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Abstract

We consider the transmission of classical information over a quantum chan-
nel. The channel is expressed by an alphabet of quantum states. For an
example, we can express quantum states by photon polarization. For trans-
mitting information, we use specified set of probabilities. If we find that the
receiver is unable to make separate measurement on the received letter then
we have to use Holevo theorem. From this theorem we see that, in such case,
the amount of information per letter we are sending cannot be larger than
the Von Neumann entropy H of the letter ensemble. It happens most of the
time that, the actual amount of information which will be transmitted is less
than H. However if we use block coding scheme which has options to choose
code words that respects the priori probabilities of the letter states then we
find a different situation. In this case the receiver distinguishes whole words
rather than individual letters. In this way, the information transmitted per
letter can be made arbitrarily close to H. Block coding scheme helps us to
find clear information of theoretical interpretation of Von Neumann entropy
in quantum mechanics. We use this experiment in superdense coding and we
consider this extension to noisy channels.
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Chapter 1

Introduction

Noisy channel coding theorem is the main outcome of Shannons classical the-
ory of information. From this research, a high reliable process came out which
is measuring the capacity of a noisy channel. From this measurement, it can
be easily determined what will be the maximum rate of classical information
which can transmit reliably through the channel. A quantum source can
emit unknown quantum state. Our purpose is to convey this state through
the channel to some receivers. The main obstacle we face in this case is that,
the channel has some noises. The noise prevents transmission of information
through the channel properly. Our main target is to increase the efficiency of
transmitting information over a given quantum channel. We can recognize a
channel for transmitting a signal reliably on this condition if the sequence of
block coding and block decoding system can be found that acquire perfect
fidelity within the limit of large block size. A new concept has arised for
a perfect quantum information channel which is channel capacity theorem.
From this theorem we can get an effective procedure which explicit algorithm
to evaluate the channel capacity. There are two parts in this theorem, one
part creates an upper bound for transmitting information properly and the
other part gives the instruction for coding and decoding scheme to attain
that bound.
This paper has two main sections. In first sections, we showed that increasing
of efficiency of the general process for proving upper founds on the capacity
of a noisy quantum channel. These techniques are applied in various different
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classes of quantum noisy channel problem. In other section, we showed some
new innovations that quantum mechanics introduces into the noisy channel
problem.
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Chapter 2

Quantum information channel

The transmission and manipulation of information is one of the prime con-
cerns of quantum information theory. The storing system of information
must be considered as quantum mechanical system. One of the vital ques-
tion in quantum information theory that raised by physicist, what is the
limit of perfection to transmit information within a given set of resources.
Comparing to the classical information fact, we find two very different ques-
tions in quantum theory. However, quantum state can be conveyed by a
sender himself. In the quantum state the sender find an unknown state of
quantum system. The goal of the sender is that, the receiver will end up
with a similar system in quantum state. To solve this case, recently a coding
theorem is proved by scientists. On the other hand, quantum state may be
used for conveying classical information in the sequence of zeros and ones.
When the quantum states are not orthogonal to each other (which states
are used by a sender and receiver) then we notice an interesting thing. In
this case, it becomes very difficult to distinguish from each other perfectly
by the receiver. This type of problem gives us a chance to a new informa-
tion theoretic-interpretation of the Von Neumann entropy of an ensemble of
states. We can use non- orthogonal quantum states in a variety of context
to transmit information. To avoid eavesdropping, non-orthogonal signals
are used intentionally in the field of quantum cryptography. Besides, in the
field of quantum level for transmitting signal ,such as weak coherent pulses
in an optical fiber, any ambiguity between signals may be more a matter of
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non-orthogonally(e.g., overlapping pulses) than classical noise. Although our
analysis applies to all quantum system, most of the time we will imagine the
signals to be non-orthogonal photon polarization state

We can imagine a situation that a sender, Alice wants to transmit
classical information to a receiver, Bob. To do this job Alice use quantum
mechanical communication channel (for example, the polarization of photon).
Alice will try to prepare the channel in various quantum states. Following
this process Alice will represent her messages. On the other hand, the receiver
Bob will measure the channel and try to recover the information. Messages
sent by Alice will be limited without error. The quantum mechanics of the
channel will do this task. As we mentioned before unless the signal state used
by Alice are orthogonal, it will become very difficult for Bob to distinguish
accurately between the signals. As a result the accuracy of Bob to recover
the messages of Alice without any error will be limited. Bob will complete
this work with the help of quantum mechanics of the channel. In reality, it
is almost impossible for any Decoding observable to recover the whole infor-
mation content of the message in the quantum signal source. The maximum
information that we can be able to recover in a measurement performed on
the system M that conveys that message. For this reason, it is more reason-
able to consider accessible mutual information is the proper measurement of
recovered information. For a pair of random variables of mutual information
X and Y is defined to be

I(X : Y ) = H(X)−H(X|Y ) (2.1)

Here H is the Shannon entropy, which is a function of the probabil-
ities p(xi) of the possible values of X:
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H(X) = −
∑
i

p(xi) log2 p(xi) (2.2)

Here we interpret plog2p as taking the value zero when pH(XuY)
is the expected entropy of X once one knows the value of Y. That is,

H(X|Y ) =
∑
j

p(yj)
[
−
∑
i

p(xi|yj) log2 p(xi|yj)
]

(2.3)

The mutual information is the amounts of information about X that
we find by determining the value of Y in the classical information theory .We
justify our focus in the crucial theorem which we find from classical informa-
tion theory. The justification on I(X: Y) is this: if we find a communication
channel which has mutual information I(X: Y) between the input signal X
and the received output Y than the meaning of sufficiently redundant coding
is that the channel can be used to send information not existing I(X:Y) binary
digits per use of the channel with arbitrarily low probability of error. In the
field of quantum context, if we denote it by B, the outcome of a measurement
of an observable on M , the actually I(A:B) measure the information about
the message source A that we find from the measurement of the observable.
For this reason, it also measures the number of binary digit which can be
conveyed per signal when the receiver works with this observable.

Gordon and levitin stated a theorem about quantum information.
This theorem was first proved by Holevo. The theorem tells that, the amount
of information which is accessible to Bob is limited .This limitation is oc-
curred by the entropy of ensemble of signal states. We can imagine a sit-
uation where Alice represents each message (with a priori probability pa).
Usually this state is a mixed state. Now for an observable, we can say that
Bob will take the opportunity to measure information. The mutual infor-
mation I(A:B) between Alices input A and Bobs measurement outcome B is
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bounded by

I(A : B) ≤ H(ρ)−
∑
a

paH(ρa) (2.4)

Where rho=(the average density matrix for ensemble of signals ) and H()=-
Tr(here we find the von Neumann entropy of the density matrix ). If this
condition true that, the signal states a all pure states and the second term
on the right vanishes, then we can simply say that

I(A : B) ≤ H(ρ) (2.5)

Holeveo noted some special situations when message are sent to Bob. In this
situation I(A:B) does not approach H(P) very closely for any choice of Bobs
decoding observable. Although this theorem gives an upper bound on the
amount of information which is accessible to Bob, this upper bound is not
always strong.
Two physicists Peres and Wooter researched more about this example. Alice
wants to send a photon in one of three linear polarization states (called letter
states). These three states are separated by 1200 .Three states are equally
useful for acquiring information. This signal ensemble has a Von Neumann
entropy H(p) of 1.000 bit. On the other hand, we see that Bobs optimal de-
coding observable creates mutual information I(A:B) of .585 bit. There will
be nine possible states if we use two photons. The Von Neumann entropy
is 2.000 bits and Bob can easily find the optimal mutual information which
is 1.170 bits. Alice try to send two photons, but she works only with three
states. It is noted that, the individual letter states are being used with their
original (equal) probabilities in this restricted choice of two photon states.
In this case, the ensemble entropy S (p) is only 1.585 bits. But we find the
optimal mutual information is 1.369 bits or about .685 bit per photon. In
other words, we can restrict the code to a subset of the possible code words.
In spite of restricting the code, Alice has a chance to increase the distinguish
ability of the code words and increase the information which is conveyed per
photon to Bob.[1]
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Figure 2.1: Encoding and decoding of quantum channel

From the above example, we can say that, we have some chances
for increasing the accessible information per elementary signal by (a) using
code composed of several elementary signals and (b) deleting the possible
code words in the ensemble; still we are respecting the elementary signal fre-
quency which we have acquired before. For the purpose of distinguishing the
real code words, the receiver than chooses a decoding observable optimized.
It is noted that, this observable will not be observable for a separate set of
measurement on the individual elementary signals at all times. Instead of
that will be a joint measurement on the whole set of signals constituting a
code word.

This consideration creates an ambiguity which is that whether Alice
and Bob will be able to use this strategy for approving the Holevo bound.
That is, given a priori ensemble of pure state signals with entropy H (), is
it possible for Alice and Bob to choose a set of code words respecting prob-
ability of the original signals together with a decoding observable, so that
information can be transmitted reliably at a rate approaching H (p) per ele-
mentary signal? The answer is yes. Besides, it will be bound that, no such
code will be able to transmit signal exceeding H (p). It is now convenient
for us to give a precise formulation of our main result. Suppose we are given
an ensemble of letter states of an elementary quantum system (it is not need
a photon) with a priori probabilities Pa. The letter ensemble has a density
matrix
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ρ =
∑
a

pa |a〉 〈a| (2.6)

With a Von Neumann entropy H(p)=-Trlnp.
A code [(N,l) code] has two things. One is a set of nN code words S˙ij=1,.n
where each code word is a sequence (i.e, product ) of letter states (but not
every time all such sequence of letter states are code words ). Another thing
is that an a priori probabilities pSi assigned to each code word. The tolerance
of the code is defined by

τ = maxa|fa − pa| (2.7)

Where fa is the overall frequency of occurrence of the letter |a〉
among the Nl letters of all the code words, taking into account then a priori
probabilities of the code words. That is

fa =
1

l

N∑
i=1

Psni a, si (2.8)

For construction of given words low tolerance code will use the let-
ters approximately with their given a priori probabilities Pa.
Theorem: Suppose I be the least upper bound on the information per letter
transmissible with any code having tolerance ¡.
This theorem gives a precise information-theoretic interpretation of von Neu-
mann entropy in quantum mechanics. To put it in somewhat looser but more
familiar terms, the theorem says that if Alice is highly needed to use certain
quantum states as signals with certain specified frequencies of occurrence,
the number of binary digits she can convey to Bob per particle can be made
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arbitrarily close toH()-, but not greater than , the von Neumann entropy of
the ensemble of signals as we think before. Before we prove the theorem it
is noticeable that comparing our result to the channel capacity theorem for
classical information channel we get a clear concept for transmitting informa-
tion reliably through a noisy channel. The maximum von Neumann entropy
we find from our quantum channel has the priori probabilities

C := maxpaH(ρ) (2.9)

From the above discussion we have found some similarities between
classical channel capacity and the above notion of quantum channel capacity.
In spite, of these similarities we also find some differences, in particular the
origin of the conditional probabilities in eqn (3). Generally we find these
probabilities are fixed in the classical setting, we are able to transmit infor-
mation like letter states without altercation. There will be no difficulty for
Bob to decode the message. Now there is a problem to distinguish perfectly
non-orthogonal quantum states by any measurement. For decoding bob has
enough freedom to choice and conditional probabilities in equation (3).
The proof of the theorem that we have found just before, has some simi-
larities with the classical channel capacity theorem in some respects in that
sense, both we found rely on the construction of the letter states to obtain
code words and proving of the set of all possible code words to be used in
the channel.

In the classical setting, the purpose of proving codes is to increase
redundancy. On the other hand, we see that in quantum setting the aim of
proving code words is to distinguish of the code word states. It is a matter
of interest this concentration and proving do not result in a channel that
differs from the original. There is a question arise in both situation that if
we allow for repeated transmission of elementary letter states, what will be
our minimum rate so that we can convey information. For demonstrating
the existence of a code with desired properties both proofs utilize a method
of random coding
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(1− ε)2l[H(ρ)−δ] < dim Λ < 2l[H(ρ)+δ] (2.10)

The typical subspace L is constructed as follows: The eigenvalues
qi of the one-letter density operator r form a ”probability distribution for
the Eigen states of r, for which the classical Shannon entropy is just the von
Neumann entropy H(r). Eigen states of are sequences of r Eigen states. By
the weak law of large numbers, we can find a set of typical Eigen states of l
which the frequencies of the ρ Eigen states are close to the probabilities qi
is the subspace spanned by these typical Eigen states. Suppose we sum the
squares of the eigenvalues of l, but restrict ourselves to the typical subspace.
Then we get

Tr
∏

Λ
(ρl)2

∏
Λ
< (dim Λ)(2−l[H(ρ)−δ])2 < 2−l[H(ρ)−3δ] (2.11)
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Chapter 3

Decoding Observable

We suppose a situation where Alice is using a code. The words that he uses
in the code are long enough for the typical subspace to exist. The words have
the properties outlined above. It might be happened for Bob that he is not
using all of the possible code words. One of the main problem for Bob is to
distinguish a collection of vectors in the Hilbert space H’ be a collection of
such vectors (possibly not normalized). We consider the operator

Φ =
∑
k

|φk〉 〈φk| (3.1)

Which we find a positive operator whose support is the subspace
spanned by the vectors. On this subspace exists and is invertible, so we can
form the vectors

|µk〉 = Φ−
1
2 |φk〉 (3.2)

It is corresponds to positive operators. These positive operators can
easily be shown to be a resolution of the identity on this subspace:
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∑
k

|µk〉 〈µk| =
∑
k

Φ−
1
2 |φk〉 〈φk|Φ−

1
2 (3.3)

= Φ−
1
2 (
∑
k

|φk〉 〈φk| )Φ−
1
2 (3.4)

= Φ−
1
2 ΦΦ−

1
2 = 1 (3.5)

The operators supplemented by a projection onto the subspace per-
pendicular to the span of it thus arise from the outcome operators of a POM.
The vectors specify a particular POM which employs the outcome operators.
This is the POM that Bob chooses in order to distinguish among the vectors.
This is a reasonable choice. If the vectors are orthogonal and thus completely
distinguishable, the resulting measurement does indeed distinguish them per-
fectly. There is no reliable way of specifying the best observable in general,
but this observable will be good enough for our purposes. The vectors have
another interesting and for us useful property. Let Sjk be the matrix of inner
products among the vectors:

Sjk = 〈φj|φk〉 (3.6)

If there are N vectors, this is an N*N complex matrix with positive
eigenvalues. The µ˙mk vectors are related to the square root of this matrix by

(
√
s)jk = 〈µj|φk〉 (3.7)

In fact, this property of the vectors can be taken as an implicit definition for
them.

Bob will try to decode Alices message, for this reason he will em-
ploy an observable to distinguish between her signal states. But we will find
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it more useful to suppose that he distinguishes between projections of the
signal states into the typical subspace Lthat is, between non-normalized vec-
tors. For this purpose Bob will employ the square root measurement which
was described a short time ago. Since we see that, the typical subspace con-
tains almost all of the set of available code words in the sense of the previous
section this refinement introduces negligible error, as we shall show. Thus,
we can define the matrix Si so that

〈µi|sj〉 = 〈µi|σj〉 = (
√
Sij) (3.8)
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Chapter 4

Probability of error

Alice code contains N code of words. Each code is used with equal frequency.
These codes can be used with equal frequency. So we say that, the infor-
mation content of a single code word is therefore log2N.Each code word is a
sequence of l letters which we found from the set of possible letters. (Only
for this case, we will disregard the probabilities of those letters in the given
ensemble.) Bob will try to devise his decoding observable as we mentioned
before. Alice sends the signal |si〉. The probability of sending her signals is
1/N. Bob will try to interpret the signal accurately. It means that, he will
obtain the i outcome in his decoding POM-with probability.

p(µi|si) = Tr||µi〉 〈µi|si〉 〈si| = |〈µi|si〉 |2 (4.1)

From the equation, we see that the vector is real and non-negative. The
average probability of error we find

PE = 1−
∑
i

1

N
〈µi|si〉2 =

1

N

∑
i

(1− 〈µi|si〉)(1 + 〈µi|si〉) (4.2)

≤ 2

N

∑
i

(1− 〈µi|σi〉) (4.3)

In terms of the Sijmatrix, this is
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PE ≤
2

N

∑
i

[1− (
√
Sii)] (4.4)

The square root function is bounded below by a parabola: for x ≥ 0,

√
x ≥ 3

2
x− 1

2
x2 (4.5)

The matrix S is a matrix with non-negative eigenvalue, so this inequality
may be applied to it:

√
S ≥ 3

2
− 1

2
S2 (4.6)

This means that, for a complex N vector with components Zk we find∑
kl

z∗k(
√
S)klzl ≥

3

2

∑
kl

z∗kSklzl −
1

2

∑
klj

z∗kSkjSjlzl (4.7)

18



Chapter 5

Random code

In this section and the coming section we will prove our main result. Our
main result will be proved in this section and the next section. We will show
that Alice can choose N code words with N sufficiently large so that log2N is
approximately lH(r), such that Bob (using the scheme above) has probability
of error PE. The probability is nearly equal to zero. In the coming section
we will also see that, Alice’s code may be choose arbitrarily. Alice code has
small tolerance. As we defined in (7) we will also show that, an information
rate of H (p) bits per letter cannot be expected to exceed in the limit of
vanishing tolerance. We will show that, the existence of this code. To do
this task, we will in fact show that the job can be done by most of the code.
This means we will measure the average probability of errors. Our target is,
by doing this job we will ensemble of random codes of N words. By applying
this process, we will generate a random code. Each of the N code words
we found is a sequence of l letter states which generated by using the priori
probabilities for the letters. We denote an average over random codes by

∑
kl

z∗k(
√
S)klzl ≥

3

2

∑
kl

z∗kSklzl −
1

2

∑
klj

z∗kSkjSjlzl (5.1)
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Next we take the average of PE over random codes

〈PE〉 ≤
2

N

∑
i

(1− 〈ni〉c +
1

2

∑
j 6=i

〈SijSji〉c (5.2)

Each of the averages in this expression is easy to calculate. The
average norm of the ith projected code word is

〈ni〉c = 〈Tr(
∏

Λ
|si〉〈si|

∏
Λ
)〉
c

(5.3)

= Tr(
∏

Λ
ρl
∏

Λ
) ≥ 1− ε (5.4)

For ji, the code words |s〉jand |s〉i are independent so that

〈SijSji〉 = 〈〈si|
∏

Λ
|sj〉 〈sj|

∏
Λ
|si〉〉

c
(5.5)

= 〈Tr(
∏

Λ
|si〉〈si||sj〉〈sj|

∏
Λ
)〉
c

(5.6)

= Tr
∏

Λ
(ρl)2

∏
Λ

(5.7)

The j sum yields a factor N-1 thus

〈PE〉c < 2ε+N Tr
∏

Λ
(ρl)2

∏
Λ

(5.8)

We use the properties of typical subspace to obtain

〈PE〉c < 2ε+N2−l[H(ρ)−3δ] (5.9)

If the average probability of error is below this bound, then Alice and Bob
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will be able to find some particular code for which

PE < 2ε+N2−l[H(ρ)−3δ] (5.10)

This code can be transmitted at any asymptotic rate of H (p) bits per letter
which error probability is very low.
Remark: In fact, we have a chance to do better. We have a system to modify
a code with low error probability. Suppose we throw the worst half of the
code words in the suitable code. As we found the average probability of error
for this code is less than 3, we have

1

2lH(ρ)

∑
i

[1− p(µi|si)] ≤ 3ε (5.11)

From the above discussion we can conclude that, at least half of the code
words must have conditional probability of error of less than 6 otherwise,
these code words have contribution at least 3. to the sum. Thus the reduced
code book we have code words. If we throughout half of the code words,
then we have a chance to change the rate from H( p) to H(p)-1 l, a negligible
difference for large l.

21



Chapter 6

Letter Frequencies and Channel
Capacity

In our previous section, the arrangement we have made is constructive. We
were not able to construct a code with low probability of error. We have
merely showed that this type of code should be exist. For this reason, we
become fail to know its property in details. However, our task is now to show
that the code may be chosen having arbitrarily small tolerance. Previously
we saw that, each code word is used equally most of the time. So, many
times a given letter appears in the list of N code words help us to predict it’s
frequency of occurrence when the code will be used by Alice and Bob. In the
following way, we can apply the weak law of large numbers to the set of codes:
if N l is sufficiently large, it might be happened that the set of all random
codes divided into two classes: a set of ”atypical” codes. This type of codes
is generally generated by random coding with small total probability. These
codes which has small total probability have very small effect to the overall
average probability of error estimated above. In this way 〈PE〉c must also be
very small even if Alice and Bob are given no chance to use ”typical” codes-
every one of which has letter frequencies matching the a priori probabilities
p˙a to within any specified tolerance. Different types of situation might be
happened if Alice and Bob are not need to use any particular frequencies. In
this case, they are free to adjust them as their own wish in order to maximize
the information per letter conveyed by their channel. Similar to section 1 in
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this case we have the chance to define the channel capacity C of a quantum
channel with a particular alphabet.

C = maxpaH(ρ) (6.1)

From our above argument clear this fact that Alice may communicate with
arbitrarily low probability of error up to C bits per letter, to Bob using the
letter states |a〉.
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Chapter 7

Super dense coding

Bennet and Wiesner (14) proposed quantum communication scheme. This
code is called Super dense coding. We can apply our result in this interest-
ing scheme. We use super dense coding in the quantum entanglement lower
systems her enhancing their information security. We now want to give an
example how the super dense coding works. At first Alice and Bob share a
pair of two state system. We suppose this state is one of the four orthogonal
Bell states which is given by,

|Ψ±〉 1√
2

(|↑1↓2〉 ± |↓1↑2〉) (7.1)

|Φ±〉 =
1√
2

(|↑1↑2〉 ± |↓1↓2〉) (7.2)

The communicating power of single spin is very limited. In reality,we find
only one bit of information by transmitting this type of spin. The process is
occurred by a simple application of the W holevo theorem. The other situ-
ation might be happened. Bob will be able to know two bits of information
from Alice. This task is happened by the per-determined entanglement be-
tween the pair of spins. Both Alice and Bob have to do a special task for this
special condition. Bob will be able to recover perfectly by Alice 4 way choices
which encodes a two bit message. Our interest is in a more general situa-
tion. Instead of spin, both Alice and Bob will work with N-state quantum
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system. At the same time they can possess a considerable supply of them.
The purpose of Alice and Bob are to use blocs coding of many independent
messages.
Now we suppose that, Alice and Bob are sharing many pairs of system. These
systems in some entangles pure state like the Bell states may or may not be
maximally entangled. Now our prime concern is, what will be information
capacity of these entangled systems for super dense coding. It is very easy
for Alice to perform a unitary transformation on her system. After unitary
transformation, Alice will deliver it to Bob. We might imagine different
transformation performed by Alice with different a priory probabilities, con-
tribute a vital rule to ensemble of states for the pair of system. Later, Bob
will measure these states. From our theorem it is proved that with the help
of tricky coding and Bobs decoding observable Alice can easily convey an
amount of information up to the entropy of the ensemble.

Now it is our main concern, that what will be limit of this entropy
or what is the maximum capacity of this scheme. Now it is very easy to
realize that, it is not possible for the entropy of this system can be larger
than He log2N. The reason is that manipulations of Aliice’s system do not
affect the density matrix pf Bobs system. The total entropy for the pair
of system will be always smaller than the entropy of Bobs system which is
denoted by Alice. The same thing will be happened with the entropy of the
Alices system. From our discussion we can also say that, it is very easy for
a particular ensemble of transformation to make the overall entropy equal to
He+ log2 N. It is very easy for this type of ensemble of transformation to
include all permutations of the Schmidt basis states.

Form the above discussion, we can make a decision that,the channel
capacity of the super dense coding scheme is He + log2N. It is a sensible
result. We suppose that, at the initial time the pair of a system in a product
state He=O and same to the previous state Alice only can send log2N bits
in each state.
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Chapter 8

Noisy Channels:

In our discussion we have assumed that, Alice sends a letter state la ¿to Bob.
The state remain unchanged when it arrives to Bob. But in reality it is not
possible of all the times. The channel will often create noise. Besides, the
signal wills arrived in mixed state Pa. In that case Alice will take another
process to send her message. Instead of ensemble of pure state Alice will
use ensemble of mixed state. We do not use ensemble of mixed states in our
theorem. In this case we will use the following conjecture.

χ = H(ρ)−
∑
a

paH(ρa) (8.1)

To make logical our assumption considering two different ensembles is very
helpful. Alice is given the ensemble of mixed states. We consider a random
code. The original mixed state ensemble contributes to construct this code.
We do not find any physical difference between these two codes as we have
used al set of possible transmission. The difference we find in code is that
the knowing of Alice is sending the pure state.
We suppose that our main theorem applies to 8 code constructed in this way.
It Alice is able to know by which pure signal she is sending her signal, then
it will be easy to her to convey up to H (p) bits per letter using a typical
8 code constructed as above. By getting this information Bob will be able
to know the specific Eigen states. In reality Alice has the capacity only to
know the mixed state. In this way the amount of information that will be
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obtained by Bob per letter about this Eigen states is the average entropy of
the mixed signal states Pa, that (Pa). The result we found from the additiv-
ity of information is that

H(ρ)−
∑
a

paH(ρa) (8.2)

It is our failure that the above theorem does not apply to the codes because
of the lack of strict independence among the code words. However in general
sense we can say that in more elevator arrangement will discuss it more dearly
and thereby prove the conjecture.
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Chapter 9

Quantum operation:

How can we perfectly define quantum noisy channel? What is the accurate
process to describe it mathematically? We will use quantum operation to
describe noisy channels. Same as before, we define quantum operation as
completely positive maps or super scattering operators. There are many
example of a state change in quantum mechanics. Among them writary evo-
lution is one of the simple state example which is experienced by a closed
quantum system. The mathematical expression by which we show the trial
system state of the system which is related to the initial state by a unitary
transformation.
img

ρ→ E(ρ)− UρU † (9.1)

Most of the closed quantum systems are described by unitary evolutions.
More general state changes are possible by Schrodingers equation in his open
quantum system. In this case, we can give the example of noisy quantum
channel.
How one can describe a general state change in quantum mechanics. With
quantum operation formalism we can give a proper solution. Kraus described
the formalism properly. We find in his formalism an input state and an out-
put state. The input state and output state are connected by a map.
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ρ→ E(ρ)

Tr[E(ρ)]
(9.2)

We find only one term in the sum A1= U of a unitary transforma-
tion. One of the interest things that we find in a class of operation is the
trace preserving or non selective operation. Generally we find trace preserv-
ing operations where the system is interacted to some environment which is
not under observation.
Quantum Operation Theorem representation (theorem for trace preserving
quantum operation) Suppose is a trace preserving quantum operation on
a system which has a d-dimensional state space. We can able to construct
an environment E of at most d2 dimension. In this situation, the system
and environment are initially uncorrelated. We also think that, at the begin-
ning the environment is in a pure state σ = 〈s〉. At the same time we also
think, there exist a unitary evolution U on system and environment such that

E(ρ)− TrE[U(ρ⊗ σ)U †] (9.3)

From this theorem we find that any trace preserving quantum oper-
ation can always be mocked up as a unitary evolution. The unitary evaluation
is connected to an environment with which the system can interact unitarily.
Conversely, from this theorem we can say that, any such unitary interactions
with an initially uncorrelated environment give rise to a trace preserving
quantum operation. Both of those cases are useful in what follows.
Here the state of the system before the interaction with the environment is
denoted by Q. On the other hand, the state of the system after the interac-
tion is denoted by Q’. Unless stated otherwise in all case we will follow the
convention that Q and are Q’d- dimensional. For the description of noisy
channel the only thing, that we concern is the dynamics of Q. For any given
quantum operation ε we find various expression of in terms of environments
and interactions U ˆQE for our convenient we always think that the begin-
ning state at E is a pure state and regard E as a mathematical artifice. In
reality, the actual physical environment Ea may be impure at the beginning
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state. The meaning of discrete is that, there are few members at input and
output states exist on the channel. By discrete quantum channel we realize
that, it has a finite number of Hilbert space dimensions. In the classical case,
the meaning of memory less is that the output of the channel is independent
of the past, conditioned on knowing the state at the source.
Phrased in the language of quantum operations we assume that there is a
quantum operation N which describes the dynamics of the channel. The re-
lation of input p; with the output of the channel is expressed by the following
equation.

ρi → ρo −N (ρi) (9.4)
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Chapter 10

Entanglement Fidelity:

Now we will review a quantity which is known as the entanglement fidelity.
We use this quantity. We defined the entanglement fidelity for a process
which is expressed by a quantum operation acting on some initial state p.
There are some special significance of entanglement fidelity. Among them
when an entanglement fidelity close to one, we find that the process preserve
the state well It also indicates that the process preserves the entanglement
well. On the other side, we kind a completely different situations when the
entanglement fidelity is close to zero. With this situation we find that the ε
on its entanglement was not well preserved by the operation. So, we can say
that entanglement fidelity is the overlap between the initial purification
PsiRQ of the state between it is we send it through the channel with the state
of the joint system RQ. After that, we send it through the channel. We see
that entanglement fidelity depends only on ρ and ε instead of the particular
purification
PsiRQ of that is used. If has operation elements Ai, than we find the fol-
lowing expression of entanglement fidelity.

Fe(ρ, E)−
∑

i|Tr(Aiρ)|2

Tr[E(ρ)]
(10.1)

As we find the denominator is 1, so this expression will simplify trace- pre-
serving quantum operation.
We use entanglement fidelity for various reasons to measure our success in
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transmitting quantum state. If we become success to send a source Ps, with
high entanglement fidelity, then we will be able to send any ensemble for s
with high average pure-state fidelity. So, entanglement fidelity is more usual
for quantum coherence than average pure-state fidelity. In addition, the abil-
ity to preserve entanglement has great importance in applications of quantum
coding. For instance in quantum computation we apply error correction in a
modular fashion to small portions of quantum computer.

From our previous discussion we can say that if the subspace fidelity
is close to one then we can say that the entanglement fidelity is also close to
one. This converse is not true at all the time. It means that reliable transmis-
sion of subspace has more contribution than transmission of entanglement.
Therefore for reliable transmission entanglement fidelity yields capacity at
least as great as those obtained when subspace fidelity is used. For conve-
nient, we think that those too capacities are identical.
The main lesson we have learned from this section is that there are many
different process of measurement which we can use to quantify how reliably
quantum states are transmitted. Different measures may result in different
capacities. Which measure we will choose it depends on what resource is
most important for the application of interest. As measure of our reliability
we use the entanglement fidelity in this course.
One of the most useful inequalities is quantum fano inequality. This inequal-
ity rates the entropy exchange and entanglement fidelity. It is

Sρ,E ≤ 1 + 2[1− Fe(ρ, E)] log2 d (10.2)

From this result we find bound on the change in the entanglement fidelity
when the input state is excited. We find that during the proof a co-efficient√
F (ρ, ε) was dropped suddenly from the first term on the right hand side

of the inequality. In some applications it is sometimes useful applying the
inequality with the co-efficient in place.
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Chapter 11

Noisy-Channel Coding
Revisited

One of the main aim of noisy-channel coding is to choose what source states
can be sent with high entanglement fidelity for this reason it becomes our pur-
pose what states PS encoding and decoding operation can be found such that

Fe(ρs,D ◦ N ◦ C) ≈ 1 (11.1)

Shannons noisy-channel coding theorem is one of the best examples of a
channel capacity theorem. There are two parts in this theorem. (1) We set
a rate on the upper bound so that we can send information reliably through
the channel. It must be expected that we can calculate the upper bound
perfectly. (2) A reliable system for encoding and decoding exist that comes
arbitrarily close to attaining the upper bound found in (1), the system was
proved before.
This maximum rate is called channel capacity. In this rate we can send infor-
mation reliably through the channel. Channel capacity results may be easier
to understand if he use the language of error correcting code. We want to
protect information against the effects of noise. So we encode the information
using an error correcting code, with the encoding operation represented by
c. We then subjected it to the noise which is represented by N. At last the
encoding is undone by using the decoding operation, D. If we become able
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to find a good error correcting code then it is easy to find C and D which
preserves the information being encoded, The function of a channel capacity
theorem is to set up a ultimate achievable limit on the effectiveness of these
error correcting codes, for a given noise mode N .
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Chapter 12

Mathmatical Formulation of
noisy channel coding

So far, noisy-channel coding procedure has been described elaborately, but
we did not make all of our definitions mathematically precise. In this sub-
section we try to give a precise formulation for the most important concepts
appearing in our work on noisy-channel coding. The nth density operator
refers representing the state of emission from the source. Its other meaning
is taking units of time.
We abuse notation usually by omitting explicit mention of the Hilbert spaces
Hs and He when we apply this notation in various equation. It is notice-
able that the channel has some possibility to have different input and output
Hilbert spaces. For our convenient we do not consider that case here, but all
the results that we have proved here go through without change.
Suppose a source state Ps and a channel N. The ultimate goal noisy-channel
coding is to find a best solution with an encoding C and a d-coding 1) such
that Fe1s,J is close to 1. In fact the best solution we means here source state
Ps and its entanglement will be transmitted almost perfectly. In reality this
situation is almost impossible. However Shannon showed that in the classical
content if we consider blocs of output from the source and performs block
encoding and decoding, then it might be possible to considerably expand the
close of source states Ps for which it is possible. The main goal that we have
done quantum mechanical version is to find a sequence of n codes (Cn,Dn).
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We imagine that our last previous sequence of codes exist for a given source
. In this case, the channel has to transmit reliably. At the same we see the
reliable transmission rate of the channel is R = S() .
In most part of this paper, we assume as in the previous equation the action
of the Channel which is described by the operation is generally trace pre-
serving. The assumption we make here is similar to the physical assumption
no classical information about the state of the system or its environments
is obtained by an external classical observer. In addition to the environ-
ment E has also tremendous usefulness her introducing a reference system
Rin the following way. It might be ambiguous to someone that the system
is initially part of a larger system RQ from our perspective we can say that
the introduction of R emerged as a mathematical device to purify the ini-
tial state. According to the dynamics IR⊗ε we find from the joint system RQ

ρR
′
Q
′

= (IR ⊗ ε)(ρRQ) (12.1)

Where IR is the identity dynamics has the reference system R. So
far, we have discussed the procedures are only applicable to trace preserving
quantum operation. Later in the paper we have will also discuss quantum
operations which are not traced preserving. This means those types of quan-
tum operation do not satisfy the relation and in general we can say this is
not equal to 1. These types of quantum operation we find in the theory of
generalized measurements. For each outcome M of a measurement we find
an associated quantum operation εm with an operator sum representation

εmρ =
∑
i

AmiρA
†
mi (12.2)

The probability is

Prm = Tr[εm(ρ)] = Tr(
∑
i

A†miAmiρ) (12.3)

It is a matter of interest that, the formulation of quantum measurement
based of the projection postulate, taught in most classes on quantum me-
chanics, is a special case of the quantum operations formation. When we h
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a single projector Am=Pm in the operator-sum representation m for then
we find these types of quantum operation formalism. We find the relation
of the formalism of positive operator valued measures (POVMS) to the gen-
eralized measurements formalism Em= are the elements at the RUVM that
is measured. We can prove a result analogous to the earlier representation
there for general operation. The representation theorem expresses the trace
preserving quantum operation.
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Chapter 13

Entropy Exchange

In this section we will review the definition and some basic results about the
entropy exchange. The entropy of a channel, also called the map of entropy
is defined as the entropy of the state corresponding to the channel by the
Jamiolkowski isomorphism. In briefly the Jamiolkowski isomorphism allows
to map many statements about states to statements about channels and vice
versa. E.g., a channel is completely positive exactly if the Choi state is posi-
tive, a channel is entanglement breaking exactly if the Choi state is separable
and so further. We try tofind a clear concept of noisy quantum channel from
the discussion of the entropy exchange.
We define the entropy exchange of a quantum operation epsilon with input
ρ is
Se(ρ, ε) ≡ S(ρ′) We have found many essentially different information trans-
mission problems in quantum mechanics. We have discussed mainly two
problems. One is the transmission system of a discrete set of mutually or-
thogonal quantum states through the channel. Another one is the transmis-
sion of entire subspace of quantum states through the channel. This type
of transmission has great contribution to keep all other quantum resources,
inducing entanglement. In many applications like quantum computation,
cryptography, teleportation we find the contributions of such types of trans-
mission.

38



Chapter 14

Conclusion

So far, we have proved that, Von Neumann entropy H (p) has an important
relation with the capacity of the quantum channel to transmit classical in-
formation in an ensemble of pure quantum state. In this case, the quantum
channel transmits the states with their given priori probabilities. It is true
that, for all non-orthogonal ensemble, one can get sufficient amount of infor-
mations by measuring on a signal system which is sharply less than H (p) [6].
At the same time, it is also true that, Von Neumann entropy H (p) is equal
to the capacity of quantum channel. One can use this trick to increase the
capacity of quantum channel by having the receiver discriminating among
whole code words. This process is better than trying to distinguish the indi-
vidual signal state.
In final, we can say that, entropy has great impact in transmitting informa-
tion. In communication problem, entropy is the vital factor of the actual
channel capacity and at the same time it is not merely an upper bound.
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