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ABSTRACT 

Since the beginning till present, the technology demands to store as massive data as possible 

in as little space as possible. As web, mobile, desktop and all other applications use image for 

different purposes, image compression technique has become one of the most important 

applications in image analysis as well as in computer science. Though image compression is 

an old concept, yet it’s considerably time consuming processes has opened a new field of 

research in image compression. In this paper, LZW (Lempel-Ziv-Welch) algorithm which is a 

lossless image compression algorithm with the implementation of parallel processing for 

faster computation has been proposed. As a consequence, the experimental result verifies 

much faster and satisfactory computation time in millisecond scale than the conventional 

technique along with keeping the decoded image in lossless format.  

 

Keywords: image compression, LZW, CUDA, GPU, parallel processing, DICOM 
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Chapter 1: Introduction 

1.1 Introduction 

Image compression means compressing or reducing the image file in such a way that we 

don’t have to loss any data to an objectionable level. We need image compression to lessen 

the cost of the storage and also for a fast transmission. More data can be stored in the 

memory space if we get our images compressed and transmission will be faster because of 

the reduced size of the image. 

An image can be compressed in two ways; lossy and lossless. Lossy methods are usually used 

for natural images where imperceptible loss of precision is acceptable to achieve a significant 

amount of reduction in bit rate. The negligible differences that a lossy compression produces 

may also be called visually lossless. On the other hand, the lossless compression is preferred 

for archival purposes and often for medical imaging, technical drawings, clip art, or comics. 

Our goal is to reduce a given file to a file with significantly less size with zero data loss and 

ensure faster encoding time. To ensure zero data loss we used LZW ((Lempel-Ziv & Welch)) 

algorithm. At first, this algorithm takes string of characters and converts into a string of using 

dictionary which is actually a code table that can map string into codes. By adding new 

substring the code table is made. Then, the input string is being converted into a string of 

characters. We have used a TIFF, GIF, DCM file as an input and after compressing and 

decompressing we get the output data same as input. 

Tagged Image File format or TIFF is used to maintain image quality and file security. 

The medical imaging system also known as DICOM (DCM file extension) image. The format 

ensures that all the data stays together, as well provides the ability to transfer said information 

between devices that support the DICOM format. The idea of big data is already been 

introduced and in the recent future, it is going to be used in almost every sectors possible. As 

a DCM file is saved on a disk or flash drive, so when big data will be used the companies or 

industries responsible for managing these files will have to spend a lot.  

GIF file format is commonly used for images on the web and in the software programs. 

For building and manipulating images, GPU is used which will accelerate the computation. 

The applications which are traditionally handled or manipulated by the CPU can also be 

processed by the GPU.A parallel computing architecture called CUDA(Compute Unified 

Device Architecture), provided by NVIDIA, and is the computing engine for NVIDIA GPUs. 
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As both CPU and GPU can compute parallel we believe this will help us to compute in image 

processing. As the computation will be faster this will give a lesser encoding time for our 

work. That is why to make the encoding time lesser, we have used parallel processing in 

CUDA-enabled GPU. 
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Chapter 2: LZW Algorithm and GPU Parallel Processing 

 

2.1 LZW Overview 

Lemple-Ziv-Welch (LZW) is an errorless, lossless general purpose data compression 

algorithm, which is simple to execute as well as versatile at the same time. The LZW is 

mostly effective where repeated patterns are available in the data. Whenever a new pattern or 

substring is found, it is placed in the dictionary so that it will be easy to find next time. The 

advantage of this dictionary is that it will stop repetition of the same substring. Also because 

of the same reason, there will be such entries in the dictionary that might never be used. LZW 

addresses spatial redundancies in an image. By spatial we mean to say that the elements that 

are duplicated within a structure, such as pixels in a still image and bit patterns in a file as 

well. This algorithm can be implemented on few popular formats like GIF, TIFF, DCM 

etc.  

 

2.2 Algorithm 

The algorithm generates a dictionary or code table, in each stage step of compression it takes 

the input bytes as a sequence. if the sequence is not in the dictionary, the sequence will be 

added. This way the codes 256 through 4095 will be created in the dictionary, as the 

algorithm process proceeds. LZW may have a dictionary-entry that will be never used. 

 

2.3 Encoding 

The LZW starts working with a dictionary of 256 characters where these are arranged in the 

case of 8 bits. Then it uses those characters as the standard character set. After that the 

algorithm consider 8 bits as a single character and read data all the 8 bits at a time and encode 

the data by replacing with the number it represents as the index in the dictionary. Whenever it 

finds a new string or substring, it adds it to the dictionary; and every time it finds an existing 

substring it just reads in a new character and concatenate this string with the current on to 

create a new substring. Later, if the LZW again finds the substring, it will be replaced with a 

single number. Normally, a maximum number is assigned to a dictionary so that, the process 

does not run away with its memory. It is mandatory for a code to have a bigger bit than a 

character although, many substrings are created frequently and being replaced by a single 

code, the ultimate goal of compression will be achieved.  

The following pseudo code [own defined] which refers our encoding procedure:   
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Charc; 

Strings= empty string; 

while (input) 

{ 

 c = read a character; 

 if (dictionary contains s+c) 

  {s = s+c;} 

 else 

  { 

   encodes to output; 

   adds+c to dictionary; 

   s = c; 

  } 

} 

encode s to output; 

The encoding steps would follow the steps like showed in Figure 1: 

 

 

Figure1: Encoding steps 
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2.4 Decoding 

 

The decompression process follows a straightforward direction for LZW. It can use the 

dictionary which was created while encoding so, no need of dictionary creation. In the 

decoding process the first step is that the LZW decoder takes a numeric number which 

indicate the value in the dictionary. The first character of this substring is concatenated to the 

current working string. This new concatenated string is added to the dictionary. After that, the 

decoded string becomes current working string and the process repeats. 

 

The following pseudo code [own defined] which refers our decoding procedure:   

 

string s; 

charc; 

while (input from code stream) 

{ 

 c = read character from input; 

 if (c exists in the dictionary) 

  { 

   c will be output; 

   add s+ c[0] in dictionary; 

   s=c; 

  } 

 else 

   { 

   s+s[0] will be output; 

   s=c; 

  } 

 s will be output; 

} 

 

 

 

 

 



6 
 

The decoding steps would follow the steps like showed in Figure 2: 

 

Figure 2: Decoding steps 

2.5 Background Information of GPU 

A GPU (Graphics Processing Unit) is a specific electronic device which is specially designed 

to manipulate and alter memory to increase the speed of creation of images in a frame buffer 

intended for output to a display device rapidly. Modern Graphics Processing Units are very 

efficient at manipulating computer graphics as well as image processing. The GPUs are more 

efficient than the general purpose CPUs because of their highly parallel structure. GPU 

complete this type of operations in such algorithms where the processing of large blocks of 

data can be done in parallel. The term GPU was popularized by NVIDIA in 1999, who 

marketed the “GeForce 256” as "the world's first GPU", or Graphics Processing Unit. The 

“GeForce 256” was introduced as a "single-chip processor with integrated transform, 

lighting, triangle setup/clipping, and rendering engines which is capable of processing a 

minimum of 10 million polygons per second". GPU accelerated computing the portion of a 

program where a large block is used and a normal CPU takes much time to compute it but the 

remainder of the code still runs on the CPU. From a user’s perspective, applications simply 

run much faster in a GPU. A GPU’s computing is much faster than that of a CPU’s because 

GPU has a massively parallel architecture including more efficient and thousands of smaller 
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cores functioned for multiple tasks (multi-threading) simultaneously whereas CPU consists of 

few cores optimized for sequential serial processing. 

2.6 GPU Architecture 

There are few differences between GPU and CPU processor design. NVIDIA’s GPU having 

variations among streaming multiprocessor (SMs) and each of these streaming processors 

comprise of numerous scalar processors also known as cores. NVIDIA introduced us with 

different types of GPU architecture such as Kepler, Fermi and Tesla etc. Figure 3 shows the 

architecture of streaming multiprocessor. 

 

Figure 3: Streaming Multiprocessor (SM) 

 

2.6.1 Tesla Architecture 

Tesla is NVIDIA’s first introduced micro architecture which a unified Shader model. In this 

architecture, the driver supports Direct3D Shader model 4.0 / OpenGL 2.1 (later drivers have 

OpenGL 3.3 support) architecture. The design is a major turnover for NVIDIA in GPU 

functionality and capability, because they were moving from the separate functional units like 

pixel shaders, vertex shaders etc. within previous GPUs to a homogeneous collection of 

universal floating point processors also called Stream processors. These floating point 
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processors can perform a more universal set of tasks. The Tesla was the first GPU which had 

unified shader with 128 processing elements which distributed in 8 shader cores.  

 

2.6.2 Fermi Architecture 

After Tesla, NVIDIA introduced with its successor and named it Fermi. Fermi is another 

GPU multiprocessor architecture like Tesla. G80 was the result of NVIDIA’s initial vision of 

what a unified graphics and parallel processor should look like. G200 was the upgraded 

version of G80. It extended the performance and functionality of G80. It was world’s first 

computational GPU which was designed with an entirely new approach. When NVIDIA 

started the groundwork for both G80 and G200, they started gathering extensive feedback 

from the users and marked some area for further improvement such as ECC support, faster 

atomic operation, faster context switching, true cache hierarchy, more shared memory and to 

improve double precision performance.  

The very first Fermi architectured GPU, which featured up to 512 CUDA cores, was created 

with 3.0 billion transistors. All these transistors were implemented in 16 SMs (Streaming 

Multiprocessors) of 32 cores each. For a 384-bit memory interface, the GPU has six partitions 

of 64 bit each which helps the GPU to support up to a total of 6GB of GDDR5 DRAM 

memory.  

 

2.6.3 Kepler Architecture 

Kepler is the codename for a NVIDIA GPU micro architecture which is the successor of the 

Fermi micro architecture. It was first introduced in April, 2002. This engineering was mainly 

focused on energy efficiency or power effectiveness. Most GeForce 600 series to 700 series 

and some of GeForce 800 arrangements were manufactured in 28 nm depending on 

Keplermicro architecture .  When compared to older NVIDIA GPUs, Kepler helped newer 

versions to achieve a memory clockspeed of 6GHz. Kepler based NVIDIA members ensure 

some following standard features: 

 

 Next generation Streaming Multiprocessor 

 CUDA compute capability 3.0 to 3.5 

 Polymorph-Engine 2.0 

 PCI Express 3.0 interface 

 Dynamic parallelism 
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 NVIDIA GPUDirect 

 

2.6.4 Maxwell Architecture 

Maxwell is an NVIDIA GPU micro architecture which is considered as the upgraded version 

of Kepler rmicro architecture. GeForce GTX 750 and GeForce GTX 750 Ti were the very 

first Maxwell based products launched by NVIDIA in the market. The models where the 

Maxwell architecture was introduced to were all manufactured in 28 nm. The devices which 

were designed on the basis of Maxwell architecture were specially functioned for power 

efficiency. The L2 cache used in Kepler was of 256 KiB which later on increased to 2 MiB 

on Maxwell. This massive increase in memory resulted the reduction for memory bandwidth. 

After this less bandwidth architecture was provided, the memory bus was reduced to 128 bit 

which used to be of 192 bit on Kepler and resulting more power saving. An improved 

Streaming Multiprocessor (SM) was provided using Maxwell architecture and influenced 

more power saving. The improved SM (Streaming Multiprocessor) on Maxwell architecture 

was renamed to SMM. The structure of the warp scheduler was taken from Kepler, with the 

texture units and FP64 CUDA cores still shared, but the layout of most execution units were 

divided so that each warp schedulers in an SMM controls one set of 32 FP32 CUDA cores, 

one set of 8 load/store units and one set of 8 special function units. This is in contrast to 

Kepler, where each SMX has four schedulers that schedule to a shared pool of execution 

units.  

 

2.6.5 Pascal Architecture 

After Maxwell micro architecture NVIDIA developed a new micro architecture named 

Pascal. It considered as the Successor of Maxwell micro architecture. The first Pascal micro 

architecture was reveled in the market on April 2016 and the first chip was GP100. The 

architecture name was derived from a 17th century mathematician Blaise Pascal. The 

Streaming multiprocessors in different GPU micro architecture consist different number of 

CUDA cores. For example, Tesla had only 8, Fermi had 32, Kepler had 192 and Maxwell had 

128 CUDA cores; where Pascal consists of 64 CUDA cores. The Pascal micro architecture 

based GP100 SM consists of two different processing blocks with having 32 single precision 

CUDA core each. It also has a wrap scheduler, an instruction buffer, 2 dispatch units and 2 

texture mapping units. The Maxwell micro architecture supports CUDA compute capability 

6.0.  
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2.7 CUDA 

CUDA was first introduced by NVIDIA in 2007. It is a general purpose computational 

programming which is specialized in parallel GPU architectures. CUDA which stands for 

Compute Unified Device Architecture is a NVIDIA GPU architecture which is in GPU 

(Graphics Processing Unit) card. CUDA uses extension of C++ also referred to CUDA C for 

programming purpose. CUDA has a huge advantage in computational power to the 

programmers and it is being liked by them since it provides a lot of freedom to work on a 

broader basis. Depending on the GPU model, CUDA also provides many co-operating cores. 

These cores can communicate and also exchange information among each other as a result; 

running multithreaded application there is no need for streaming computing in GPU.  

 

As mentioned earlier, CUDA follows C programming language and able to works in such 

way that the thousands of threads used in CUDA can perform parallel. All of these threads 

can perform or execute a lot of functions or codes at the same time. These threads execute 

same codes on different data. It has introduced us with a whole new meaning for general 

purpose computing with GPUs. CUDA programs consists of one or two parts of a code that 

executes in the device (GPU) whereas, rest of the portion executes on the host (CPU). It is 

preferable to execute some parts of a code in GPU where a huge parallelism is needed 

otherwise in terms of little multithreading it is wiser to use CPU since copying data from host 

to device is time consuming. In large scale parallelism the GPU overcomes copy speed and 

provides performance boost.   

Figure 4 describes how the whole process works step by step. At first we run main method 

form host (CPU). From host memory the processing data is copied to memory of GPU. At the 

same time CPU gives instruction of processing to the device (GPU).after that GPU cores or 

threads take part in executing the GPU-enabled CUDA code simultaneously. In the next step, 

the executed result is stored in the memory of GPU. At last, the device memory sends the 

result to CPU memory which is the result of the portion implemented in GPU. 

Figure  4 clearly describes the above process: 
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Figure 4: Processing Flow on CUDA 

2.7.1 Units of CUDA 

 

Grids 

Grid is a group of all the threads which are running in the same kernel at the same time. 

GPUs cannot share grids. It is not possible to synchronize between the blocks within a grid. 

Grids can be executed only in the part of GPU where an entire grid is handled by a single 

GPU . Figure 5 shows architecture of a grid: 

 

Figure 5: 1D Grid with 2D Blocks and Threads 
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Blocks 

A lot of blocks are compressed in a single grid whereas each block is composed of multiple 

threads which could execute concurrently or serially and in no specific order but all the grids 

in a thread uses the same program in a block. A single block has unique ids and these ids can 

be interpreted as 1D, 2D or 3D according to the architecture. Multiprocessors (MPs) are the 

place where blocks are executed. A GPU chip is designed as a combination of 

multiprocessors (MPs) where each multiprocessor is responsible for executing one or more 

blocks in a grid. A block can never be shared or divided between multiple multiprocessors 

(MPs).  Figure 6 shows the architecture of a block in GPU: 

 

 

Figure 6: 1D Block with 2D Threads (3x2) 

Threads 

Each block consists of multiple threads. It is only the execution of a kernel with a provided 

index. Every thread work with a unique index to access elements in array such that all the 

threads in a block can process the entire data set combined. Threads can run with an 

individual core of microprocessor although they are not bound to only with multiple 

microprocessors. A thread has its own ID and it can be interpreted as 1D, 2D or 3D 

depending on block pattern. Threads are mainly executed in stream processors (SPs). Every 

Multi Processor is further separated into a number of SPs. With each stream processors the 

handling one or more threads in a block is possible. If a multiprocessing unit can run 768 

threads, for example and a GPU device has 4 of them; then within a given time not more than 

4*768 threads will run parallel.  
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CUDA built-in variables 

● blockIdx.x, blockIdx.y, blockIdx.z are built-in variables that returns the block ID in the x-

axis, y-axis, and z-axis of the block that is executing the given block of code. 

● threadIdx.x, threadIdx.y, threadIdx.zare built-in variables that return the thread ID in the 

x-axis, y-axis, and z-axis of the thread that is being executed by this stream processor in this 

particular block. 

● blockDim.x, blockDim.y, blockDim.z are built-in variables that return the “block 

dimension” (i.e., the number of threads in a block in the x-axis, y-axis, and z-axis)  

 

Thread identification and manipulation 

We must have a good idea about the proper manipulation of the blocks and threads in order to 

carry out intense calculations in the most efficient manner so that we can make the best use of 

the features of CUDA. 

 

Figure 7: Global Thread ID generation from 1D block 

Assume a hypothetical 1D grid and 1D block architecture: 3 blocks, each with 6 threads. 

So for example, if we want to calculate the global thread ID of 26: 

● gridDim.x = 3 x 1 

● blockDim.x = 7 x 1 

● Global Thread ID = (blockIdx.x * blockDim.x) + threadIdx.x 

● = (2 x 7) + 3 = 17 
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2.7.2 Memory units in CUDA 

 

Global memory: SDRAM chips are the source of this type of memory which is connected to 

the GPU chip. Any multiprocessor thus any thread within a multiprocessor can read or write 

from or to any location in the global memory. It also may call device memory. 

 

Texture cache: This type of memory stays in the multiprocessors which can be filled with 

data from device memory so that it can act a cache. Threads running in the microprocessors 

are restricted to read-only access of this memory. 

 

Constant cache: It is a read-only memory which lays in each MP. 

 

Shared Memory: Like the other types of memory shared memory lays within a 

multiprocessor although it is smaller. It can be read/written by any thread in a block which is 

assigned to that MP. 

 

Registers: each microprocessor has a number of registers that are shared between its SPs. 

Different types of memory which are available in CUDA like global memory, texture 

memory, and shared memory are shown in Figure 12. Global memory which is also referred 

to as device memory is visible to every thread within the same grid in computing with large 

size. Shared memory is only visible to threads in the same compute block which is very fast 

to access although it has a much smaller capacity than that of a global memory. 

 

Figure 8 describes the memory model of CUDA architecture where a CUDA-enabled GPU 

consists of many grids which includes multiple blocks and each block contains number of 

threads. 
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Figure 8: Memory model of CUDA 

2.7.3 CUDA C: 

Although the term CUDA C indicates the involvement of only C programming language, 

both the C and C++ languages can be used in CUDA C. Eventually, CUDA C is C/C++ with 

few extensions which allow programmers to execute a code faster in GPU by running 

multiple threads in parallel. NVIDIA developed CUDA (Compute Unified Device 

Architecture) in such a way so that, one can convert a C code in a GPU enable language.  

CUDA C uses three types of functions; firstly, the host functions which can only be called 

and executed by CPU. These are the functions mostly similar to C. Secondly, the functions, 

the qualifier, _global_ which are only executed by the device and called by CPU itself. These 

types of functions are called kernel. The return type of kernel function is always void. The 

final type of function is device functions can be exampled by the qualifier, _device_ which 

can only be called and run by the device. This type of function can return any type of value.   

The built in device variables blockDim, blockIdx and threadIdxused to identify and 

differentiate GPU threads that execute the kernel in parallel. 
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2.8 Difference between CPU and GPU Processing 

 

The CPU (Central Processing Unit) is mostly considered as the brain of the PC. Now-a-days, 

that brain is being replaced by performance by another part of the PC - the GPU (Graphics 

Processing Unit). All PCs have chips that render the display images to monitors. All these 

chips are different from each other. Graphics controller provided by Intel provides basic 

graphics which means it can only display applications like Microsoft PowerPoint, low 

resolution video, basic games etc. Unlike a graphics controller the GPU is in a class by itself. 

The GPU by born is a powerful programmable and computational device. The architecture of 

a CPU is composed to just a few cores and a lot of primary memory that can handle quite a 

few multithreading software parallel. On the other hand, GPU is composed to hundreds of 

cores which allow it to execute thousands of threads at a time simultaneously. A GPU with 

100+ cores can speed up some software by 1000 times alone although that software can have 

thousands of threads.  

 

Table 1: Differences between CPU and GPU 

CPU GPU 

1. CPU consists of few cores with good amount of 

cache memory 

1.GPU consists of hundreds of cores 

2.CPU can handle few software thread at one time 2.GPU can take care of thousands at 

a time 

3.Can reduce latency more efficiently 3.Not as efficient as CPU in reducing 

latency 

4.CPU is not much power and cost efficient  4.GPU is more power and cost 

efficient 

5.Host code runs on CPU 5.CUDA runs on GPU 
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Figure 9 and 10 shows a typical architecture of a CPU and GPU accordingly: 

 

Figure 9: Typical architecture of a CPU 

 

Figure 10: Typical architecture of a GPU 
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Chapter 3:Proposed Method 

3.1 Proposed Method: 

The methodology of our whole research work was mainly based upon making the 

encoding/decoding time more efficient with the help of CUDA technology introduced by 

NVIDIA but we also took space complexity as one of our concerns. 

Image can be compressed in two ways. One of them is lossless and another one is lossy. 

LZW compression is a lossless compression method. It takes string of characters as input and 

convert the input into a string of codes. To do so, the process uses code table (or dictionary) 

that maps strings into codes. When a new sub string appears, the code table is updated. Since 

generating the code table is a repeated process, it is very hard to parallelize LZW 

compression conventionally using a parallel processing in CUDA-enabled GPU, we can 

make the encoding time of the algorithm faster the application or calculation which is 

supposed to be done by the CPU can be done fast if we can use GPU to compute 

simultaneously. As both CPU and GPU can calculate simultaneously, this combined 

calculation can help us to process image providing shorter encoding time. Our goal is to 

implement LZW compression algorithm using several acceleration techniques using CUDA, 

although it is a very hard task. Suppose that a GPU generates a compressed image generated 

by a computer graphics or image processing CUDA program and we want to archive it as a 

LZW-compressed DCM image in the SSD connected to the host PC. The image is transferred 

to the host PC, and compressed and written in the SSD using a CPU. 

Before starting to code on CUDA programming language we had to study the architecture 

and operational features of the Graphics Card that we used to run our complete code on(i.e.: 

Collecting information about Grids, Blocks and Threads).  

Moreover, we had to learn about the complete computation process of the LZW algorithm 

and its processing steps. To run the compression algorithm comprehensively at a faster rate, 

firstly we analysed the portions of our C code that had to be implemented with CUDA code. 

Because, we only can visually feel the difference in computational ability between GPU and 

CPU when the GPU code is set on the areas where there are large amount of calculations, 

needed to be processed (i.e.: loop) 
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After running both the codes for 5 times consecutively we then analyse the execution time for 

both the codes in a chart, which gives the comparison between the CUDA code and C code .It 

also gives us idea about the average time required to execute the whole system. 

At first, we learned about the advantages of different compression algorithms such as DCT, 

JPEG, Huffman Coding, LZW and so on. But from these, we chose LZW because it is a 

lossless compression algorithm. And LZW algorithm always provides efficiency in terms of 

space complexity and time complexity both for the case of files that have redundancy in data. 

Since .dcm files have redundancy in colour code, we chose this to be as our dataset of 

proposed method.  Also, .dcm file is widely used in medical imaging and any loss of data is 

not suitable in medical imaging, hence we chose LZW algorithm to be run on parallel 

computation process. 

The proposed method was verified by bus through a successful completion of an experiment. 

The experiment was conducted on a PC, its photo is attached below. 

The specification of the PC is given below: 

● Microsoft Windows 8.1 Pro64 bit  

● Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 3401 MHz, 4 Core(s), 8 Logical Processor(s)  

● 16 GB RAM  

NVIDIA GeForce GTX 660  

● 2GB GDDR5 Memory  

We used the NVIDIA GeForce GTX 660 as our GPU needed to operate parallel processing. 

Advantages of   NVIDIA GeForce GTX 660: 

1) Performance is very pleasing when the fact of price is kept in mind 

2) Common markets are introduced to kepler technologies by this GPU 

Disadvantages of   NVIDIA GeForce GTX 660: 

1)AMD GPU of the same price range perceives much faster computational speed than this 

GPU 
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2)AMD GPUs of the same specifications are much more power efficient than this NVIDIA 

GPU. 

GPU Engine Specs:  

❏ 960 CUDA Cores  

❏ 980 Base Clock (MHz)  

❏ 1033 Boost Clock (MHz)  

❏ 78.4Texture Fill Rate (billion/sec)  

Memory Specs:  

❏ 6.0 Gbps Memory Clock  

❏ 2048 MB Standard Memory Config 

❏ GDDR5 Memory Interface  

❏ 192-bit GDDR5 Memory Interface Width  

❏ 144.2Memory Bandwidth (GB/sec) 30  

Feature Support:  

❏GPU Boost, PhysX, TXAA, NVIDIA G-SYNC-ready Important Technologies  

❏ 3D Vision, CUDA, Adaptive VSync, FXAA, 3D Vision Surround, SLI Other Supported 

Technologies  

❏ 4.3OpenGL  

❏ 12 API Microsoft DirectX  

❏ PCI Express 3.0 Bus Support  

❏ Yes Certified for Windows 7  

❏ Yes 3D Vision Ready  
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Chapter 4: Results 

4.1 Result and Discussion:  

Our proposed method is successfully verified because we have found significant amount of 

decrease in compression and decompression time of LZW(Lempel–Ziv-Welch) compression 

algorithm after the inclusion of CUDA programs in our implementation. The process was 

comprehensively run and programmed under Microsoft Visual Studio 2010 and CUDA 5.5 in 

the Operating System of Windows 8.1 .We took .dcm (DICOM) format files as our input of 

the compression algorithm. For comparison the implementation was done in two different 

ways, one with pure ANSII C code and another with the inclusion of CUDA programs in that 

C code.  When the two different codes were fed with our given .dcm format files, we found 

significant amount of increase in efficiency time in terms of comparing the CUDA code with 

the C code. 

Results of existing LZW Algorithm fed with input:  

Images that are used to create the charts in the results are given bellow. 

     

      (a)          (b) 

   

      (c)           (d) 
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     (e)       (f)

    

     (g)      (h) 

    

                 (i)               (j) 

 Figure 11: Input images 
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Figure 12 attached below is evidence that shows that our system is lossless and both of the 

images (input and output) have exactly the same resolution and file size. 

 

Figure 12: Lossless Picture Quality 

In the Figure 13 below, image3.dcm is our input file for this particular example, test.dcm is 

the compressed file and testresult.dcm is the final output file. 

 

 

Figure 13: Identifying Input and Output file 
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Table 2: Size comparison between original and compressed file 

 Original Size (kb) Compressed Size (kb) Size reduced (%) 

Image 1 130 120 7.69 

Image 2 257 197 23.35 

Image 3 9234 6279 32.00 

Image 4 11583 8977 22.5 

Image 5 25663 20066 21.81 

Image 6 26628 16410 38.37 

Image 7 39682 36730 7.44 

Image 8 160147 65416 59.15 

Image 9 362819 100240 72.37 

Image 10 553290 294604 44.75 

 

The results of existing LZW Algorithm fed with a .dcm file as input is shown below in Figure 

14(a) and chart 14(b). 

 

  Figure 14(a): Comparison between original image size and compressed size 
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Figure 14(b): Comparison between original image size and compressed size 

The experimental results using NVIDIA GeForce GTX 660 and Intel Core i7 show that we 

have obtained approximately 15% efficiency in encoding time depending on the image. 

Results of LZW Algorithm CUDA version fed with input: 

The results of LZW Algorithm CUDA version fed with a .dcm file as input is shown below. 

Table 3: Comparison between execution time of CPU and GPU 

 Image size 

(kb) 

CPU time (ms) GPU time (ms) Time 

Difference(ms) 

Image 1 130 3914.8 3485.397 429.403 

Image 2 257 4198.38 3803.84 394.54 

Image 3 9234 6619.866 5879.145 740.721 

Image 4 11583 9086.88 8887.145 199.735 

Image 5 25663 9116.15 9007.135 109.015 

Image 6 26628 9507.68 9268.94 238.74 

Image 7 39682 15361.84 14772.71 589.13 

Image 8 160147 45201.4 33467.15 11734.25 

Image 9 362819 67311.3 54969.35 12341.95 

Image 10 553290 136407.3 120936.9 15470.4 
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Figure 15: Comparison between execution time of CPU and GPU 
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Chapter 5: Conclusion 

In this paper, we have proposed a faster computation method for LZW image compression 

algorithm using GPU parallel processing. At first, an image is taken as string of characters as 

input and converted into a string of codes while updating dictionary to encode with the help 

of GPU. In spite of having a satisfactory result, hurdle of some limitations have put this 

experiment away from an even greater result. Firstly, we could not have the opportunity to 

perform the experiment with higher specifications of GPU as the result will definitely be 

different with higher computation power of GPU. Most importantly, we could not have scope 

to implement dynamic parallelism with our GPU with computation capability of 3.0 as it 

needs GPU with at least computation capability of 3.5. Dynamic parallelism, the ability to 

parallel processing the nested loops of programs in GPU will bring out an improvement of 

this experiment. In conclusion, this paper evinces that a faster computation time can be 

achieved with the help of GPU parallel processing than the conventional technique. We 

intend to do further research and development in this particular algorithm with the concept of 

GPU parallel processing which will help us to get more efficient encoding time. 
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