data on 516,980 films in total belonging to 28 

genres were collected from IMDb for this experiment.  

The author found quite a few issues with the initial dataset acquired 

from IMDb. The most prominent of these were the fact that most of the 

movies were tagged with multiple genres but there was no mention of the 

hierarchy of the genres. Usually movies have a primary genre with some 

elements from multiple other genres. However, the IMDb database treats 

every genre assigned to a movie equally. The other problem was that the 

database also contained data on video games, adult and pornographic 

content. To get rid of these unnecessary garbage data the author decided 

to prune off 9 of the 28 genres, leaving him with 19 genres. 

This dataset was then run through the decision tree algorithm. 

However, the initial run resulted in an accuracy of less than 1%. To 

improve the results each movie was assigned just one genre, selected 

randomly from the list of genres assigned to each movie. This took 

boosted the accuracy rate to 12%. Lastly, to improve the performance of 



 

9 

 

the decision even further, the author decided to handpick the features 

used to generate the input matrix. Out of the 2,227 features that were 

available initially, the author picked 168, guided by his understanding of 

movies and their primary genres. This finally resulted in an accuracy rate 

of 32%. 

Even though the results of this experiment were not particularly 

successful, the key take away from it is that, careful pruning of the 

feature set by getting rid of redundant features can improve the results 

significantly. 

Thorsten Joachims, on his paper, mainly focused on text 

categorization with ‘Support Vector Machines (SVM)’ [6]. He claims 

was that SVM can provide substantial improvements over the then 

prevalent machine learning based text classification methods. It was 

mentioned in the paper that SVMs can perform well in text classification 

tasks because: 

1. They can work well with high dimensional input space. Text 

classification problems usually have tens of thousands of features. So, 

SVMs are suitable for it. 

2. Text classification algorithms have to work with sparse document 

vectors. SVMs are quite well suited for this kind of tasks. 



 

10 

 

3. Most text categorization problems are linearly separable, another 

strong suit of SVMs. 

The experiment compares the performance of the Polynomial and 

RBF kernels of SVMs. Two datasets have been used for this experiment. 

The Reuters-21578 dataset compiled by David Lewis and the Ohsumed 

corpus compiled by William Hersh. 

The “ModApte” collection consists of 9603 training documents and 

3299 test documents. From the second dataset, the first 10000 documents 

are used for training and the second 10000 documents are used for 

testing. The experiments conducted for this paper show SVMs 

performing significantly better than Naive Bayes, Rocchio, C4.5 and k-

NN algorithms for some categories.  

However, when comparing training time, SVMs were much slower 

than Naive Bayes, Rocchio and k-NN. [6] 

  



 

11 

 

Chapter 3 

 
MODELS AND ALGORITHMS 

 

This chapter contains the theoretical introductions to the Machine 

Learning algorithms used for our thesis.  

3.1 Machine Learning 

Machine Learning is the process through which machines can learn 

from data and act according to this training data. 

One way of categorizing Machine Learning systems is by how 

much supervision they get during training. There are four noteworthy 

categories: 

1. Supervised Learning 

2. Unsupervised Learning 

3. Semi supervised Learning 

4. Reinforcement Learning 

We are going to be dealing with Supervised Learning algorithms 

for our problem, as our training dataset is already labeled. 

3.1.1 Supervised Learning 

Supervised Learning algorithms learn from training datasets that 

are already labeled. Meaning, the training data fed to the program already 



 

12 

 

contains the correct results, called labels, the algorithm’s job is to learn 

from the examples in the training data and make proper predictions for 

future unseen data. 

The supervised learning task we will do is classification. 

3.1.2 Classification Algorithms 

The aim of Classification algorithms is to try to draw conclusions 

on an unseen input based on previously seen inputs (training data). Given 

inputs it will try to estimate the value of outputs. These outputs are labels 

that can be to the dataset. 

Classification algorithms used for this thesis are: 

▪ Naive Bayes 

▪ Logistic Regression  

▪ Support Vector Machines 

▪ Decision Trees 

▪ K Nearest Neighbors 

3.2 Classifiers 

The classifiers that were used in the thesis are described below.  

3.2.1 Naive Bayes 

Naive Bayes algorithms are some of the easiest and fastest 

classification algorithms around. This algorithm classifies new inputs 



 

13 

 

based on both the prior and the likelihood, to form a posterior probability 

using the Bayes’ Rule. 

Naive Bayes is the simplest among the Simple Naive Classifiers. 

All the attributes of the examples are considered as independent under 

this model. [7]  

 The pseudo code for the Naïve Bayes algorithm from, “Crime 

analysis and prediction using data mining” by S. Shiju and G. Surya, [7] 

is given in the next page.  



 

14 

 

 

3.2.2 Logistic Regression 

Logistic Regression determines the likelihood of a particular 

instance belonging to a particular class (e.g. what is the likelihood that a 

movie is a comedy movie?). If the returned likelihood is above 50%, then 

Algorithm for Naïve Bayes 

1. Let D = [document1, document2, …, documentn] be the 

training dataset 

2. Let C = { set of classes } 

3. Let Pr = [d1: Pr1...di: Pri] be a dictionary prior 

probabilities of the documents 

4. Let F = [c1: F1...ci: Fi] be a dictionary of word 

frequencies 

5. Let Pc = [k1: Pc1...ki: Pci] be a dictionary of 

conditional probabilities of the keywords 

6. for ci in C do 

7.     compute prior probability, P[di]  = len(ci) / len(n) 

8.     compute word frequency, F[di] = wordFrequency(ci) 

9. end for 

10. for ci in C do 

11.     for ki in ci do 

12.         P[ki] = F[ci] / len(ci) 

13.     end for 

14. end for 

15. for ci in C do 

16.     for ki in ci do 

17.         compute conditional probability, P[ci]  = F[ci] 

/, P[ki]  

18.       end for 

19. end for 

20. Output highest Pc 



 

15 

 

the classifier decides that the instance belongs to that specific class, or 

else it predicts that it does not. So, it is a binary classifier [3]. 

A logistic Regression model calculates the weighted sum of the input 

features, it outputs the logistic of the result described by the following 

equation [3]: 

)()(ˆ xxhp T      ………………………… (i)[3] 

The logistic is a sigmoid function that outputs a number between 0 and 1. 

It is defined as [3]: 

)exp(1

1
)(

t
t


    ………………………..….. (ii)[3] 

If p̂  is positive then it can make a prediction about ŷ [3]. 










5.0ˆ,1

5.0ˆ,0
ˆ

p

p
y    ..………………………….. (iii)[3] 

Training and Cost Function: The goal of training a Logistic Regression 

classifier is to properly decide the value of a parameter vector θ so that 

the model estimates high probabilities for positive instances and low 

probabilities for negative instances. This is expressed by the cost 

function[3]: 










0),ˆ1log(

1),ˆlog(
)(

yp

yp
c    …………………….… (iv)[3] 



 

16 

 

The cost function becomes very large when t approaches 0, so cost 

is very large when the probability of a positive outcome reaches close to 

0. It will also be very large when the probability of a negative outcome 

reaches close to 1. 

 The pseudo code for the Logistic Regression algorithm from 

“Linear and Logistic Regression” by M. Arias [8] is given below: 

 

3.2.3 Support Vector Machines 

Support Vector Machines (SVM) are supervised machine learning 

algorithm that are primarily used for classification of data. The examples 

fed into support vector machines are marked as a member of one or the 

other of two categories. And the classifier can mark new inputs as 

belonging to one category or the other. 

Algorithm for Logistic Regression 

1. Initialize x = {1, .., 1}T 

2. Scale the features of the attributes 

3. for each j = 0, .., n do: 

4.     xj' = xj + α∑i(y
i - ha(x

i))xj
i 

5. end for 

6. for each j = 0, .., n do: 

7.     xj = x 

8. end for 

9. Output x 



 

17 

 

SVMs maximize the distance between the decision boundary and the 

closest instances of both categories. 

SVMs can be mainly grouped into two groups. 

i. Linear SVMs 

ii. Non-Linear SVMs 

Linear SVMs: Linear SVMs have linear decision boundaries and are 

usually faster than Non-Linear SVMs. 

Non-Linear SVMs: Despite Linear SVMs being fast and often being 

surprisingly good, a lot of datasets are not linearly distinguishable. So, in 

those cases SVMs with non-linear decision boundaries are utilized. They 

are called Non-Linear SVMs. 

For our purposes we found that using a Linear SVM model gives 

us the best results. In our tests non-linear SVMs were very susceptible to 

imbalanced classes. Producing results with high precision (0.6) and recall 

(1.0) and F1-score (0.75) for the genre with the highest support. But 

produced very poor results (0 for precision, recall and F1-score) for all 

the other genres. 

Hard Margin Classification: The hardness or softness of margins in an 

SVM means how accepting of errors the model is. Hard Margin 

Classification does not allow any errors. It is quite sensitive to outlier 

values. One outlier can entirely change the nature of the decision 



 

18 

 

boundary and in some cases the model can fail to produce any acceptable 

results at all [3]. Most real-world problems require some tolerance for 

errors. 

Soft Margin Classification: Soft Margin Classification, as its name 

suggests, are more tolerant of errors. It allows for some errors to occur to 

make the model more generalized which makes more accurate. 

The pseudo code for the Support Vector Machine algorithm from 

“Support vector machines for multiple-instance learning” by S. 

Andrews[9] is shown below. 

Algorithm for Support Vector Machines 

1. Compute yi = YI for i ∈ I // I denotes the pattern 

selected as the positive "witness" 

2. do 

3.     compute SVM solution w, b for data set with 

labels 

4.     fi = {w, xi} + b for all xi in positive bags // 

outputs 

5.     yi = sgn(fi) for every i ∈ I, YI = 1 

6.     for every positive bag BI do: 

7.         if ∑i∈I (1 + yi) / 2 == 0 then 

8.              i* = argmaxi∈I fi 

9.              yi*= 1 

10.    end if 

11. end for 

12. while (imputed labels have changed) 

13.    output(w, b) 



 

19 

 

3.2.4 Decision Trees 

Decision Trees can perform both classification and regression 

tasks. In fact, in many ways, they are more powerful than some other 

algorithms. They require very little data preparation and no feature 

scaling or centering at all. Each node in the decision tree has a “gini 

attribute” associated with it. The gini attribute (Gi) measures the node’s 

impurity [3]. A node is pure if all the instances it applies to belong to the 

same class. 

Gi is calculated using, 





n

k

kii pG
1

2

,1  …………………………..(v)[3] 

pi,k is the ratio of class k instances among the training instances in the ith 

node. 

A decision tree can also guess the likelihood of an example belonging to 

a particular class k. 

Complexity: Traversing the tree has O(log(m)) complexity. But, training 

takes O(n*mlog(m)) time. [3] 



 

20 

 

 The pseudocode for the Decision Tree Learning algorithm from 

“Decision tree-based learning to predict patient controlled analgesia 

consumption and readjustment” by Y.J. Hu, T.H. Ku, R.H. jan, K. Wang, 

Y.C. Tseng, and S.-F. Yang, [10] is given below. 

 

3.2.5 K-Nearest Neighbors 

KNN is another fairly popular classification algorithm. When 

training data is fed into it, it plots them on an n-dimensional space based 

Algorithm for Decision Tree Learning  

1. function Tree-Learning(TR, Target ti, Attr) 

2.     Let TR[1…n1] be an array of the training examples 

3.     Let ti be the target attribute 

4.     Let Attr be a set of descriptive attributes 

5.     Let R = root node for the tree 

6.     if TR contains ti  do 

7.        return R 

8.     else if Attr is empty do 

9.        return R // single node tree with most common 

value of target 

10. else 

11.   Let A = select_from_Attr(entropy) 

12.   R.A = A 

13.   for vi of values(A) do 

14.      Add_branch(R) 

15.      Let TRvi ϵ TR that has A = vi 

16.         if  TRvi is empty do 

17.         leaf = add_leaf(R, TR.target) 

18.      else 

19.         Tree-Learning(TRvi, Target, Attr-{A}) 

20.      return R 



 

21 

 

on their features. As a consequence, each example in the training set 

becomes a point in an n-dimensional matrix. 

When it encounters an unknown input, it plots that input in the same n-

dimensional space and looks for the k-nearest points, based on some 

distance measure. It goes through the entire training dataset for each new 

test input. The distance measure depends on the scope and type of the 

problem. 

 The pseudo code for K Nearest Neighbors algorithm from “A 

Machine Learning Approach for Specification of Spinal Cord Injuries 

Using Fractional Anisotropy Values Obtained from Diffusion Tensor 

Images” by B. Tay, J. K. Hyun and S. Oh [11] is given below. 

 

3.3 Measuring Accuracy 

 Accuracy is simply a proportion of correct results that the classifier 

has managed to achieve, but this metric is a bad measure of performance. 

Algorithm for K Nearest Neighbors 

1. Classify (X, Y, x) // X: training data, Y: class labels 

of X, x unknown sample 

2. for i = 1 to m do 

3.     compute_distance(Xi ,x) 

4. end for 

5. Let I = { indices for the k smallest distances d(Xi, x) 

} 

6. Let L = majority label for {Yi where i ∈ I} 

7. return L 



 

22 

 

This is because, whenever there is a greater number of positive or 

negative examples, then simply always guessing one class in a binary 

classification problem will result in a decent number for accuracy, but it 

fails to correctly judge a model’s true performance.  

 In a binary classification problem, precision is the ratio of true 

positives to all values classified as positive. On the other hand, recall is 

the ratio of true positives to all positive values in the dataset. The F-score 

is a the harmonic mean of precision and recall, and as this metric takes 

the other two metric into account, the F-score has been chosen as the 

measure of performance for this paper. 

 The following equations were taken from “Movies’ Genres 

Classification by Synopsis” by K.-W. Ho, [2] and "Evaluation: From 

Precision, Recall and F-Measure to ROC, Informedness, Markedness & 

Correlation" by D.Powers [12] 

True Positives (TP) – positive values correctly classified as positive 

False Positives (FP) – negative values incorrectly classified as negative 

True Negatives (TN) – negative values correctly classified as negative 

False Negatives (FN) – positive values incorrectly classified as negative 

FPTP

TP
precision


   …………………………………………….... (vi) 



 

23 

 

FNTP

TP
recall


    ………………………………………..………. (vii) 

recall +precision 

recallprecision  2 
measuref   …………………………………. (ix)  

 

 

  



 

24 

 

Chapter 4 

 
THE DATASET 

  

This section contains the details of the dataset and the procedure of 

work. 

4.1 Acquiring the Dataset 

Acquiring a proper dataset is the first step of every machine 

learning process. Our main source of data was the “Internet Movie 

Database (IMDb)” [5]. We used IMDb’s filtering functionality combined 

with python scripts to scrap their database. We downloaded synopsis and 

genre information for more than 10,000 movies released in India. 

We utilized the very popular “Scrapy” python library to do this. 

Some of the initial complications were that the structure of HTML page 

sent from the IMDb servers made it very difficult to extract data from the 

webpages. So, we had to use some fairly complex regular expressions to 

collect the datapoints. Afterwards, the script saved the genre and synopsis 

information in a CSV file.  

4.2 Analysis and Cleaning of Dataset 

The Python libraries NumPy and Pandas were used for wrangling 

the data and the Matplotlib library was used for producing the charts. The 



 

25 

 

following table shows the first five rows of the raw dataset that was 

acquired.  

Table-4.1 First five rows of the raw dataset 

Title Description Genre 

Bol Bachchan 

When a child falls into 

the well of the 

temple...  

Action, Comedy, Drama, 

Romance 

Action Hero Biju 

The story of Action 

Hero Biju revolves 

around ... 

Action, Comedy, Thriller 

Vivegam 

A celebrated covert 

operation specialist 

Ajay ...  

Action, Thriller 

Welcome Back 

Uday Shetty and 

Majnu Bhai have left 

the under...  

Action, Comedy, Crime, 

Drama 

Ek Aur Ek 

Gyarah: By Hook 

or by Crook 

Two petty thieves 

Tara and Sitara 

(Govinda & S… 

Action, Comedy, Crime, 

Musical 

 

The dataset contained 13,875 unique titles, however, for some of 

the titles, the ‘Genre’ column was blank. We could not use those data 

points and thus they were removed, and we were left with 13,868 unique 

movies.  

A custom python function was used to extract the unique genres 

from the dataset and there was a total of 26 different genres. The 

frequency of the 15 most popular genres are shown in the following table: 



 

26 

 

Table-4.2. Top 15 genres and their frequency 

 
Genre Frequency 

1 
Drama 8314 

2 
Comedy 3470 

3 
Romance 3413 

4 
Action 3056 

5 
Thriller 2518 

6 
Short 2031 

7 
Family 1765 

8 
Crime 1610 

9 
Music 1113 

10 
Musical 995 

11 
Mystery 905 

12 
Adventure 808 

13 
Documentary 513 

14 
Fantasy 473 

15 
History 321 

 

  



 

27 

 

Figure 4.1. Frequency of genres  

The most popular genre by a large margin was ‘Drama’ as 8314 

movies in the dataset included the label in the genre column. Only four of 

the genre labels occurred more than 3000 times whereas 17 of the 26 

unique genres occurred less than 1000 times. This shows that the genres 

are far from being distributed evenly. 

4.3 Training and Test Dataset 

The Scikit-Learn (sklearn) python library, which was used for the 

machine learning tasks contained the “test_train_split” function within 

its “model_selection” module. This function was used to divide the 

processed dataset into two parts – a training set containing 80% of the 

data and a test set containing 20% of the data. Two datasets are used in 

order to escape the problem of over fitting. This can arise if the same 

F
re

q
u

en
cy

 

Genre 



 

28 

 

dataset is used to both classify and test the model. The classification 

algorithm will try to fit the data as strongly as possible and the results will 

show a very high accuracy. However, this is very misleading as the model 

was fit too closely to the training data and on a different set of data, the 

model will perform poorly. The goal of our experiment was to create a 

general model that can be used to classify new Indian movies into genres. 

If over fitted models were used, then new movies would be far more 

likely to be misclassified. 

4.4 Analysis of the Features 

The ‘Description’ of each movie was used to predict the genre. The 

‘Description’ itself was a chunk of text that needed to be preprocessed 

and converted into a numerical form as input to the classification 

algorithms. In the training set, the mean length of each description was 

94.7 words out of which 62.1 were unique.  

4.4.1 Exploring Parts of Speech  

Python has a library named NLTK that can be used for natural 

language processing. This pos_tag function from the tag package of the 

NLTK library can be used to assign a parts of speech label to each word. 

We used a custom wrapper function and used it to count the number of 

occurrences of words within each tag. This function was applied on to 



 

29 

 

each and every description present in the training set and total count of 

words in each tag is presented in the following figure: 

 

Figure 4.2. Frequency of POS tags 

The graph clearly depicts that words with the ‘NN’ tag, which 

stands for common nouns were the most popular, followed closely by the 

‘.’ punctuation mark and the ‘JJ’ tag which represents ordinal adjectives 

such as ‘third’. The other popular tags were ‘NNS’ and ‘NNP’ which 

stand for common plural noun and singular proper noun respectively. 

Selectively removing words with certain tags can dramatically decrease 

the number of features and can lead to improvements in accuracy.  

F
re

q
u

en
cy

 

Parts of Speech tags 



 

30 

 

4.4.2 Processing description features for classification 

Every human written text contains a set of words, such as ‘the’ 

which are used very frequently. Due to their high frequency of use, these 

words are found in every single description and thus they add no 

meaningful value when it comes identifying genres. This set of words are 

called stop words. By removing this set of words from both the training 

and the test sets, the classification can be done in a shorter time and the 

results are also more accurate. To remove these stop words the NLTK 

library is used. The library’s corpus package contains a list of stop words 

and every instance of words of the aforementioned list that occur in the 

move descriptions are removed with a custom Python function.  

Simply removing the stop words is not enough though. For 

grammatical reasons, many of the words used in the descriptions would 

be the same word, written in a different form. For example, ‘kill’, ‘killed’ 

and ‘killing’ are different forms of the same word. The three individual 

words can be reduced down to a single word – ‘kill’. This process is 

known as stemming and it can significantly reduce the number of features 

and thus positively affect the result of the classifier. To perform the 

stemming, the “SnowballStemmer” class from the “stem.snowball” 

package of the “NLTK” library is used. A custom wrapper function uses 



 

31 

 

a “SnowballStemmer” object to stem each word in each of the 

descriptions in our dataset.  

Once the stop words have been removed and the remaining words 

stemmed, certain POS tags could be removed to improve result. Through 

analysis of the dataset, it was discovered that lots of proper nouns, such 

as names of directors, producers, actors and other cast members were 

present some of the descriptions. Also present were the names of the 

characters and locations. This information did not in any way help the 

classifiers and therefore these words could be removed to reduce the 

number of features and improve accuracy. The task was simple, as only 

the words with ‘NNP’ tag needed to be removed.  

With the description stripped off of stop words and proper nouns, 

and with each word reduced to its stem, the text was ready to be 

transformed into a form suitable to work as an input to the classification 

algorithms. This was done with the help of the “CountVectorizer” class 

from “sklearn”. Once the transformation process was complete, a feature 

matrix consisting of 12,304 unique features was ready to be used for 

training the algorithms.  



 

32 

 

4.5 Implementation steps 

 

Figure 4.3. Flow chart for classification project  

1. Clean dataset
2. Split into training 
and test set

3. Explore the 
features

4. Process the features 
(remove POS tags, 
stopwords and perform 
stemming)

5. Vectorize the 
features

6. Train classifier 
using vectorized 
training features

7. Predict using test 
features and trained 
classifer

8. Measure 
performance of 
classifier using test set 
labels



 

33 

 

Chapter 5 

 

RESULTS 

 

 This chapter contains the results, which are explained with the help 

of tables and charts. 

 Each movie can be assigned to more than one genre and therefore 

it is a multi-label classification problem.  However, deciding whether a 

movie belongs to a certain genre or not is essentially a binary 

classification problem. To make the process more uniform and easier, 

each supervised learning classifier is wrapped inside of the 

“OneVsRestClassifier” that “sklearn” makes available. Then, each of the 

supervised classifier is trained using the processed training set and 

parameters are set according to the ones determined by “GridSearchCV” 

from “sklearn.model_selection”. Then the trained models are tested using 

the test set and the results are presented below. 

5.1 Multinomial Naïve Bayes 

“Sklearn.naive_bayes module” provides “MultinomialNB” class. The 

table describes the precision, recall, F1-score and support for each genre 

in the dataset that used to train and test the model.  



 

34 

 

▪ Precision is the fraction of correctly classified movies over all 

movies classified by algorithm into the genre. It has a minimum 

value of 0 and a maximum value of 1. 

▪ Recall is the fraction of correctly classified movies over all movies 

that actually belong to the genre. . It has a minimum value of 0 and 

a maximum value of 1. 

▪ F1-score is the performance measure used in the experiment. It is 

the harmonic mean of the precision and recall. . It has a minimum 

value of 0 and a maximum value of 1. 

▪ Support is the number of positive samples in the test set. There is 

no maximum value for support and the minimum value is 0.  

The results of the classifier are displayed in the table below:  

  



 

35 

 

Table-5.1 Classification report for Naïve Bayes  

 

The classifier performed well on genres with a lot of support, but very 

poorly on ‘Music’, ‘Musical’ and ‘Family’. This could be because of the 

lack of support for these movies, or because there are no features in the 

description that correlate to movies being a part of these genres.  

 

 Precision Recall F1-score Support 

Drama 
0.70 0.70 0.70 1665 

Comedy 
0.59 0.39 0.47 707 

Romance 
0.54 0.53 0.53 683 

Action 
0.61 0.60 0.60 623 

Thriller 
0.48 0.41 0.44 517 

Short 
0.41 0.41 0.41 398 

Family 
0.25 0.10 0.14 320 

Crime 
0.46 0.38 0.42 354 

Music 
0.26 0.05 0.09 225 

Musical 
0.19 0.03 0.06 201 

Average / 

Total 

0.421 0.36 0.386 5693 



 

36 

 

Figure 5.1. Chart for Naïve Bayes 

 The left-hand y-axis shows the value for ‘Precision’, ‘Recall’ and 

‘F1-score’, and the right-hand y-axis shows the value for ‘Support’. The 

bars refer to the support, and the lines correspond to the performance 

measures. There appears to be a negative correlation between support and 

the performance measures. Interestingly, the model performs worse when 

classifying movies labeled as ‘Comedy’, compared to those labeled as 

‘Romance’ or ‘Action’ even though ‘Comedy’ has greater support than 

the other two genres. The performance for ‘Crime’ is also much better 

than that for ‘Family’, and this could be attributed to slightly higher 

support. The performance of the model goes down significantly for the 

final two genres, ‘Music’ and ‘Musical’.   

  

0

200

400

600

800

1000

1200

1400

1600

1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
p

p
o

r

P
er

fo
rm

an
ce

Genre

Naive Bayes

Support Precision Recall F1-score



 

37 

 

5.2 Logistic Regression 

Sklearn.linear_model provides the Logistic Regression class. 

Table-5.2 Classification report for Logistic Regression 

 
Precision Recall F1-score Support 

Drama 
0.66 0.69 0.68 1665 

Comedy 
0.53 0.39 0.45 707 

Romance 
0.53 0.40 0.46 683 

Action 
0.62 0.48 0.54 623 

Thriller 
0.50 0.34 0.41 517 

Short 
0.49 0.35 0.41 398 

Family 
0.28 0.17 0.21 320 

Crime 
0.43 0.23 0.30 354 

Music 
0.26 0.10 0.14 225 

Musical 
0.20 0.07 0.11 201 

Average / 

Total 

0.45 0.322 0.371 5693 

 

 The logistic regression classifier shows similar results with good 

performance on genres with lots of support but performing very poorly on 

‘Music’, ‘Musical’ and ‘Family’. ‘Music’ and ‘Musical’ and ‘Family’ 

have relatively low support (i.e. positive examples) and thus it becomes 



 

38 

 

clear that the performance of the algorithms is very much dependent on 

the number of examples.  

Figure 5.2 Chart for Logistic Regression 

The graph shown on figure 5.2 is similar to the one for Naïve 

Bayes. There appears to be a negative correlation between support and 

the performance metrics. ‘Action’ performs surprisingly well compared 

to ‘Comedy’ and ‘Romance’ and again an increase in performance for 

‘Crime’ is observed which is likely a result of the increased support. 

There is a sharp dip in all three performance measures when going from 

‘Short’ to ‘Family’, a trend observed in figure 5.1 as well.   

0

200

400

600

800

1000

1200

1400

1600

1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
p

p
o

rt

P
er

fo
rm

an
ce

Genre

Logistic Regression

Support Precision Recall F1-score



 

39 

 

5.3 K Nearest Neighbors (KNN) 

Sklearn.neighbors provides KNeighborsClassifier class. 

Table-5.3 Classification report for K Nearest Neighbors 

 Precision Recall F1-score Support 

Drama 0.60 0.64 0.62 1665 

Comedy 0.31 0.09 0.14 707 

Romance 0.49 0.25 0.33 683 

Action 0.57 0.10 0.17 623 

Thriller 0.33 0.05 0.09 517 

Short 0.22 0.20 0.21 398 

Family 0.19 0.06 0.09 320 

Crime 0.38 0.02 0.04 354 

Music 0.10 0.00 0.01 225 

Musical 0.25 0.00 0.01 201 

Average / 

Total 

0.344 0.141 0.171 5693 

 

The K Neighbors Classifier performs very poorly on genres with a 

low number of positive examples. Even on ‘Drama’, the genre with the 

highest number of supports, KNN still performs worse than other 

competing algorithms.  



 

40 

 

Figure 5.3 Chart for K Nearest Neighbors 

 The graph clearly depicts the performance of the K Nearest 

Neighbors algorithm. There is a very sharp fall in recall and therefore F1-

score when the algorithm tries to classify ‘Comedy’ instead of ‘Drama’. 

Precision is much higher than recall for all genres. The recall of the 

algorithm, unlike its precision does not even increase when classifying 

‘Crime’ and it approaches zero as support decreases further, as observed 

when classifying movies into ‘Music’ and ‘Musical’. 

  

0

200

400

600

800

1000

1200

1400

1600

1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
u
p

p
o

rt

P
er

fo
rm

an
ce

Genre

K Nearest Neigbors

Support Precision Recall F1-score



 

41 

 

5.4 Decision Tree 

Sklearn.tree provides DecisionTreeeClassifier class. 

Table-5.4 Classification report for Decision Tree 

 Precision Recall F1-score Support 

Drama 
0.64 0.65 0.65 1665 

Comedy 
0.39 0.36 0.37 707 

Romance 
0.42 0.40 0.41 683 

Action 
0.43 0.40 0.42 623 

Thriller 
0.35 0.32 0.33 517 

Short 
0.32 0.33 0.33 398 

Family 
0.18 0.16 0.17 320 

Crime 
0.25 0.22 0.23 354 

Music 
0.16 0.14 0.15 225 

Musical 
0.08 0.08 0.08 201 

Average / 

Total 
0.322 0.306 0.314 5693 

 

 Again, a similar pattern emerges with the decision tree classifier. 

Genres with high support are predicted more accurately compared to 

those with lower support.  



 

42 

 

Figure 5.4 Chart for Decision Trees 

 

 The precision and recall values for the Decision Tree classifier 

remains close to equal unlike the other algorithms. A similar pattern for 

performance and movie genre emerges with support being negatively 

correlated to the performance measures. There is an increase in all three 

measures of performance for ‘Crime’, which is probably due to an 

increase in support.  

  

0

200

400

600

800

1000

1200

1400

1600

1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
u
p

p
o

rt

P
er

fo
rm

an
ce

Genre

Decision Tree

Support Precision Recall F1-score



 

43 

 

5.5 Linear Support Vector Machine (SVM) 

Sklearn.svm provides the SVC class.  

Table-5.5. Classification report for linear SVM 

 Precision Recall F1-score Support 

Drama 0.65 0.65 0.65 1665 

Comedy 0.46 0.42 0.44 707 

Romance 0.45 0.43 0.44 683 

Action 0.52 0.48 0.50 623 

Thriller 0.40 0.39 0.39 517 

Short 0.40 0.39 0.40 398 

Family 0.22 0.23 0.22 320 

Crime 0.31 0.27 0.29 354 

Music 0.15 0.13 0.14 225 

Musical 0.10 0.09 0.09 201 

Average / 

Total 

0.366 0.348 0.356 5693 

 

Linear SVM again shows similar output to the other algorithms. 

The precision and recall are close to one another. Performance is decent 

when trying to classify movies into genres with lots of support, but when 

support decreases, the performance falls sharply. 



 

44 

 

Figure 5.5 Chart for Linear SVM 

 The graph shows that the dip for the performance measures are not 

as sharp when Genre is changed from ‘Drama’ to ‘Comedy’ is not as 

sharp as the other algorithms. When genre is changed from ‘Comedy’ to 

‘Romance’, there is a slight increase in performance, which increase 

further when genre changes to ‘Action’, From then onwards, there is a 

steady dip in performance as support decrease, but there is a sharp rise 

between ‘Family’ and ‘Crime’ due to an increase in support.  

5.6 Comparison of Algorithms 

The measure of performance is given by precision, recall and f1-

score. To compare the performance of each algorithm on each genre is 

presented in the following tables.  

0

200

400

600

800

1000

1200

1400

1600

1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
u
p

p
o

rt

P
er

fo
rm

an
ce

Genre

Linear SVM

Support Precision Recall F1-score



 

45 

 

The genre ‘Drama’ has the highest support, i.e. the greatest number 

of positive examples in the test set. All algorithms perform relatively 

well, with Naïve Bayes coming out on top. The precision and recall 

scores are almost the same for every algorithm with recall scores being 

slightly higher than precision scores for Logistic Regression, K Nearest 

Neighbors and Decision Trees. 

Table 5.6.1 Results for Drama 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.7 0.7 0.7 1665 

Logistic 

Regression 
0.66 0.69 0.68 1665 

K Nearest 

Neighbors 
0.6 0.64 0.62 1665 

Decision 

Trees 
0.64 0.65 0.65 1665 

Linear SVM 0.65 0.65 0.65 1665 

  

‘Comedy’, the second most popular genre in the dataset has less 

than half the number of supports compared to ‘Drama’ and therefore all 

algorithms perform much more poorly with recall and precision scores 

going down by a large margin. Recall scores are much lower compared to 

precision scores for all algorithms, with K Nearest Neighbors faring the 



 

46 

 

worst with a very low recall score of 0.09. Naïve Bayes once again tops 

the chart with Logistic Regression and Linear SVM close behind.  

Table 5.6.2 Results for Comedy 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.59 0.39 0.47 707 

Logistic 

Regression 
0.53 0.39 0.45 707 

K Nearest 

Neighbors 
0.31 0.09 0.14 707 

Decision 

Trees 
0.39 0.36 0.37 707 

Linear SVM 0.46 0.42 0.44 707 

 

 An interesting phenomenon is observed when trying to classify the 

third most populous genre. The F-score for each algorithm is higher when 

compared to ‘Comedy’ and no algorithm performs exceptionally poor 

relative to others. The recall scores are slightly lower than precision 

scores for all algorithms, with K Nearest Neighbors having a far worse 

recall score compared to precision, which resulted in the lowest F-score 

in comparison to all other classifiers.  

 

 

 

 

 



 

47 

 

Table 5.6.3 Results for Romance 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.54 0.53 0.53 683 

Logistic 

Regression 
0.53 0.4 0.46 683 

K Nearest 

Neighbors 
0.49 0.25 0.33 683 

Decision 

Trees 
0.42 0.4 0.41 683 

Linear SVM 0.45 0.43 0.44 683 

 

The precision scores are greater than recall scores with K Nearest 

Neighbors once again posting a very low recall score in comparison to its 

precision score.  

Table 5.6.4 Results for Action 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.61 0.6 0.6 623 

Logistic 

Regression 
0.62 0.48 0.54 623 

K Nearest 

Neighbors 
0.57 0.1 0.17 623 

Decision 

Trees 
0.43 0.4 0.42 623 

Linear SVM 0.52 0.48 0.5 623 

 

 The same pattern emerges for the ‘Thriller’ genre with recall scores 

slightly worse than precision. A very low recall score is observed when 



 

48 

 

using K Nearest Neighbors is used to classify thriller movies in the 

dataset. 

Table 5.6.5 Results for Thriller 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.48 0.41 0.44 517 

Logistic 

Regression 
0.5 0.34 0.41 517 

K Nearest 

Neighbors 
0.33 0.05 0.09 517 

Decision 

Trees 
0.35 0.32 0.33 517 

Linear SVM 0.4 0.39 0.39 517 

  

The ‘Short’ genre has only 398 positive samples in the test set 

which is significantly lower than other genres. Logistic Regression has 

the best precision but its overall performance as measured by F-score is 

equal to Naïve Bayes as the recall for Logistic Regression is low. K 

Nearest Neighbors performs terribly posting the lowest F-score, although 

when classifying this genre, the difference between precision and recall is 

low for the algorithm.  

 

 



 

49 

 

Table 5.6.6 Results for Short 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.41 0.41 0.41 398 

Logistic 

Regression 
0.49 0.35 0.41 398 

K Nearest 

Neighbors 
0.22 0.2 0.21 398 

Decision 

Trees 
0.32 0.33 0.33 398 

Linear SVM 0.4 0.39 0.4 398 

 

All of the algorithms perform poorly when trying to correctly 

classify movies into the ‘Family’ genre. This can perhaps be attributed to 

the low support value. However, the value is not significantly lower than 

it was for ‘Short’ genre but the F-scores are much lower. Perhaps there is 

little information in the textual description of a movie to predict whether 

the movie can be classified as family or not. All of the algorithms 

perform poorly but ‘Linear SVM’, followed closely by ‘Logistic 

Regression’ perform better than the others. Surprisingly Naïve Bayes is 

much worse than the other algorithms, although it is better than K Nearest 

Neighbors when trying to correctly classify ‘Family’ movies.  

 

 

 

 

 



 

50 

 

Table 5.6.7 Results for Family 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.25 0.1 0.14 320 

Logistic 

Regression 
0.28 0.17 0.21 320 

K Nearest 

Neighbors 
0.19 0.06 0.09 320 

Decision 

Trees 
0.18 0.16 0.17 320 

Linear SVM 0.22 0.23 0.22 320 

 

 When trying to accurately classify ‘Crime’ movies, Naïve Bayes 

performs much better than other algorithms. The recall scores are lower 

in comparison to precision scores for all algorithms and the problems is 

particularly acute, as noticed on several previous occasions, for K Nearest 

Neighbors.  

Table 5.6.8 Results for Crime 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.46 0.38 0.42 354 

Logistic 

Regression 
0.43 0.23 0.3 354 

K Nearest 

Neighbors 
0.38 0.02 0.04 354 

Decision 

Trees 
0.25 0.22 0.23 354 

Linear SVM 0.31 0.27 0.29 354 

 



 

51 

 

 The F-scores for each and every algorithm was very poor for 

‘Music’. Even though the difference in support between music and family 

is present, it is not extremely big, but scores are much lower. This could 

be attributed to two potential causes. One is that once support goes below 

350, the performance of every algorithm goes down. The second 

explanation is that ‘Music’ and ‘Family’ are genres for which there does 

not exist a correlation between narrative elements found in the textual 

description and these genres. 

Table 5.6.9 Results for Music 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.26 0.05 0.09 225 

Logistic 

Regression 
0.26 0.1 0.14 225 

K Nearest 

Neighbors 
0.1 0 0.01 225 

Decision 

Trees 
0.16 0.14 0.15 225 

Linear SVM 0.15 0.13 0.14 225 

 

The ‘Musical’ genre is the genre with the lowest support and 

similarly has the lowest performance as measured by the F-score for each 

and every single algorithm that has been used during the process of 

writing this paper. It appears that Naïve Bayes performs poorly in 

comparison to other algorithms when the support is lower than 350, but 



 

52 

 

performs better relative to the other classifiers when support is greater 

than 350. This trend was noticed for genres ‘Family’ and ‘Music’ and the 

same phenomenon is observed when trying to correctly classify movies 

having the ‘Musical’ genre label. All scores are very low and amongst the 

classifiers for this category, Logistic Regression performs the best 

followed by Linear SVM.   

Table 5.6.10 Results for Musical 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.19 0.03 0.06 201 

Logistic 

Regression 
0.2 0.07 0.11 201 

K Nearest 

Neighbors 
0.25 0 0.01 201 

Decision 

Trees 
0.08 0.08 0.08 201 

Linear SVM 0.1 0.09 0.09 201 

 

 The average of precision, recall and F-score for each algorithm is 

shown on the following the table. It is observed that performance of all 

the algorithms are somewhat comparable. Naïve Bayes is the best overall 

performer followed by Logistic Regression, Linear SVM, and Decision 

Trees. K Nearest Neighbors has the lowest F-score by a large margin and 

this is due to the classifier posting a very low average recall score. The 



 

53 

 

precision score of the aforementioned algorithm is still on the lower end 

of the spectrum but is higher than that of Decision Trees.  

Table 5.6.11 Average/ Total for different algorithms 

Algorithm Precision Recall F1-score Support 

Naïve Bayes 0.421 0.36 0.386 5693 

Logistic 

Regression 
0.45 0.322 0.371 5693 

K Nearest 

Neighbors 
0.344 0.141 0.171 5693 

Decision 

Trees 
0.322 0.306 0.314 5693 

Linear SVM 0.366 0.348 0.356 5693 

 

Figure 5.6.1 Algorithm Comparison (Averages) 

The results are visualized in fig 5.6.1. Logistic Regression has the 

best precision but a worse recall brings the F-score down resulting in 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Naïve Bayes Logistic

Regression

K Nearest

Neighbors

Decision Trees Linear SVM

P
er

fo
rm

an
ce

Algorithm

Algorithm Comparison (Averages)

Precision Recall F1-score



 

54 

 

Naïve Bayes being the algorithm with the best F-score. All of the 

algorithms are close to each other save for K Nearest Neighbor as its 

terrible recall score brings down its F-score. 

5.7 Comparison against existing work 

 As different datasets and methods were used, a direct comparison 

is not possible. Nevertheless, we have tried to compare the results of this 

project against the one done by Ka-Wing Ho[2] as that is the one which 

matches most closely.  

 The following table shows the average precision, average recall 

and average F-measure for all genres as was found by Ka-Wing Ho[2].  

Table 5.7.1 Average results over all genres 

 Precision Recall F Measure 

SVM(Default) 0.66141 0.39572 0.47151 

SVM(weighted) 0.47689 0.62533 0.53785 

SVM(1:1) 0.51205 0.61631 0.54999 

KNN(k=97)(MLE) 0.40987 0.73400 0.51580 

KNN(k=88)(MAP) 0.64093 0.33261 0.40060 

PMM(MLE) 0.46371 0.54234 0.48550 

PMM(MAP) 0.53624 0.45876 0.47375 

NN(λ = 1, P C = 

1000) 
0.67630 0.41513 0.49896 

NN(λ = 1, P C = 

4000) 
0.65444 0.43225 0.50849 

NN(λ = 1, P C = 

8000) 
0.62493 0.45708 0.52044 

NN(λ = 1, No PCA) 0.64453 0.43666 0 .50938 

NN(λ = 0, No PCA) 0.66886 0.41655 0.49786 

 



 

55 

 

For the sake of comparison, the values of 5.7.1 and 5.6.1 are 

charted together and shown in the following figure. 

Figure 5.7.1 Comparison against existing project 

In figure 5.7.1, the first five algorithms are the ones used for this 

project whereas the rest are from [2]. This figure is only valuable as a 

rough illustration because not only were the algorithms used different, but 

also, the dataset and distribution of genres were different.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SVM(Default)

SVM(weighted)

SVM(1:1)

KNN(k=97)(MLE)

KNN(k=88)(MAP)

PMM(MLE)

PMM(MAP)

NN(λ = 1, P C = 1000)

NN(λ = 1, P C = 4000)

NN(λ = 1, P C = 8000)

NN(λ = 1, No PCA)

NN(λ = 0, No PCA)

Naïve Bayes

Logistic Regression

K Nearest Neighbors

Decision Trees

Linear SVM

Performance Measure

A
lg

o
ri

th
m

Comparison Against Existing Project

F Measure Recall Precision



 

56 

 

For further illustrations, the following figures compare the value of 

precision and recall achieved for each genre by Ho using SVM. Note the 

support and data used in this project are different and discrepancies in 

values might be attributed to the aforementioned differences.  

Figure 5.7.2 Comparison for Drama 

The above figure shows the comparison of algorithms for Drama, 

whose values are taken from table 5.6.1. The SVM column comes from 

[2]. Accurate comparisons cannot be made due to the difference in 

support and the dataset itself, but it appears that for ‘Drama’, a genre with 

the highest support in both this paper and in [2], the results obtained in 

this experiment are comparable to the ones obtained by Ka-Wing Ho[2] 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Naïve Bayes Logistic

Regression

K Nearest

Neighbors

Decision

Trees

Linear SVM SVM

P
er

fo
rm

an
ce

 M
ea

su
re

Algorithm

Comparison for Drama

Precision Recall



 

57 

 

Figure 5.7.3 Comparison for Action 

The above figure compares the precision and recall scores for each 

algorithm plus the SVM as trained and tested by Ka-Wing Ho[2]. The 

values are for the ‘Action’ genre and the exact numbers are displayed in 

table 5.6.4. ‘Action’ is a genre with medium low support both in our 

dataset and the one used by Ho[2]. It appears that of the algorithms used 

in this paper, Logistic Regression has the best precision whereas Naïve 

Bayes has the best recall. SVM from [2] has better precision than all of 

the other algorithms but the second lowest recall. However direct 

comparisons cannot be made as the datasets are different and the 

distribution of support is also different.  

A comparison of algorithms for the lowest support cannot be made 

as ‘Music’ and ‘Musical’ are not present in the dataset used by Ho[2] and 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Naïve Bayes Logistic

Regression

K Nearest

Neighbors

Decision

Trees

Linear SVM SVM

P
er

fo
rm

an
ce

 M
ea

su
re

Algorithm

Comparison for Action

Precision Recall



 

58 

 

‘Crime’ is proportionately more prominent than in the dataset used for 

this project. This leaves ‘Family’ as the comparable genre with the lowest 

support and the results are displayed in the following chart. 

Figure 5.7.4 Comparison for Family 

Figure 5.7.3 shows the values of precision and recall for ‘Family’ 

as shown in table 5.6.7 in addition to the rightmost SVM column taken 

from Ka-Wing Ho’s research[2]. Amongst the algorithms used in this 

paper, Logistic Regression shows the best performance as it has both 

greater precision and recall values. The SVM from [2] eclipses all other 

algorithms when it comes to precision but shows comparable recall 

scores. However, it is to be noted that the values are from a different 

dataset and therefore direct comparisons cannot be made.  

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Naïve Bayes Logistic

Regression

K Nearest

Neighbors

Decision

Trees

Linear SVM SVM

P
er

fo
rm

an
ce

 M
ea

su
re

Algorithm

Comparison for Family 

Precision Recall



 

59 

 

Chapter 6 

 
CONCLUSION 

  

This section talks about the conclusion and future work of the 

thesis. 

6.1 Conclusion 

In conclusion, it can be ascertained that there is enough data in the 

IMDB database for Indian Movies that can used to classify them into 

genres. However, it was discovered that the performance of the 

algorithms was largely correlated with the number of positive samples of 

a particular genre and therefore if a movie was labelled as belonging to 

one of the more popular genres such as ‘Drama’, then the supervised 

learning classification algorithms performed reasonably but when the 

algorithm tried to classify a movie into a genre for which there were a 

small number of positive examples, then the results were generally very 

poor. The research was limited to only movies originating in India, which 

led to a dataset consisting of 13,868 movies, a far lower number than the 

total IMDB database which exceeds 150,000 movies. If the dataset was 

not restricted, then there would likely have been an increase in accuracy.  

When the algorithms were compared to one another, a pattern 

emerged. The relatively simple classifiers, Naïve Bayes and Logistic 



 

60 

 

Regression performed better than the more complex models. Naïve Bayes 

was the best performing algorithm for all genres save for the three with 

the lowest positive samples, and in those cases, it was superseded by 

Logistic Regression. Linear SVM and Decision Trees performed slightly 

worse than the others but K Nearest Neighbors had the lowest 

performance by a large margin. Interestingly, K Nearest Neighbors had 

decent average precision but recall was far worse, which led to the F1-

score — the performance measure that was used in the thesis — falling 

far below that of the other classifiers. Further research will be required to 

discover the root cause of the poor performance of K Nearest Neighbors. 

All of the algorithms perform poorly when number of positive examples 

for a label fall and while it cannot be stated with absolute certainty that 

the cause of the poor performance is simply due to a lack of data there 

does exist an undeniable correlation.  

6.2 Future Work 

The performance of any machine learning algorithm depends on 

the data that is being used to train the model and the parameters. In this 

experiment, the default parameters were used to try and predict the genre 

of a movie based solely on its textual description. The performance of the 

models could potentially be improved by fine tuning the parameters of 



 

61 

 

the algorithms and further processing the raw data before it is used to 

train the models.  

Another major issue faced in this investigation was that some 

genres of movies simply did not have enough data points to properly train 

the algorithm. While the obvious remedy to the problem would be to 

gather more data, the task could prove challenging if the limitation of 

using a dataset comprised exclusively of movies originating from India 

was to remain. The second, although not far from perfect remedy would 

be to balance the labels by over sampling or under sampling.  

In this thesis, classic supervised machine learning algorithms were 

used. While better processing of training data and fine tuning of the 

parameters of the models could lead to improved performance, a deep 

learning approach using neural networks and related algorithms could 

potentially result in greater performance. 

Performance can potentially be improved even further by 

identifying the primary genres for the movies. As pointed out in J. J. 

Tanenbaum’s paper[1], IMDb does not identify the primary genre of a 

movie. If we can find a data source to identify the primary genres of the 

movies in our database and remove the other less important genres from 

each movie results should improve.



 

62 

 

Appendix A POS Tag List 
 

CC  coordinating conjunction 

CD  cardinal digit  

DT  determiner  

EX existential there (like: "there is" 

... think of it like "there exists") 

FW  foreign word  

IN  preposition/subordinating 

conjunction 

JJ  adjective 'big' 

JJR  adjective, comparative 'bigger' 

JJS  adjective, superlative 'biggest' 

LS  list marker 1) 

MD  modal could, will 

NN  noun, singular 'desk' 

NNS  noun plural 'desks' 

NNP  proper noun, singular 'Harrison' 

NNPS  proper noun, plural 'Americans' 

PDT  predeterminer 'all the kids' 

POS  possessive ending parent's 

PRP  personal pronoun I, he, she 

PRP$  possessive pronoun my, his, 

hers 

RB  adverb very, silently,  

RBR  adverb, comparative better 



 

63 

 

RBS adverb, superlative best 

RP  particle give up 

TO  to go 'to' the store. 

UH  interjection errrrrrrrm 

VB verb, base form take 

VBD verb, past tense took 

VBG  verb, gerund/present participle 

taking 

VBN  verb, past participle taken 

VBP  verb, sing. present, non 3d take 

VBZ  verb, 3rd person sing. present 

takes 

WDT  wh determiner which 

WP  wh pronoun who, what 

WP$  possessive wh pronoun whose 

WRB  wh abverb where, when 



 

64 

 

Appendix B Software Packages Used 
 

Scikit Learn: We have heavily utilized Scikit-learn library for our 

implementation. Scikit-learn is a free software library written mostly in 

the Python programming language. Contained within it, is a plethora of 

different classification, regression and clustering algorithms e.g. k-means 

cluster, Support Vector Machines, random forests etc. It is very well 

documented and well maintained. It is extremely popular for 

programming Machine Learning based systems. It is fully compatible 

with other data analysis libraries like Scipy and NumPy. 

Scrapy: One of the most popular and most easy-to-use data scraping 

libraries written in Python. You can get it up and running and scraping 

data within minutes. But it also features advanced features for those who 

need it. Like many other popular python libraries, it too is well 

documented and maintained. 

Natural Language Toolkit (NLTK): NLTK is a Natural Language 

processing library written in Python. It is presently one of the most 

popular NLP libraries in the world. 

 



 

65 

 

REFERENCES 
 

[1] J. Tanenbaum, “Issues in Decision Tree Classification of Film Genre 

Using Plot Features”, Simon Fraser University, 2014. 

[2] K.-W. Ho, “Movies’ Genres Classification by Synopsis”, Stanford 

University, 2011. 

[3] A. C. A. Géron, Hands-On Machine Learning with Scikit-Learn and 

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent 

Systems. O'Reilly Media, 2017. 

 [4] S. Bird, E. Klein and E. Loper, Natural language processing with 

Python. Beijing [etc.]: O'Reilly, 2011.  

[5] "IMDb: Most Popular Titles", IMDb, 2017. [Online]. Available: 

http://www.imdb.com/search/title?country_of_origin=in. [Accessed: 13- 

Aug- 2017].  

[6] T. Joachims, “Text categorization with support vector machines: 

Learning with many relevant features”, in Machine learning: ECML-98, 

1998, p. 137–142. 

[7] S. Shiju and G. Surya, “Crime analysis and prediction using data 

mining”, in First International Conference on Networks & Soft 

Computing (ICNSC), Guntur, Andhra Pradesh, India, 2014, p. 406-412. 



 

66 

 

[8] M. Arias, “Linear and Logistic Regression”, Polytechnic University of 

Catalonia, 2012. 

[9] S. Andrews, “Support vector machines for multiple-instance 

learning”, in Advances in neural information processing systems, 2003, p. 

577-584. 

[10] Y.-J. Hu, T.-H. Ku, R.-H. jan, K. Wang, Y.-C. Tseng, and S.-F. 

Yang, “Decision tree-based learning to predict patient controlled 

analgesia consumption and readjustment”, in BMC medical informatics 

and decision making, 2012.  

[11] B. Tay, J. K. Hyun and S. Oh, “A Machine Learning Approach for 

Specification of Spinal Cord Injuries Using Fractional Anisotropy Values 

Obtained from Diffusion Tensor Images”, Dankook University, 2013. 

[12] D. Powers, "Evaluation: From Precision, Recall and F-Measure to 

ROC, Informedness, Markedness & Correlation", Journal of Machine 

Learning Technologies, vol. 2, no. 1, pp. 37-63, 2011. 

[13] A. Rajaraman, Mining of Massive Datasets. 2011, p. 1–17.  


	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1  INTRODUCTION
	1.1 Goals
	1.2 Motivation
	1.3 Methodology
	1.4 Thesis Outline

	Chapter 2  LITERATURE REVIEW
	Chapter 3  MODELS AND ALGORITHMS
	3.1 Machine Learning
	3.1.1 Supervised Learning
	3.1.2 Classification Algorithms

	3.2 Classifiers
	3.2.1 Naive Bayes
	3.2.2 Logistic Regression
	3.2.3 Support Vector Machines
	3.2.4 Decision Trees
	3.2.5 K-Nearest Neighbors

	3.3 Measuring Accuracy

	Algorithm for Naïve Bayes
	Algorithm for Logistic Regression
	Algorithm for Support Vector Machines
	Algorithm for Decision Tree Learning
	Algorithm for K Nearest Neighbors
	Chapter 4  THE DATASET
	4.1 Acquiring the Dataset
	4.2 Analysis and Cleaning of Dataset
	4.3 Training and Test Dataset
	4.4 Analysis of the Features
	4.4.1 Exploring Parts of Speech
	4.4.2 Processing description features for classification

	4.5 Implementation steps

	Chapter 5  RESULTS
	5.1 Multinomial Naïve Bayes
	5.2 Logistic Regression
	5.3 K Nearest Neighbors (KNN)
	5.4 Decision Tree
	5.5 Linear Support Vector Machine (SVM)
	5.6 Comparison of Algorithms
	5.7 Comparison against existing work

	Chapter 6  CONCLUSION
	6.1 Conclusion
	6.2 Future Work

	Appendix A POS Tag List
	Appendix B Software Packages Used
	REFERENCES

