
1

ABSTRACT

In the capital city of Dhaka, currently, one of the biggest problems is its waste management. Because

of over-population, the amount of waste produced every day is so high that it can not be handled

properly with the infrastructural aid available now. Transporting the wastes faces a lot of obstacles

because of the road and the traffic conditions. As a result, the whole operation is delayed.

Furthermore, maintaining a hygienic situation becomes an impossible task. In this work, a modified

system will be proposed for dumping wastes in different parts of the city. By using two

reinforcement learning techniques (Q-learning, SARSA) imposed in this model, the system will be

allowed to find the optimal route for the waste-carrying vehicle so that a faster transportation is

ensured so that a suitable state of the environment can be sustained.

2

CHAPTER 1

INTRODUCTION

1.1 Motivation

Reinforcement Learning is in actuality an area of machine learning. In order that a software agent

can be able to take actions in an environment this learning process was devised in which the agent

can be set to receive feedbacks from the environment. This will enable it to learn, gradually, and

determine the ideal behavior in that environment within a specific context. This will also work

towards maximizing the amount of reward while minimizing a large portion of the resources and

efforts invested to create scenarios and data to be fed to the agent. As opposed to the standard

supervised learning techniques, reinforcement learning differs primarily in minimizing the resource

spent in accomplishing the learning process. Furthermore, it maximizes the performance with little

use of a human supervisor with expertise on the concerned application domain. Another great side

of this is that it can go on for an unspecified amount of time as perfectly functional and yielding

output, all the while adapting with time. On the one hand, this nullifies the necessity of the presence

of an expert, while on the other hand, with sufficient care in the modeling of the process, several

reinforcement learning algorithms have been found prone to converge to the global optimum with

the course of time, and thus turns to the ideal behavior that maximizes the reward. Several of the

facilities this learning technique provides have encouraged us to implement it in our proposed

model. As to the matter of graph algorithms, we have selected the reinforcement learning algorithm

over it because the starting states need to be static or predefined in the case of graph algorithms,

where our chosen technique has no such necessity like that. Furthermore, reinforcement learning

algorithms yield the same results regardless of which state we start from something graph

algorithms are unable to do. Reinforcement learning algorithms also provide us with convergence

speed which graph algorithms do not. These are the reasons why reinforcement learning algorithm

was used in our proposed system of the waste management of Dhaka city.

1.2 Goal

3

In this thesis, we propose to work with the challenges like proper initialization of the early

stages, designing the states, actions, transitions using Markov Decision Process (MDP) and solving

the MDP with two popular reinforcement learning techniques namely Q-learning and SARSA(λ).

We also want to compare the convergence speed of these two techniques so that we may conclude

about one of them to be better.

1.3 Thesis Layout
In the upcoming portion, Chapter 2 contains the various studies we have had to complete in order to

get a clear idea on reinforcement learning. Chapter 3 showcases the model that we have proposed in

order to solve the wastage dumping problem of Dhaka city, where Chapter 4 includes the detailed

method that was used. In Chapter 5, the results obtained from our experiment has been provided.

Chapter 6 includes the conclusion we drew from our work and some ideas on possible future work.

Finally, a list of the references has been added.

4

CHAPTER 2

BACKGROUND STUDY

2.1 Reinforcement Learning

For a software agent to take actions in an environment a learning process was devised by

implementing a type of machine learning called Reinforcement Learning. This process, in simple

terms, enables the agent to receive feedbacks from the environment. Inspired by behaviorist

concepts of psychology, Reinforcement Learning (RL) is concerned with the ways a software agent

ought to take actions in a particular environment with the aim of maximizing some notion of

cumulative reward. Many branches of science see its implementation in various ways. Game theory,

control theory, operations research, information theory, simulation-based optimization, multi-agent

systems, swarm intelligence, statistics, and genetic algorithms are some of the sectors that use it

regularly. In the operations research and control literature, the field where reinforcement learning

methods are studied is called approximate dynamic programming. The problem has seen most of

the research on itself in the theory of optimal control, even though most studies are concerned with

the existence of optimal solutions and their characterization, but not with the learning or

approximation aspects. In the cases of economics and game theory, the methods of reinforcement

learning may be used to explain the rise of equilibrium under bounded rationality.

Markov decision process (MDP) is the usual way of formulating the environment in this. Many

reinforcement learning algorithms for this context utilize dynamic programming techniques and

MDP is a perfect way to do it [1]. The main difference between the classical techniques and

reinforcement learning algorithms is that the latter may very easily exclude any knowledge on the

MDP and they target large MDPs where exact methods are not to be implemented.

Reinforcement learning differs from standard supervised learning in that correct input/output pairs

are never presented, nor sub-optimal actions explicitly corrected. Furthermore, on-line performance

is the primary component here, which involves finding a balance between exploration (of uncharted

territory) and exploitation (of current knowledge) [2]. Especially in case of the multi-armed bandit

https://en.wikipedia.org/wiki/Behaviorism
https://en.wikipedia.org/wiki/Behaviorism
https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Action_selection
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Simulation-based_optimization
https://en.wikipedia.org/wiki/Multi-agent_system
https://en.wikipedia.org/wiki/Multi-agent_system
https://en.wikipedia.org/wiki/Swarm_intelligence
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Optimal_control_theory
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Bounded_rationality
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Exploration
https://en.wikipedia.org/wiki/Multi-armed_bandit

5

problem and in finite MDPs, the exploration vs. exploitation trade-off in reinforcement learning has

been studied most thoroughly.

2.1.1 Introduction

The basic reinforcement is modeled as a Markov decision process:

1. a set of environment and agent states S

2. a set of actions A of the agent;

3. Pa(s, s') = Pr (s t+1 = s' | s t=s, at=a) , probability of transition from state s to state s' under

action a.

4. 𝐑𝑎(𝑠, 𝑠′) , Eimmediate reward after transition from s to s' with action a.

5. Rules that describe what the agent observes.

The rules are often stochastic. In the observation the scalar immediate reward associated with the last

transition is typically involved. In many of the related works, it is assumed that the agent observes

the current environmental state. In cases of such condition, we talk about full observability, whereas

in the opposing case partial observability is discussed. Sometimes restrictions are put upon the set of

actions available to the agent. The interaction between a reinforcement learning agent and its

environment happens in discrete time steps. At each time t the agent receives an observation 𝐚𝑡 ,

which typically includes the reward
 𝐫𝐭 . It then chooses an action 𝒂𝒕 from the set of actions available,

which is subsequently sent to the environment. The environment moves to a new state s t+1 and the

reward r t+1 associated with the transition (𝑠𝑡, 𝑎𝑡,s t+1) is determined. The goal of a reinforcement

learning agent is to collect as much reward as possible. The agent can choose any action as a function

of the history and it can even randomize its action selection.

When we compare the agent's performance to that of an agent acting optimally from the beginning,

the difference in performance gives rise to the notion of regret. It is to be noted that in order to act

with near-optimal functionality, the agent must reason about the long term consequences of its

actions, although the immediate reward associated with this might appear negative.

Thus, reinforcement learning is particularly well-suited to problems that include a long-term versus

short-term reward trade-off. Various problems have seen its successful application, including robot

https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Action_selection
https://en.wikipedia.org/wiki/Robot_control

6

control, elevator scheduling, telecommunications, backgammon and checkers. The pair of

components that make reinforcement learning powerful are: (1) the use of samples to optimize

performance and (2) the use of function approximation to deal with large environments. Thanks to

these two key components, reinforcement learning can be used in large environments in any of the

following situations:

 A model of the environment is known, but an analytic solution is not available;

 Only a simulation model of the environment is given;

 The only way to collect information about the environment is by interacting with it.

The first two of these problems could be considered planning problems, while the last one could be

considered as a genuine learning problem. However, under reinforcement learning methodology

both planning problems would be converted to machine learning problems.

2.2 Exploration

The reinforcement learning problem as described requires clever exploration mechanisms. Randomly

selecting actions, without reference to an estimated probability distribution, is known to give rise to

very poor performance. What we now understand the case of (small) finite Markov decision

processes is comparatively better than that of any earlier success. However, due to the lack of

algorithms that would probably scale well with the number of states, in practice, simple exploration

methods are often used. One such method is ∈ -greedy, when the agent chooses the action that it

believes has the best long-term effect with probability 1−∈, and it chooses an action uniformly at

random. Here, 0 <∈ < 1 is a tuning parameter, which is sometimes changed, either according to a

fixed schedule, or adaptively based on some heuristics [3].

2.3 Algorithms for Control Learning

https://en.wikipedia.org/wiki/Robot_control
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Backgammon
https://en.wikipedia.org/wiki/Checkers
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process

7

Even if the issue of exploration is disregarded and even if the state was observable, the problem

remains to find out which actions are good based on past experience

techniques.[1] The main difference between the classical techniques and I
 2.3.1 Criterion of optimality

The action selection of the agent is modeled as a map called policy:

𝝅 ∶ 𝑺 ∗ 𝑨 → [𝟎, 𝟏]

𝝅(𝜶|𝒔) = 𝑷(𝒂𝒕 = 𝒂|𝒔𝒕 = 𝒔)

The policy map gives the probability of taking action a when in state s [4],

Value function 𝑉𝜋 is defined as the expected return starting with state s and policy. Value function

estimates how good it is to be in a given state.

 g𝑉𝜋(𝑠) = 𝐸[𝑅] = 𝐸[∑ 𝛾𝑡 𝑟𝑡 | 𝑠0 = 𝑠]∞
𝑡=0 𝑉

Where the random variable R denotes the return and is defined as the sum of discounted rewards.

h 𝑅 = ∑ 𝛾𝑡 𝑟𝑡
∞
𝑡=0

The problem then is to specify an algorithm that can be used to find a policy with maximum expected

return. From the theory of MDPs it is known that, without loss of generality, the search can be

restricted to the set of the so-called stationary policies. A policy is called stationary if the action-

distribution returned by it depends only on the last state visited. In fact, the search can be further

restricted to deterministic stationary policies. A deterministic stationary policy is one which

deterministically selects actions based on the current state [5]. Since any such policy can be

identified with a mapping from the set of states to the set of actions, these policies can be identified

with such mappings with no loss of generality.

2.3.2 Value function approach

Value function approaches attempt to find a policy that maximizes the return by maintaining a set of

estimates of expected returns for some policy .These methods rely on the theory of MDPs, where

https://en.wikipedia.org/wiki/Reinforcement_learning#cite_note-1

8

optimality is defined in a sense which is stronger than the above one: A policy is called optimal if it

achieves the best expected return from any initial state. Again, one can always find an optimal policy

amongst stationary policies.

To define optimality in a formal manner, define the value of a policy 𝛑 by

 𝑉𝜋(𝑠) = 𝐸 [𝑅|𝑠, 𝜋]

Where R stands for the random return associated with following 𝜋 from the initial state s .

Define 𝑉 ∗(s) as the maximum possible value of 𝑉𝜋 (s), where is allowed to change [6].

Although state-values suffice to define optimality, it will prove to be useful to define action-values.

Given a state s, an action a and a policy 𝜋 , the action-value of the pair (s, a) under 𝜋 is defined

by the latte

 n𝑄𝜋(𝑠, 𝑎) = 𝐸 [𝑅|𝑠, 𝑎, 𝜋]

Where, now, R stands for the random return associated with first taking action a in state s and
following 𝜋 , thereafter.

It is well-known from the theory of MDPs that if someone gives us Q for an optimal policy, we can

always choose optimal actions by simply choosing the action with the highest value at each state.

The action-value function of such an optimal policy is called the optimal action-value function and

is denoted by 𝑄 ∗ . In summary, the knowledge of the optimal action-value function alone suffices

to know how to act optimally [7].

Assuming full knowledge of the MDP, there are two basic approaches to compute the optimal action-

value function, value iteration and policy iteration. Both algorithms compute a sequence of functions

𝑄𝑘 (k=0, 1, 2, 3…) which converge to 𝑄 ∗. Computing these functions involves computing

expectations over the whole state-space, which is impractical for all but the smallest MDPs, never

mind the case when the MDP is unknown. In reinforcement learning methods the expectations are

approximated by averaging over samples and one uses function approximation techniques to cope

with the need to represent value functions over large state-action spaces.

https://en.wikipedia.org/wiki/Value_iteration
https://en.wikipedia.org/wiki/Policy_iteration

9

I

2.3.3 Monte Carlo Methods

Algorithms that mimic policy iteration can work with the simplest Monte Carlo methods. Policy

iteration consists of two steps: (1) policy evaluation and (2) policy improvement.The Monte Carlo

methods are used in the policy evaluation step. In this step, given a stationary, deterministic policy

π, the goal is to compute the function values Qπ(s, a) for all state-action pairs (s, a) . Assume (for

simplicity) that the MDP is finite and in fact a table representing the action-values fits into the

memory. Further, assume that the problem is episodic and after each episode a new one starts from

some random initial state. Then, the estimate of the value of a given state-action pair (s, a) can be

computed by simply averaging the sampled returns which originated from (s, a) over time. Given

enough time, this procedure can thus construct a precise estimate Q of the action-value function Qπ.

This finishes the description of the policy evaluation step [8].

In the policy improvement step, as it is done in the standard policy iteration algorithm, the next policy

is obtained by computing a greedy policy with respect to Q: Given a state s, this new policy returns

an action that maximizes Q(s, a) . In practice one often avoids computing and storing the new policy,

but uses lazy evaluation to defer the computation of the maximizing actions to when they are actually

needed [9] . A few problems with this procedure are as follows:

 The procedure may waste too much time on evaluating a suboptimal policy;

 It uses samples inefficiently in that a long trajectory is used to improve the estimate only of

the single state-action pair that started the trajectory;

 When the returns along the trajectories have high variance, convergence will be slow;

 It works in episodic problems only;

 It works in small, finite MDPs only.

2.3.4 Temporal difference methods

The first issue is easily corrected by allowing the procedure to change the policy (at all, or at some

states) before the values settles. However good may this sound, there are chaces of it being

https://en.wikipedia.org/wiki/Monte_Carlo_sampling
https://en.wikipedia.org/wiki/Lazy_evaluation

10

problematic, as this might prevent convergence. Still, most current algorithms implement this idea,

giving rise to the class of generalized policy iteration algorithm. It is to be noted that many actor

critic methods belong to this category. The second issue can be corrected within the algorithm by

allowing trajectories to contribute to any state-action pair in them. Batch methods, a prime example

of which is the least-squares temporal difference method [10], may use the information in the samples

better, whereas incremental methods are the only choice when batch methods become infeasible due

to their high computational or memory complexity. In addition, there exist methods that try to unify

the advantages of the two approaches. Methods based on temporal differences also overcome the

second but last issue. In order to address the last issue mentioned in the previous section, function

approximation methods are used. In linear function approximation one starts with a mapping ∅ that

assigns a finite-dimensional vector to each state-action pair. Then, the action values of a state-action

pair (s, a) are obtained by linearly combining the components ∅(s, a) of with some weights 𝜃

 𝑄(𝑠, 𝑎) = ∑ 𝜃𝑖
∅𝑖

(𝑠, 𝑎)𝑑
𝑖=1

The algorithms then adjust the weights, instead of adjusting the values associated with the individual

state-action pairs. However, linear function approximation is not the only choice. More recently,

methods based on ideas from nonparametric statistics have been explored.

So far, the discussion was restricted to how policy iteration can be used as a basis of the designing

reinforcement learning algorithms. Equally importantly, value iteration can also be used as a starting

point, giving rise to the Q-Learning algorithm and its many variants [11].

The problem with methods that use action-values is that,. For them, it is necessary to have highly

precise estimates of the competing action values, which can be hard to obtain when the returns are

noisy. Though this problem is mitigated to some extent by temporal difference methods and if one

uses the so-called compatible function approximation method, more works remains to be done to

increase generality and efficiency. Another problem specific to temporal difference methods comes

from their reliance on the recursive Bellman equation. Most temporal difference methods have a so-

called λ parameter ((0 ≤ λ ≤ 1) that allows one to continuously interpolate between Monte-Carlo

methods and the basic temporal difference methods, which can thus be effective in palliating this

issue [12].

https://en.wikipedia.org/w/index.php?title=Least-squares_temporal_difference_method&action=edit&redlink=1
https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Q-Learning

11

12

CHAPTER 3

3. Proposed System Model

3.1. Introduction

This section consists of the detailed description of the model we are proposing which contains several

phases (see Figure 1).

Figure 1: Workflow of the proposed system model

Deciding
states

Designing MDP Defining reward
function

Deciding
actions

Defining goal
states

Solving the MDP
with Q-learning
and SARSA (λ)

13

 3.2. Markov Decision Process

Since our proposed model deals with the route selection for the waste management in Dhaka city, we

are to consider several places of the city as states in this system. In order for this system to work, it is

essential to calculate the distances among them and the amounts of time spent to cover those distances.

So, to find the optimal route, we intend to use the Markov Decision Process (MDP) model and the

computation is to be done by reinforcement learning. An MDP has a decision agent to repeatedly

and continuously observe the current state of the system [19]. After the close observation it takes

a decision that is allowed to be taken in that state and then observes a transition to a new

state. A reward influences the decisions of the agent.

An MDP model contains:

1. A set of possible states S

2. A set of possible actions A

3. A real valued reward function R(s, a)

4. A description T of each action’s effects in each state.

5. Stochastic actions:

T: S ×A → Prob(S), for each state and action we specify a new Probability distribution over
next states. Representation of the distribution is P(s ′ |s, a).

To solve our optimal route selection problem, we have designed two MDPs (Markov Decision

Process) one of which is for Dhaka North City Corporation (DNCC) (see Figure 2) and the other

of which is for Dhaka South City Corporation (DSCC) (see Figure 3). The MDPs will contain

several states and actions. The MDPs are necessary for generating episodic decision making

policies for our problem. In our work, we propose to use Markov Decision Process (MDP) model.

An MDP involves a decision agent that repeatedly observes the current states of the controlled

system, takes a decision among the ones allowed in that state and then observes a transition to a

new state s′ and a reward r that will drive its decisions [13]. The MDP that we will be using for

our work is as follows:

14

Figure 2: MDP of Dhaka North City Corporation (DNCC)

M= {S, A, T, R, β} where:

S= {RP, GB, BD, BDRA, U, MP, TG, MD, SBN, AB}

MP

SBN

AB

U

TG

MD

BD

GB

BDRA

RP

W1pm
W11pm

W4am

W12am W4:30am

W1:30pm

W2pm

W5am

W12:30am

W3pm

W5:30am

W1am

W4pm

W6am

W1:30am

ϕ

W1pm
W5am

W12am

W12am

W5am

W1pm

W6am

W1am

W2pm

ϕ

15

For our work, we have divided Dhaka North City Corporation (DNCC) into a number of zones

which are represented in the diagram above as the states of the system.

Here,

RP represents Rampura, Banashree and the surrounding areas.

GB represents Gulshan, Banani and the surrounding areas.

BD represents Baridhara and the surrounding areas.

BDRA represents the Bashundhara Residential Area.

U represents Uttara, Khilkhet and the surrounding areas.

MP represents the Mirpur area.

TG represents Tejgaon and the surrounding areas.

MD represents Mohammadpur, Kalyanpur and the surrounding areas.

SBN represents the Sher-E-Bangla Nagar areas.

AB represents Aminbazaar, which is the dumping station.

A represents the action set we have used for our work, such as W4am, W11pm, W1pm, etc.

W4am, W11pm, W1pm, here, mean that the truck carrying the wastes must arrive from the RP

zone to the GB zone and the BDRA zone within 1 PM and 4 AM, 11 AM respectively. Similarly,

the rest of our actions are:

{W1:30pm, W2pm, W3pm, W4pm, W12am, W12:30am, W1am, W1:30am,

W4:30am, W5am, W5:30am, W6am}

In the MDP, the symbol ϕ was used, which represents a route that will not be used.

T is the probability distribution of going to a state “s′” from “s” by taking any random

action “a”.

R is the cost function that expresses the reward if action “a” is taken at state s.

“β” is the discount factor, 0< β <1.

16

Figure 3: MDP of Dhaka South City Corporation (DSCC)

DM

LB

MT

HB

WR

SP

DU
RM

KG

GM

W4am

JB

W4:30am

W5am

W6am

W11pm

W12am

W12:30am

W5pm

W11pm

W1pm

W3pm

W4pm

W4am

W1pm

W2pm

W3pm

W4pm

W1am

W4:30am

W5am

W5:30am

W11pm
W12am

W12:30am W12am

W3pm

W5am

W5am

W2pm

W11am

17

S= {HB, DM, LB, DU, SP, WR, RM, JB, GM, KG, MT}

For our work, we have divided Dhaka South City Corporation (DSCC) into a number of zones which

are represented in the diagram above as the states of the system.

Here,

HB represents Hazaribagh area that produces an immense amount of waste from tanneries

DM represents Dhanmondi, Lalmatia and the surrounding areas.

LB represents Lalbagh, Chawk Bazar and the surrounding areas.

DU represents the entire Dhaka University area.

SP represents Sutrapur, Narinda, Shamibag and the surrounding areas.

WR represents Wari, Tikatuli and the surrounding areas.

RM represents Ramna, Shahbagh, Elephant Road and the surrounding areas.

GM represents Gulistan, Motijheel, Paltan, Kakrail and the surrounding areas.

KG represents Khilgaon, Basabo, Goran, Mathartek, Manda and the surrounding areas.

JB represents Jatrabari, Gandaria, Doniya and the surrounding areas.

MT represents Matuail, which is the dumping station.

A represents the action set we have used for our work, such as W4am, W4:30am, W5am, etc.

W4am, W4:30am, W5am, here, mean that the truck carrying the wastes must arrive from the

HB zone to the LB zone and the SP zone within 4 AM and 4:30 AM, 5 AM respectively.

Similarly, the rest of our actions are:

{W4am, W1am, W11pm, W4:30am, W1pm, W3pm, W12am, W4:30am, W5am,

W4pm, W12:30am, W5:30am, W6am, W2pm, W11am}

18

CHAPTER 4

4. PROPOSED METHOD

4.1 Q-learning

The reinforcement learning technique we used here is q-learning. Q-learning is a model free

reinforcement learning technique. It works by learning an action value function that ultimately

gives the expected utility of taking a given action in a given state and following the optimal

policy thereafter. Our Q – learning algorithm is [14]:

A. Q-learning
1. (∀s ∈ S)(∀a ∈ A(s));
2. initialize Q(s , a)
3. s := the initial observed state
4. loop
5. Choose a ∈ A(s) according to a policy derived from Q
6. Take action a and observe next state s ′ and reward r
7. Q[s , a] := Q[s , a] + α(R[s,a] + * maxa Q[s′ , a′] - Q[s, a])
8. s := s′

 9. end loop
10. return π (s) = argmaxa Q(s , a)

Here, “α” is the learning rate. It determines to how much the old information will be wiped out

by the newer one. Value of α being “0” will make the agent not to learn anything and on the

contrary value of α being “1” would make it consider only the recent most information. In

deterministic environments the value of α can be set to 1 and that is optimal. But our

environment is stochastic and it is quite tough to determine the exact value. “” is the discount

factor. It determines how important the future rewards can be. A value of “0” will make the

agent short sighted and the agent will only consider the current rewards.

19

4.2 SARSA(λ)

State-Action-Reward-State-Action (SARSA) is another reinforcement algorithm to solve MDP.

The name simply reflects that the function that updates the Q value depends on the current state

of “s”, the action “a”, the reward “r” that an agent gets by choosing the action a and the next state

“s′”. When eligibility traces are added to SARSA algorithm, the algorithm is called SARSA (λ)

algorithm [15]. Our SARSA (λ) algorithm is given below [14]:

1. Initialize Q(s, a) arbitrarily
2. Repeat (for each episode):
3. Initialize s
4. Choose a from s using policy derived from Q
5. Repeat (for each episode):
6. Take action a, observe r, s′
7. Choose a′ from s′ using policy derived from Q
8. δ = r+ Q[s′ , a′] - Q[s, a]
9. e(s, a) = e(s, a)+1
10. For all (s , a):
11. Q[s , a] = Q[s , a] + α δ e(s, a)
12. e(s, a) = λe(s, a)
13. s=s′ ; a=a′
14. until s is terminal

Eligibility trace is a very important term in SARSA (λ) algorithm. There are two ways to view

eligibility traces. The more theoretical view, which we emphasize here, is that they are a bridge

from TD to Monte Carlo methods. When TD methods are augmented with eligibility traces, they

produce a family of methods spanning a spectrum that has Monte Carlo methods at one end and

one-step TD methods at the other. In between are intermediate methods that are often better than

either extreme method [8]. In this sense eligibility traces unify TD and Monte Carlo methods in a

valuable and revealing way.

The other way to view eligibility traces is more mechanistic. From this perspective, an eligibility

trace is a temporary record of the occurrence of an event, such as the visiting of a state or the

taking of an action. The trace marks the memory parameters associated with the event as eligible

for undergoing learning changes. When a TD error occurs, only the eligible states or actions are

assigned credit or blame for the error [17]. Thus, eligibility traces Help Bridge the gap

between events and training information. Like TD methods themselves, eligibility traces are

a basic mechanism for temporal credit assignment.

20

4.3 Reward Function

To experiment with the Q-learning and SARSA (λ), we have defined the reward function that

has been used is as follows:

R=β (Cost) + (1-β) (Penalty)

Where,

 Cost = 𝑉𝑛 ∗ (𝐹𝑐 + 𝑀𝑐 + 𝐿𝑐) ……………………………. (1)

 Penalty = 𝑃𝑐 ∗ (1 + (𝑃𝑑 − 𝑃𝑠𝑙𝑎)/ 𝑃𝑠𝑙𝑎)(2)

In equation (1),

𝑉𝑛 = Number of vehicles

𝐹𝑐 = the cost of fuel

Mc = cost of maintenance

𝐿𝑐 = cost of labors

In equation (2),

Pc = penalty for the violation of SLA

Pd = the performance displayed by the system randomly

Psla = target performance

Lastly, β is the balancing factor

21

CHAPTER 5

5. EXPERIMENTAL RESULTS

5.1 Variant Beta (β)

We varied the β in accordance with the cost and penalty we acquire in different training

episodes and plot them in a graph while implying q-learning. We also did the same in case of

SARSA (λ) [16]. The following table shows us the average (random 10 episodes) of the cost and

penalties for different parameters of beta for Q-learning (see Figure 4, Table 1).

Value of β Cost Penalty
0.10 35.27 8.4
0.25 73.19 7.26
0.50 77.35 9.08
0.75 82.63 8.13

 0.90 91.85 8.39

Table1. Cost and Penalty for variant beta (Q)

The graph below shows which value of β balances the cost and Penalty:

Figure: 4 Cost Vs. Penalty Graph for beta in Q -learning

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

P
en

al
ty

Cost

Β=0.1

Β-0.25

Β=0.5

Β=0.75

Β=0.9

22

Again, the following table shows us the average (random 10 episodes) of the cost and

Penalties for different parameters of beta for SARSA (λ) (see Figure 5, Table 2).

Value of β Cost Penalty
0.10 2.85 7.21
0.25 3.67 6.04
0.50 5.23 8.07
0.75 7.16 6.39
0.90 9.25 6.18

Table 2. Cost and Penalty for variant beta (SARSA)

The graph below shows which value of β balances the cost and Penalty for SARSA (λ):

Figure 5: Cost Vs. Penalty Graph for beta in SARSA- λ

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

P
en

al
ty

Cost

Β=0.1

Β=0.25

Β=0.5

Β=0.75 Β=0.9

23

To compare the beta values of these two reinforcement learning techniques, we merged the

graphs stated above and observed the versatile values of beta. The graph below shows us the

comparison of the beta values for both of the learning techniques (see Figure 6):

Figure 6: Cost Vs. Penalty Graph for beta in Q and SARSA(λ)

Here, in the graph, the purple dots represent the cost versus penalty results of the effects of Q-

learning algorithm, and the blue dots represent the cost versus penalty results of the effects of

SARSA algorithm.

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

P
en

al
ty

Cost

24

5.2 Variant Lambda (λ)

For SARSA (λ) algorithm, we also varied the values of lambda to see which value of lambda

best balances the reverse condition between cost and penalty. The values of lambda taken on

account are 0.1, 0.25, 0.5, 0.75, and 0.9. It gave us the following result (see Figure 7, Table3):

Value of λ Cost Penalty

0.1 11.87 7.13

0.25 9.25 6.18

0.5 8.31 6.03

0.75 10.63 8.29

0.9 7.06 10.67

Table 3. Cost and Penalty for variant lambda (SARSA)

The values gave us the following result:

Figure 7: Cost Vs. Penalty Graph for λ in SARSA (λ)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

P
en

al
ty

Cost

λ=0.5

λ=0.25

λ=0.75

λ=0.1

 λ =0.9

25

5.3 Variant Alpha (α)

To decide up to what extent the newly acquired information will override the old information,

learning rate was varied throughout the experiment while applying Q- learning. The values of alpha

that we varied were 0.1, 0.25, 0.5, 0.75 and 0.9. These values generated variant results with

rewards. Alpha was chosen as 0.1 because this is the only value of alpha in which the convergence

took place. The following graph represents different values of alpha generating chunks of reward

(see Figure 8):

 Figure 8: Different values of alpha producing chunks of reward (Q-Learning)

0

5

10

15

20

25

Alpha=0.1 Alpha=0.25 Alpha=0.5 Alpha=0.75 Alpha=0.9

26

Learning rate was varied throughout the experiment while applying SARSA-lambda too. The

values of alpha that we varied were 0.1, 0.25, 0.5, 0.75 and 0.9. These values generated variant

results with rewards. Alpha was chosen as 0.1 because this is the only value of alpha in which

the convergence took place. The following graph represents different values of alpha generating

chunks of reward (see Figure 9):

 Figure 9: Different values of alpha producing chunks of reward (SARSA)

0

5

10

15

20

25

Alpha=0.1 Alpha=0.25 Alpha=0.5 Alpha=0.75 Alpha=0.9

27

5.4 Optimal Route after implying the Algorithms

For the best implementation, we have divided the 24-hour day in 3 shifts in which the dumping

trucks are to carry the wastes. For a clearer understanding, this distribution is described below.

Figure 10: Route from Rampura zone to Aminbazar dumping station (day shift)

Figure 10 shows that, in the day shift, the dumping truck starts from Rampura zone (RP) at 1 PM

and travels this route through Bashundhara Residential Area zone (BDRA), Baridhara zone (BD),

Uttara zone (U), Mirpur zone (MP), and at the end reaches and dumps the waste at Aminbazar

dumping station (AB) within 4 PM.

MP

AB

U

BD

BDRA

RP

W1pm

W1:30pm

W2pm

W3pm

W4pm

28

Figure 11: Route from Rampura zone to Aminbazar dumping station (night and dawn shifts)

Figure 11 shows that, in the night shift, the dumping truck starts from Rampura zone (RP) at 11

PM and travels this route through Gulshan-Banani zone (GB), Baridhara zone (BD), Uttara zone

(U), Mirpur zone (MP), and at the end reaches and dumps the waste at Aminbazar dumping station

(AB) within 1:30 AM. Following the same route. In the dawn shift, the dumping truck starts from

Rampura zone (RP) at 4 AM and reaches and dumps the waste at the Aminbazar dumping station

(AB) within 6 AM.

MP

AB

U

BD

GB

RP

W11pm

W12am

W12:30am

W1am

W6am

W4am

W4:30am

W5am

W5:30am
W1:30am

29

Figure 12: Route from Dhanmondi zone to Matuail dumping station (dawn and day shifts)

Figure 12 shows that, in the dawn shift, the dumping truck starts from Dhanmondi zone (DM) at

4 AM and travels this route through Dhaka University area zone (DU), Romna zone (RM),

Gulistan-Motijheel zone (GM), Jatrabari zone (JB) and at the end reaches and dumps the waste at

Matuail dumping station (MT) within 1:30 AM. In the day shift, the truck starts from Dhanmondi

zone (DM) at 1 PM and travels the same route and at the end reaches and dumps the waste at

Matuail dumping station (MT) within 5 PM.

DM

MT

DU
RM

GM

JB
W5pm

W1pm

W2pm

W3pm

W4pm

W4am

W4:30am

W5am

W5:30am

W6am

30

Figure 13: Route from Dhanmondi zone to Matuail dumping station (night shift)

Figure 13 shows that, in the night shift, the dumping truck starts from Dhanmondi zone (DM) at

11 PM and travels this route through Lalbagh zone (LB), Wari zone (WR), Jatrabari zone (JB)

and at the end reaches and dumps the waste at Matuail dumping station (MT) within 1 AM.

DM

LB

MT

WR

JB

W1am

W12am

W12:30am

W11pm

31

5.5 Convergence Comparison

While implying both of the algorithms we found convergence in both cases. The values that

we found and used to generate graphs for SARSA are given below:

SARSA

Episodes Reward

1 9.31

2 11.21

3 11.69

4 12.14

5 12.65

6 14.26

7 14.96

8 15.12

9 15.64

10 16.87

11 17.31

12 18.14

13 19.26

14 19.81

15 21.64

16 22.36

17 23.17

18

23.88

32

19 24.98

20 25.63

21 27.51

 Table 4. Rewards for SARSA

The values that we found and used to generate graphs for Q-learning algorithm are given

below:

 Q-Learning

Episodes Reward

1 9.23

2 12.14

3 7.69

4 6.57

5 9.68

6 10.39

7 11.88

8 12.31

9 10.76

10 15.61

11 13.67

12 19.78

13 18.93

14 24.67

15 25.71

16 33.36

17 34.75

18 38.17

33

19 39.91

20 39.26

21 43.19

Table 5. Rewards for Q-Learning

The following figure shows us the early convergence of SARSA

Figure 14: Early convergence of SARSA

Considering different results obtained from the reward of Q-learning and SARSA functions, we

have come to the conclusion that SARSA has a faster convergence rate than Q-learning.

0

5

10

15

20

25

30

35

40

45

50

SARSA Q-Learning

34

CHAPTER 6

6. Conclusion and Future Work

 6.1 Conclusion

In this proposed model of ours we have taken into consideration the two algorithms, Q-learning and

SARSA, in order to solve our problem, and observed results obtained from the model using a reward

based machine learning algorithm. In the conclusion, we have showed the results and presented how

fast our proposed model had worked in Dhaka city. We have seen that, in the end, the SARSA

algorithm showed the best convergence speed, comparative to that of Q-learning. So, in case of our

model, SARSA algorithm worked best.

6.2 Future works

In future, we wish to implement this model of ours in various other cities across the world where

there will be tougher conditions in transportation and many other intricacies. We intend to develop

our model and modify it to yield even better results for other scenarios, as well as implementing

other algorithms of machine learning to provide better and more practically helpful solutions.

35

References

[1] Van Otterlo, M.; Wiering, M. (2012). "Reinforcement learning and markov decision

processess". Reinforcement Learning. Springer Berlin Heidelberg: 3–42.

[2] Kaelbling, Leslie P.; Littman, Michael L.; Moore, Andrew W. (1996). "Reinforcement

Learning: A Survey". Journal of Artificial Intelligence Research. 4: 237–285.

[3] Tokic, Michel; Palm, Günther (2011), "Value-Difference Based Exploration: Adaptive Control

Between Epsilon-Greedy and Softmax", KI 2011: Advances in Artificial Intelligence , Lecture

Notes in Computer Science, 7006, Springer, pp. 335–346, ISBN 978-3-642-24455-1

[4] Williams, Ronald J. (1987). "A class of gradient-estimating algorithms for reinforcement

learning in neural networks". Proceedings of the IEEE First International Conference on

Neural Networks.Watkins, Christopher J.C.H. (1989). Learning from Delayed

Rewards (PDF) (PhD thesis). King’s College, Cambridge, UK.

 [5] Szita, Istvan; Szepesvari, Csaba (2010). "Model-based Reinforcement Learning with Nearly

Tight Exploration Complexity Bounds" (PDF). ICML 2010. Omnipress. pp. 1031–1038.

[6] "Playing Atari with Deep Reinforcement Learning". Computing Research Repository.

1312.5602.

[7] Ng, A. Y., & Russell, S. J. (2000, June). Algorithms for inverse reinforcement learning. In

Icml (pp. 663-670).

[8] Hastings, W. K. (1970-04-01). "Monte Carlo sampling methods using Markov chains and their

applications". Biometrika. 57 (1): 97–109. ISSN 0006-3444.

[9] Kroese, D. P.; Brereton, T.; Taimre, T.; Botev, Z. I. (2014). "Why the Monte Carlo method is

so important today". WIREs Compute Stat. 6: 386–392.

http://link.springer.com/chapter/10.1007/978-3-642-27645-3_1
http://link.springer.com/chapter/10.1007/978-3-642-27645-3_1
https://en.wikipedia.org/wiki/Leslie_P._Kaelbling
https://en.wikipedia.org/wiki/Michael_L._Littman
https://en.wikipedia.org/w/index.php?title=Andrew_W._Moore&action=edit&redlink=1
http://www.cs.washington.edu/research/jair/abstracts/kaelbling96a.html
http://www.cs.washington.edu/research/jair/abstracts/kaelbling96a.html
http://www.tokic.com/www/tokicm/publikationen/papers/KI2011.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-24455-1
https://en.wikipedia.org/wiki/Ronald_J._Williams
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.8871
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.8871
https://en.wikipedia.org/w/index.php?title=Christopher_J.C.H._Watkins&action=edit&redlink=1
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://en.wikipedia.org/w/index.php?title=Istvan_Szita&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Csaba_Szepesvari&action=edit&redlink=1
http://www.icml2010.org/papers/546.pdf
http://www.icml2010.org/papers/546.pdf
http://biomet.oxfordjournals.org/content/57/1/97
http://biomet.oxfordjournals.org/content/57/1/97
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0006-3444

36

[10] Gosavi, Abhijit (2003). Simulation-based Optimization: Parametric Optimization Techniques

and Reinforcement. Springer. ISBN 1-4020-7454-9.

[11] Suita, Istvan; Szepesvari, Csaba (2010). "Model-based Reinforcement Learning with Nearly

Tight Exploration Complexity Bounds" (PDF). ICML 2010. Omnipress. pp. 1031–1038.

[12] Coalfish, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. Acta Numerica. 7.

Cambridge University Press. pp. 1–49.

[13] A. Habib and M. I. Khan, “Reinforcement Learning based Autonomic Virtual Machine

management in Clouds,” in Proc. of 5th IEEE International Conference on Informatics,

Electronics and Vision, Dhaka, Bangladesh, pp. 135-136, 201

 [14] R.S.Sutton and A.G.Barto.Reinforcement Learning:An Introduction.TheMIT

Press,Cambridge, Massachusetts, England, 2002.

 [15] K.Gupta, "Performance Comparison of Sarsa(λ) and Watkin’s Q(λ) Algorithms." (n.d.): n.

pag. Print.

 [16] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck, “From Data Center Resource

Allocation to Control Theory and Back,” in Proc. of 3rd IEEE Int. Conf. on Cloud

Computing, pp. 410-417, Miami, FL, July 2010.

 [17] T. Stockheim, M. Schwind, A. Korth, and B. Simsek, “Supply ChainYield Management Based

on Reinforcement Learning”

 [18] A. Habib, M. I. Khan and J. Uddin “Optimal Route Selection in Complex Multi-stage Supply

Chain Networks using SARSA(λ)”

 [19] Fakoor, Mahdi; Kosari, Amirreza; Jafarzadeh, Mohsen (2016). "Humanoid robot path planning

with fuzzy Markov decision processes". Journal of Applied Research and Technology.

https://en.wikipedia.org/w/index.php?title=Abhijit_Gosavi&action=edit&redlink=1
http://www.springer.com/mathematics/applications/book/978-1-4020-7454-7
http://www.springer.com/mathematics/applications/book/978-1-4020-7454-7
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-4020-7454-9
https://en.wikipedia.org/w/index.php?title=Istvan_Szita&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Csaba_Szepesvari&action=edit&redlink=1
http://www.icml2010.org/papers/546.pdf
http://www.icml2010.org/papers/546.pdf
https://en.wikipedia.org/wiki/Russel_E._Caflisch
http://www.sciencedirect.com/science/article/pii/S1665642316300700
http://www.sciencedirect.com/science/article/pii/S1665642316300700

37

