
 

 
 

BARYON ACOUSTIC OSCILLATION AND LSS 

FORMATION IN THE NASCENT UNIVERSE 

 

 

THESIS SUBMITTED TO 

The Department of Mathematics and Natural Sciences, BRAC University in 

partial fulfilment for the requirements of the award of the degree of  

Bachelor of Science in Physics 

 

 

 

 

 

 

 

By 

 

AOM Mushfeque Un Nabi 

 

Department of Mathematics and Natural Sciences 

BRAC University 

2017 

Page | 1  
 



DECLARATION 
 

I do hereby declare that the thesis titled “BARYON ACOUSTIC OSCILLATION AND 

LSS FORMATION IN THE NASCENT UNIVERSE” is submitted to the Department of 

Mathematics and Natural Sciences of BRAC University, in partial fulfilment for the 

requirements of the Bachelor of Science degree in Physics. This thesis paper is the work of 

my own and has not been submitted elsewhere for any other degree or diploma award. All 

sources used as reference have been cited and acknowledged within the text appropriately. 

 

 

      
Candidate 
AOM Mushfeque Un Nabi 
ID: 06311002 
 

 

 

      
Certified 
Professor Arshad Momen 
Department of Theoretical Physics 
University of Dhaka 
  

Page | 2  
 



Acknowledgements 
 

I would like to thank my parents, teachers and friends for guiding me along this very difficult 

journey which we refer to as “life”. 

The person I would like mention foremost in remembrance is the Late Professor Mofiz-uddin 

Ahmed, who guided me in writing the introduction. My course teachers Dr. Dipen Bhattacharya and 

Professor A.A.Ziauddin Ahmed suggested the topic of the thesis. I am most grateful to Professor 

Arshad Momen for certifying this paper and helping me at many situations in my personal and 

professional life. I would be stranded without him. 

I would also like to acknowledge Dr. Amin Hasan Kazi, Dr. Aparna Islam, Professor Firdous 

Azim, Professor Kaiser Haq, Ms. Sharmina Hussain, Mr. Iftekhar Md. Shafiqul Kalam, Md. Maruf 

Ahmed, Ms. Moushumi Zahur, Mr. Mahabobe Sobhani, Muhammad Lutfor Rahman, Khandaker 

Mahmudul Hasan (Liton Sir) and Mushira Habib for being my subject teachers over the years at the 

University. 

I am thankful to my friends Sunitra Hawlader, Galib Ahsan, Shudipto Amin, Khalid Hossain and 

Nakib Haider for looking out for me. 

And last but not the least, I express my sincerest gratitude and respects to my school teachers 

who brought me up throughout the years; Mrs. Niloufer Manzur, Mrs. Shamina Mainuddin, Ms. 

Leena Kabir, Mrs. Suraiya Ehsan, Mr. Abdul Quader, Mrs. Najma Alam, Ms. Tahsina 

Shamsunnahar, Ms. Rebeka Majid, Ms. Tasneem Athar, Professor Md. Kutubuddin, Professor 

Bibhangshu Biswas, Professor Swapan Kumar Mondal and Mr. Syed Ahmed Zahir. 

The list of names is quite long and I have tried to fit in as many as I can here. Those that I 

have missed please understand that the human brain comes with its limitations.  

 

Thank you! 

 
 
 
 
 

 
 
 

Page | 3  
 



Abstract 
 

The Cosmic Microwave Background Radiation (CMBR) and cosmological redshift are 

together regarded as the best available evidence for the Big Bang theory. Measurements of 

this radiation have made the inflationary Big Bang theory the standard model of the 

primitive universe. These measurements are conducted by cosmic detectors sent by 

astronomers into space (via satellites). The CMB consists of anisotropies (irregularities) 

which are present across the sky. The anisotropy of the CMB consists of the small 

temperature fluctuations in the blackbody left over from the Big Bang (average temperature 

2.725K as measured by FIRAS on COBE). The fluctuations lie over a region known as the 

surface of last scattering, where the CMB photons were scattered for the last time before 

being detected. The anisotropy of the cosmic microwave background is divided as: 

1.   Primary anisotropy, (due to effects which occur at the last scattering surface and before) 

2.   Secondary anisotropy (due to effects such as interactions of the background radiation 

with hot gas or gravitational potentials, which occur between the last scattering surface and 

the observer)  

The structure of the cosmic microwave anisotropies is principally determined by two 

effects: acoustic oscillations and diffusion damping. In the first part of the thesis a 

description of the primary anisotropy of the CMBR will be detailed. Data analysis and 

mathematical derivations will be cited in the second part where the relevant power spectra 

and diffusion damping oscillation graphs will be shown. Finally, the results based on seven 

years of data from the Wilkinson Microwave Anisotropy Probe (WMAP) shall be presented 

and any theories regarding future research will be stated. 
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1. Introduction 

`The evolution of the world can be compared to a display of fireworks 

that has just ended; some few red wisps, ashes and smoke. 

Standing on a cooled cinder, we see the slow fading of the suns, 

and we try to recall  the vanishing brilliance 

of the origin of the worlds.' ––––Lemaitre 

 

The expansion of the universe is the most imposing discovery of modern science. Today it is 

a firmly established concept and the only debate centres on the way this is taking place. It 

was first suggested by the general theory of relativity and is backed up by physics in the 

examination of the galactic (power) towards the red section spectrum; the regular movement 

of their spectrum may be explained by the distancing of one galaxy from another.  

Thus the size of the universe is probably constantly increasing and this increase becomes 

bigger for galaxies which are further away from us. 

The speeds at which these celestial bodies are moving may, in the course of this perpetual 

expansion, go from fractions of the speed of light to speeds faster than this.1 
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1.1 Cosmic sound 

 
The universe looks the same around each point and in each direction and in the 

beginning, there were neutrinos, lots of neutrinos. The temperature was 3000K (z = 1100) 

There still are neutrinos, only we couldn’t detect them until a few decades ago. We had some 

idea of their presence, for without them we could not account for the remainder of the mass 

of the universe, as only (today) roughly 5% of the entire universe consists of visible light 

matter. With these neutrinos were antineutrinos, photons and the first nucleons and 

electrons. 

Under the intense conditions of the early universe, ionized matter gave off radiation 

that was trapped within it like light in a dense fog. Then, when the universe was about 

400,000 years old, dark matter ruled all known space and for every atom in the universe 

there were 2 photons, 1 neutrino and 6 dark matter particles.   

As the universe expanded and cooled, electrons and protons came together to form 

neutral atoms, and matter lost its ability to ensnare light. The universe lost its opacity. 

Today, some 14 billion years later, the photons from that great release of radiation have 

reached us in the form of cosmic microwave background radiation (CMBR). The sky is at 

2.73K, and the effects of the mysterious dark matter appear to be the result of an invisible 

mass of the remainder of the universe. Where did so much matter come from? That is what 

we as cosmologists are trying to find out! 

The process in which protons and electrons recombine at z∗ = 1100 (Figure 4.2) 

leaving a low level of outstanding ions is typical for how the cooling universe leaves relic 

particles. At very high temperatures, each reaction is in approximate equilibrium with the 

opposite reaction and the particles are in equilibrium. As the temperature changes, the 

equilibrium values change, but as the reaction rate is high, the particles quickly adapt to the 

new equilibrium. 
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If we tune a television set between channels, about 1 percent of the static we see on the 

screen is from the CMB. When astronomers scan the sky for these microwaves, they find that 

the signal looks almost identical in every direction. The ubiquity and constancy of the CMB 

is a sign that it comes from a simpler past, long before structures such as planets, stars and 

galaxies formed. Because of this simplicity, we can predict the properties of the CMB to 

exquisite accuracy. And in the past few years, cosmologists have been able to compare these 

predictions with increasingly precise observations from microwave telescopes carried by 

balloons and spacecraft. This research has brought us closer to answering some age-old 

questions such as ‘When did the galaxies form? What is the universe made of? How old is it?’ 

 Arno Penzias and Robert Wilson of AT&T Bell Laboratories detected the CMB 

radiation in 1965 while trying to find the source of a mysterious background noise in their 

radio antenna. The discovery firmly established the big bang theory, which states that the 

early universe was a hot, dense plasma of charged particles and photons. Since that time, the 

CMBR has been cooled by the expansion of the universe, and it is extremely cold today and 

comparable to the radiation released by a body at a temperature of 2.7K. But when the 

CMBR was released, its temperature was nearly 3,000K (or about 2,727°C).  

 In 1990, a satellite called COBE (for Cosmic Background Explorer) measured the 

spectrum of the CMB radiation, showing it to have exactly the expected form i.e. of a 

blackbody. Overshadowing this impressive achievement, however, was COBE's detection of 

slight variations at the level of one part in 100,000 and in the temperature of the CMB 

radiation from place to place in the sky. Observers had been diligently searching for these 

variations for more than two decades because they hold the key to understanding the origin 

of structure in the universe: how the primordial plasma evolved into galaxies, stars and 

planets.  

 Since then, scientists have employed ever more sophisticated instruments to map the 

temperature variations of the CMBR. The culmination of these efforts was the launch in 
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2001 of the Wilkinson Microwave Anisotropy Probe (WMAP), which travels around the sun 

in an orbit 1.5 million kilometres beyond Earth's. The results from WMAP reveal that the 

CMBR temperature variations follow a distinctive pattern predicted by cosmological theory: 

the hot and cold spots in the radiation fall into characteristic sizes. What is more, researchers 

have been able to use these data to precisely estimate the age, composition and geometry of 

the universe. The process is analogous to determining the construction of a musical 

instrument by carefully listening to its notes. But the cosmic symphony is produced by some 

very strange players and is accompanied by even stranger coincidences that cry out for 

explanation.  

Our basic understanding of the physics behind these observations dates back to the 

late 1960s, when P. James E. Peebles, of Princeton University, and graduate student Jer Yu 

realized that the early universe would have contained sound waves. When radiation was still 

trapped by matter, the tightly coupled system of photons, electrons and protons behaved as a 

single gas, with photons scattering off electrons like ricocheting bullets. As in the air, a small 

disturbance in gas density would have propagated as a sound wave, a train of slight 

compressions and rarefactions. The compressions heated the gas and the rarefactions cooled 

it, so any disturbance in the early universe resulted in a shifting pattern of temperature 

fluctuations.  

 When distances in the universe grew to one thousandth of their current size—about 

380,000 years after the big bang—the temperature of the gas decreased enough for the 

protons to capture the electrons and become atoms. This transition, called recombination, 

changed the situation dramatically. The photons were no longer scattered by collisions with 

charged particles, so for the first time they travelled largely unimpeded through space. 

Photons released from hotter, denser areas were more energetic than photons emitted from 

rarefied regions, so the pattern of hot and cold spots induced by the sound waves was frozen 

into the CMBR. At the same time, matter was freed of the radiation pressure that had 
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resisted the contraction of dense clumps. Under the attractive influence of gravity, the denser 

areas coalesced into stars and galaxies. In fact, the one-in-100,000 variations observed in the 

CMBR are of exactly the right amplitude to form the large-scale structures we see today. 

 Yet what was the prime mover, the source of the initial disturbances that triggered the 

sound waves? The question is troubling. If we imagine ourselves as an observer witnessing 

the big bang and the subsequent expansion, at any given point we will see only a finite region 

of the universe that encompasses the distance light has travelled since the ‘Big Bang’.  

Cosmologists call the edge of this region the ‘horizon’, the place beyond which we 

cannot see. This region continuously grows until it reaches the radius of the observable 

universe today. Because information cannot be conveyed faster than light, the horizon 

defines the sphere of influence of any physical mechanism. As we go backward in time to 

search for the origin of structures of a particular physical size, the horizon eventually 

becomes smaller than the structure. 

Therefore, no physical process that obeys causality can explain the structure’s origin. In 

cosmology, this dilemma is known as the horizon problem. 

 Fortunately, the theory of inflation solves the horizon problem and also provides a 

physical mechanism for triggering the primordial sound waves and the seeds of all structure 

in the universe. The theory posits a new form of energy, carried by a field dubbed the 

“inflaton,” which caused an accelerated expansion of the universe in the very first moments 

after the big bang. As a result, the observable universe we see today is only a small fraction of 

the observable universe before inflation. Furthermore, quantum fluctuations in the inflaton 

field, magnified by the rapid expansion, provide initial disturbances that are approximately 

equal on all scales—that is, the disturbances to small regions have the same magnitude as 

those affecting large regions. These disturbances become fluctuations in the energy density 

from place to place in the primordial plasma. 
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 Evidence supporting the theory of inflation has now been found in the detailed 

pattern of sound waves in the CMBR. Because inflation produced the density disturbances 

all at once in essentially the first moment of creation, the phases of all the sound waves were 

synchronized. The result was a sound spectrum with overtones much like that of a musical 

instrument. Consider blowing into a pipe that is open at both ends. The fundamental 

frequency of the sound corresponds to a wave (also called a mode of vibration) with 

maximum air displacement at either end and minimum displacement in the middle. The 

wavelength of the fundamental mode is twice the length of the pipe. But the sound also has a 

series of overtones corresponding to wavelengths that are integer fractions of the 

fundamental wavelength: one half, one third, one fourth 

and so on. To put it another way, the frequencies of the overtones are two, three, four or 

more times as high as the fundamental frequency. Overtones are what distinguish a 

Stradivarius from an ordinary violin; they add richness to the sound. 

 The simplicity of sound waves is a hallmark of freshman physics. That same physics 

applied on the largest scales, is bringing us closer to unlocking the secrets of the cosmos. 

In the microwave background and the distribution of galaxies, relic imprints of primordial 

sound waves have contributed to an extraordinarily detailed history of the universe. They 

provide the standard scale for resolving a great mystery. 

 Relativistic sound waves raced through the hot plasma that filled the universe for its 

first 380,000 years. That sound left an imprint that is still visible in the cosmic microwave 

background and in the large-scale distribution of galaxies today. Measurements of the sound 

waves manifested in the CMBR, coupled with a detailed understanding of the physics of 

sound waves in the plasma era, provide the foundation of our standard model of cosmology.  

A new opportunity to track their imprint in the spatial distribution of galaxies as far back as 

we can observe, opens a way to solving the mystery of dark energy and its role in the history 

of the cosmos. 
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 Sound waves are oscillations of compressions and rarefactions that propagate through 

a medium. e.g. a loudspeaker creates a local overpressure in air causing the compressed air to 

expand. That, in turn, compresses the neighbouring air, so that the sound wave propagates. 

The primordial universe was scattered with slightly over-dense, over-pressured regions that 

initiated the propagation of sound waves of all wavelengths. Much like the resonant sounds 

of a drum inform us about its shape and size, so can the details of cosmic density fluctuations 

tell about the universe' shape and size.  

 Our Big Bang universe began as hot, dense and smooth, with matter on expanding 

paths. By "smooth" we imply that density and velocity field deviations were negligible 

compared to the overall expansion of the universe. The young, seething universe was filled 

with a dense plasma of energetic elementary particles. Any electron trying to bind with a 

proton to form atoms would be instantly scattered away by photon. Atoms would not begin 

to form until another 380,000 years, when the universe had cooled down. (the so called 

"surface of last scattering"). What is left today is a much colder ensemble of nuclei, electrons, 

protons, neutrinos and some sort of dark matter that outweighs all the baryonic matter in the 

universe by a factor of 6. 

 When cosmologists refer to "baryonic matter" they refer to the ordinary matter made 

of baryons (protons and neutrons) and electrons; and when they refer to "dark matter" they 

mean non-baryonic matter with negligible kinetic energy. That is why it is often called cold 

dark matter, CDM (excluding neutrinos). Even though the constituent particles of the CDM 

have not yet been identified, its cosmological role is largely specified by the requirements that 

it be stable, immune to the strong nuclear force and electromagnetic force. 

 Now let us see how primordial matter was formed in the nascent universe. As 

mentioned earlier the young cosmos was so hot that the baryonic matter was ionized. It was 

dense enough so that the mean interval between consecutive scatterings of a typical photon 

with free electrons was much shorter than the age of the cosmos at that time. As the universe 
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expanded, the baryonic matter cooled and expanded, forming clusters in different sections of 

the universe. After 380,000 years, its temperature fell below to 3000K, allowing the nuclei 

and electrons to bind into stable, neutral atoms. This was the first time that simple atoms 

such as hydrogen were formed. The number of free electrons suddenly fell by a factor of 104 

and the mean interval between photon-electron collisions became longer than the age of the 

universe. The cosmic radiation field was thus decoupled from matter, occurring in a very 

short period (compared to stellar formation) of only 50,000 years. 

 When decoupling occurred, the universe became transparent. Those photons that 

were colliding with electrons were now free to propagate throughout the remainder of the 

evolution of the universe. These photons liberated at decoupling traveling (almost) 

undisturbed, are what we now see as the CMBR looking back 13.8 billion years to view light 

that was last scattered when the universe was a thousand times smaller, a billion times denser 

and 1200 times hotter than it is today. 

 Deviations from a perfectly homogeneous universe were produced at the earliest 

times, possibly by quantum fluctuations during the inflationary epoch that allowed 

exponential expansion in the first fraction of a second. The deviations from homogeneity 

then grew more and more prominent throughout the rest of cosmic history, as a result of 

gravity imbalances they themselves produced. 

The decoupled transition from ionized to neutral gas had a profound effect on the 

evolution of the fluctuations. Over-dense regions attracted matter more rapidly than the 

universal Hubble expansion could carry it away, becoming more dense with the passage of 

time. Similarly, baryonic matter drained away from the under-dense regions, so they became 

more under-dense. The over-dense regions formed primordial super clusters and nebula 

while the under-dense regions gave rise to the great voids of the present universe. This is 

shown in the contrasting sky when we look at it at night. 
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 However, in the ionized universe before decoupling occurred, the radiation pressure 

imposed another key force on the baryons. The density perturbations which were spatially 

larger than a mean free path, the photons and plasma were coupled together to produce a 

uniform baryon-photon fluid. 

Compression in the fluid resulted in an increase in the density and hence pressure (and 

temperature). The compressing plasma caused the photons to reach higher energy levels 

increasing radiation pressure. This opposed the compression and thus drove a consequent 

expansion, producing an under-dense, low pressure region that, in turn, was compressed by 

the surrounding fluid. 

 The result was a sound wave similar in all aspects to a sound wave in an ordinary 

fluid, except that the restoring force was the radiation pressure of the trapped photons. The 

radiation pressure overwhelmed gravity, hindering the fleeting gravitational instability of the 

post-plasma universe... 

 A noteworthy characteristic of the plasma sound waves in the epoch before 

decoupling is that their propagation speed was very high - nearly one-third the speed of light. 

This was because the radiation pressure and energy density of the photon field were 

enormous compared to that of the baryons. The photon density just prior to decoupling was 

that of a 3000K furnace (about 1012 blackbody photons per cubic centimetre). But the baryon 

density of the plasma was tiny - only about a thousand nucleons cm-3. Sound speed scales as 

the square root of a restoring force per unit of inertia, and the radiation pressure of an 

electromagnetic field is precisely 1/3 of its energy density. 

 The most striking relics of the plasma epoch's sound waves are the so-called acoustic 

peaks in the power spectrum of the CMBR's temperature anisotropy. The temperature of the 

CMBR is very nearly the same (2.73K) everywhere we look. But there remain spatial 

variations at the level of 30μK at parts of 1 in 100000, which result largely form variations in 

the density of the universe at the locations where the photons last scattered before arriving at 
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our astronomical instruments 14 billion years later. The CMBR's temperature fluctuations 

recorded by the WMAP essentially shows a freeze-frame image of the sound-wave pattern at 

decoupling. The pattern of hot and cold spots in the map reveals an enhancement of 

structure on the angular scale of 0.6°. 

 In our quantitative analysis we shall construct the power spectrum of the temperature 

fluctuations by decomposing the map into spherical harmonics (using Fourier transforms) 

and computing the fluctuation power as a function of angular scale on the sky. The result 

exhibits the series of acoustic peaks first foreseen by Andrei Sakharov in 1965.  

This harmonic sequence of peaks is the signature of the preferred 0.6° angular scale, just as a 

harmonic sequence of overtones is the signature of the fixed length of a guitar string. 

How did the sound waves select a preferred angular scale? 

 The temperature anisotropy of the CMB is the result of a pattern of density 

fluctuations on a spherical surface - more accurately, a thin spherical shell of the universe - 

centred on us... 

We are viewing that shell from a large distance. The preferred angular scale is the result of a 

preferred length scale on that "surface of last scattering". 

 That characteristic length (simply called the acoustic scale) is the distance that a 

sound wave propagating from a point source at the end of inflation would have travelled 

before decoupling-the transition that ended the plasma epoch. Since then the Hubble 

expansion has stretched the universe about a thousand-fold, so that now the radius of a 

spherical sound wave that had been propagating from the start of the plasma epoch to its end 

is roughly 480 million light-years. Cosmologists prefer to use a "comoving" coordinate 

system that dilates with the Hubble expansion. Two points otherwise at rest have a constant 

comoving separation, with the value given by convention as their true separation today. 

After decoupling, the acoustic scale is a constant comoving separation of 480Mly. 
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 The acoustic peaks of the CMB's temperature fluctuation provide the following 

cosmological strong points: 

• The harmonic spacing of the peaks argues strongly that the initial fluctuations in the 

early universe were adiabatic i.e. all the particle species varied together in density. Such joint 

fluctuations confirm a key prediction from inflation theory, which attributes them to 

primordial wrinkles in the space-time continuum. 

• The relative heights of the acoustic peaks in the fluctuation power spectrum yield 

precision measurements of the baryon density and the density of the cold dark matter. Higher 

baryon density enhances the odd-numbered acoustic peaks relative to the even-numbered 

ones, while lower dark matter density enhances all of the peaks. The CMB data from the 

WMAP and from microwave telescopes on the ground have by now determined the baryon 

density to within 3% and the total density of baryonic plus dark matter to within 5%. Those 

uncertainties shrink even further when one adds astrophysical observations of the more 

recent universe.  

• The positions of the peaks in the angular power spectrum are a manifestation of the 

preferred acoustic length scale. If one knows that length, one can conclude his distance from 

the surface of last scattering. That distance depends sensitively of the spatial curvature of the 

intervening universe and on the history of dark energy in the past 10 billion years. The CMB 

data have already confirmed that the cosmic radius of curvature, if not finite, is certainly 

larger than the radius of the currently visible universe. 
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1.2 Dark Energy and the Distance Scale 

The present day acceleration of the Hubble expansion is one of the most important topics in 

modern cosmology. Ten years ago, studies of distant supernovae revealed this cosmic 

acceleration by observing that supernovae of a given redshift appeared fainter than expected. 

In the expanding universe the redshift z of a cosmologically distant object tells us that the 

cosmos has stretched by a factor of 1/1+z since the observed light began its journey. Thus 

the relationship of distance to redshift depends on the history of the cosmic expansion. 

The unanticipated faintness of the distant supernovae can be explained if the cosmic 

expansion has been speeding up in recent times. One would have expected that gravity is 

inexorably slowing the Hubble expansion down. Instead, it looks as if the expansion is being 

pushed by a long-range repulsive force that has overwhelmed gravity only in the past few 

billion years. Einstein’s cosmological constant is one possible explanation, but cosmologists 

attribute the phenomenon more generally to “dark energy”. The small, unchanging vacuum 

energy density implied by Einstein’s cosmological constant is just one of the several 

possibilities. 

 The claim of an accelerating cosmic expansion and the idea of a mysterious dark 

energy as its cause are so revolutionary that they demand particularly strong evidence. After 

all, distant supernovae were weak, or because something happens to their light on the way 

here. But additional evidence from the angular scale of the CMB acoustic peaks has 

convinced most cosmologists that the expansion really is accelerating. The cause however, 

remains unknown. 

 Is the dark-energy density constant in time, or is it evolving dynamically? 

The key to finding out hinges on our ability to measure cosmological distances to high 

accuracy. Having discovered dark energy as a 10-30% effect in distance, we must now study 

it at a precision of better than 1%. That is an observational challenge because the 

measurement of distance is a long-standing problem in cosmology. 
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 The acoustic oscillations from the early universe provide a new opportunity to 

measure distances at different redshifts. That is because the effect of the sound waves is not 

limited to the CMB photons. The sound waves also perturbed the baryons, which couple 

gravitationally to the dark matter. Thus the length scale that was imprinted by the sound 

waves persists to the present time in the clustering of matter on large scales. 

 It is useful to think about the physics of a single small region just after inflation, 

denser in plasma and dark matter than its surroundings. Because the local plasma 

overdensity corresponds to a region of overpressure, it launches a spherical sound wave that 

carries the plasma overdensity away from the centre. At the decoupling transition, the 

liberated photons stream away from the baryons. The sound wave stops abruptly, depositing 

the baryons in a spherical shell whose radius is simply the distance the sound wave has 

travelled. Meanwhile, the over-density in the pressureless dark matter remains at the initial 

location. The dark matter in the centre and the baryons in the spherical shell both seed 

gravitational instabilities and generate over-densities that grow more pronounced with time, 

eventually forming galaxies at both the centre and the shell. 

 Of course, the real cosmic density field is a superposition of many such shells, but the 

spatial correlation of galaxies is still enhanced at a comoving distance corresponding to the 

size of the shell at decoupling. So, galaxies in any redshift era are somewhat more likely to be 

separated by a comoving distance of 480 million light years than by say, 400 or 600 million 

light years. That preferred distance should show up as a peak – the so-called baryon acoustic 

oscillation peak – in the Fourier power spectrum of a sufficiently high-statistics study of 

positional correlations among galaxies. 

Now we shall describe the origin of the baryon acoustic peak in more detail. 

 The radius of the 'cosmic shell' is the sound speed integrated over the time interval 

from inflation to decoupling. The precise calculation of the acoustic scale depends on the 

baryon density and on the overall density of the baryonic plus dark matter. The baryon 
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density affects the plasma's inertia and hence the sound speed. The total matter density 

affects the cosmic expansion rate and hence the duration of the plasma epoch. Fortunately, 

the two densities can be separately determined from the CMB power spectrum. With the 

WMAP data, the resulting 480 million light year comoving correlation distance is predicted 

to 1.3% precision. CMB measurements in the next decade should improve that precision to 

about 0.2%. 

 This method can equally be applied to standing waves instead of progressive waves. 

Since each Fourier mode of the perturbation evolves separately, the standing-wave 

representation is more suitable for precision calculation and is more easily connected to the 

power spectrum of the primordial fluctuations. 

 The length-scale of the baryon acoustic peak can be calculated from known physics 

and well-measured quantities and hence its apparent position in clustering surveys of galaxies 

at a given redshift provides a cosmic distance scale. The more distant the galaxies are from 

us, the smaller is the angle subtended by the preferred comoving separation of 480 million 

light years. By measuring the angular correlations within a large enough group of galaxies, 

one can measure how far away it is. 

 Distances in cosmology must be measured in two different ways depending on 

whether the separation is along the line of sight or in the transverse direction. One can infer 

radial separations ∆rR along the line of sight by measuring differences in cosmological 

redshift. One infers separations ∆rT in the transverse direction by measuring angles on the 

sky. Both types of measurement offer the opportunity to study the cosmological expansion 

history. 

 The acoustic scale rA imprinted in the correlation among galaxies is, however, an 

intrinsically isotropic pattern. Along the line of sight, rA produces a preferred separation ∆z in 

redshift: 

∆rR = rA = c∆z/H(z) …….. (1.1) 
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where H(z) is the Hubble parameter at the redshift of the group of galaxies. The Hubble 

parameter is the cosmic expansion rate at the time corresponding to z. 

 In the plane normal to the line of sight, the acoustic scale produces a preferred 

angular separation ∆θ: 

∆rT = rA = (1 + z)D(z)∆θ,…(1.2) 

where D(z) is given by an integral involving H(z) over the period from z to the present (z = 

0). D(z) is known as the angular-diameter distance. 

 The role of dark energy in accelerating the cosmic expansion is revealed in the 

evolution of H(z) and hence in the derivative of D with respect to z. By determining both H 

and D at different redshifts, the measurement of the baryon acoustic peak probes the history 

of dark energy. The method exploits the measurement of redshift and celestial angle - both of 

which observers can do with exquisite precision - to determine the most elusive 'cosmological 

distance' (to answer the long unanswered question, "How big is the universe?") 

 

1.3 Finding the baryon acoustic peak 

To measure the correlation imprinted on the galaxies by the sound waves, one needs 3D 

maps of their cosmic distribution. In an expanding universe, galaxy redshift surveys do that 

rather straightforwardly. They turn 2D images of the sky into 3D maps by making 

spectroscopic observations of galaxies to determine their Doppler redshifts. For galaxies 

distant enough that their non-Hubble motion along the line of sight can be neglected, redshift 

is monotonically related to distance. So a galaxy redshift survey becomes, in effect, a 3D map 

of the universe - although one whose radial dimension, ‘z’ has a non-trivial relation to actual 

distance. 

 Galaxy redshift surveys have been a mainstay of cosmology since the days of Edwin 

Hubble. They underpin most of our understanding of galaxy evolution and large-scale 

structure. But the detection of the baryon acoustic peak requires enormous surveys. Only the 
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most recent have finally mapped enough volume to see this weak large-scale feature. Not 

until 2005 did teams from the SDSS and the 2-Degree Field Galaxy Redshift Sky Survey 

announce the detection of the sought-after baryon acoustic peak. 

 In the correlation function of galaxies measured by the Sloan Survey, with the 

acoustic peak at the comoving separation predicted by WMAP measurements and the 

standard cosmological model, the narrowness of the acoustic peak allows its position to be 

determined to 4% precision. That implies a 4% measurement of the ratio between the 

distance to objects at z = 0.35 and our distance from the CMB's last-scattering surface at z = 

1090. It also measures our absolute distance from the galaxies at z = 0.35 to about 5%. 

 A new generation of galaxy surveys will vastly extend our map of the cosmos. The 

baryon acoustic peak and its application to dark energy is currently the most prominent 

driver for surveys of very large cosmic volumes. The technical challenge is to acquire large 

numbers of faint galaxy spectra. Over the next five years, the planned new surveys will 

measure a million galaxies and determine the position of the baryon acoustic peak to 1% 

accuracy. By the end of 2030, the numbers could reach 100 million galaxies, improving the 

acoustic scale measurement to nearly 0.1%. That would map most of the sky out to redshifts 

of 2-3, where most of the dark-energy information is expected to reside. 

 The 'baryon acoustic peak' method has become one of the most promising ways of 

studying dark energy. It superbly complements the study of distant type 1a supernovae that 

discovered dark energy in the first place. The supernovae are easiest to measure at low 

redshift, where the total cosmic volume limits the acoustic peak method, which gains in 

precision at higher redshift. It relies on a distance scale whose well-understood physical 

underpinnings are validated in considerable detail by the CMB anisotropy data. 

 The supernovae method uses the relative observed brightness’s of supernovae at 

different redshifts to measure a distance ratio. The baryon acoustic peak, on the other hand, 

calibrates the distance scale in nearly absolute terms. Using supernovae together with the 
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acoustic peaks in both the galaxy and CMB data will allow us to measure the cosmic 

distance scale to great precision across the full range of red-shifts with a solid physical 

calibration. 

 Dark energy can also be studied through its effects on the clustering of matter. Indeed 

it could be that the accelerating Hubble expansion, rather than being a manifestation of dark 

energy is actually the signal of a departure of nature from the general theory of relativity. In 

the correct new theory, density perturbations might behave differently from what general 

relativity predicts for a cosmos with the same expansion history. So a combination of 

precision probes that measure the growth of large structures and probes, like supernovae and 

acoustic peaks that measure the overall expansion rate, should let cosmologists test the 

physical cause of the acceleration. 

 This is a marvellous moment in the investigation of the cosmos. An impressively 

diverse set of observations has led to a standard cosmological model that is robust in its 

cross-checks, deeply puzzling in its ingredients, and far-reaching in its implications for 

fundamental physics.  

 Since the late 1950s, scientists have employed ever more sophisticated instruments to 

map the temperature variations of the CMB. The culmination of these efforts was the launch 

in 2001 of the Wilkinson Microwave Anisotropy Probe (WMAP), which travels around the 

sun in an orbit 1.5 million kilometres beyond Earth's. The results from WMAP reveal that 

the CMB temperature variations follow a distinctive pattern predicted by cosmological 

theory: the hot and cold spots in the radiation fall into characteristic sizes. What is more, 

researchers have been able to use these data to precisely estimate the age, composition and 

geometry of the universe. The process is analogous to determining the construction of a 

musical instrument by carefully listening to its notes. But the cosmic symphony is produced 

by some very strange players and is accompanied by even stranger coincidences that cry out 

for explanation.  
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2. Baryon Acoustic Oscillations 

Now, we shall give substance to the explanation of the ‘baryon acoustic peak’, mentioned on page 20. In 

this derivation, the universe is slightly less than one second old. It is assumed that there exist, in thermal 

equilibrium, protons, neutrons, electrons, positrons and all three species of neutrino and antineutrino.  

We then demonstrate how, as the universe expands, the initial conditions determine the primordial 

abundance of the lightest nuclei. 

 

When the universe is one second old, it’s T ~ 1MeV.  Photons have the blackbody 

distribution; there is no creation of photons once the temperature gets much below 1MeV. As a result 

T is proportional to 1/a. The present photon temperature is T0 = 2.73 K, which in particle physics 

units is 2.36 × 10−4 eV. The epoch T ~ 1MeV therefore corresponds to1/a ~ 1010. 

When specifying an epoch in the early universe the temperature is usually more convenient 

than the time. To specify an epoch in the fairly recent past one often gives the red-shift z of radiation 

emitted at that epoch. It is given by 1 + z ≡ λ0/λ(t)=1/a(t) where, λ0 is the measured wavelength and 

λ(t) is the wavelength that would be measured by a co-moving observer at the time of emission. 

We study the first-order perturbation of these equations. After a rather general treatment, we 

focus to the evolution on cosmological scales. The initial condition for such scales may be specified 

just after neutrino decoupling, as described earlier. 

We are dealing with four fluids, but we treat the baryon–photon fluid only in the tight-

coupling approximation. Using that approximation we follow the evolution of the matter density 

until the Newtonian description takes over. We also follow the acoustic oscillation of the baryon–

photon fluid until photon decoupling. In both cases, the adiabatic initial condition is adopted. 
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2.1. Scalar, Vector and Tensor Modes 
 

In Newtonian perturbation theory, we found that the Fourier components decouple. In other words, 

there is a separate set of equations for each k. We also found that there is further decoupling, so that 

for each k there is a ‘scalar’ mode and a ‘vector’ mode, with no coupling between them. As we now 

see, these are generic features of first-order cosmological perturbation theory, and tensor modes are 

also possible. 

The cosmological perturbations satisfy coupled equations, containing partial derivatives 

with respect to time and co-moving position xi . At first order, any one of these equations will be of 

the form G = 0, with G a linear combination of the perturbations1 

G(x, t) ≡ a1 (t)g1 (x, t) + a2 (t)g2 (x, t) + . . . = 0.  (2.1) 

The coefficients an are independent of x because the unperturbed universe is invariant under 

translations. Taking the Fourier transform of both sides we have 

G(k, t) ≡ a1 (t)g1 (k, t) + a2 (t)g2 (k, t) + . . . = 0,                (2.2)  

We have a separate equation for each k. 

The following equations are of this form. They are the Newtonian continuity, Euler and 

Poisson equations respectively. 

δ̇k +
k
a

Vk = 0 … … … … … … … ( 

V̇k + HVk −
k
a
Φk =

k
a
δPk
ρ

 

−
k2

a2
Φk = 4πGρδk =

3
2

H2Ωm(t)δk 

In the continuity and Poisson equations, G and the gn are 3-scalars while in the Euler equation they 

are 3-vectors. In the relativistic case we will find that G and the gn can also be second-rank tensors.  

(G and the gn must be of the same rank, because the coefficients an are 3-scalars by virtue of the 

rotational invariance of the unperturbed universe.) 

 
 
 
 
 
1 
In this equation, gn (x, t) denotes a perturbation which may have been differentiated any number of times with respect to time and/or 
position coordinates. In the following equation gn (k, t) denotes a perturbation which may have been differentiated any number of times 
with respect to t, and multiplied any number of times 
by components of k. 
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In the relativistic case, the equation G =  0 is obtained by perturbing an exact equation of 

the form ‘4-tensor = 0’. In practice the 4-tensor is at most of rank two, which means that G and the gn 

can be 3-tensors of at most rank two. This happens for two reasons. 

 First, the Einstein and Maxwell field equations both involve at most second-rank 4-tensors.  

Second, within inflationary cosmology, all cosmological perturbations originate from the 

perturbations of one or more classical fields. Such fields are 4-scalars, 4-vectors or 4- tensors, and are 

expected to be at most rank two because tensors of higher rank are difficult to accommodate within 

quantum field theory, and  

would correspond to fundamental particles with spin bigger than two which are not observed. 

 

The decoupling into scalar, vector and tensor modes comes when we consider a rotation by 

an angle φ about the k direction, which changes G to some G(φ). The rotation acts on each index of 

G with the rotation matrix, 𝑅𝑖𝑗 = �
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑 0
𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝜑 0

0 0 1
� 

 Suppressing those indices we can write 

𝐺(𝜙) = �𝐺𝑚𝑒
2𝜋𝑖𝑚𝜙

𝑚

                            , 𝑔1(𝜙)�(𝑔1)
𝑚
𝑒2𝜋𝑖𝑚𝜙

𝑚

                      (2.3) 

and so on, where m is at most equal to the rank of the 3-tensor G. 

Rotational invariance requires that G(φ) = 0 independently of φ, which means that we deal 

with uncoupled equations: 

Gm (k, t) ≡ a1 (t)g1m (k, t) + a2 (t)g2m (k, t) + . . . = 0.             (2.4) 

If we assume that the relevant laws of physics are invariant under parity transformation, we 

can choose Gm=G-m, so that we need consider only m ≥ 0. The modes m = 0, 1 and 2 are called 

respectively the scalar, vector, and tensor modes.  

The terms ‘scalar’, ‘vector’ and ‘tensor’ may be taken to refer to the transformation 

properties of G, regarded as a 2-tensor whose indices take on only two values (corresponding to 

components in the plane mutually perpendicular to k). 
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To make the discussion more concrete, we have to restore the indices. Consider first the scalar 

mode corresponding to m = 0. Each perturbation in this mode is invariant under rotations about k. 

A 3-scalar perturbation g obviously belongs to this mode.2 

A vector perturbation gi belongs to the mode if it is the gradient of a scalar, so that it is of 

the form gi  = gki .  Indeed, choosing the z-axis along k we find that the perturbation is then 

invariant under rotations about k.  Adopting the notation introduced for the Newtonian peculiar 

velocity, we may say that a longitudinal vector perturbation belongs to the scalar mode. 

Similarly, a tensor perturbation gij belongs to the scalar mode if it is obtained from a scalar g by 

differentiation, corresponding to gij  = ki kj g. It also belongs to the scalar mode if it is of the form gij  

= gδij , because the components of the tensor δij  are not affected by any rotation. Any symmetric 

second-rank tensor belonging to the scalar mode is a combination of these two. We met examples of 

both in the Newtonian case. An anti-symmetric tensor of the form gij  = ϵij n kn g would belong to the 

scalar mode, but isn’t encountered in practice.  Higher-rank tensors of the scalar mode would have 

to be built from scalars using ki , δij  and ϵijk but are also not encountered. In summary, all scalar 

perturbations belong to the scalar mode, and so do those vectors and tensors that can be built from 

scalars using ki , δij , and ϵijk . 

Now we come to the vector mode. A vector gi belongs to the vector mode if, with the z-axis 

along k, it is of the form gi  = (gx , gy , 0). In fact, a rotation (defined by Rij) about the z-axis makes 

(gx ± igy ) → e±iφ (gx ± igy ).                             (2.5) 

Adopting the terminology used for the Newtonian peculiar velocity, we see that a vector belongs to 

the vector mode if it is transverse. We also note that the most general vector is the sum of a scalar 

and a vector mode.  

 

 
 
 
 
 
 
 
2  
From now on we suppress the index distinguishing the different perturbations g1 , g2 . . .. The discussion can refer to any one of them. We 
restore the suppressed spatial indices, so that g denotes a scalar, gi a 3-vector and gij a 3-tensor. 
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Tensors belonging to the vector mode have to be constructed from transverse vectors using ki , δij  

and ϵijk.  From a transverse vector gi  we get second-rank tensors in the vector mode by writing gij = 

kigj or gij =ϵijk gk .  Counting the independent components, we see that the most general anti-symmetric 

second-rank tensor is the sum of a scalar and a vector mode. 

Finally we come to the tensor mode. A tensor gij belongs to the tensor mode if it is 

symmetric, traceless (gii  = 0) and transverse (kigij = 0). This means that it is of the form, 

𝑔𝑖𝑗(𝒌) = 𝑔+(𝒌)𝑒𝑖𝑗+ + 𝑔×(𝒌)𝑒𝑖𝑗×                                      (2.6) 

where the polarization tensors e+,× are defined by 𝑒𝑥𝑥+ = −𝑒𝑦𝑦+ = 1, 𝑒𝑥𝑦× = 𝑒𝑦𝑥1  . This tensor 

certainly belongs to the tensor mode, because the rotation Rij and 𝐴𝑖𝑗′ = 𝑅𝑖𝑛𝑅𝑗𝑚𝐴𝑛𝑚 imply that 

�𝑔+ ± 𝑖𝑔×� → 𝑒±2𝑖𝜙�𝑔+ ± 𝑖𝑔×�                                 (2.7) 

 

2.2. Perturbing the metric and energy–momentum tensors 

Let us now discuss the evolution of the perturbations. As is usual for relativistic perturbations, we 

will use conformal time η instead of physical time t, and an over-dot will indicate d/dη instead of 

d/dt. To avoid confusion, one piece of guidance is convenient - equations featuring the combination 

(k/a) will be using physical time t, whereas those featuring k alone will be using conformal time. 

 

2.2.1 The Metric 

For the moment we leave open the gauge choice, and consider the most general first-order 

perturbation: 

𝑑𝑠2 = 𝑎2(𝜂){−(1 + 2𝐴)𝑑𝜂2 − 2𝐵𝑖𝑑𝜂𝑑𝑥𝑥𝑖 + [(1 + 2𝐷)𝛿𝑖𝑗 + 2𝐸𝑖𝑗]𝑑𝑥𝑥𝑖𝑑𝑥𝑥𝑗 (2.8) 

The term in square brackets specifies the spatial metric perturbation 2(Dδij +Eij ), and Eij is taken to be 

traceless so that the separation of the two terms is unique. 

The term 𝐵𝑖 is the shift function; it specifies the relative velocity between the threading and the 

world-lines orthogonal to the slicing.  

The term A is the lapse function, which specifies the relation between η and the proper time τ along 

the threading. To first order, 
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1
𝑎(η)

𝑑𝜏
𝑑𝜂

= √1 + 2𝐴 ≅  1 +  𝐴                           (2.9) 

The chosen coordinate system xμ = (η, xi) applies throughout space-time; it is a global coordinate 

system. In addition, at each space-time point we need a locally orthonormal coordinate system (t, ri) 

(locally orthonormal frame) with the following properties: the time directions of the global and local 

coordinate systems are lined up to first order, and the spatial directions are lined up to zero order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the perturbed metric (1.8), this is equivalent to, 

dt = a(1 + A) dη (first order),   (2.10) 

dri = adxi (zero order)    (2.11) 

 

 

 

Figure 2.1 
The coordinates (η, xi) define a threading and a slicing (corresponding, respectively, to fixed xi and fixed 
η). As indicated, the slicing typically isn’t orthogonal to the threading. The time direction of the locally 
orthonormal frame considered is lined up with the time coordinate line (thread). The space directions of 
the locally orthonormal frame, not shown, are orthogonal to the time direction, and they coincide with 
the space coordinate lines to zero order in the perturbation. In the locally orthonormal frame, the 
velocity of a co-moving observer (fluid velocity) is v, and the velocity of the world-line that is normal 
(orthogonal) to the slices is B, where Bi is the shift function defined by Eq. (2.8). 
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In the locally orthonormal frame, the velocity of the worldline orthogonal to the fixed-η slice is Bi. 

This is illustrated above and the proof is quite simple. 

Working with the coordinates (η, xi ), the 4-velocity of the worldline with velocity Bi  is to first order 

of the form Bµ = B0 (1, Bi ).  On the other hand, any 4-vector lying in the fixed-η slice is of the 

form eµ = (0, ei ).  One can check easily that indeed gµν Bµ eν  vanishes to first order, for all choices of 

ei . 

 

2.2.2 The Energy-Momentum Tensor 

As illustrated in Figure 8.1, the fluid velocity in the locally orthonormal frame is 

vi = dri /dt.  Reverting to the global coordinates, the components uµ = dxµ /dτ  of the fluid 4-

velocity are 

au0     =  1 (zero order)   (2.12) 

aui     =  vi (first order)   (2.13) 

There is no distinction between upper and lower indices for the 3-velocity vi , but there is for the 4-

velocity. Indeed, for uµ = gµν uν , we find 

1
𝑎
𝑢0 = −1         𝑧𝑒𝑟𝑜 𝑜𝑟𝑑𝑒𝑟            (2.14) 

1
𝑎
𝑢𝑖 = 𝑣𝑖 − 𝐵𝑖       𝑓𝑖𝑟𝑠𝑡 𝑜𝑟𝑑𝑒𝑟       (2.15) 

Using these expressions, we can work out the energy-momentum to first order: 
 

𝑇00 = −(𝜌 +  𝛿𝜌)                                       2.16 

𝑇𝑖0 = (𝜌 +  𝑃)(𝑣𝑖  −  𝐵𝑖)                            2.17 

𝑇0𝑖 = −(𝜌 +  𝑃)𝑣𝑖                                       2.18 

(𝑃 +  𝛿𝑃)𝛿𝑗𝑖 + 𝛴𝑗𝑖                                        2.19 

Raising and lowering indices has no effect on either vi or Σij because they are spatial components 
defined in a locally orthonormal frame. It is usual to define a dimensionless version of the anisotropic 
stress by Πij ≡ Σij/P. 
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2.2.3 The Scalar Mode 

𝐵𝑖 ≡ −
𝑖𝑘𝑖
𝑘
𝐵,                                  (2.20) 

𝐸𝑖𝑗 ≡ �−
𝑘𝑖𝑘𝑗
𝑘2

+
1
3
𝛿𝑖𝑗� 𝐸,            (2.21) 

𝑣𝑖 ≡
𝑖𝑘𝑖
𝑘
𝑉,                                       (2.22) 

𝛱𝑖𝑗 ≡ �−
𝑘𝑖𝑘𝑗
𝑘2

+
1
3
𝛿𝑖𝑗�𝛱,              (2.23) 

In the scalar mode we can write δxi = −i(ki/k)δx.  

Applying the gauge transformation 

𝛿𝐵𝜇𝜈
�  −  𝛿𝐵𝜇𝜈  =  −𝐵𝛼𝜈𝜕𝜇𝛿𝑥𝑥𝛼 −  𝐵𝜇𝛼𝜕𝜈𝛿𝑥𝑥𝛼  −  𝛿𝑥𝑥𝜆𝜕𝜆𝐵𝜇𝜈, 

to the metric tensor gives, 

𝐴̃ =  𝐴 – (𝛿𝜂)̇ −  𝑎𝐻𝛿𝜂,                            (2.24) 

𝐵� =  𝐵 +  (𝛿𝑥𝑥)̇ +  𝑘𝛿𝜂,                            (2.25) 

𝐷� =  𝐷 −
𝑘
3

 𝛿𝑥𝑥 − 𝑎𝐻𝛿𝜂,                            (2.26) 

𝐸� =  𝐸 +  𝑘𝛿𝑥𝑥,                                             (2.27) 

Applying it to the energy–momentum tensor gives, 

𝑉� =  𝑉 +  (𝛿𝑥𝑥)̇ ,                                             (2.28) 

𝛿 =  𝛿 +  3(1 + 𝑤)𝑎𝐻𝛿𝜂,                          (2.29) 

𝛿𝑃� =  𝛿𝑃 – 𝑃̇ 𝛿𝜂,                                            (2.30) 

𝛱� = 𝛱,                                                               (2.31) 

 

In the second equation, we used 𝜌̇  =  −3𝑎𝐻(𝜌 +  𝑃)along with the definitions δ ≡ δρ/ρ and w ≡ P/ρ. 

We see that a slicing is needed to define the perturbations δρ and δP, a threading is needed to define 

the velocity perturbation V , and the anisotropic stress Π is gauge invariant. 
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2.3. Evolution of the scalar mode perturbations 

The Scalar Mode 
We will use the conformal Newtonian gauge which is determined uniquely by the line 

element, 

𝑑𝑠2  =  𝑎2(𝜂)[−(1 +  2𝛹)𝑑𝜂2  +  (1 –  2𝛷)𝛿𝑖𝑗𝑑𝑥𝑥𝑖𝑑𝑥𝑥𝑗,                   (2.32) 

We will call Φ and Ψ the gravitational potentials. Starting with an arbitrary gauge we can 

indeed uniquely choose 𝛿𝑥𝑥so that E vanishes (2.27) and then uniquely choose 𝑑𝜂 so that B vanishes 

(2.25). In the conformal Newtonian gauge, slicing and threading are orthogonal, and the worldlines 

defining the latter have zero shear because the spatial part of the metric perturbation is isotropic. 

 

The Evolution Equations 

We begin with the continuity and Euler equations which follow from the Einstein field equations. 

Using, 

𝜌 ≡ 𝑇00,   (𝑓𝑜𝑟 𝑙𝑜𝑐𝑎𝑙 𝑟𝑒𝑠𝑡 𝑓𝑟𝑎𝑚𝑒𝑠),𝑇𝑖𝑗 = 𝑃𝛿𝑖𝑗 + 𝛴𝑖𝑗    𝑎𝑛𝑑  

  𝑇𝑖0 (𝜌 + 𝑃)𝑣𝑖,𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑖𝑛 𝑡ℎ𝑒 𝐸𝑢𝑙𝑒𝑟 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝐷𝜇𝑇𝑖
𝜇 = 0. 

These perturbations give respectively, the two equations, 

𝛿̇ =  −(1 +  𝑤)�𝑘𝑉 − 3𝛷̇� + 3𝑎𝐻𝑤 �𝛿 −
𝛿𝑃
𝑃
� ,                                                  (2.33) 

𝑉̇ =  −𝑎𝐻(1 −  3𝑤)𝑉 –
𝑤̇

1 + 𝑤
𝑉 + 𝑘

𝛿𝑃
𝜌 + 𝑃

−
2
3
𝑘

𝑤
1 + 𝑤

𝛱 + 𝑘𝜓,                    (2.34) 

where w ≡ P/ρ. The field equations give in addition 

𝛿 + 3
𝑎𝐻
𝑘

(1 + 𝑤)𝑉 = −
2
3
�
𝑘
𝑎𝐻

�
2

𝛷,                                                                         (2.35) 

𝛱 = �
𝑘
𝑎𝐻

�
2

(𝛹 −𝛷),                                                                                                    (2.36) 

These equations involve no time derivatives and hence are constraint equations. Well after horizon 

entry one expects the eq. 2.35, to become simply 𝛿 = −2
3
� 𝑘
𝑎𝐻
�
2
𝛷, 

This expectation can be verified for the growing mode after neutrino decoupling. During matter 

domination Φ=Ψ, and on scales well inside the horizon, we recover Newtonian gravity with Φ and 

(2.37), the Poisson equation. 
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Initial Conditions 

For each scale k, we need initial conditions to be imposed well before horizon entry. In general, that 

means during radiation domination. For the very long wavelength modes that enter the horizon after 

matter domination, we can instead take the initial epoch to be during matter domination at least for 

an approximate solution. 

Well before horizon entry, we expect the comoving threads to have practically zero shear. Then the 

relation between density perturbation ρ and curvature perturbation Ψ (𝜁 = 𝜓 − 𝐻 𝛿𝜌
𝜌̇

= 𝜓 +

1
3
𝛿𝜌
𝜌+𝑃

) applies, with Ψ= -Φ, giving 

𝛿
3(1 + 𝑤) = 𝜁 + 𝛷,               (2.38) 

Also, we expect the anisotropic stress, Π to be practically zero. To be precise, we expect Π to fall off, 

going back in time, at least like � 𝑘
𝑎𝐻
�
2
. A single power of k would come with a spatial gradient, which 

isn’t allowed because the three functions Π, Φ and Ψ are scalars. As a result we expect the metric 

perturbations Φ and Ψ to go to finite (possibly zero) values as we go back in time. Then the RHS of 

the equation vanishes. 

Using these results or more simply by evaluating the 00-component of the Einstein equation with k=0 

we arrive at the useful equation, 

−𝜁 =  𝛷 +
2
3
𝛹 + (𝑎𝐻)−1𝛷̇

1 + 𝑤
,      (2.39) 
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2.4 Separate fluids 

If the cosmic fluid has a number of components, the total perturbations are, 

𝛿𝜌 = �𝛿𝜌𝑖,                                               (2.40)
𝑖

 

(𝜌 + 𝑃)𝑉 = �(𝜌𝑖 + 𝑃𝑖)𝑉𝑖,                      (2.41)
𝑖

 

𝛿𝑃 = �𝛿𝑃𝑖,                                                (2.42)
𝑖

 

𝑃𝛱 = �𝑃𝑖𝛱𝑖,                                             (2.43)
𝑖

 

If a component of the cosmic fluid doesn’t exchange energy with its surroundings it will satisfy the 

continuity equation given by (2.33). And if it doesn’t exchange momentum it will satisfy the Euler 

equation given by eq. 2.34.  

We are interested in the epoch after 𝑇~10−1 𝑀𝑒𝑉 and assume that the cosmic fluid has just the four 

components i= CDM (cold dark matter), B (baryons), γ(photons) and ν (neutrinos). CDM doesn’t 

interact and has negligible pressure. It therefore satisfies the continuity and Euler equations, 

𝛿𝑐̇ = −𝑘𝑉𝑐 + 3𝛷̇;          𝑉𝑐̇ = −𝑎𝐻𝑉𝑐 + 𝑘𝛹               (2.44) 

Thomson scattering doesn’t alter the photon energy, so that the photons and baryons satisfy the 

continuity equation; 

𝛿𝛾̇ = −
4
3
𝑘𝑉𝛾 + 4𝛷̇;          𝛿𝐵̇ = −𝑘𝑉𝐵 + 3𝛷̇               (2.45) 

We now adopt the ‘tight-coupling approximation’ for the photons and baryons. In this 

approximation, Thomson scattering of photons off electrons is taken to completely prevent photon 

diffusion. Since the electron number density everywhere, is equal to the proton number density, this 

gives 

𝑉𝐵 =  𝑉𝛾;                                  

𝛿 �𝑛𝐵𝑛𝛾
�

𝑛𝐵
𝑛𝛾

= 𝛿𝐵 −
3
4
𝛿𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                             (2.46) 

With the adiabatic initial condition the constant vanishes. The baryon-photon fluid is 

isotropic in a local rest frame and its anisotropic stress vanishes. 
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In the tight-coupling approximation the Euler equation for the baryon-photon fluid is 

𝑉𝛾̇  =  −𝑎𝐻 (1 –  3𝑤�)𝑉𝛾 −
𝑤�̇

1 + 𝑤�
𝑉𝛾 +

𝑘
3

𝜌𝛾
𝜌𝐵 + 4 3⁄ 𝜌𝛾

𝛿𝛾 + 𝑘𝛹                   (2.47) 

Here the tilde refers to the baryon-photon fluid and to a good approximation 3𝑤� = 𝜌𝛾 (𝜌𝐵 + 𝜌𝛾)⁄ . In 

writing this equation we took 𝛿𝑃 =  𝛿𝑃𝛾, valid for scales above the Jeans scale. 

If we ignore the neutrino perturbation (which would otherwise contribute an anisotropic 

stress) the tight-coupling approximation gives Ψ= Φ. Then a closed set of equations (2.46-2.47) is 

provided by the tight-coupling approximation together with the exact equations (2.35), (2.40)-(2.42), 

and (2.44). The remainder of this section focuses on this set to arrive at some rough approximations 

which surround the essential physics. To do this, we impose initial conditions holding well before 

horizon entry. 

The adiabatic initial condition for the density perturbation sets ζ as constant.  

It is, 

𝛷 =  𝛹 =  −
3 + 3𝑤
5 + 3𝑤

𝜁    (𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑒𝑛𝑡𝑟𝑦)  (2.48) 

We normally lay down the initial condition during radiation domination, so, 

𝛷 =  𝛹 =  −
2
3
𝜁          (𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑒𝑛𝑡𝑟𝑦)       (2.49) 

During radiation domination (2.38) gives the density contrast as, 

𝛿 =  𝛹 =  −
4
3
𝜁          (𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑒𝑛𝑡𝑟𝑦)        (2.50) 
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2.5 The matter-density transfer function 

In this section we consider the matter-dominated era, after photon decoupling. We ignore the 

radiation completely so that Φ = Ψ. We first show that the gravitational potential Φk is time 

independent. Then we see how to calculate a transfer function which gives its k-dependence. The 

calculation is vital because Φk has several important effects. 

• It determines the course of bottom-up structure formation 

• It affects the acoustic oscillation of the baryon-photon fluid 

• It gives the dominant contribution to the cosmic microwave background (CMB) anisotropy 

on large angular scales 

First we assume that no baryons are present. From Eq. 2.44 and 2.35 (or from the ij component of the 

Einstein equation, 

𝛷𝑘̈ + 6𝜂−1𝛷𝑘̇ = 0                         (2.51) 

This equation possesses a time-dependent solution and a decaying solution (which we ignore in this 

discussion). 

To include the baryons we have to wait until after photon decoupling, when the baryons 

cease to be tightly coupled to the photons. Then, on scales in excess of the baryon Jeans scale, we 

have a single pressure-less fluid and arrive again at Eq. (2.51). 

To calculate the time-independent Φk, we have to follow the evolution of the density contrast 

between the initial epoch and photon decoupling. If we consider those scales which are still far 

outside the horizon when matter domination becomes a good approximation first. Then ζk is constant 

and eq. 2.48 evaluated during matter domination gives 𝛷𝑘  =  − (3 5)⁄ 𝜁𝑘. 

We therefore define a matter transfer function by, 

𝜱𝒌  = −
𝟑
𝟓
𝑻(𝒌)𝜻𝒌 

This function is time independent after photon decoupling and is close to 1 on very large 

scales.  

For an approximate determination of T(k) it is enough only to keep the CDM, and to 

consider scales which are only well inside the horizon at decoupling. The evolution of the CDM is 

given in terms of the gravitational potentials by Eq. (2.44). The gravitational potentials depend on the 
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perturbation of all four components (namely photons, baryons, CDM and neutrinos) of the cosmic 

fluid. Well before horizon entry, Vi=0 while the δi and gravitational potentials have time-independent 

values given by the initial adiabatic condition. As horizon entry approaches, all of these quantities 

start to evolve. 

Around the time of horizon entry all relevant perturbations have the same order of magnitude 

and, 𝛿𝑐̇ ∼  𝑎𝐻𝛿𝑐       (2.53) 

The order of magnitude of the RHS is determined by the Hubble parameter which is the only 

scale in the problem. The precise coefficient including the sign can be calculated using either the exact 

equations or the tight-coupling approximation. 

Well after horizon entry Eq. (2.37) applies, with δρ practically equal to the photon density 

perturbation because the neutrino perturbation has free-streamed away. The photon density contrast 

undergoes the decaying oscillation of the baryon-photon fluid, which means that Φ falls faster than 

(aH/k)2 and soon becomes negligible compared with δc. 

Combining the continuity and Euler equations for δc , one finds 

𝛿c
̈ = 𝑎𝐻𝛿𝑐̇ = 0                     (2.54) 

With the initial conditions (2.50) and (2.53), the solution of this equation is 

𝛿c ≅ζln(k/aH).This holds until matter-radiation equality, by which time 𝛿c ≅ζln(k𝜂eq).               (2.55) 

At this stage δB/δC is well below its primordial value of unity, because the numerator has been 

undergoing a decaying oscillation while the denominator has been slowly growing. Setting δB = 0 the 

density contrast is (ρC/ ρm) δC , but we can drop the pre-factor for the remainder of this discussion. 

Applying Eq. (2.37) and again dropping the numerical factor, we conclude that Φk is of order –

(keq/k)2ln(k/keq)ζk when keq = (aH)eq. This gives, 

𝑇(𝑘) ≅
𝑘𝑒𝑞2

𝑘2
𝑙𝑛

𝑘
𝑘𝑒𝑞

,                            �𝑘 >�  𝑘𝑒𝑞� 

The small non-zero value of δB at decoupling is an oscillating function of k, being a snapshot 

of the acoustic oscillation at that time. This gives a small oscillating contribution to T(k), known as 

baryon acoustic oscillations (BAO), which may ultimately prove to be a powerful standard ruler for 

exploring the expansion history of the universe and the properties of dark energy. 
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We have so far ignored the fact that neutrinos contribute a non-zero amount Ων to the present 

matter density Ωm. At least one neutrino species has mass m > 0.05eV. If m isn’t too big the species 

becomes non-relativistic during matter domination. When that happens, the scale entering the 

horizon is 250Mpc (1eV/m)1/2, from the conformal Friedmann equation, 

𝑎(𝜂)
𝑎𝑒𝑞

= �2√2 − 2� � 𝜂
𝜂𝑒𝑞
� + �1 − 2√2 + 2� � 𝜂

𝜂𝑒𝑞
�
2

        𝑎𝑛𝑑           𝑧𝑛𝑟 = 𝑚𝑎
5×10−4𝑒𝑉

<� 2000. 

On much smaller scales the density of species free-streams away, reducing the matter-density 

contrasts by a fractional amount of order Ων/Ωm where Ων is the contribution of just this species. On 

much larger scales there is no significant reduction. For this effect to be observable the mass has to be 

much has to be much bigger than 0.05eV, requiring the mass of two or all three species to be 

practically the same. 

The present observable constraint, Σmi < 1eV, is obtained by fitting both galaxy distribution data, 

which is sensitive to the above reduction, and CMB anisotropy data. With future improvements in 

both these types of data, it will probably be possible to infer at least the heaviest neutrino mass. 

To obtain an accurate transfer function over the full range of scales, more numerical 

derivations are required which are beyond the scope of this discussion. If we assume that neutrinos 

have zero mass, the result shown in the figure is obtained using “CMB-fast” code program. The 

baryon oscillations can just be identified, and the approach to the asymptotic region k>>aH is clearly 

observed. 

 

 

 

 

 

 

 

 

 

 
Figure 2.2 The Adiabatic Transfer Function for Standard Cosmology 
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2.6. Acoustic Oscillations 
 

Until photon decoupling, the baryons and photons for a tightly-coupled fluid, supporting a standing-

wave acoustic oscillation. The photons then travel freely, but imprinted on there is a snapshot of the 

oscillation as it existed just before decoupling. This gives rise to the peak structure in the CMB 

anisotropy. The same peak structure gives the small oscillation in the matter transfer function. 

Now, we form our key discussion in the light of the tight-coupling approximation. To make 

the formulae useful for the CMB discussion, we shall sometimes translate the co-moving wave 

number k into the multi-pole ℓ = 𝓀𝜂0 of the CMB anisotropy. 

Combining the continuity and Euler equations gives an equation governing the acoustic oscillation of 

the baryon-photon fluid. It is, 

1
4
𝛿̈𝛾𝑘 +

1
4

𝑅̇
1 + 𝑅

𝛿̇𝛾𝑘 +
1
4
𝑘2𝑐2𝛿̇ = 𝐹𝑘(𝜂)                                        (2.57) 

In this equation, 

𝐹𝑘(𝜂) ≡ −
𝑘2

3
𝛹𝑘(𝜂) +

𝑅̇(𝜂)
1 + 𝑅(𝜂) 𝛷̇𝑘(𝜂) +𝛷𝑘̈ (𝜂)    (2.58) 

𝑐𝑠2(𝜂) ≡
𝑃̇
𝜌̇
≅

𝑃̇𝛾
𝜌𝛾 + 𝑃̇𝐵̇ =

1
3[1 + 𝑅(𝜂)]

  (2.59) 

𝑅(𝜂)  ≡
3𝜌𝐵
4𝜌𝛾

     (2.60) 

In the regime where cs is slowly varying, Eq. (2.57) is the equation of a forced oscillator, with a 

driving term F and speed of sound cs. We will ignore the small damping of this oscillation provided 

by the 2nd term of Eq. 2.57 because it is negligible. 

The two constraint equations determine F in terms of the perturbations of the neutrinos, the CDM 

and the baryon-photon fluid itself. 

As the 1st two terms vary slowly, the angular frequency of the driving term is kcs. This is also 

the frequency of the oscillation, which has the form factor 

1
4
𝛿𝛾𝒌(𝜂) = 𝐴𝑘(𝜂) +  𝐵𝑘(𝜂) 𝑐𝑜𝑠[𝑘𝑟𝑠 (𝜂)] + 𝐶𝑘(𝜂)𝑠𝑖𝑛[𝑘𝑟𝑠(𝜂)]                  (2.61) 

With slowly varying coefficients Ak , Bk and Ck. 
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The coefficient Ak corresponds to the oscillation being off-centre, owing to the effect of the non-

oscillating contributions to the driving term. After matter domination, it corresponds to the non-

oscillating solution of Eq. 2.57, 

𝐴𝑘(𝜂) = −[1 + 𝑅(𝜂)]𝛷𝑘                      (2.62) 

The slowly varying quantity rs is the distance that sound has had time to travel since a much earlier 

time, idealized as η=0. It is called the sound horizon and is given by 

𝒓𝒔(𝜼) = � 𝒄𝒔
𝜼

𝟎
(𝜼)𝒅𝜼                                     (𝟐.𝟔𝟑) 

At early times R≈0, cs=1/√3 and rs=csη. The baryon fraction increases with time, 

𝑅(𝜂) =
3
4
𝑓𝐵(1− 𝑅𝜈)−1

𝑧𝑒𝑞
𝑧(𝜂)                    (2.64) 

Where 𝑓𝐵  ≡ 𝜌𝐵
𝜌𝑚

 and 𝑅𝜈  ≡ 𝜌ν

ρr
=  0.40 . The sound horizon also increases with time. Using, 

a(η)
aeq

= �2√2 − 2� �
η
ηeq

� + �1 − 2√2 + 2� �
η
ηeq

�
2

, Eqs. (2.59)and(2.63), 

 

rs(η) =
2

3keq
�

6
Req

ln

⎝

⎛
�1 + R(η) + �R(η) + Req

1 + �Req
⎠

⎞                  (2.65)  

At decoupling, R and rs are given by, 

R = 3
4

fB�1 –  fν �
−1 zeq

zls
= 29ΩBh2 ≅ 0.65      rs = 1.5 × 102 Mpc                           (2.66) 

We need to check if cs is indeed slowly varying on the timescale of the oscillations, corresponding to 

(cs ) ̇/cs ≪ kcs. If this requirement is satisfied at decoupling it is satisfied at earlier times as well. 

Remembering that Rls~1 it corresponds to kηls ≫ 1 or ℓ ≫ 70. 
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2.7. Diffusion damping 

In modern cosmological theory, diffusion damping, also called photon diffusion damping, is a 

physical process which reduced density inequalities (anisotropies) in the early universe, making the 

universe itself and the cosmic microwave background radiation (CMBR) more uniform. Around 

300,000 years after the ‘Big Bang’, during the time of recombination, diffusing photons travelled from 

hot regions of space to colder regions, equalising temperatures. This effect, along with baryon 

oscillations, the Doppler effect and gravitation, was responsible for the eventual formation of galaxies 

and galaxy clusters – the dominant large scale structures observed in the universe. Diffusion damping 

is a damping by diffusion, and not of diffusion. The strength of diffusion damping is chiefly governed 

by the distance (the diffusion length) that photons travel before being scattered. 

Between the epoch of decoupling and the epoch of reionisation, the universe is almost 

transparent to photons. As we shall discuss further, the probability that a given photon scatters after 

reionisation is expected to be significantly less than 1, and so, to a useful approximation, we can say 

that all CMB photons that we see, originate on the surface of a precisely defined sphere around us – 

the surface of last scattering. The cosmic microwave background anisotropy comes partly from the 

anisotropy already present at last scattering, and partly from the additional anisotropy caused by 

gravity since then. With critical mass density, it is realised that the latter effect depends only on 

conditions at last scattering. As a result, each angular scale explores the linear scale that it subtends at 

the surface of last scattering, to the extent that reionisation may be ignored. 

 This surface lies practically at the particle horizon, whose comoving distance is 2𝐻0−1 𝜃, or 

𝑥𝑥
100ℎ−1𝑀𝑝𝑐

≃
𝜃
10

                            (2.67) 

This is the relationship between linear and angular scale, ignoring reionisation and the finite thickness 

of the last-scattering surface. A multipole order of ℓ corresponds to an angular scale of order 𝜃 ≃ 1
ℓ
 

and so the ℓth multipole probes the comoving scale 𝑥𝑥 and the comoving wavenumber k, given by 

𝑘−1 ≃ 𝑥𝑥 ≃
2
𝐻0ℓ

= 6000ℎ−1ℓ−1𝑀𝑝𝑐.                           (2.68) 
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In reality, the last-scattering surface has a finite thickness, which comes from the fact that, at 

any epoch, a photon has had time to diffuse a certain distance. This distance is called the Silk scale, 

and its value at decoupling is the thickness of the surface of last scattering. We shall now estimate the 

Silk scale. 

Before decoupling, the photons move about randomly, as they exhibit Thomson scattering with 

electrons. The mean time between collisions is 𝑡𝑐 ∼ (𝑛𝑒𝜎𝑇)−1, where ne is the  electron number

density and 𝜎𝑇 is the Thomson-scattering cross-section. The average number of steps in time t is 

𝑁 = 𝑡/𝑡𝑐, and in that time a photon diffuses a distance 𝑑 ∼ √𝑁𝑡𝑐 ∼ (𝑡𝑡𝑐)
1
2.

At decoupling, with 𝑡 ∼ 1/𝐻, this is the thickness of the surface of last scattering. A careful estimate 

using the transport equations gives a thickness of order  

7Ω0
−�12�ℎ−1𝑀𝑝𝑐

Corresponding to ℓ ∼ 103. As a result, the anisotropy will be wiped out on much smaller scales, for 

much larger ℓ. 
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3. Discussion

The fact that the universe is expanding - about every point in space - can be a difficult 

concept to grasp. The analogy of an expanding balloon may be helpful: Imagine residing in a 

curved flatland on the surface of a balloon. As the balloon is blown up, the distance between 

all neighbouring points grows; the two-dimensional universe grows but there is no preferred 

centre.  

100,000 years after the Big Bang, the temperature of the universe had dropped 

sufficiently for electrons and protons to combine into hydrogen atoms, p + e --> H. From this 

time onwards, radiation was effectively unable to interact with the background gas; it has 

propagated freely ever since, while constantly losing energy because its wavelength is 

stretched by the expansion of the universe. Originally, the radiation temperature was about 

3000 degrees Kelvin, whereas today it has fallen to only 3K.  

Observers detecting this radiation today are able to see the universe at a very early 

stage on what is known as the `surface of last scattering'. Photons belonging to the cosmic 

microwave background have been travelling towards us for over ten billion years, and have 

covered a distance of about 1024 miles.  

If fluctuations in the distribution of matter in the primordial universe have equal power on all 

spatial scales, cosmologists say that their power spectrum is 'scale-invariant'. This is 

characterised with a parameter known as the spectral index, ns. For a perfectly scale-

invariant spectrum, ns = 1. If ns is smaller than 1, it means that fluctuations on larger scales 

are dominant, since they are more abundant (in terms of their cumulative power) than those 

on smaller scales; vice versa, if ns is larger than 1, fluctuations on small scales are the 

dominant ones. 

Page | 43 



3.1 Nucleosynthesis and the shortcomings of standard cosmology 

Prior to about one second after the Big Bang, matter - in the form of free neutrons and 

protons - was very hot and dense. As the universe expanded, the temperature fell and some 

of these nucleons were synthesized into the light elements: deuterium (D), helium-3, and 

helium-4. Theoretical calculations for these nuclear processes predict, for example, that 

about a quarter of the universe consists of helium-4, a result which is in good agreement with 

current stellar observations.  

The heavier elements, of which we are partly made, were created later in the interiors of stars 

and spread widely in supernova explosions.  

The standard Hot Big Bang model also provides a framework in which to understand 

the collapse of matter to form galaxies and other large-scale structures observed in the 

universe today. At about 10,000 years after the Big Bang, the temperature had fallen to such 

an extent that the energy density of the universe began to be dominated by massive particles, 

rather than the light and other radiation which had predominated earlier. This change in the 

form of the main matter density meant that the gravitational forces between the massive 

particles could begin to take effects, so that any small perturbations in their density would 

grow. Ten billion years later we see the results of this collapse.  

The standard cosmology, then, provides a framework for understanding galaxy 

formation, but it does not tell us about the origin of the primordial fluctuations required at 

10,000 years. We must seek answers to questions like these from earlier epochs in the history 

of the universe.  

Despite the self-consistency and remarkable success of the standard Hot Big Bang model in 

our discussion of the evolution of the universe back to only one hundredth of a second, a 

number of unanswered questions remain regarding the initial state of the universe.  
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The flatness problem 

Why is the matter density of the universe so close to the unstable critical value between 

perpetual expansion and re-collapse into a Big Crunch?  

The horizon problem 

Why does the universe look the same in all directions when it arises out of causally 

disconnected regions? This problem is most acute for the very smooth cosmic microwave 

background radiation.  

The density fluctuation problem 

The perturbations which gravitationally collapsed to form galaxies must have been 

primordial in origin; from whence did they arise?  

The dark matter problem 

Of what stuff is the universe predominantly made? Nucleosynthesis calculations suggest that 

the dark matter of the universe does not consist of ordinary matter - neutrons and protons?  

The cosmological constant problem 

Why is the cosmological constant, 120 orders of magnitude smaller than naively expected 

from quantum gravity?  

The singularity problem 

The cosmological singularity at t=0 is an infinite energy density state, so general relativity 

predicts its own breakdown.  

There are strong reasons to believe that the fluctuations which seeded the large-scale 

structures of the universe must have been primordial in origin, that is, associated with 

some of the very earliest times after the Big Bang. The primary candidates at the 

present time are (1) topological defects, such as cosmic strings and textures, or (2) 

inflationary scenarios.

It possible, thus, to carry on in the field of this study in order that we may quantify 

measurable outcomes to the shortcomings listed. This can be only furthered by the rigorous 

and dedicated recording of data from CMBR probes, which are mentioned .
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3.2 WMAP data and results 

The Wilkinson Microwave Anisotropy Probe (WMAP) observatory has successfully 

completed seven years of observations with no significant performance degradation. A full 

set of sky maps for the seven year (2001-2008) data span have been generated and are 

available for analysis. 

These maps were generated with an updated masking procedure that simplifies the 

map-making procedure and allows the creation of a single full-sky noise correlation matrix 

describing the noise correlation over the entire sky for the reduced noise resolution sky maps. 

The WMAP results significantly reduce the uncertainties for numerous cosmological 

parameters relative to earlier results. 

The following figures display the seven-year band average Stokes I maps and the 

differences between these maps and maps earlier published. The difference maps have been 

adjusted to compensate for the slightly different gain calibrations and dipole signals used in 

the different analysis. The small galactic plane features in the K, Ka and Q band difference 

maps arise from the slightly different calibrations and small changes in the effective beam 

shapes. The dipole measured from the seven year data show no significant changes from that 

of earlier results. 

The left column displays the seven-year average maps of the CMBR sky, all of which 

have a common dipole signal removed. The right column displays the difference between the 

seven-year average maps and the previously published five-year average maps, adjusted to 

take into account the slightly different dipoles subtracted in the seven-year and five-year 

analyses and the slightly differing calibrations. All maps have been smoothed with a 1° 

FWHM Gaussian kernel. The small galactic plane signal in the difference maps arises from 

difference in calibration and beam symmetrisation between the two periods of processing. 
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Figure 3.1 – Plots of the Stokes I maps in Galactic coordinates. The left column displays the seven-year average 
maps, all of which have a common dipole signal removed. The right column displays the difference between the 
seven-year average maps and previously published maps, adjusted to take into account the slightly different 
dipoles subtracted in the seven-year and five-year analyses and the slightly differing calibrations. The small 
Galactic plane signal in the difference maps arises from the difference in calibration (0.1%) and beam 
symmetrization between the five-year and seven-year processing. 
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4. Conclusion

The Cosmic Background Explorer satellite was launched twenty five years after the discovery 

of the microwave background radiation in 1964. In spectacular fashion in 1992, the COBE 

team announces that they had discovered `ripples at the edge of the universe', that is, the first 

sign of primordial fluctuations at 100,000 years after the Big Bang. These are the imprint of 

the seeds of galaxy formation.  

These appear as temperature variations on the full sky picture that COBE obtained. 

They are at the level of only one part in one hundred thousand. Viewed in reverse the 

universe is highly uniform in every direction lending strong support for the cosmological 

principle. 

Further, the data obtained from the Wilkinson Microwave Anisotropy Probe 

(WMAP) have allowed us to achieve great precision while quantifying the predicted 

spectrum for the best fit minimal six-parameter ΛCDM model as stated in section 2.7. 

Thus, I believe that data from the WMAP have allowed us to propose a proper model 

for the creation of the universe. It is possible for us to examine the results in detail in this 

respect, and further our study. However, as I was faced with technical limitations, namely a 

lack of laboratory equipment to observe the CMB sky, I was incapable of quantifying any 

results of my own. I propose that it would be of great significance if we could set up an 

observatory in this regard in future in order to gather our own data and not having to rely on 

sources, as was done here. 

For the time being, the seven-year WMAP data remains to be a sound inference for 

our study and has been used in the latter content of this thesis. So, we can further our work 

as necessary while using this data and make any changes with later and more accurate 

observations of the sky. 
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4.1 Ripples at the edge of the universe 

This thumbprint image shows the temperature of the universe in all directions projected onto 

a plane (similar to a map of the earth):  

1. The raw temperature map (top) has a large diagonal asymmetry due to our motion with 

respect to the cosmic microwave background - a Doppler shift.  

2. The temperature fluctuations after subtraction of the velocity contribution, showing 

primordial fluctuations and a large radio signal from nearby sources in our own galaxy (the 

horizontal strip).  

3. The primordial fluctuations after subtraction of the galaxy signal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 



4.2 Prospective study using WMAP research data 

When cosmologists study the formation and evolution of cosmic structure in the universe, 

they plot the relative number of cosmic structures on different sizes in a power spectrum. The 

shape of this graph reveals the ‘power’ of structures that populate the universe on each scale. 

For example, there may be very few structures at very large scales. But counting all of these 

very large structures’ contributions together gives a measure of their cumulative power. If the 

power is to be matched with only smaller structures, a much larger number of them are 

needed. 

Cosmic structures – stars, galaxies, galaxy clusters – grow under the influence of 

gravity, which causes them to become denser and denser. However, other forces may act 

against the attractive pull of gravity; for example, the expansion of the universe or radiation 

pressure – the pressure force exerted by photons. Every structure that we observe in the 

universe is the result of the balance between all these effects during the infancy of the 

universe.  

The WMAP data remains one of the cornerstone data sets used for testing the 

cosmological models and the precision measurement of their parameters. Figure 4.2 displays 

the binned TT and TE angular power spectra measured from the seven-year WMAP data 

(Larson et al. 2010), along with the predicted spectrum for the best fit minimal six-parameter 

flat _CDM model. The overall agreement is excellent, supporting the validity of this model. 

Figure 4.2 tabulates the parameter values for this model using WMAP data alone, and in 

combination with other data sets. Details of the methodology used to determine these values 

are described in Larson et al. (2010) and Komatsu et al. (2010). 

The seven-year WMAP results significantly reduce the uncertainties for numerous 

cosmological parameters relative to the five-year results. The uncertainties in the densities of 

baryonic and dark matter are reduced by 10% and 13% respectively. When tensor modes are 

included, the upper bound to their amplitude, determined using WMAP data alone is nearly 
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20% lower. By combining WMAP data with the latest distance measurements from Baryon 

Acoustic Oscillations (BAO) in the distribution of galaxies (Percival et al. 2009) and Hubble 

constant measurements (Riess et al. 2009), the spectral index of the power spectrum of 

primordial curvature perturbations is ηs = 0.963±0.012, excluding the Harrison-Zel’dovich-

Peebles spectrum by more than 3σ.  

The reduced noise obtained by using the seven-year data set yields a better 

measurement of the third acoustic peak in the temperature power spectrum. This 

measurement, when combined with external data sets, leads to better determinations of the 

total mass of neutrinos, Σ𝑚𝜈  , and the effective number of neutrino species, 𝑁𝑒𝑓𝑓, as 

presented in Table 4.2. 
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Table 4.2 
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