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ABSTRACT 
 
 
 
 
 
In the capital city of Dhaka, currently, one of the biggest problems is its waste management. Because 

of over-population, the amount of waste produced every day is so high that it can not be handled 

properly with the infrastructural aid available now. Transporting the wastes faces a lot of obstacles 

because of the road and the traffic conditions. As a result, the whole operation is delayed. 

Furthermore, maintaining a hygienic situation becomes an impossible task. In this work, a modified 

system will be proposed for dumping wastes in different parts of the city. By using two 

reinforcement learning techniques (Q-learning, SARSA) imposed in this model, the system will be 

allowed to find the optimal route for the waste-carrying vehicle so that a faster transportation is 

ensured so that a suitable state of the environment can be sustained. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 Motivation 

 
Reinforcement Learning is in actuality an area of machine learning. In order that a software agent 

can be able to take actions in an environment this learning process was devised in which the agent 

can be set to receive feedbacks from the environment. This will enable it to learn, gradually, and 

determine the ideal behavior in that environment within a specific context. This will also work 

towards maximizing the amount of reward while minimizing a large portion of the resources and 

efforts invested to create scenarios and data to be fed to the agent. As opposed to the standard 

supervised learning techniques, reinforcement learning differs primarily in minimizing the resource 

spent in accomplishing the learning process. Furthermore, it maximizes the performance with little 

use of a human supervisor with expertise on the concerned application domain. Another great side 

of this is that it can go on for an unspecified amount of time as perfectly functional and yielding 

output, all the while adapting with time. On the one hand, this nullifies the necessity of the presence 

of an expert, while on the other hand, with sufficient care in the modeling of the process, several 

reinforcement learning algorithms have been found prone to converge to the global optimum with 

the course of time, and thus turns to the ideal behavior that maximizes the reward. Several of the 

facilities this learning technique provides have encouraged us to implement it in our proposed 

model. As to the matter of graph algorithms, we have selected the reinforcement learning algorithm 

over it because the starting states need to be static or predefined in the case of graph algorithms, 

where our chosen technique has no such necessity like that. Furthermore, reinforcement learning 

algorithms yield the same results regardless of which state we start from something graph 

algorithms are unable to do. Reinforcement learning algorithms also provide us with convergence 

speed which graph algorithms do not. These are the reasons why reinforcement learning algorithm 

was used in our proposed system of the waste management of Dhaka city. 

 

1.2 Goal 
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In this thesis, we propose to work with the challenges like proper initialization of the early 

stages, designing the states, actions, transitions using Markov Decision Process (MDP) and solving 

the MDP with two popular reinforcement learning techniques namely Q-learning and SARSA(λ). 

We also want to compare the convergence speed of these two techniques so that we may conclude 

about one of them to be better. 

 
 
1.3 Thesis Layout 
In the upcoming portion, Chapter 2 contains the various studies we have had to complete in order to 

get a clear idea on reinforcement learning. Chapter 3 showcases the model that we have proposed in 

order to solve the wastage dumping problem of Dhaka city, where Chapter 4 includes the detailed 

method that was used. In Chapter 5, the results obtained from our experiment has been provided. 

Chapter 6 includes the conclusion we drew from our work and some ideas on possible future work. 

Finally, a list of the references has been added. 
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CHAPTER 2 
 

BACKGROUND STUDY 
 

 
 

2.1 Reinforcement Learning 
 
For a software agent to take actions in an environment a learning process was devised by 

implementing a type of machine learning called Reinforcement Learning. This process, in simple 

terms, enables the agent to receive feedbacks from the environment. Inspired by behaviorist 

concepts of psychology, Reinforcement Learning (RL) is concerned with the ways a software agent 

ought to take actions in a particular environment with the aim of maximizing some notion of 

cumulative reward. Many branches of science see its implementation in various ways. Game theory, 

control theory, operations research, information theory, simulation-based optimization, multi-agent 

systems, swarm intelligence, statistics, and genetic algorithms are some of the sectors that use it 

regularly. In the operations research and control literature, the field where reinforcement learning 

methods are studied is called approximate dynamic programming. The problem has seen most of 

the research on itself in the theory of optimal control, even though most studies are concerned with 

the existence of optimal solutions and their characterization, but not with the learning or 

approximation aspects. In the cases of economics and game theory, the methods of reinforcement 

learning may be used to explain the rise of equilibrium under bounded rationality. 

Markov decision process (MDP) is the usual way of formulating the environment in this. Many 

reinforcement learning algorithms for this context utilize dynamic programming techniques and 

MDP is a perfect way to do it [1]. The main difference between the classical techniques and 

reinforcement learning algorithms is that the latter may very easily exclude any knowledge on the 

MDP and they target large MDPs where exact methods are not to be implemented. 

Reinforcement learning differs from standard supervised learning in that correct input/output pairs 

are never presented, nor sub-optimal actions explicitly corrected. Furthermore, on-line performance 

is the primary component here, which involves finding a balance between exploration (of uncharted 

territory) and exploitation (of current knowledge) [2]. Especially in case of the multi-armed bandit 

https://en.wikipedia.org/wiki/Behaviorism
https://en.wikipedia.org/wiki/Behaviorism
https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Action_selection
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Simulation-based_optimization
https://en.wikipedia.org/wiki/Multi-agent_system
https://en.wikipedia.org/wiki/Multi-agent_system
https://en.wikipedia.org/wiki/Swarm_intelligence
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Optimal_control_theory
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Bounded_rationality
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Exploration
https://en.wikipedia.org/wiki/Multi-armed_bandit
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problem and in finite MDPs, the exploration vs. exploitation trade-off in reinforcement learning has 

been studied most thoroughly. 

2.1.1 Introduction 

The basic reinforcement is modeled as a Markov decision process: 

1. a set of environment and agent states S 

2. a set of actions A of the agent; 

3. Pa(s, s') = Pr (s t+1 = s' | s t=s, at=a ) , probability of transition from state s to state s' under 

action a. 

4. 𝐑𝑎(𝑠, 𝑠′) , Eimmediate reward after transition from s to s' with action a. 

5. Rules that describe what the agent observes. 

The rules are often stochastic. In the observation the scalar immediate reward associated with the last 

transition is typically involved. In many of the related works, it is assumed that the agent observes 

the current environmental state. In cases of such condition, we talk about full observability, whereas 

in the opposing case partial observability is discussed. Sometimes restrictions are put upon the set of 

actions available to the agent. The interaction between a reinforcement learning agent and its 

environment happens in discrete time steps. At each time t the agent receives an observation 𝐚𝑡 , 

which typically includes the reward
  𝐫𝐭 . It then chooses an action 𝒂𝒕 from the set of actions available, 

which is subsequently sent to the environment. The environment moves to a new state s t+1  and the 

reward r t+1  associated with the transition  (𝑠𝑡, 𝑎𝑡,s t+1 ) is determined. The goal of a reinforcement 

learning agent is to collect as much reward as possible. The agent can choose any action as a function 

of the history and it can even randomize its action selection. 

When we compare the agent's performance to that of an agent acting optimally from the beginning, 

the difference in performance gives rise to the notion of regret. It is to be noted that in order to act 

with near-optimal functionality, the agent must reason about the long term consequences of its 

actions, although the immediate reward associated with this might appear negative. 

Thus, reinforcement learning is particularly well-suited to problems that include a long-term versus 

short-term reward trade-off. Various problems have seen its successful application, including robot 

https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Action_selection
https://en.wikipedia.org/wiki/Robot_control
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control, elevator scheduling, telecommunications, backgammon and checkers. The pair of 

components that make reinforcement learning powerful are: (1) the use of samples to optimize 

performance and (2) the use of function approximation to deal with large environments. Thanks to 

these two key components, reinforcement learning can be used in large environments in any of the 

following situations: 

 A model of the environment is known, but an analytic solution is not available; 

 Only a simulation model of the environment is given;  

 The only way to collect information about the environment is by interacting with it. 

The first two of these problems could be considered planning problems, while the last one could be 

considered as a genuine learning problem. However, under reinforcement learning methodology 

both planning problems would be converted to machine learning problems. 

 

2.2 Exploration 

The reinforcement learning problem as described requires clever exploration mechanisms. Randomly 

selecting actions, without reference to an estimated probability distribution, is known to give rise to 

very poor performance. What we now understand the case of (small) finite Markov decision 

processes is comparatively better than that of any earlier success. However, due to the lack of 

algorithms that would probably scale well with the number of states, in practice, simple exploration 

methods are often used. One such method is ∈ -greedy, when the agent chooses the action that it 

believes has the best long-term effect with probability 1−∈, and it chooses an action uniformly at 

random. Here, 0 <∈ < 1 is a tuning parameter, which is sometimes changed, either according to a 

fixed schedule, or adaptively based on some heuristics [3].  

 
 
 
 
2.3 Algorithms for Control Learning 
 

https://en.wikipedia.org/wiki/Robot_control
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Backgammon
https://en.wikipedia.org/wiki/Checkers
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process
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Even if the issue of exploration is disregarded and even if the state was observable, the problem 

remains to find out which actions are good based on past experience 

techniques.[1] The main difference between the classical techniques and I 
 2.3.1 Criterion of optimality 
 
The action selection of the agent is modeled as a map called policy: 

 

𝝅 ∶ 𝑺 ∗ 𝑨 → [𝟎, 𝟏] 

𝝅(𝜶|𝒔) = 𝑷(𝒂𝒕 = 𝒂|𝒔𝒕 = 𝒔) 

 

The policy map gives the probability of taking action a when in state s [4], 

Value function 𝑉𝜋 is defined as the expected return starting with state s and policy. Value function 

estimates how good it is to be in a given state.  

      g𝑉𝜋(𝑠) = 𝐸[ 𝑅 ] = 𝐸[ ∑ 𝛾𝑡 𝑟𝑡 | 𝑠0 = 𝑠 ]∞
𝑡=0 𝑉 

Where the random variable R denotes the return and is defined as the sum of discounted rewards.  

h 𝑅 =  ∑ 𝛾𝑡 𝑟𝑡
∞
𝑡=0  

The problem then is to specify an algorithm that can be used to find a policy with maximum expected 

return. From the theory of MDPs it is known that, without loss of generality, the search can be 

restricted to the set of the so-called stationary policies. A policy is called stationary if the action-

distribution returned by it depends only on the last state visited. In fact, the search can be further 

restricted to deterministic stationary policies. A deterministic stationary policy is one which 

deterministically selects actions based on the current state [5]. Since any such policy can be 

identified with a mapping from the set of states to the set of actions, these policies can be identified 

with such mappings with no loss of generality. 

2.3.2 Value function approach 

Value function approaches attempt to find a policy that maximizes the return by maintaining a set of 

estimates of expected returns for some policy .These methods rely on the theory of MDPs, where 

https://en.wikipedia.org/wiki/Reinforcement_learning#cite_note-1
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optimality is defined in a sense which is stronger than the above one: A policy is called optimal if it 

achieves the best expected return from any initial state. Again, one can always find an optimal policy 

amongst stationary policies. 

To define optimality in a formal manner, define the value of a policy 𝛑 by 

  𝑉𝜋(𝑠) = 𝐸 [ 𝑅|𝑠, 𝜋] 

Where R stands for the random return associated with following 𝜋 from the initial state s . 

Define 𝑉 ∗(s) as the maximum possible value of 𝑉𝜋 (s), where is allowed to change [6]. 

Although state-values suffice to define optimality, it will prove to be useful to define action-values. 

Given a state s, an action a and a policy 𝜋 , the action-value of the pair (s, a)  under  𝜋 is defined 

by the latte 

 n𝑄𝜋(𝑠, 𝑎) = 𝐸 [ 𝑅|𝑠, 𝑎, 𝜋 ] 

Where, now, R stands for the random return associated with first taking action a in state s and 
following 𝜋 , thereafter. 

It is well-known from the theory of MDPs that if someone gives us Q for an optimal policy, we can 

always choose optimal actions by simply choosing the action with the highest value at each state. 

The action-value function of such an optimal policy is called the optimal action-value function and 

is denoted by  𝑄 ∗ . In summary, the knowledge of the optimal action-value function alone suffices 

to know how to act optimally [7]. 

Assuming full knowledge of the MDP, there are two basic approaches to compute the optimal action-

value function, value iteration and policy iteration. Both algorithms compute a sequence of functions 

𝑄𝑘 (k=0, 1, 2, 3…) which converge to 𝑄 ∗. Computing these functions involves computing 

expectations over the whole state-space, which is impractical for all but the smallest MDPs, never 

mind the case when the MDP is unknown. In reinforcement learning methods the expectations are 

approximated by averaging over samples and one uses function approximation techniques to cope 

with the need to represent value functions over large state-action spaces. 

https://en.wikipedia.org/wiki/Value_iteration
https://en.wikipedia.org/wiki/Policy_iteration
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2.3.3 Monte Carlo Methods 
 
Algorithms that mimic policy iteration can work with the simplest Monte Carlo methods. Policy 

iteration consists of two steps: (1) policy evaluation and (2) policy improvement.The Monte Carlo 

methods are used in the policy evaluation step. In this step, given a stationary, deterministic policy  

π, the goal is to compute the function values Qπ(s, a) for all state-action pairs (s, a)  . Assume (for 

simplicity) that the MDP is finite and in fact a table representing the action-values fits into the 

memory. Further, assume that the problem is episodic and after each episode a new one starts from 

some random initial state. Then, the estimate of the value of a given state-action pair (s, a) can be 

computed by simply averaging the sampled returns which originated from (s, a) over time. Given 

enough time, this procedure can thus construct a precise estimate Q of the action-value function Qπ. 

This finishes the description of the policy evaluation step [8]. 

In the policy improvement step, as it is done in the standard policy iteration algorithm, the next policy 

is obtained by computing a greedy policy with respect to Q: Given a state s, this new policy returns 

an action that maximizes Q(s, a) . In practice one often avoids computing and storing the new policy, 

but uses lazy evaluation to defer the computation of the maximizing actions to when they are actually 

needed [9] . A few problems with this procedure are as follows: 

 The procedure may waste too much time on evaluating a suboptimal policy; 

 It uses samples inefficiently in that a long trajectory is used to improve the estimate only of 

the single state-action pair that started the trajectory; 

 When the returns along the trajectories have high variance, convergence will be slow; 

 It works in episodic problems only; 

 It works in small, finite MDPs only. 
  

 
 
2.3.4 Temporal difference methods 
 

The first issue is easily corrected by allowing the procedure to change the policy (at all, or at some 

states) before the values settles. However good may this sound, there are chaces of it being 

https://en.wikipedia.org/wiki/Monte_Carlo_sampling
https://en.wikipedia.org/wiki/Lazy_evaluation
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problematic, as this might prevent convergence. Still, most current algorithms implement this idea, 

giving rise to the class of generalized policy iteration algorithm. It is to be noted that many actor 

critic methods belong to this category. The second issue can be corrected within the algorithm by 

allowing trajectories to contribute to any state-action pair in them. Batch methods, a prime example 

of which is the least-squares temporal difference method [10], may use the information in the samples 

better, whereas incremental methods are the only choice when batch methods become infeasible due 

to their high computational or memory complexity. In addition, there exist methods that try to unify 

the advantages of the two approaches. Methods based on temporal differences also overcome the 

second but last issue. In order to address the last issue mentioned in the previous section, function 

approximation methods are used. In linear function approximation one starts with a mapping ∅ that 

assigns a finite-dimensional vector to each state-action pair. Then, the action values of a state-action 

pair (s, a) are obtained by linearly combining the components ∅(s, a) of with some weights 𝜃 

   𝑄(𝑠, 𝑎) =  ∑ 𝜃𝑖 
∅𝑖 

(𝑠, 𝑎)𝑑
𝑖=1  

The algorithms then adjust the weights, instead of adjusting the values associated with the individual 

state-action pairs. However, linear function approximation is not the only choice. More recently, 

methods based on ideas from nonparametric statistics have been explored. 

So far, the discussion was restricted to how policy iteration can be used as a basis of the designing 

reinforcement learning algorithms. Equally importantly, value iteration can also be used as a starting 

point, giving rise to the Q-Learning algorithm and its many variants [11]. 

The problem with methods that use action-values is that,. For them, it is necessary to have highly 

precise estimates of the competing action values, which can be hard to obtain when the returns are 

noisy. Though this problem is mitigated to some extent by temporal difference methods and if one 

uses the so-called compatible function approximation method, more works remains to be done to 

increase generality and efficiency. Another problem specific to temporal difference methods comes 

from their reliance on the recursive Bellman equation. Most temporal difference methods have a so-

called λ parameter ((0 ≤  λ ≤ 1) that allows one to continuously interpolate between Monte-Carlo 

methods and the basic temporal difference methods, which can thus be effective in palliating this 

issue [12]. 

https://en.wikipedia.org/w/index.php?title=Least-squares_temporal_difference_method&action=edit&redlink=1
https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Q-Learning


11 
 

 

  



12 
 

CHAPTER 3 
 
 
 
 
 
 

3. Proposed System Model 
 
 
3.1. Introduction 
 
This section consists of the detailed description of the model we are proposing which contains several 

phases (see Figure 1). 

 

 

 

 
Figure 1: Workflow of the proposed system model 

 
 
 

Deciding 
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Deciding 
actions 
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Solving the MDP 
with Q-learning 
and SARSA (λ) 
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  3.2. Markov Decision Process 
 
Since our proposed model deals with the route selection for the waste management in Dhaka city, we 

are to consider several places of the city as states in this system. In order for this system to work, it is 

essential to calculate the distances among them and the amounts of time spent to cover those distances. 

So, to find the optimal route, we intend to use the Markov Decision Process (MDP) model and the 

computation is to be done by reinforcement learning. An MDP has a decision agent to repeatedly 

and continuously observe the current state of the system [19]. After the close observation it takes 

a decision that is allowed  to  be taken  in  that  state and  then observes  a transition  to  a new 

state.  A reward influences the decisions of the agent. 
 
An MDP model contains: 

 
 
1. A set of possible states S 

 
 
2. A set of possible actions A 

 
 
3. A real valued reward function R(s, a) 

 
 
4. A description T of each action’s effects in each state. 

 
 
5. Stochastic actions: 

 
 

T: S ×A → Prob(S), for each state and action we specify a new Probability distribution over 
next states. Representation of the distribution is P(s ′ |s, a). 

 
To solve our optimal route selection problem, we have designed two MDPs (Markov Decision 

Process) one of which is for Dhaka North City Corporation (DNCC) (see Figure 2) and the other 

of which is for Dhaka South City Corporation (DSCC) (see Figure 3). The MDPs will contain 

several states and actions. The MDPs are necessary for generating episodic decision making 

policies for our problem. In our work, we propose to use Markov Decision Process (MDP) model. 

An MDP involves a decision agent that repeatedly observes the current states of the controlled 

system, takes a decision among the ones allowed in that state and then observes a transition to a 

new state s′ and a reward r that will drive its decisions [13]. The MDP that we will be using for 

our work is as follows: 
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Figure 2: MDP of Dhaka North City Corporation (DNCC) 
 

 
 
M= {S, A, T, R, β} where: 

 
S= {RP, GB, BD, BDRA, U, MP, TG, MD, SBN, AB} 
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For our work, we have divided Dhaka North City Corporation (DNCC) into a number of zones 

which are represented in the diagram above as the states of the system. 

 

Here, 

 

RP represents Rampura, Banashree and the surrounding areas. 

GB represents Gulshan, Banani and the surrounding areas. 

BD represents Baridhara and the surrounding areas. 

BDRA represents the Bashundhara Residential Area. 

U represents Uttara, Khilkhet and the surrounding areas. 

MP represents the Mirpur area. 

TG represents Tejgaon and the surrounding areas. 

MD represents Mohammadpur, Kalyanpur and the surrounding areas. 

SBN represents the Sher-E-Bangla Nagar areas. 

AB represents Aminbazaar, which is the dumping station. 

 

A represents the action set we have used for our work, such as W4am, W11pm, W1pm, etc. 

W4am, W11pm, W1pm, here, mean that the truck carrying the wastes must arrive from the RP 

zone to the GB zone and the BDRA zone within 1 PM and 4 AM, 11 AM respectively. Similarly, 

the rest of our actions are: 

{W1:30pm, W2pm, W3pm, W4pm, W12am, W12:30am, W1am, W1:30am, 

W4:30am, W5am, W5:30am, W6am} 

In the MDP, the symbol ϕ was used, which represents a route that will not be used. 

 

T is the probability distribution of going to a state “s′” from “s” by taking any random 

action “a”. 
 

R is the cost function that expresses the reward if action “a” is taken at state s. 
 

“β” is the discount factor, 0< β <1. 
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Figure 3: MDP of Dhaka South City Corporation (DSCC) 
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S= {HB, DM, LB, DU, SP, WR, RM, JB, GM, KG, MT} 

 
 
For our work, we have divided Dhaka South City Corporation (DSCC) into a number of zones which 

are represented in the diagram above as the states of the system. 

 

Here, 

 

HB represents Hazaribagh area that produces an immense amount of waste from tanneries 

DM represents Dhanmondi, Lalmatia and the surrounding areas. 

LB represents Lalbagh, Chawk Bazar and the surrounding areas. 

DU represents the entire Dhaka University area. 

SP represents Sutrapur, Narinda, Shamibag and the surrounding areas. 

WR represents Wari, Tikatuli and the surrounding areas. 

RM represents Ramna, Shahbagh, Elephant Road and the surrounding areas. 

GM represents Gulistan, Motijheel, Paltan, Kakrail and the surrounding areas. 

KG represents Khilgaon, Basabo, Goran, Mathartek, Manda and the surrounding areas. 

JB represents Jatrabari, Gandaria, Doniya and the surrounding areas. 

MT represents Matuail, which is the dumping station. 

 

A represents the action set we have used for our work, such as W4am, W4:30am, W5am, etc. 

W4am, W4:30am, W5am, here, mean that the truck carrying the wastes must arrive from the 

HB zone to the LB zone and the SP zone within 4 AM and 4:30 AM, 5 AM respectively. 

Similarly, the rest of our actions are: 

{W4am, W1am, W11pm, W4:30am, W1pm, W3pm, W12am, W4:30am, W5am, 

W4pm, W12:30am, W5:30am, W6am, W2pm, W11am} 
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CHAPTER 4 
 
 
 
 
 
 

4. PROPOSED METHOD 
 
 

4.1 Q-learning 
 
 
The reinforcement learning technique we used here is q-learning. Q-learning is a model free 

reinforcement learning technique. It works by learning an action value function that ultimately 

gives the expected utility of taking a given action in a given state and following the optimal 

policy thereafter. Our Q – learning algorithm is [14]: 
 

A.  Q-learning 
1. (∀s ∈ S)(∀a ∈ A(s)); 
2. initialize Q(s , a) 
3. s := the initial observed state 
4. loop 
5. Choose a ∈ A(s) according to a policy derived from Q 
6. Take action a and observe next state s ′ and reward  r 
7. Q[s , a] := Q[s , a] + α(R[s,a] +  * maxa Q[s′ , a′ ] - Q[s, a]) 
8.  s := s′ 

      9.  end loop 
10. return π (s) = argmaxa Q(s , a) 

 
 
Here, “α” is the learning rate. It determines to how much the old information will be wiped out 

by the newer one. Value of α being “0” will make the agent not to learn anything and on the 

contrary value of α being “1” would make it consider only the recent most information. In 

deterministic  environments  the  value  of  α  can  be  set  to  1  and  that  is  optimal.  But  our 

environment is stochastic and it is quite tough to determine the exact value. “” is the discount 

factor. It determines how important the future rewards can be. A value of “0” will make the 

agent short sighted and the agent will only consider the current rewards.
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4.2 SARSA(λ) 
 
State-Action-Reward-State-Action (SARSA) is another reinforcement algorithm to solve MDP. 

The name simply reflects that the function that updates the Q value depends on the current state 

of “s”, the action “a”, the reward “r” that an agent gets by choosing the action a and the next state 

“s′”. When eligibility traces are added to SARSA algorithm, the algorithm is called SARSA (λ) 

algorithm [15]. Our SARSA (λ) algorithm is given below [14]: 
 

1.   Initialize Q(s, a) arbitrarily 
2.   Repeat (for each episode): 
3.   Initialize s 
4.   Choose a from s using policy derived from Q 
5.   Repeat (for each episode): 
6.   Take action a, observe r, s′ 
7.   Choose a′ from s′ using policy derived from Q 
8.   δ = r+  Q[s′ , a′ ] - Q[s, a] 
9.   e(s, a) = e(s, a)+1 
10. For all (s , a): 
11. Q[s , a] = Q[s , a] + α δ e(s, a) 
12. e(s, a)  =  λe(s, a) 
13. s=s′ ;  a=a′ 
14. until s is terminal 

 
 
 
Eligibility trace is a very important term in SARSA (λ) algorithm. There are two ways to view 

eligibility traces. The more theoretical view, which we emphasize here, is that they are a bridge 

from TD to Monte Carlo methods. When TD methods are augmented with eligibility traces, they 

produce a family of methods spanning a spectrum that has Monte Carlo methods at one end and 

one-step TD methods at the other. In between are intermediate methods that are often better than 

either extreme method [8]. In this sense eligibility traces unify TD and Monte Carlo methods in a 

valuable and revealing way. 

 
The other way to view eligibility traces is more mechanistic. From this perspective, an eligibility 

trace is a temporary record of the occurrence of an event, such as the visiting of a state or the 

taking of an action. The trace marks the memory parameters associated with the event as eligible 

for undergoing learning changes. When a TD error occurs, only the eligible states or actions are 

assigned credit or blame for the error [17]. Thus, eligibility traces Help Bridge the gap 

between events and training information. Like TD methods themselves, eligibility traces are 

a basic mechanism for temporal credit assignment. 
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4.3 Reward Function 

 
 
To experiment with the Q-learning and SARSA (λ), we have defined the reward function that 

has been used is as follows: 
 
R=β (Cost) + (1-β) (Penalty) 

 
 
Where, 
 
   Cost = 𝑉𝑛 ∗ (𝐹𝑐 + 𝑀𝑐 + 𝐿𝑐 ) ……………………………. (1) 

 
 
     Penalty = 𝑃𝑐 ∗ ( 1 + (𝑃𝑑 − 𝑃𝑠𝑙𝑎 )/ 𝑃𝑠𝑙𝑎 ) .........................(2) 

     
 
 
 
In equation (1), 

 
 
𝑉𝑛 = Number of vehicles 

𝐹𝑐 = the cost of fuel 

Mc = cost of maintenance  

𝐿𝑐 = cost of labors  

In equation (2), 

Pc = penalty for the violation of SLA 
 
 
Pd = the performance displayed by the system randomly 

 
 
Psla = target performance 

 
 
Lastly, β is the balancing factor 
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CHAPTER 5 
 
 
 
 
 
 

5. EXPERIMENTAL RESULTS 
 

5.1 Variant Beta (β) 
 

We varied the β in accordance with the cost and penalty we acquire in different training 

episodes and plot them in a graph while implying q-learning. We also did the same in case of 

SARSA (λ) [16]. The following table shows us the average (random 10 episodes) of the cost and 

penalties for different parameters of beta for Q-learning (see Figure 4, Table 1). 

 

Value of β Cost Penalty 
0.10 35.27        8.4 
0.25 73.19  7.26 
0.50     77.35  9.08 
0.75 82.63  8.13 

 0.90 91.85  8.39 

Table1. Cost and Penalty for variant beta (Q) 
 
 
 
The graph below shows which value of β balances the cost and Penalty: 
 

 
 

Figure: 4 Cost Vs. Penalty Graph for beta in Q -learning
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Again, the following table shows us the average (random 10 episodes) of the cost and 
 

Penalties for different parameters of beta for SARSA (λ) (see Figure 5, Table 2). 
 

 

Value of β Cost Penalty 
0.10 2.85 7.21 
0.25     3.67 6.04 
0.50 5.23 8.07 
0.75 7.16 6.39 
0.90 9.25 6.18 

 

Table 2. Cost and Penalty for variant beta (SARSA) 
 
 
 

The graph below shows which value of β balances the cost and Penalty for SARSA (λ): 
 
 

 
 

Figure 5: Cost Vs. Penalty Graph for beta in SARSA- λ 
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To compare the beta values of these two reinforcement learning techniques, we merged the 

graphs stated above and observed the versatile values of beta. The graph below shows us the 

comparison of the beta values for both of the learning techniques (see Figure 6): 
 

 
 
 

Figure 6: Cost Vs. Penalty Graph for beta in Q and SARSA(λ) 
 

 
 

Here, in the graph, the purple dots represent the cost versus penalty results of the effects of Q-

learning algorithm, and the blue dots represent the cost versus penalty results of the effects of 

SARSA algorithm.
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5.2 Variant Lambda (λ) 
 
 

For SARSA (λ) algorithm, we also varied the values of lambda to see which value of lambda 

best balances the reverse condition between cost and penalty. The values of lambda taken on 

account are 0.1, 0.25, 0.5, 0.75, and 0.9.  It gave us the following result (see Figure 7, Table3): 
 

Value of λ Cost Penalty 

0.1 11.87 7.13 

0.25 9.25 6.18 

0.5 8.31                       6.03 

0.75 10.63 8.29 

0.9 7.06                      10.67 
 

Table 3. Cost and Penalty for variant lambda (SARSA) 
 
 
 
 

The values gave us the following result: 
 

 
 

 
 
 
 

Figure 7: Cost Vs. Penalty Graph for λ in SARSA (λ)
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5.3 Variant Alpha (α) 
 
 
To decide up to what extent the newly acquired information will override the old information, 

learning rate was varied throughout the experiment while applying Q- learning. The values of alpha 

that we varied were 0.1, 0.25, 0.5, 0.75 and 0.9. These values generated variant results with 

rewards. Alpha was chosen as 0.1 because this is the only value of alpha in which the convergence 

took place. The following graph represents different values of alpha generating chunks of reward 

(see Figure 8): 
 
 
 

 
 
 
 
              Figure 8: Different values of alpha producing chunks of reward (Q-Learning) 
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Learning rate was varied throughout the experiment while applying SARSA-lambda too. The 

values of alpha that we varied were 0.1, 0.25, 0.5, 0.75 and 0.9. These values generated variant 

results with rewards. Alpha was chosen as 0.1 because this is the only value of alpha in which 

the convergence took place. The following graph represents different values of alpha generating 

chunks of reward (see Figure 9): 
 
 
 

 
 
 
 
              
                    
                     Figure 9: Different values of alpha producing chunks of reward (SARSA) 
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5.4 Optimal Route after implying the Algorithms 
 
 
 

For the best implementation, we have divided the 24-hour day in 3 shifts in which the dumping 

trucks are to carry the wastes. For a clearer understanding, this distribution is described below. 

Figure 10: Route from Rampura zone to Aminbazar dumping station (day shift) 
 

 
 

 

Figure 10 shows that, in the day shift, the dumping truck starts from Rampura zone (RP) at 1 PM 

and travels this route through Bashundhara Residential Area zone (BDRA), Baridhara zone (BD), 

Uttara zone (U), Mirpur zone (MP), and at the end reaches and dumps the waste at Aminbazar 

dumping station (AB) within 4 PM.  
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Figure 11: Route from Rampura zone to Aminbazar dumping station (night and dawn shifts) 
 

 

 

Figure 11 shows that, in the night shift, the dumping truck starts from Rampura zone (RP) at 11 

PM and travels this route through Gulshan-Banani zone (GB), Baridhara zone (BD), Uttara zone 

(U), Mirpur zone (MP), and at the end reaches and dumps the waste at Aminbazar dumping station 

(AB) within 1:30 AM. Following the same route. In the dawn shift, the dumping truck starts from 

Rampura zone (RP) at 4 AM and reaches and dumps the waste at the Aminbazar dumping station 

(AB) within 6 AM. 
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Figure 12: Route from Dhanmondi zone to Matuail dumping station (dawn and day shifts) 
 

 

Figure 12 shows that, in the dawn shift, the dumping truck starts from Dhanmondi zone (DM) at 

4 AM and travels this route through Dhaka University area zone (DU), Romna zone (RM), 

Gulistan-Motijheel zone (GM), Jatrabari zone (JB) and at the end reaches and dumps the waste at 

Matuail dumping station (MT) within 1:30 AM. In the day shift, the truck starts from Dhanmondi 

zone (DM) at 1 PM and travels the same route and at the end reaches and dumps the waste at 

Matuail dumping station (MT) within 5 PM. 
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Figure 13: Route from Dhanmondi zone to Matuail dumping station (night shift) 
 

 
Figure 13 shows that, in the night shift, the dumping truck starts from Dhanmondi zone (DM) at 

11 PM and travels this route through Lalbagh zone (LB), Wari zone (WR), Jatrabari zone (JB) 

and at the end reaches and dumps the waste at Matuail dumping station (MT) within 1 AM. 
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5.5 Convergence Comparison 
 
 

While implying both of the algorithms we found convergence in both cases. The values that 

we found and used to generate graphs for SARSA are given below: 
 

SARSA  

Episodes Reward 

1 9.31 

2                          11.21 

3                          11.69 

4                          12.14 

5                          12.65 

6 14.26 

7 14.96 

8 15.12 

9 15.64 

10 16.87 

11 17.31 

12                          18.14 

13 19.26 

14 19.81 

15 21.64 

16 22.36 

17 23.17 

18 
 

 

23.88 
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19 24.98 

20 25.63 

21 27.51 

 

    Table 4. Rewards for SARSA 
 
 

The values that we found and used to generate graphs for Q-learning algorithm are given 

below: 
 

            Q-Learning  

Episodes Reward 

1 9.23 

2                          12.14 

3 7.69 

4 6.57 

5 9.68 

6                          10.39 

7                          11.88 

8                          12.31 

9 10.76 

10 15.61 

11 13.67 

12 19.78 

13 18.93 

14 24.67 

15 25.71 

16 33.36 

17 34.75 

18 38.17 
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19 39.91 

20 39.26 

21 43.19 
 
 

Table 5. Rewards for Q-Learning 
 
 
 
 
The following figure shows us the early convergence of SARSA 

 

 
 
 
 

Figure 14: Early convergence of SARSA  
 
 
 

Considering different results obtained from the reward of Q-learning and SARSA functions, we 

have come to the conclusion that SARSA has a faster convergence rate than Q-learning.
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CHAPTER 6 
 
 
 
 
 
 

6. Conclusion and Future Work 
 

 6.1 Conclusion 

In this proposed model of ours we have taken into consideration the two algorithms, Q-learning and 

SARSA, in order to solve our problem, and observed results obtained from the model using a reward 

based machine learning algorithm. In the conclusion, we have showed the results and presented how 

fast our proposed model had worked in Dhaka city. We have seen that, in the end, the SARSA 

algorithm showed the best convergence speed, comparative to that of Q-learning. So, in case of our 

model, SARSA algorithm worked best. 

 

6.2 Future works 

In future, we wish to implement this model of ours in various other cities across the world where 

there will be tougher conditions in transportation and many other intricacies. We intend to develop 

our model and modify it to yield even better results for other scenarios, as well as implementing 

other algorithms of machine learning to provide better and more practically helpful solutions. 
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