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Abstract 

Microscopic object’s conductance behaviours are totally different from those of the 

macroscopic ones and cannot be understood, let alone deciphered using classical approach. 

Nanoscale systems’ electron transport is not diffusive and has different carrier transport 

mechanism based on the contact type. Quantum dots are artificial atoms with the fascinating 

possibility of exploring their atomic states by applying current and voltage to them. They can 

be used to make single electron transistors where the quantum dot is kept separated from the 

source, drain and gate terminal by tunnel barriers. Quantum tunnelling causes current to flow 

when specific electrochemical potential requirements are met which can be achieved by 

varying the gate voltage. During this a phenomenon called Coulomb blockade is observed 

which is basically the appearance of oscillations in the conductance as a function of gate 

voltage. This is unique because it can only be observed for quantum dots and not in bulk 

materials. The conductance of the single electron transistor also varies with the temperature. 

All these characteristic behaviours can be deduced by carefully constructing and solving the 

rate equations. The acquired equations were then simulated using Python programs to plot the 

graphs for current versus voltage, differential conductance versus voltage, differential 

conductance versus temperature and maximum conductance versus temperature. The achieved 

graphs clearly depict how the current and the differential conductance are related to different 

source drain voltage at different gate voltages. The discrete conductance peak indicates 

different atomic states.  Furthermore, it also outlines the fact that differential conductance 

depends on temperature and its value decreases as the temperature increases.  
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Chapter 1 

Electron Transport 

 

1.1 Bulk material conductance 

 

Conductance of macroscopic object can be best understood through Ohm’s law which ties the 

dimension of the object to its electrical conductance. It states that the conductance, G of a 

rectangular conductor is directly proportional to its width, W but inversely proportional to its 

length, L by some factor σ which is the conductivity of the material, i.e. 

 

 𝐺 =  
𝜎𝑊

𝐿
 

However as we delve into the smaller dimensions of structures the Ohm’s law no longer 

applies. This is because the conductivity which is dependent on the charge carrier density and 

the mean free path gets disrupted as the size becomes smaller. When it comes to nanometer 

scale devices, electron transport can occur through well-resolved quantum states. Transport in 

semiconductor quantum dots, metal nanoparticles, and molecules can all be understood within 

a similar framework, in terms of the energies of the states and the rates for transitions between 

states. [7] 

  

1.2 How electron transport is affected in nanoscale systems 

 

When it comes to nanoscale systems electron transport will no longer be a diffusive process as 

described by Ohm’s law as the mean free path will be greater than the size itself. As this 

happens the charge carriers will not scatter within the conductor anymore. Another reason for 
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the drastic change is due to the role played by the contact between the macroscopic electrode 

and the nanoscale conductor on the total conductance. The type of the contact itself plays an 

immense role on how the carriers are transported. On top of all these the fact that the nanoscale 

object has a large charge addition energy and a quantized excitation spectrum cannot be ignored 

as well as these play vital role when carrier transport takes place at low temperatures. Based 

on all these it can easily be deduced that the well know conventional macroscopic theories 

cannot be used to decode the behaviours depicted at smaller scales.  

 

1.3 Quantum dots 

 

Quantum dots, (QD) are artificial atoms. Like natural atoms, they contain a discrete number of 

electrons and have a discrete spectrum of energy levels. [14] However, they are more 

commonly known as semiconductor nano-particles with a size of order 100nm [20] which 

obeys quantum mechanical principle of quantum confinement. It’s emission and absorption 

spectra corresponding to the energy band gap is governed by quantum confinement principles 

in infinite well potential. The energy band gap increases as the quantum dot decreases in size. 

This is because the smaller quantum dots have stronger confinement making the energy gap 

larger. Similarly, a larger size gives a smaller energy gap. [1] A semiconductor quantum dot, 

is made out of roughly a million atoms with an equivalent number of electrons. Virtually all 

electrons are tightly bound to the nuclei of the material. However the number of free electrons 

in the dot can be very small; between one and a few hundred. This tiny fraction of free electrons 

are the ones which act as the conduction electrons. By attaching a gate to the quantum dot and 

applying a voltage this small fraction can be varied from a single free electron to a several 

thousands of free electrons. The deBroglie wavelength of these electrons is comparable to the 

size of the dot, and the electrons occupy discrete quantum levels and have a discrete excitation 
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spectrum. A quantum dot has another characteristic usually known as the charging energy 

which is the energy required to add or remove a single electron from the dot. [12]. The atom-

like behaviour of these dots is studied by measuring their transport properties by their ability 

to carry an electric current.  

Quantum dot’s applications is quite an impressive array that includes single-electron trap, 

single-electron turnstile and pump, single electron transistor, (SET) oscillators, supersensitive 

electrometry, detection of infrared radiation, voltage state logics, charge state logics, 

background-charge-insensitive memory, NOVORAM, electrostatic data storage and so on. The 

list apparently is quite long, impressive and versatile. It is also increasingly expanding because 

just by subjecting the quantum dot to different permutations and combinations of different 

types of electrodes or applied voltages all these were achieved. [18] 

 

1.4 Single electron transistor 

 

A single-electron transistor consists of a conducting island which is the quantum dot in this 

case that is kept separated from the source, drain and gate terminal using insulating barriers. 

Their effective nuclear charge is controlled by metallic electrodes. Electrons can only transfer 

between the island and the source and drain terminals by quantum tunnelling through the 

barriers. For such devices to operate at room temperature, which is essential if they are to be 

used in realistic circuits, the islands must be smaller than 10 nanometres across. Moreover, the 

potential energy of the tunnel barriers must be high enough to localize electrons on the island. 

They exude an unique and spectacular property which is the current through them or the 

capacitance between their leads can vary by many orders of magnitude when their charge is 

changed by a single electron. [14] 

In single molecule device the electronic spectrum is quantized with the typical energy scale of 

eV. By applying some voltage between the electrodes the conductance can be measured by 
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measuring the amount of current flowing through it. In SET, the single-electron charging effect 

is used to precisely control the charging of individual electrons on a conducting island. 

Electrons are transferred to the island from source and drain terminals by tunnelling across 

potential barriers. The charging of the island by a single-electron can be controlled by a gate 

terminal. The SET has the advantages of very low power consumption, better immunity from 

statistical charge fluctuation, and very high scalability compared to conventional 

complementary metal–oxide–semiconductor devices. [22] They are also highly diversified and 

have wide range of functionality. Their ability to permit self-assembly makes it easier to 

fabricate them in such small dimensions. Also a metallic quantum dot has a very small energy 

level separation at the Fermi level, so that the change in Fermi level by the transfer of a single 

electron from dot to leads may be neglected. The ground state of such a system corresponds to 

the minimum value of U (N). [23] 

 

 

Figure 1.1: Single electron transistor 
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1.5 Quantum tunnelling 

 

As it has been already stated that quantum dot is loosely connected to the source and the drain 

electrode through insulating barriers the idea of considering current through it might be 

frowned upon and found confusing as well. However, despite of the small gap quantum 

tunnelling allows current to pass through the infinitesimally small gap. In order to understand 

this phenomenon one has to adopt the quantum mechanical approach.  

 
Figure 1.2: Quantum dot coupled to a source and gate via tunnel barriers 

 
Considering the gap between the electron and the electrodes as potential barriers with height 

V(r) and the quantum dot as an infinite spherical potential well [11]. According to classical 

physics, a particle of energy E, less than the height V(r) of the barrier, cannot escape making 

the region inside the barrier classically forbidden. However due to the wave-particle duality, 

the particle’s associated wave function has to be continuous at the barrier as well as at the other 

side of the barrier thereby giving rise to a considerable probability of the particle tunnelling 

through the classically forbidden region with an unchanged before and after amount of energy 

due to the energy conservation principle, i.e.  
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V(r) = {
0 𝑤ℎ𝑒𝑛 𝑟 ≤ 𝑅 
∞ 𝑤ℎ𝑒𝑛 𝑟 < 𝑅

 

 

Radial equation for inside the well: 

 

𝑑²𝑢

𝑑𝑟²
 = [ 

𝑙(𝑙+1)

𝑟²
 – k2] 

 

−ħ²

2𝑚
 
𝑑²𝑢

𝑑𝑟²
 =  Eu  

 

𝑈 (𝑟) = 𝐴𝑠𝑖𝑛𝑘𝑟 + 𝐵𝑐𝑜𝑠𝑘𝑟 

 

When angular momentum, l = 0 

 

𝑑²𝑢

𝑑𝑟²
= −k²u   where  k =  

√2𝑚𝐸

ħ
 

 

𝑈(0) = 𝑈 (𝑅) 

 

𝑈(𝑅) = 𝐴𝑠𝑖𝑛𝑘𝑅 

 

𝑘𝑅 = 𝑛𝜋 

  

k =  
𝑛𝜋

𝑅
 

 

𝐸𝑁  =  
𝑛²𝜋²ħ²

2𝑚𝑅²
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Therefore the characteristic energy scale is 

 

𝜋²ħ²

𝑚𝑅²
=  ∆E  

Now shifting the focus on the Fermi level of electrode connected to the quantum dot, i.e. their 

electrochemical potentials. Assuming the electrochemical potential of the source is µ𝑆  and the 

electrochemical potential of the drain as µ𝐷. By definition the energy should be equal to charge 

multiplied by voltage, i.e. µ𝑆  - µ𝐷   = eVSD where VSD is the applied voltage and  

𝑒 =  charge of electron =  −1.602 × 10−19  C. Considering that the available energy states 

lying beneath the µ𝑆and µ𝐷  are filled with an electron and the above energy states are empty. 

Current is conducted only when electron can tunnel onto the quantum dot from the source 

electrode and from there to the drain electrode. As soon as an energy state in the range of µ𝑆 and 

µ𝐷 becomes available electron is tunneled by changing the number of electrons on the quantum 

dot between N and N+1. If no tunnelling occurs the number remains unchanged, i.e. N. [2] 

 

 

Figure 1.3: Energy states during blocked state and open state 
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1.6 Conditions for quantum tunnelling to take place 

 

If tunnelling is allowed to the source and drain electrodes, then the number of electrons N 

adjusts itself until the energy of the whole circuit is minimized. When tunnelling occurs, the 

charge on the island suddenly changes by the quantized amount e. The associated change in 

the Coulomb energy is conveniently expressed in terms of the capacitance C of the island. An 

extra charge e changes the electrostatic potential by the charging energy, 𝐸𝐶 =  
𝑒²

𝐶
 . This 

charging energy becomes important when it exceeds the thermal energy, 𝑘𝐵𝑇. A second 

requirement is that the barriers are sufficiently opaque such that the electrons are located either 

in the source, in the drain, or on the island. This means that quantum fluctuations in the number 

N due to tunnelling through the barriers is much less than one over the time scale of the 

measurement which is roughly the electron charge divided by the current. This requirement 

translates to a lower bound for the tunnel resistances, Rt of the barriers. Considering the typical 

time to charge or discharge the island ∆𝑡 =  𝑅𝑡𝐶. The Heisenberg uncertainty relation:  

 ∆𝐸∆𝑡 =
𝑒²

𝐶
× 𝑅𝑡𝐶 > ℎ implies that 𝑅𝑡 should be much larger than the resistance quantum 

ℎ 

𝑒²
 =

 25.813 kΩ  in order for the energy uncertainty to be much smaller than the charging energy. 

So the two conditions for observing effects due to the discrete nature of charge are: 

𝑅𝑡  ≫  
ℎ 

𝑒²
  

𝑒²

𝐶
 >>  𝑘𝐵T   

The first criterion can be met by weakly coupling the dot to the source and drain leads. The 

second criterion can be met by making the dot small. Since the capacitance of an object scales 

with its radius R, for a sphere, 𝐶 =  4𝜋𝜖1𝜖0  𝑅 and for a flat disc, C =  8π𝜖1𝜖0R where 𝜖𝑟 is 

the dielectric constant of the material surrounding the object. While the tunnelling of a single 
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charge changes the electrostatic energy of the island by a discrete value, a voltage 𝑉𝐺   applied 

to the gate with capacitance of 𝐶𝐺 can change the island’s electrostatic energy in a continuous 

manner. In terms of charge, tunnelling changes the island’s charge by an integer while the gate 

voltage induces an effective continuous charge 𝑞 =  𝐶𝐺 × 𝑉𝐺  that represents the charge that 

the dot would like to have. This charge is continuous even on the scale of the elementary charge 

e. If we sweep 𝑉𝐺  the buildup of the induced charge will be compensated in periodic intervals 

by tunnelling of discrete charges onto the dot. This competition between continuously induced 

charge and discrete compensation leads coulomb oscillations in a measurement of the current 

as a function of gate voltage at a fixed source-drain voltage. Another important criteria in order 

to be able to resolve quantized energy levels, the energy level spacing has to be ∆𝐸 >>  𝑘𝐵𝑇 

because unless this the whole system falls under the regime of classical dot causing all the 

previous approaches to be inapplicable. [16] 
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Chapter 2 

Coulomb Blockade Theory 

A manifestation of the Coulomb blockade is the appearance of oscillations in the conductance 

as a function of gate voltage, at temperatures above those expected for resonant tunnelling of 

non-interacting electrons. Coulomb-blockade oscillations in semiconductors were originally 

observed and identified in disordered quantum wires, where they result from a break-up of the 

narrow channel into a few segments separated by tunnel barriers. [21] After the discovery of 

conductance oscillations periodic in the gate voltage in a disordered quantum wire, and the 

identification of this phenomenon as Coulomb-blockade oscillations, it has become clear that 

in certain regimes single electron tunnelling is the dominant transport mechanism in 

semiconductor nanostructures. This is crucial because of the possibility to study the interplay 

between size and charge quantization effects, which is not feasible in metallic grains because 

of the small Fermi wavelength in a metal. [23] 

 

2.1 Basic concepts of a single electron transistor

 

Figure 2.1: Schematic drawing of a typical electrode arrangement for a single electron 

transistor. 
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Electrostatic energy of the dot: [16] 

 

𝐸𝑒𝑠  =  
(−𝑒𝑁 + 𝑄₀)²

2𝐶
 

 

The integer part of the excess charge in the dot is 𝑒𝑁 =  𝑒(𝑁 — 𝑁0), where N is the 

number of electrons in the dot, and the elementary charge e is taken positive. 𝑁0 is the 

number of electrons at zero gate voltage and zero bias voltage (so 𝑁0 > N), which 

compensates the positive background charge originating from the donors. Q0 represents the 

continuous part of the excess charge. 

 

𝑄₀ =  𝐶𝑆𝑉𝑆 + 𝐶𝐷𝑉𝐷  +  𝐶𝐺 𝑉𝐺  

 

Since VSD is very small Q₀ ≈ CGVG 

 

𝐶𝑡𝑜𝑡𝑎𝑙  = 𝐶𝑆 +  𝐶𝐷  +  𝐶𝐺  

 

Assumptions made for calculating U(N): 

 

1) Quantum levels can be calculated independently of the number of electrons on the dot. 

2) Parameterizing coulomb interactions amongst and between the electrons on the dot and 

environment electrons by capacitance. 

3) Capacitance is independent of dot electrons. 

 

U(N)  =  ∑ 𝐸𝑝𝑁
𝑖=1  +  

(−𝑒𝑁+𝐶𝐺 𝑉𝐺 )²

2𝐶𝑡𝑜𝑡𝑎𝑙
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Electrochemical potential of the dot with N electrons: 

 

µ(𝑁)  = minimum energy for adding the N th electron to the dot  

 

µ(𝑁)= U (N) – U (N-1) where U (N)= total ground state energy for N electrons 

 

 µ(𝑁) = 𝐸𝑁 +  
(−𝑒𝑁+𝐶𝐺 𝑉𝐺 )²

2𝐶𝑡𝑜𝑡𝑎𝑙
−  

(𝑁−1)²𝑒²

2𝐶𝑡𝑜𝑡𝑎𝑙
   

 

 

Or 

µ(𝑁) = 𝐸𝑁 + 
(𝐶𝐺 𝑉𝐺 )²

2𝐶𝑡𝑜𝑡𝑎𝑙
- 

(2𝑁𝑒𝐶𝐺 𝑉𝐺 )²

2𝐶𝑡𝑜𝑡𝑎𝑙
  + 

(𝑁𝑒)²

2𝐶𝑡𝑜𝑡𝑎𝑙
 –[

(𝑁𝑒)²

2𝐶𝑡𝑜𝑡𝑎𝑙
−  

2𝑁𝑒2

2𝐶𝑡𝑜𝑡𝑎𝑙
+  

𝑒²

2𝐶𝑡𝑜𝑡𝑎𝑙
]  

  

 

Ignoring (𝐶𝐺 𝑉𝐺 )² since 𝑉𝐺  is very small: 

 

 µ(𝑁) = 𝐸𝑁 + 
(𝑁−1/2)𝑒²

𝐶𝑡𝑜𝑡𝑎𝑙
−  

𝑒𝐶𝐺 𝑉𝐺

𝐶𝑡𝑜𝑡𝑎𝑙
  

 

Here EN is the electrochemical potential and the rest is electrostatic potential. 

As long as µ(𝑁)  is in between µ𝑆 and µ𝐷  the Nth electron can be added to the dot. 

 

µ(𝑁) = 𝐸𝑁 + 
(𝑁−1/2)𝑒²

𝐶𝑡𝑜𝑡𝑎𝑙
 +  e𝑉𝑑𝑜𝑡  where 𝑉𝑑𝑜𝑡 =

1

𝐶𝑡𝑜𝑡𝑎𝑙

∑ 𝐶𝑖𝑉𝑖𝑖=𝑆,𝐷,𝐺  
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Taking VD = 0  

𝑉𝑑𝑜𝑡 =
𝐶𝑆

𝐶𝑡𝑜𝑡𝑎𝑙
 𝑉 + 

𝐶𝐺

𝐶𝑡𝑜𝑡𝑎𝑙
 𝑉𝐺    

 

Since Vdot does not depend on electrons available on the dot, the charge addition energy 

Ec+ ΔE does not change in this case but the position of µ(𝑁)  relative to the electrodes’ Fermi 

levels is affected by V and VG.  So by changing these two voltages the electrodes’ 

electrochemical potentials can be changed as well. To summarize the effect: 

 

Taking ∆µ(𝑁) ≈ 𝑒∆𝑉𝑑𝑜𝑡  

           

∆µ(𝑁)

𝑒
 ≈  

𝐶𝑆

𝐶𝑡𝑜𝑡𝑎𝑙
∆V +  

𝐶𝐺

𝐶𝑡𝑜𝑡𝑎𝑙
 ∆𝑉𝐺   

 
Figure 2.2: Two situations for different gate voltages 

a ) Coulomb blockade of electron tunneling when µ(N) < µD < µS < µ(N+1) 

b ) One by one electron tunneling at the N to N + 1 transition when eV<<µ(N+1) - µ(N)  and 

µD < µ(N+1) < µS 
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When the number of electrons is changed by one change in electrochemical potential will 

be: [16] 

 

µ(𝑁+1) −  µ(𝑁) = 𝐸(𝑁+1) − 𝐸𝑁 +
𝑒2

𝐶
      where 𝐶 =  𝐶𝑡𝑜𝑡𝑎𝑙  

Or 

µ(𝑁+1) − µ(𝑁) = ∆𝐸 + 
𝑒²

𝐶
 

 

The addition energy µ(𝑁+1) −  µ(𝑁) is large for a small capacitance and a large energy 

splitting ∆E between 0D-states. It is important to note that the charging energy, 
𝑒²

𝐶
 to the 

energy gap exists only at the Fermi energy. Below µ(𝑁)  the energy states are only separated 

by the single-particle energy differences ∆E. These energy differences ∆E are the excitation 

energies of a dot with constant number N. A non-zero addition energy can lead to a 

blockade for tunnelling of electrons on and off the dot, where N electrons are localized on 

the dot. The (N+1)th electron cannot tunnel on the dot, because the resulting electrochemical 

potential µ(N+1) is higher than the potentials of the reservoirs. So, for µ(𝑁) <  µ𝑆, µ𝐷 < µ(𝑁+1) 

the electron transport is blocked, which is known as the Coulomb blockade. Another reason 

is because the charge addition energy is quite large in this case. The Coulomb blockade can 

be removed by changing the gate voltage, to align µ(𝑁+1)  between µ𝑆 and µ𝐷. When this 

happens an electron can tunnel from the left reservoir on the dot. The electrostatic increase 

is 
𝑒²

𝐶
 due to the change in the conduction band bottom. Since µ(𝑁+1)) > µ𝐷, one electron can 

tunnel off the dot to the right reservoir, causing the electrochemical potential to drop back 

to µ(𝑁) . A new electron can now tunnel on the dot and repeat the cycle of N to N+1 and 

back to N again.  
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Figure 2.1: Single-electron tunneling through a quantum dot, under the conditions of  𝐸𝑁 +

(𝑁 − 
1

2
)

𝑒2

𝐶
=  𝐸𝐹 + 𝑒𝜙 for the case that the charging energy is comparable to the level 

spacing. In panel (a) N - l electrons occupy the dot. The 𝑁𝑡ℎ  level in the dot is empty. In 

panel (b) an electron has tunneled into this level. The potential difference φ between dot and 

leads has decreased by 
𝑒

𝐶
 (becoming negative), because of the added electron. Finally, in 

panel (c) the added electron tunnels out of the dot, resetting the potentials to the initial state 

of panel (a). [23] 
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Figure 2.4: Single-electron charging and the origin of periodic conductance peaks. The 

quantity of charge that represents the minimum electrostatic energy plotted as the broken 

line in (a). In a quantum dot where the discreteness of charge must be taken into account, 

the actual charge in the QD is the integer multiple of e closest to the continuous quantity 

Q, shown by the full line in (a). The schematic plot of conductance peaks in (b) illustrates 

that periodic conductance peaks correspond to gate voltages associated with charge-

degeneracy points, where the charge in a QD is free to fluctuate by e. [19]  
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Figure 2.5:  Schematic comparison, as a function of gate voltage, between the 

electrochemical potential in the dot µ(𝑁+𝑖) , and the electrostatic potential.  

 

2.2 Single level quantum dots 

 
For single level quantum dots only two charge states are taken into account due to their 

availability, i.e. N and N+1 in their ground states. Additional assumptions are made for 

simplification and convenience purpose, i.e. µ𝐷  = 0 and voltage V = VG = 0 thereby 

modifying the previously established equations slightly. 

 

µ(𝑁+1)  = 𝐸0  +  𝑒𝑉𝑑𝑜𝑡 where E0 = ground state energy 

 

Assuming the crossing potential as Vc, 𝑒 =  − ǀ𝑒ǀ , E0  > 0 and V = 0 . When VG = 0 , i.e  

VG < Vc the dot will be in its N state as µ(𝑁+1)  greater than µ𝑆 and µ𝐷  which will both be 

equal to zero. So no current will flow. 
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When VG  is not equal to zero and is greater than Vc  the N + 1 state will always be occupied. 

This is because  

µ(𝑁+1)  = 𝐸0 − ǀeǀ 𝑉𝑑𝑜𝑡  

 

𝐸0 < ǀeǀ 𝑉𝑑𝑜𝑡 

 

𝐸0 < ǀeǀ 
𝐶𝐺 𝑉𝐺

𝐶𝑡𝑜𝑡𝑎𝑙

 

Therefore, 

ǀeǀ 𝑉𝐺 >  𝐸0

𝐶𝑡𝑜𝑡𝑎𝑙

𝐶𝐺

 

 

Current will only flow when 𝑉𝐺 ≈ 𝑉𝐶  because this will cause the µ(𝑁+1)to be in the range 

of µs and µD.  

By putting 𝑉𝐺 = 𝑉𝐶  we get ǀeǀ 𝑉𝐶 >  𝐸0
𝐶𝑡𝑜𝑡𝑎𝑙

𝐶𝐺
 

  

Therefore 𝑉𝐶  can be defined as  

 𝑉𝐶 =
𝐸0

ǀ𝑒ǀ  

𝐶𝑡𝑜𝑡𝑎𝑙

𝐶𝐺
 

This means the conductance versus VG graph will show only one peak where the value of 

VG will be equal to that of VC. This happens due to Coulomb oscillation because at  

VG  =
  VC the N and N+1 charge states will have equal energy thereby allowing the electron 

to move to and fro the dot.  
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2.3 Fermi functions for single level quantum dots 

 
The single level quantum dot has single-electron energy levels at Ep (p = l, 2, . . . .) , labeled 

in ascending order and measured relative to the bottom of the potential well. Each level 

contains either one or zero electrons. Spin degeneracy can be included by counting each 

level twice, and other degeneracies can be included similarly. Each reservoir is taken to be 

in thermal equilibrium at Temperature, T and chemical potential ΕF. Α continuum of states 

is assumed in the reservoirs, occupied according to the Fermi-Dirac distribution [3] 

 

f(E −  𝐸𝑓)  =  [1 +  exp (
E− 𝐸𝑓

𝑘𝐵𝑇
 ) ]

−1

  

 

Therefore for Source  

 

𝑓𝑠 =   [1 +  exp ( 
µ(𝑁+1)− µ𝑆

𝑘𝐵𝑇
 )]

−1

  

 

Simplifying µ(N+1) by putting the value of E0 and Vdot 

 

µ(𝑁+1) =  ǀeǀ  (
𝐶𝐺 𝑉𝑐

𝐶𝑡𝑜𝑡𝑎𝑙
) −  ǀeǀ  (

𝐶𝐺 𝑉𝐺 + 𝐶𝑆 𝑉

𝐶𝑡𝑜𝑡𝑎𝑙
)  

 

Therefore, 

µ(𝑁+1) = − ǀeǀ  [
𝐶𝐺 (𝑉𝐺 − 𝑉𝐶  ) + 𝐶𝑆𝑉

𝐶𝑡𝑜𝑡𝑎𝑙

] 
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Putting VSD = V = Vdot  and e = - ǀeǀ 

 

µ𝑆 − µ𝐷  

− ǀeǀ 
=  𝑉𝑆𝐷   

 

Therefore, 

− ǀ𝑒ǀ𝑉 =  µ𝑆   since µ𝐷 =  0 

 

Finally fS becomes  

 

𝑓𝑠 =  [1 +  exp ( 
µ(𝑁+1)+ ǀeǀV

𝑘𝐵𝑇
 )]

−1

  

 

For Drain 

 𝑓𝐷 =   [1 +  exp (
µ(𝑁+1)− µ𝐷

𝑘𝐵 𝑇
)]

−1

  

 

But since µD= 0 and VD =0 Fermi-Dirac distribution for drain is 

 

𝑓𝐷 =  [1 +  exp (
µ(𝑁+1)

𝑘𝐵𝑇
)]

−1

  

 

2.4 Rate equations for single level quantum dots 
 

Since the fluctuation between the two available states is completely random statistical 

approach has to be adopted to figure out the probability of the dot being in a certain state. 

Assuming P0 as the probability of the dot being in the N state and P1 as the probability of 

the dot being in the N+1 state the rate of change of P0 and P1 can be depicted by referring 
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to the non-equilibrium probability distribution P as a stationary solution of the kinetic 

equation [3] which is:  

𝛿

𝛿𝑡
 𝑃 ({𝑛ɩ}) = 0

=  −  ∑ 𝑃 ({𝑛ɩ}) 𝛿𝑛𝑝 ,0[𝛤𝑝
𝑙𝑓(𝐸 ɩ,𝑙(𝑁) − 𝐸𝐹) +  𝛤𝑝

𝑟𝑓(𝐸 ɩ,𝑟(𝑁) −  𝐸𝐹)]

𝑝

−  ∑ 𝑃 ({𝑛ɩ}) 𝛿𝑛𝑝 ,1[𝛤𝑝
𝑙  [ 1 − 𝑓(𝐸𝑓,𝑙(𝑁) −  𝐸𝐹) + 𝛤𝑝

𝑟[ 1

𝑝

− 𝑓(𝐸𝑓,𝑟(𝑁) − 𝐸𝐹)]

+ ∑ 𝑃 (𝑛1, … , 𝑛𝑝−1, 𝑛𝑝+1 … ) 𝛿𝑛𝑝 ,0  

𝑝

× [𝛤𝑝
𝑙  [ 1 − 𝑓(𝐸𝑓,𝑙(𝑁 + 1) −  𝐸𝐹) + 𝛤𝑝

𝑟[ 1 − 𝑓(𝐸𝑓,𝑟(𝑁 + 1) −  𝐸𝐹 )] 

+ ∑ 𝑃 (𝑛1, … , 𝑛𝑝−1, 𝑛𝑝+1 … ) 𝛿𝑛𝑝 ,1  

𝑝

× [𝛤𝑝
𝑙  [ 𝑓(𝐸𝑖,𝑙(𝑁 − 1) −  𝐸𝐹) +  𝛤𝑝

𝑟[ 1 − 𝑓(𝐸𝑖,𝑟(𝑁 − 1) − 𝐸𝐹)]   

  

So, 

 

𝛿𝑃0

𝛿𝑡
=  − 𝑃0[𝛤𝑆𝑓𝑆 + 𝛤𝐷𝑓𝐷] − 𝑃0[𝛤𝑆(1 − 𝑓𝑆) +  𝛤𝐷(1 − 𝑓𝐷)] + 𝑃0[𝛤𝑆(1 − 𝑓𝑆) +  𝛤𝐷(1

− 𝑓𝐷)] +  𝑃1[𝛤𝑆(1 − 𝑓𝑆 ) + 𝛤𝐷(1 − 𝑓𝐷)]   

Therefore, 

𝛿𝑃0

𝛿𝑡
=  − 𝑃0[𝛤𝑆𝑓𝑆 +  𝛤𝐷𝑓𝐷] +  𝑃1[𝛤𝑆(1 − 𝑓𝑆) +  𝛤𝐷(1 − 𝑓𝐷 )]   

 

 

 

 



27 
 

Similarly, 

 

𝛿𝑃1

𝛿𝑡
=  − 𝑃1[𝛤𝑆𝑓𝑆 +  𝛤𝐷𝑓𝐷] − 𝑃1[𝛤𝑆(1 − 𝑓𝑆) +  𝛤𝐷(1 − 𝑓𝐷 )] +  𝑃0[𝛤𝑆𝑓𝑆 +  𝛤𝐷𝑓𝐷]

+  𝑃1[𝛤𝑆𝑓𝑆 +  𝛤𝐷𝑓𝐷]    

 

Therefore,  

𝛿𝑃1

𝛿𝑡
=   𝑃0[𝛤𝑆𝑓𝑆 +  𝛤𝐷𝑓𝐷] −  𝑃1[𝛤𝑆(1 − 𝑓𝑆) + 𝛤𝐷(1 − 𝑓𝐷)] 

 

Here 
𝛿𝑃0

𝛿𝑡
 and 

𝛿 𝑃1

𝛿𝑡
 are the rate equations. By solving these two we can find in turn find the 

probability P0 and P1. 

Taking  
𝛿 𝑃0

𝛿𝑡
= 0 and assuming total probability, i.e 𝑃0  + 𝑃1 =  1 

 

−𝑃0[𝛤𝑆𝑓𝑆 +  𝛤𝐷𝑓𝐷] + (1−𝑃0 )[𝛤𝑆(1 − 𝑓𝑆) +  𝛤𝐷(1 − 𝑓𝐷)] = 0 

Or 

 

[𝛤𝑆 +  𝛤𝐷]−𝑃0[𝛤𝑆 + 𝛤𝐷] − 𝛤𝑆𝑓𝑆 −  𝛤𝐷𝑓𝐷 = 0 

Therefore, 

𝑃0 =
𝛤𝑆(1 − 𝑓𝑆) +  𝛤𝐷(1 − 𝑓𝐷)

𝛤𝑆 +  𝛤𝐷
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2.5 Current equation for single level quantum dots 

 
Assuming that the stationary current [3] through the left barrier equals that through the right 

barrier which is given by  

𝐼 =  −𝑒 ∑ ∑ 𝛤𝑝
𝑙

{𝑛𝚤}

𝑃 ({𝑛𝚤}) × {𝛿𝑛𝑝 ,0 𝑓 (𝐸𝚤,𝑙(𝑁) −  𝐸𝐹) − 𝛿𝑛𝑝,1[ 1 −  𝑓 (𝐸𝐹,𝑙(𝑁) −  𝐸𝐹)] }

∞

𝑝=1

 

 

By putting the previously acquired value and solving the above equation we get the current 

for the single level quantum dot. 

 

𝐼

ǀeǀ
=  −𝑃0𝛤𝑆𝑓𝑆 + 𝑃1𝛤𝑆(1 − 𝑓𝑆)  

Or  

𝐼

ǀeǀ
=  −𝑃0𝛤𝑆𝑓𝑆 + (1−𝑃0)(𝛤𝑆 − 𝛤𝑆𝑓𝑆)  

  

Or 

𝐼

ǀeǀ
=  𝛤𝑆 (1−𝑃0−𝑓𝑆)   

Or 

𝐼

ǀeǀ
=  

𝛤𝑆𝛤𝐷𝑆
  (𝑓𝐷 − 𝑓𝑆)

𝛤𝑆 +  𝛤𝐷

 

  

Taking  𝛤 =
𝛤𝑆 𝛤𝐷   

𝛤𝑆 + 𝛤𝐷
  we finally get:  

𝐼 = ǀ𝑒ǀ 𝛤 (𝑓𝐷 −  𝑓𝑆) 

 

In the equation given above the current amplitude is dependent on 𝛤, i.e. higher the value 

of 𝛤 higher will be the current amplitude and (𝑓𝐷 −  𝑓𝑆) determines whether current will 
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actually flow or not. This is because when 𝑓𝐷 =  𝑓𝑆 current will become zero. Since fD and 

fS are both connected to µ(N+1) which in turn is dependent on the value of µS and µD current 

will also not be conducted unless µ(N+1) lies in between the µS and µD.  

2.6 Conductance equation for single level quantum dots 

 

Since conductance, G is related to current and voltage in the manner 𝐺 =
𝐼

𝑉
 by 

differentiating the acquired current equation with respect to voltage, V we can find the 

differential conductance for the single level dot.  

 

  
𝑑𝐼

𝑑𝑉
= ǀeǀ𝛤 [

𝛿 (𝑓𝐷 − 𝑓𝑆 )

𝛿µ(𝑁+1)
 
𝛿 µ(𝑁+1)

𝛿𝑉
−

𝛿 𝑓𝑆

𝛿𝑉
]     

 

𝛿𝑓𝐷

𝛿µ(𝑁+1)

=
− exp  (

µ(𝑁+1)

𝑘𝐵 𝑇
) 

𝑘𝐵 𝑇 [1 +  exp  (
µ(𝑁+1)

𝑘𝐵𝑇 ) ]
2
 

 

𝛿𝑓𝑆

𝛿µ(𝑁+1)

=
− exp  (

µ(𝑁+1) +  ǀeǀV
𝑘𝐵𝑇 ) 

𝑘𝐵𝑇 [1 + exp  (
µ(𝑁+1) +  ǀeǀV

𝑘𝐵𝑇
) ]

2
 

 

𝛿 𝑓𝐷

𝛿µ(𝑁+1)
−

𝛿𝑓𝑆

𝛿µ(𝑁+1)
=

exp  (
µ(𝑁+1)+ ǀeǀV

𝑘𝐵 𝑇
) 

𝑘𝐵𝑇 [1+ exp  (
µ(𝑁+1) + ǀeǀV

𝑘𝐵𝑇
) ]

2

 

− 
− exp  (

µ(𝑁+1)

𝑘𝐵 𝑇
) 

𝑘𝐵𝑇 [1+ exp  (
µ(𝑁+1)

𝑘𝐵𝑇
) ]

2

 

    

 

𝛿µ(𝑁+1)

𝛿𝑉
= − ǀeǀ  [

𝐶𝑆

𝐶𝑡𝑜𝑡𝑎𝑙
]  
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𝛿𝑓𝑆

𝛿𝑉
= − ǀeǀ

exp  (
µ(𝑁+1)+ ǀeǀV

𝑘𝐵𝑇
) 

𝑘𝐵 𝑇  [1+ exp  (
µ(𝑁+1)+ ǀeǀV

𝑘𝐵𝑇
) ]

2     

 

Substituting all the above equations in 
𝑑𝐼

𝑑𝑉
∶ 

𝑑𝐼

𝑑𝑉
=

ǀeǀ²Γ 

𝑘𝐵𝑇
  {

𝐶𝑆

𝐶𝑡𝑜𝑡𝑎𝑙
 [ 

exp  (
µ(𝑁+1)

𝑘𝐵𝑇
) 

  [1+ exp  (
µ(𝑁+1)

𝑘𝐵𝑇
) ]

2  −
exp  (

µ(𝑁+1) + ǀeǀV

𝑘𝐵𝑇
) 

  [1+ exp  (
µ(𝑁+1)+ ǀeǀV

𝑘𝐵𝑇
)]

2] +
exp  (

µ(𝑁+1) + ǀeǀV

𝑘𝐵𝑇
) 

  [1+ exp  (
µ(𝑁+1) + ǀeǀV

𝑘𝐵𝑇
)]

2

 

}        

 

𝑓𝐷 −  𝑓𝐷
2 =

exp  (
µ(𝑁+1)

𝑘𝐵𝑇
) 

 [1+ exp  (
µ(𝑁+1)

𝑘𝐵𝑇
)]

2  

 

𝑓𝑆 − 𝑓𝑆
2 =

exp  (
µ(𝑁+1)+ ǀeǀV

𝑘𝐵𝑇
) 

 [1+  exp  (
µ(𝑁+1) + ǀeǀV

𝑘𝐵 𝑇
)]

2  

 

Or 

 
𝑑𝐼

𝑑𝑉
=

e²Γ 

𝑘𝐵𝑇
  [(1 − 𝑓𝐷)𝑓𝐷

𝐶𝑆

𝐶𝑡𝑜𝑡𝑎𝑙
+ (1 − 𝑓𝑆)𝑓𝑆 (

𝐶𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑆

𝐶𝑡𝑜𝑡𝑎𝑙
)]   

 

Finally, 

𝑑𝐼

𝑑𝑉
=

e²Γ 

𝑘𝐵𝑇
  [(1 − 𝑓𝐷)𝑓𝐷

𝐶𝑆

𝐶𝑡𝑜𝑡𝑎𝑙
+ (1 − 𝑓𝑆)𝑓𝑆 (

𝐶𝐷 − 𝐶𝐺

𝐶𝑡𝑜𝑡𝑎𝑙
)]   

 

In the above equation first term will be non-zero when 0 < fD  < 1 because µ(𝑁+1)will align 

with µ𝐷. The second term will be non-zero when 0 < fS < 1 because µ(𝑁+1)will align with 

µ𝑆. So by varying the voltage V and VG we can easily measure 
𝑑𝐼

𝑑𝑉
  and in turn find µ(𝑁+1) . 
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2.7 How the voltage V changes when µN+1 aligns either µS or µD 

 
When µ(𝑁+1)= µ𝑆  

𝑒 [
𝐶𝐺 (𝑉𝐺 −𝑉𝐶 )+ 𝐶𝑆 𝑉

𝐶𝑡𝑜𝑡𝑎𝑙
] =  eV  

Or  

𝑉 =  
 𝐶𝑆𝑉

𝐶𝑡𝑜𝑡𝑎𝑙

+
𝐶𝐺 (𝑉𝐺 − 𝑉𝐶 )

𝐶𝑡𝑜𝑡𝑎𝑙

 

Or 

𝑉 =
(𝑉𝐺 − 𝑉𝐶 )

𝐶𝑡𝑜𝑡𝑎𝑙

 ×  
 𝐶𝑡𝑜𝑡𝑎𝑙

𝐶𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑆

 

Therefore, 

𝑉 =  
𝐶𝐺 (𝑉𝐺 − 𝑉𝐶 )

𝐶𝐷 + 𝐶𝐺

 

When µ(𝑁+1)= µ𝐷 = 0 

𝐶𝑆𝑉 +  𝐶𝐺 (𝑉𝐺 − 𝑉𝐶 ) = 0  

Therefore,  

 

𝑉 = −
𝐶𝐺 (𝑉𝐺 −𝑉𝐶 )

𝐶𝑆
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2.8 Temperature dependence of single level coulomb oscillation 

 
In order to figure out how the change in temperature affects coulomb oscillation the 

differential conductance,  
𝑑𝐼

𝑑𝑉
 has to be a bit more simplified. Assuming V=0, fS will become 

equal to fD . This in turn further simplifies the 
𝑑𝐼

𝑑𝑉
 , i.e. 

 

  
𝑑𝐼

𝑑𝑉
=

e²Γ 

𝑘𝐵𝑇

exp  (
µ(𝑁+1)

𝑘𝐵 𝑇
)  ÷  4exp  (

µ(𝑁+1)  

𝑘𝐵𝑇
) 

    [

1+ exp  (
2µ(𝑁+1) 

𝑘𝐵 𝑇
) 

2 exp  (
µ(𝑁+1)  

𝑘𝐵 𝑇
)

]

2  

Or 

  
𝑑𝐼

𝑑𝑉
=

e²Γ 

𝑘𝐵𝑇

1 / 4

   [cosh   (
µ(𝑁+1)

2𝑘𝐵 𝑇
) ]

2 

Or  

 
𝑑𝐼

𝑑𝑉
=

e²Γ 

4𝑘𝐵 𝑇
 [cosh   (

µ(𝑁+1)  

2𝑘𝐵𝑇
) ]

−2

  

 

Putting 𝛼 =  
 𝐶𝐺

𝐶𝑡𝑜𝑡𝑎𝑙
 in µ(𝑁+1)  we get 

 

  
𝑑𝐼

𝑑𝑉
=

e²Γ 

4𝑘𝐵 𝑇
 [cosh  

ǀeǀ𝛼(𝑉𝐺 −𝑉𝐶)

2𝑘𝐵 𝑇
 ]

−2

 

This shows 

Peak height = 
e²Γ  

4𝑘𝐵𝑇
 when VG = VC  and cosh  

ǀeǀ𝛼(𝑉𝐺 −𝑉𝐶)

2𝑘𝐵 𝑇
 = 1 

 

This means the maximum conductance value, Gmax will be 
e²Γ  

4𝑘𝐵 𝑇
 at that particular 

temperature.  
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Chapter 3 

Simulation 

 
In order to resolve and ensure the outcomes of the previously acquired equations simulation 

can be an effective approach. Since due to the unavailability of fully equipped lab 

fabrication followed by experiment based deductions was somewhat infeasible simulation 

is the next best solution to come up with characteristics graph through an artificially 

computed model.   

 

3.1 Python 

 
When the question to write the code for the equations came up Python seemed like the best 

option to opt for. The reasons behind it are endless. For starter Python looks more readable 

thereby providing the ability to program at a faster rate. Python container objects (e.g. lists 

and dictionaries) that can hold objects of any type, including numbers and lists. For python 

no casting is required. Python programs are typically much shorter than equivalent 

programs. This difference can be attributed to Python's built-in high-level data types and 

its dynamic typing. This means it is much easier to debug which is key when one has a time 

crunch.  

 

Python provides an interpreted programming language that can be viewed as an extension 

of the simple command languages already used by scientific programs. Also Python is 

easily integrated with software written in other languages. As a result, it can serve as both 

a control language for driving existing programs as well as a glue language for combining 

different systems together.  
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Python already has libraries that fit scientific computing like NumPy, Numeric, Numarray, 

SAGE, etc. It has bindings with R (the statistics language), integrated MatPlotLib graphing 

and can manage computational clusters. The numeric Python extension adds fast array and 

matrix manipulation. The Scipy library of Python has well known constants available. 

NumPy provides a multidimensional array object, various derived objects and an 

assortment of routines for fast operations on arrays, including mathematical, logical, shape 

manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic 

statistical operations, random simulation and much more.  
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3.2 Flowchart 

 

Figure 3.1: Flowchart for calculating and plotting I vs V 
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Figure 3.2: Flowchart for calculating and plotting  
𝑑𝐼

𝑑𝑉
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Figure 3.3: Flowchart for plotting  
𝑑𝐼

𝑑𝑉
 vs 𝑉𝐺 at different temperatures 
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Figure 3.4: Flowchart for plotting peak height vs temperatures 
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3.3 Sample codes 

 

For current versus source drain voltage graph for different gate 

voltages: 

 
import math 

import numpy as np 

from math import exp, expm1 

from decimal import Decimal 

import matplotlib.pyplot as plt 

 

#the constants are assigned with specific values 

gamma = 5 * math.pow(10, 9) 

kb = 1.3807 * math.pow(10, -23) 

t = 1.5 

ctotal = 100 

cd = 38 

cs = 57 

cg = 5 

e = 1.602 * math.pow(10, -19) 

 

#This array stores current 

current1 = [] 

current2 = [] 

current3 = [] 

current4 = [] 

current5 = [] 
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#this sets the voltages and the gate voltages 

VG = np.arange(-100*math.pow(10,-3),25*math.pow(10,-3),25*math.pow(10,-3)) 

voltage = np.arange(-10*math.pow(10,-3), 11*math.pow(10,-3), 0.1*math.pow(10,-3)) 

 

#this acts as the voltage loop for a particular gate voltage 

for vol in voltage: 

    meu = -(e/ctotal)* ((cg*VG[0])+(cs*vol)) 

    fd = math.pow((1+(np.exp(meu/(kb*t)))), -1) 

    fs = math.pow((1 + (np.exp(((meu+(e*vol))/(kb*t))))), -1) 

    I = e * gamma *(fd-fs) 

    current1.append(I) 

    …………………………….. 

    …………………………….. 

 

#for plotting the multiple graphs 

plt.gca().set_color_cycle(['red', 'green', 'blue', 'yellow', 'black']) 

plt.plot(voltage, current1) 

plt.plot(voltage, current2) 

plt.plot(voltage, current3) 

plt.plot(voltage, current4) 

plt.plot(voltage, current5) 

plt.xlabel('Voltage(V)') 

plt.ylabel('Current(nA)') 

plt.show() 
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For 
𝒅𝑰

𝒅𝑽
 versus source drain voltage graph for different gate voltages: 

 
import math 

import numpy as np 

from math import exp, expm1 

from decimal import Decimal 

import matplotlib.pyplot as plt 

 

#the constants are assigned with specific values 

gamma = 5 * math.pow(10, 9) 

kb = 1.3807 * math.pow(10, -23) 

t = 1.5 

ctotal = 100 

cd = 38 

cs = 57 

cg = 5 

e = 1.602 * math.pow(10, -19) 

 

#this sets the voltages and the gate voltages 

VG = np.arange(-100*math.pow(10,-3),25*math.pow(10,-3),25*math.pow(10,-3)) 

voltage = np.arange(-10*math.pow(10,-3),11*math.pow(10,-3),0.1*math.pow(10,-3)) 

 

#this acts as the array for 
𝑑𝐼

𝑑𝑉
 

dibydvarray1 = [] 

dibydvarray2 = [] 
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dibydvarray3 = [] 

dibydvarray4 = [] 

dibydvarray5 = [] 

 

#this acts as the voltage loop for a particular gate voltage 

for vol in voltage: 

    meu = -(e/ctotal)* ((cg*VG[0])+(cs*vol)) 

    fd = math.pow((1+(np.exp(meu/(kb*t)))), -1) 

    fs = math.pow((1 + (np.exp(((meu+(e*vol))/(kb*t))))), -1) 

    dibydv = ((math.pow(e,2)*gamma)/(kb*t)) * ((((1-fd)*fd)*(cs/ctotal)) + (((1-

fs)*fs)*((cd+cg)/ctotal))) 

    dibydvarray1.append(dibydv) 

 

#for plotting the multiple graphs 

plt.gca().set_color_cycle(['red', 'green', 'blue', 'yellow', 'black']) 

plt.plot(voltage, dibydvarray1) 

plt.plot(voltage, dibydvarray2) 

plt.plot(voltage, dibydvarray3) 

plt.plot(voltage, dibydvarray4) 

plt.plot(voltage, dibydvarray5) 

plt.xlabel('Voltage(V)') 

plt.ylabel('dI/dV') 

plt.show() 
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For 
𝒅𝑰

𝒅𝑽
 versus voltage graph for different temperature: 

 
import math 

import numpy as np 

from math import exp, expm1 

from decimal import Decimal 

import matplotlib.pyplot as plt 

 

#the constants are assigned with specific values 

gamma = 5 * math.pow(10, 9) 

kb = 1.3807 * math.pow(10, -23) 

t = 1.5 

ctotal = 100 

cd = 38 

cs = 57 

cg = 5 

e = 1.602 * math.pow(10, -19) 

alpha = cg/ctotal 

 

#this sets the voltages and the temperatures 

T = [100*math.pow(10,-3),160*math.pow(10,-3),300*math.pow(10,-3), 1, 2] 

voltage = np.arange(-10*math.pow(10,-3),11*math.pow(10,-3),0.1*math.pow(10,-3)) 

dibydvarray1 = [] 
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#this acts as the voltage loop for a particular temperature 

for vol in voltage: 

    coshvalue = np.cosh((e*alpha*vol)/(2*kb*T[0])) 

    dibydv = (((math.pow(e,2)*gamma)/(4*kb*T[0]))*math.pow(coshvalue, -2)) 

    dibydvarray1.append(dibydv) 

 

#for plotting the multiple graphs 

plt.gca().set_color_cycle(['red', 'green', 'blue', 'yellow', 'black']) 

plt.plot(voltage, dibydvarray1) 

plt.plot(voltage, dibydvarray2) 

plt.plot(voltage, dibydvarray3) 

plt.plot(voltage, dibydvarray4) 

plt.plot(voltage, dibydvarray5) 

plt.xlabel('Voltage(V)') 

plt.ylabel('dI/dV (S)') 

plt.show() 

 
For 𝑮𝒎𝒂𝒙  versus temperature: 

 
import math 

import numpy as np 

from math import exp, expm1 

from decimal import Decimal 

import matplotlib.pyplot as plt 
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#constants are assigned specific values 

gamma = 5 * math.pow(10, 9) 

kb = 1.3807 * math.pow(10, -23) 

ctotal = 100 

cd = 38 

cs = 57 

cg = 5 

e = 1.602 * math.pow(10, -19) 

 

# sets the temperature 

T = np.arange(0,4.2,.2) 

#array for 𝐺𝑚𝑎𝑥  

gmaxvaluearray = [] 

 

#loop for 𝐺𝑚𝑎𝑥  at a particular temperature 

for t in T: 

    gmax = ((math.pow(e,2)*gamma)/(4*kb*t)) 

    gmaxvaluearray.append(gmax) 

 

#for plotting the graph    
plt.plot(T, gmaxvaluearray) 
plt.xlabel('T(K)') 

plt.ylabel('peak height (S)') 
plt.show() 
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Chapter 4  

Results 

Each obtained equation for current versus voltage, V, corresponding differential conductance 

versus voltage, V, differential conductance with V = 0 and finally maximum conductance 

versus temperature were simulated using Python. The common values used for the variables 

are listed below: 

𝛤 = 5 𝐺𝐻𝑧 

𝑒 =  ǀ𝑒ǀ = 1.602 × 10−19  𝐶 

𝐶𝐷 = 38 µ𝐹 

𝐶𝑆 = 57 µ𝐹 

𝐶𝐺 = 5 µ𝐹 

𝐶𝑡𝑜𝑡𝑎𝑙 = 100 µ𝐹 

𝐸0 = 0 

𝑉𝐶 = 0 

𝑘𝐵 𝑇 = 1.3806 × 10−23  𝐽 
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4.1 Current versus source drain voltage graph for different gate voltages 

 

 
 

Figure 4.1: Five I-V curves at 𝑇 =  1.5𝐾 at different 𝑉𝐺  where the red line is for 𝑉𝐺 =

 −100𝑚𝑉, the green line is for 𝑉𝐺 =  −75𝑚𝑉, the blue line is for 𝑉𝐺 =  −50𝑚𝑉, the yellow 

line is for 𝑉𝐺 =  −25𝑚𝑉 and the black line is for 𝑉𝐺 =  0𝑉 

 

Each curve in above mentioned figure shows a non-conducting region up to a certain bias until 

it starts conducting again. This de–escalation of conductance at low biases is a direct result of 

the Coulomb blockade theory which results due to the effect of charge addition energy.  
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4.2 Differential conductance versus source drain voltage graph for different 

gate voltages 

 

 
Figure 4.2: 

𝑑𝐼

𝑑𝑉 
 as a function of V at different 𝑉𝐺  at  𝑇 =  1.5𝐾 . They show peaks 

corresponding to the current steps I-V curves. 

 

The overall conductance of the single molecule transistor had the max 𝑣𝑎𝑙𝑢𝑒 =  1.5 × 10−6 

which is significantly lower than the conductance quantum, 
𝑒2

ℎ
= 3.874 × 10−5. This is due 

to a large tunnel contact resistance between the molecule and the electrodes, which is consistent 

with the formation of a single electron transistor.  

 

Each dI/dV-V curve shows a peak near each current step present in the corresponding I-V curve. 

Since the equation used was 

 
𝑑𝐼

𝑑𝑉
=

e²Γ 

𝑘𝐵𝑇
  [(1 − 𝑓𝐷)𝑓𝐷

𝐶𝑆

𝐶𝑡𝑜𝑡𝑎𝑙
+ (1 − 𝑓𝑆)𝑓𝑆 (

𝐶𝐷 − 𝐶𝐺

𝐶𝑡𝑜𝑡𝑎𝑙
)]   
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It is evident from here that by varying the voltages 𝑉𝐺   and V thereby changing the 

corresponding µ𝑆 and µ𝐷 the value of  µ(𝑁+1)  can be calculated by using the workings done in 

section 2.7. 

 

4.3 Differential conductance versus voltage graph for different 

temperature, T  

 

 
Figure 4.3: Five 

𝑑𝐼

𝑑𝑉
 curves at different T where the red line is for 𝑇 =  100𝑚𝐾, the green line 

is for 𝑇 =  160𝑚𝐾, the blue line is for 𝑇 =  300𝑚𝐾, the yellow line is for 𝑇 =  1𝐾 and the 

black line is for 𝑇 =  2𝐾  

 

The graph obtained clearly depicts the temperature being inversely proportional to the 

differential conductance, i.e. as the temperature decreases the differential conductance 

increases. The temperature dependence of a Coulomb oscillation peak is one of the signature 

behaviours of a quantum dot as opposed to a classical dot because when it comes to classical 

dots its peak height does not change with increasing temperatures. This temperature 

dependence of a Coulomb oscillation peak can be used for measuring quantum dot parameters 



50 
 

like intrinsic broadening, alpha which is the ratio of gate capacitance to total capacitance, 

crossing potential which is 𝑉𝐶  , etc. 

4.4 Maximum conductance versus temperature graph 

 

 

 
Figure 4.4: Temperature dependence of the Coulomb oscillation peak  

 

The graph given above clearly depicts that the peak height, 𝐺𝑚𝑎𝑥  decreases with an 

increasing temperature. 

 

 

 

 

 

 



51 
 

Chapter 5  

Conclusion 

 
Single molecule devices consisting of quantum dots formed due to a large charging energy and 

energy level quantization tend to show similar electronic transport properties despite of their 

differences in chemical compositions. As seen in the preceding chapters the electron number 

on the dot oscillates between N and N+1 during the on-state due to Coulomb oscillation. Also 

the differential conductance displays two different peaks for the same I-V graph due to the 

Coulomb oscillation. The discrete conductance peak indicates different atomic states. In 

addition to all these the differential conductance increases with the decrease in temperature. 

The temperature dependence of a Coulomb oscillation peak is one of the signature behaviours 

of a quantum dot. This means the approach adopted to decipher the transport mechanism and 

characteristic behaviours due to physical variables like gate voltage and temperature can be 

expanded to an array of different molecules to study their electron transport properties and in 

turn investigate the coupling between various quantum excitations of a molecule and its 

electronic degree of freedom. All these molecular level understanding can hence be used to 

create newer devices with desirable characteristics and outputs. Since well-equipped 

laboratories with optimum working environment are somewhat a luxury that is difficult to avail 

simulating the findings to artificially visualize the expected experimental outcomes can prove 

to be second best option. It also minimizes the window of error since the numerical calculations 

and characteristics graph are computer generated and handled. However the drawback of this 

methodology is that it is assumption and approximation laden which means real life outputs 

might be way off from the simulated ones. Though the risk is worth it since the understanding 

might very as well lead to greater discoveries. 
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