
Design and Prototypical Implementation of a Web
Application: Network Log Correlation System

An Internship Report Submitted in fulfilment of the requirements for the
award of the degree of Master in Computer Applications

Student Name:Md. Tariq Salman
ID#15165001, MCA, Fall 2016, BRAC University.

Supervisor: AmitabhaChakrabarty, Ph.D
Assistant Professor

CSE Department, BRAC University

Department of Computer Science and Engineering

BRAC University

December 2016

1 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Abstract

Communication industry continues its growth along with innovations every day,

sometimes it is treated as the world’s biggest machine. However a communication

network includes a large number of equipment functions consistently getting the

uninterrupted services. An operating system software running on those equipment

has the capability to log every event triggers during its runtime. Usually this logs are

stored in a database maintained by the Network Operation Centers. One

telecommunication network’s operation center receives a huge number of logs or

events every hour. Each event has some specific actions relevant to its resolution.

Here we get a relation between events and actions, therefore every event log follows

an action or a combined actions towards the resolutions. In this analysis we used

historical resolution database to get the recommended course of actions for an event

logged into the database from a network platform that will have an opportunity to

reuse of an intellectual information base and will drive a faster way out to any

problematic event of any service provider network platform.

2 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Acknowledgements

All those persons who contributed in this work during the last few months we would like to

thank them all.

This internship report topic was proposed and realized following the visionary ideas of Dr.

AmitabhaChakrabarty. We are very grateful for his valuable feedbacks and the constant

motivation that he has extended to us ever since we started our post graduate education at

BRAC University.

We would also like to thank all our friends and class mates who helped us a lot during our

studies at the university.

Beyond friends there are families, we thank them very much for their love and support for

us no matter what we decided to do and also for the financial support.

3 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Table of Contents

CHAPTER 1: INTRODUCTION .. 6
1.1 BACKGROUND .. 6

CHAPTER 2: LITERATURE REVIEW .. 8

2.1TELECOMMUNICATIONS SERVICES ENGINEERING:
DEFINITIONS, ARCHITECTURES, AND TOOLS ... 8

2.1.1 Introduction to Telecommunication Service Engineering 8
2.1.2 Service Engineering Definition .. 8

2.2THE TELECOMMUNICATIONS MANAGEMENT NETWORK (TMN) 10
2.2.1 Network Operating System………………………………………………………...11
2.2.2 Network Management Software .. 11
2.2.3 Operation Systems Support .. 12
2.2.4 Communication Software.. 13

2.3LOG CORRELATION SOFTWARE ENGINEERING ... 13
2.3.1 Creating Universal User Interfaces .. 13
2.3.2 Enabling information Reuse across application Platforms 14
2.3.3 Designing event driven Applications .. 16
2.3.4 Balancing Agility and Uncertainty in Requirements .. 18

CHAPTER 3: RESEARCH METHODS .. 20

3.1 METHODS .. 20
3.2 LITERATURE REVIEW .. 21
3.2.1 Requirements Elicitation ... 21
3.2.2 Concept and Implementation ... 22

CHAPTER 4: SYSTEM ANALYSIS AND DESIGN ... 23

4.1 REQUIREMENTS .. 23
4.1.1 Roles ... 23
4.1.2 Use Cases and Functional Requirements .. 23
4.1.3 Registration and Login .. 24
4.1.4 Connect Alarm Databases ... 24
4.1.5 Change Alarms Databases .. 25
4.1.6 Escalate to Stakeholders .. 25
4.1.7 Alarm Closure ... 26
4.1.8 Non-Functional Requirements ... 27

4.2 SOFTWARE DEVELOPMENT STRATEGY ... 27
4.2.1 Planning Phase .. 28
4.2.2 Requirement Analysis .. 29
4.2.3 Design .. 31
4.2.4 NLCS Application Design ... 39

4 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

CHAPTER 5: IMPLEMENTATION ... 41

5.1 DATA MODEL .. 41
5.1.1 User Access &Login ... 42
5.1.2 User Database creation .. 43
5.1.3 Tools Login Page .. 44
5.1.4 Clear Old alarm list .. 45
5.1.5 Upload Current Alarm .. 46
5.1.6 Show Correlated Alarm list .. 47
5.1.7 Alarms against VIP sites .. 49
5.1.8 Historical Alarms.. 49
5.1.9 Uploading alarm for mail & Send mail ... 50

CHAPTER 6: CONCLUSION ... 51

6.1 Future work ... 51

REFERENCES ... 52

5 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Chapter 1: Introduction

Every communication network has a series of devices interconnected which are running
round the clock to keep the services available always, therefore a challenge for network
engineers to identify any problematic events occurrence with manual interpose.
Considering the context we introduce this automated system to isolate device logs base on
its different category to reduce manual efforts towards the resolution.

1.1 Background

Network Log Correlation System simplify and consolidate event and impact management,
improve service performance and availability, reduce operational costs, and minimize
business risk.

NLCS Event and Impact Management helps to minimize service disruptions in business and
users through advanced analytics that automatically correlate and prioritize events across
multiple technologies, platforms, vendors, and data sources.

• Increase operational efficiencies and lower costs for event, impact, availability, and
performance management for physical, virtual, and cloud environments.

• Reduce MTTR and increase service levels with high-precision root cause and service
impact analytics that drive automated triage and repair.

• Drive business value by automating solution process flow, such as incident and change
management, across the organization and third-party solutions.

Specifically within the context of NLCS the objectives of this paper is to-

 Identify the major challenges to develop an application from software engineering

perspective.

 Explore the prospect of NLCS app to helpoperational challenges for Bangladeshi

Network Service Providers.

 Develop system analysis and design of a NLCS application.

 Create a prototypical implementation of the application to demonstrate how such

application can help increase service level.

6 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Figure 1.1 Report Outline

Figure 1.1 shows a quick overview of the report structure. To meet the first two objectives, a

literature review was conducted, of which the results can be found in Chapter 2. The first

part of the literature review focuses on overall communication networkoperations and

management areasalong with the factors drives into NLCS scenario and the second part

focuses into software engineering challenges to develop an application identified by current

researches. Chapter 3 states the methodological approach to this paper. The functional and

non-functional requirements as well as the core use cases of the proposed tool are

introduced in Chapter 4. The implementation of the application, including the data model,

system design and user interface evolvement, issubject of Chapter 5. Chapter 6 concludes

the report by discussing the findings and proposing future research endeavors in the area

correlation.

7 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Chapter 2: Literature Review

In this section we have searched and analyzed different engineering management processes,

tool and techniques to organize our case more efficiently and effectively.

2.1 Telecommunication Service Engineering: Definition,
Architecture and Tools

2.1.1 Introduction to Telecommunications Services Engineering

The demand for advanced telecommunications services has increased enormously over the

last few years. This has led to situations where network operators must deploy new services

at a rapid pace when satisfying customer needs. The telecommunications monopolies have

disappeared, and the fight for market shares has become fiercer than ever before.

Furthermore, the demand for ever more specialized end-user services keeps growing, along

with the demand for having the new services deployed within shorter and shorter time

frames. The structure and function of networks must change, in order to cope with these

new challenges. The telecommunications industry is witnessing a changeover from being

interconnection driven to being service driven. A new discipline called telecommunications

services engineering is emerging. It encompasses the set of principles, architectures, and

tools required to tackle activities ranging from service specification to service

implementation, service deployment, and exploitation.[1]

2.1.2 Service Engineering Definition

Since the early 1980s, the major trend in the area of service provision has been toward

dissociating service control from the underlying network equipment. As a result, services

have been seen as sets of interactions among software pieces running on top of the network

8 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

infrastructure. Consequently, the concepts, principles, and rules of service engineering were

borrowed to a large extent from the software engineering area.

The telecommunications community was faced with a new challenge, which was to bring

the telecommunications specific requirements together with software engineering. Interests

grew to integrate results from other disciplines such as security, verification and validation,

database management systems, communication management, etc.[1]

Service engineering can be defined as the set of methods, techniques, and tools to specify,

design, implement, verify, and validate services that meet user needs and deploy and

exploit these services over the current or future networks. Service engineering is a young

discipline, but is a discipline in itself, as is protocol engineering.

Three important components are considered within the framework of service engineering

(Figure 2.1):

• Service creation environment: A software engineering platform specialized for the

development of telecommunications services.

• Telecommunications network: Contains the transmission and switching equipment. Each of

thesepieces of equipment may be seen as one black box that offers an application

programming interface(API); this may be a signaling or management interface.

• Network architecture: Responsible for controlling the network in such a way that a service’s

specificrequirements get satisfied.

9 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Figure 2.1: Components of telecommunications services by ITU

2.2 The Telecommunications Management Network
(TMN)

ITU-T has defined the Telecommunications Management Network (TMN). TMN enables

federation of the equipment that constitute the telecommunications network, produced

generally by different telecommunications vendors, to enable their control in a uniform,

global, and efficient way.

Management of telecommunications networks may be defined as the set of activities of

monitoring, analysis, control, and planning of the operation of telecommunications network

resources to provide services to customers with a certain level of quality and cost.[2]

• Monitoring is defined as the process of dynamic collection, interpretation, and

presentation of information concerning objects under scrutiny.

• It is used for general management activities which have a permanent continuous nature

such as the systems management functional areas (i.e., performance, configuration, fault,

accounting, security).

10 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

• Analysis is applied to monitoring information to determine average or mean variance

values of particular status variables. Analysis is application specific. It can range from very

simple gathering of statistics to very sophisticated model-based analysis.

• Control is the process by which changes in the managed network are effected.

• Planning is defining the network topology and sizing every network element in order

for the user to obtain any given service in optimal conditions with regard to quality and

price.

2.2.1 Network Operating System (NOS): Systems software that controls the computer

systems and devices on a network and allows them to communicate with each other.

2.2.2 Network Management Software: Enables a manager on a networked desktop to

monitor the use of individual computers and shared hardware, scan for viruses, and ensure

compliance with software licenses.

2.2.3 Operations support systems (OSS): or operational support systems in British

usage, are computer systems used by telecommunications service providers to manage their

networks (e.g., telephone networks). They support management functions such as network

inventory, service provisioning, network configuration and fault management.[2]

Together with business support systems (BSS), they are used to support various end-to-end

telecommunication services. BSS and OSS have their own data and service responsibilities.

The two systems together are often abbreviated OSS/BSS, BSS/OSS or simply B/OSS.

The acronym OSS is also used in a singular form to refer to all the Operations Support

Systems viewed as a whole system.

Different subdivisions of OSS have been proposed by the TM Forum, industrial research

labs or OSS vendors. In general, an OSS covers at least the following five functions [2]:

• Network management systems

• Service delivery

11 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

• Service fulfillment, including the network inventory, activation and provisioning

• Service assurance

• Customer care

2.2.4 Communication software: Provides error checking, message formatting,
communications logs, data security and privacy, and translation capabilities for networks.

2.3 Log Correlation Software Engineering

Based on the best factors to application development, we outline the following fundamental,

unique challenges to the state-of practice in mobile application software engineering:

2.3.1 Creating Universal User Interfaces

User interface is the front-end application view to which user interacts in order to use the

software. User can manipulate and control the software as well as hardware by means of

user interface. Today, user interface is found at almost every place where digital technology

exists, right from computers, mobile phones, cars, music players, airplanes, ships etc.

User interface is part of software and is designed such a way that it is expected to provide

the user insight of the software. UI provides fundamental platform for human-computer

interaction.

UI can be graphical, text-based, audio-video based, depending upon the underlying

hardware and software combination. UI can be hardware or software or a combination of

both.

The software becomes more popular if its user interface is:

• Attractive

• Simple to use

• Responsive in short time

12 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

• Clear to understand

• Consistent on all interfacing screens

There are a number of activities performed for designing user interface. The process of GUI

design and implementation is alike SDLC. Any model can be used for GUI implementation

among Waterfall, Iterative or Spiral Model [3].

A model used for GUI design and development should fulfill these GUI specific steps.

Figure 2.3.1: User Interface design Activity Model

2.3.2 Enabling information Reuse across application Platforms

13 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Reuse is highly dependent on an established product, heritage design or experience, well

documented processes, and personnel with knowledge of the product. Therefore, the

successful development of a product as well as the reuse of a product may share common

factors. They both rely on an existing product foundation, experience that the product

functions correctly, a development process that is repeatable, and the intellectual capacity to

both understand the existing product and develop the new product. Therefore, this

investigation has identified successful reuse in the systems engineering domain as a

function of three project factors [5]:

a) Platform

b) People

c) Processes

Platform refers product or technology that is intended to be reused. Fundamentally, for a

reuse program to be successful, the product needs to capable of being reuse. Successful

reuse can be defined as instances where the benefits of reusing a product outweigh the

costs. While Principle #4 states anything can be reused, not everything can be reused

successfully.

People are the available personnel for the reuse project and their knowledge of the

heritage/new products. Personnel needs to be knowledgeable enough to avoid the pitfalls

associated with reuse as well as have a familiarity with both the heritage and new products.

Because of this, successful reuse may require an organization to take experienced

individuals, ones who are able to see the whole picture but still focus on a particular detail,

such as a true systems engineer, and ensure their knowledge is captured.

Processes encompass the organization, documentation, and production. The organization

needs to have the flexibility for reuse, possibly utilizing a matrix structure. Documentation

needs to be available from heritage products that are being reused and new projects should

be well documented to enable reuse in the future. Lastly, production capabilities need to

14 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

exist so the system can actually be developed and eventually delivered. These are three

possible drivers to capture the likelihood of successful reuse and potentially indicate the

expected savings of such a strategy.

In addition, reuse may have the most leverage when applied early in the development of a

system, such as during the architecture design phase, one of the earliest systems

engineering activities. By the time some of the other systems engineering activities are

occurring, the “window of opportunity” for reuse may be limited and attempts at reuse

could inadvertently affect other aspects of the system in the process.

This investigation examined the potential considerations for the successful utilization of

reuse in systems engineering of this NLCS Project by reviewing how related domains, such

as software and product development, handle reuse. By studying how reuse is addressed in

other domains, six principles were identified as key considerations for reuse:

1) Reuse is done for the purpose of economic benefit, intending to reduce schedule, reduce

cost, or increase performance

2) Reuse is not free, upfront investment is required

3) Reuse needs to be planned from the conceptualization phase of programs

4) Anything can be reused

5) Reuse is as much of a technical issue as it is an organizational one

6) The benefits of reuse are not linear

In addition to identifying these six principles, three factors appeared to contribute

significantly to the successful utilization of reuse [5]:

a) Platform – appropriate product or technology, primed for reuse

b) People – adequate knowledge and understanding of both the heritage and new products

c) Processes – sufficient documentation to acquire and capture knowledge applicable to

reuse as well as the capability actually deliver a system incorporating or enabling reuse

15 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

2.3.3 Designing event driven Applications

Event-driven architecture (EDA), also known as message-driven architecture, is a software

architecture pattern promoting the production, detection, consumption of, and reaction to

events.

An event can be defined as "a significant change in state". From a formal perspective, what

is produced, published, propagated, detected or consumed is a (typically asynchronous)

message called the event notification, and not the event itself, which is the state change that

triggered the message emission. Events do not travel, they just occur. However, the term

event is often used metonymically to denote the notification message itself, which may lead

to some confusion.

This architectural pattern may be applied by the design and implementation of applications

and systems which transmit events among loosely coupled software components and

services. An event-driven system typically consists of event emitters (or agents), event

consumers (or sinks), and event channels. Emitters have the responsibility to detect, gather,

and transfer events. An Event Emitter does not know the consumers of the event, it does not

even know if a consumer exists, and in case it exists, it does not know how the event is used

or further processed. Sinks have the responsibility of applying a reaction as soon as an event

is presented. The reaction might or might not be completely provided by the sink itself. For

instance, the sink might just have the responsibility to filter, transform and forward the

event to another component or it might provide a self-contained reaction to such event.

Event channels are conduits in which events are transmitted from event emitters to event

consumers. The knowledge of the correct distribution of events is exclusively present within

the event channel. The physical implementation of event channels can be based on

16 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

https://en.wikipedia.org/wiki/Event_(computing)
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Metonymy
https://en.wikipedia.org/wiki/Service_(systems_architecture)

traditional components such as message-oriented middleware or point-to-point

communication which might require a more appropriate transactional executive framework.

Building applications and systems around an event-driven architecture allows these

applications and systems to be constructed in a manner that facilitates more responsiveness,

because event-driven systems are, by design, more normalized to unpredictable and

asynchronous environments.

In this case Event-driven architecture can complement service-oriented architecture (SOA)

because services can be activated by triggers fired on incoming events. This paradigm found

useful whenever the sink does not provide any self-contained executive.

This new NLCS pattern triggers further autonomous human or automated processing that

adds exponential value to the enterprise by injecting value-added information into the

recognized pattern which could not have been achieved previously.

2.3.4 Balancing Agility and Uncertainty in Requirements

While most application developers utilize an agile approach or a nearly ad hoc approach,

the growing demand for context-aware applications, competition amongst applications and

low tolerance by users for unstable and/or unresponsive mobile applications (even if free)

necessitates a more semi-formal approach. This should be integrated into agile engineering

to specify and analyze application requirements. The dynamic, contextual nature of

application content (e.g., System Management) allows for situations in which the

application’s behavior may not be able to fully satisfy the specified functional and non-

functional requirements thereby necessitating that the application be self-adaptive. In this

scenario the software will then provide less rich content satisfying less stringent

requirements. For some Network applications, this may arise if, as determined in the

requirements, it is better for the application to run continuously and, when necessary, to

autonomously modify its behavior and provide reduced functionality rather than provide

17 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

https://en.wikipedia.org/wiki/Message-oriented_middleware

no functionality at all. For example, in an OSS based application several factors (e.g.,

accuracy, reporting, SLA etc.) may affect the granularity and accuracy of its content.

Within application software engineering, the need for an application to self-adapt,

depending on context, has been constructed using ad hoc approaches. Yet, as OSS

applications become more context aware, self-adaptive requirements will need to be more

formally integrated into agile development so that developers more rigorously consider the

behavior of an application when its full requirements cannot be satisfied dynamically and

how it can self-adapt to partially satisfy the requirements.[4]

This paper briefly described few challenges that we see for application software

engineering: designing correlation logic, supporting context-aware applications and

balancing agility with specifying requirements uncertainty. This paper asserts that

application software engineering research efforts need to focus on development approaches

emphasizing UI design, proactive reuse at early software engineering phases, and attention

to context-awareness and sensitivity to specifying requirements to handle requirements

uncertainty within the existing agile development approaches used for development

applications. In addition, software engineering research needs to emphasize education

initiatives in these areas to ensure that these approaches are disseminated to those doing

actual application development.

18 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Chapter 3: Research Methods

In this section we mentioned the phases we followed to plot our requirements with different

other project documentations and methods suitable for an implementation segments of our

requirements.

3.1 Methods

The basic timeline of the process of writing this paper is depicted in below table. The official

start date was September’16 and the date of the submission was by December’16. Originally,

a waterfall-like step-by-step approach was laid out where one part of the paper would be

completed before starting another part. However, mainly due to a vast amount of

interesting literature, many of these time periods had to be extended and moved.

19 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Table 3.1 Gantt chart of the research process

In the above diagram an overview of the research process is shown in a Gantt chart. The

following sub-sections further detail how the particular areas of this internship project were

executed.

3.2 Literature Review

At the beginning of the research project, a literature search was conducted. Based on possible

search terms and key word combinations using Google. In the below diagram the process of

filtering out suitable research publications from a list of search results was shown. First, the title

of each search result was examined in order to determine whether the paper could have a

possible connection to this particular internship project and the research questions.

Publications fitting into the research topic were added to the search log. Then, the abstracts

of all log entries were further analyzed and not suitable papers were marked as such and

excluded from any further analysis. The next step for the residual log entries was to locate

the articles using the on- and offline access possibilities. However, quite a number of

potentially interesting publications could not be accessed and were therefore eliminated.

After skimming the content of all remaining log entries, a last few were excluded and the

rest was used to construct the literature review found in section 2.

Figure 3.1 The process of filtering literature search results
20 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

3.2.1 Requirements Elicitation

The requirements that will be presented in section 4 were based upon the functionality of

already existing medical healthcare applications and approaches. The Ionic Framework and

various applications were analyzed with respect to their functionalities, capabilities and

limitations. These tools all implement four main use cases: User login, connecting log

Database, Populating Alarms, Provide Recommended Solution.

3.2.2 Concept and Implementation

Based on the requirements elicited in Chapter 4, the basic system design, data structure and

user interface were created (see Chapter 5 for more details). A prioritized backlog of all

needed functionalities was generated (Table below) and its elements were continuously

implemented until all were fulfilled.

Table 3.2 Basic backlog (priority L-M-H)

During the time of conception and implementation of the prototype, weekly meetings with

the supervisor acted as small review meetings of the current development status.

Drawbacks of user interface elements, ideas for the database to be used as well as re-

prioritizations of certain backlog items were discussed during the meetings.

21 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Chapter 4: System Analysis and Design

This section introduces the minimal requirements along with the internal relations to

achieve expected outcomes for the prototypical implementation of a Network Log

Correlation System.

4.1 Requirements

We identified functional and non-functional requirement through a study on use cases

where different actors have some course of actions and defined roles to perform the actions.

4.1.1 Roles

The system should be developed to support minimum three types of roles. On one side we

have general user of the application who monitors the notification. On the other side we

have support engineers who interact with the application to send alarm resolution to

Solution DB. Another role is for administration purpose whose primary purpose is to add,

update and remove database and provide support to application users using comments.

22 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

4.1.2 Use Cases and Functional Requirements

Figure 4.1 Application Use Cases

There are six main use cases that are mostly based on information seeking model from the

perspective of a general user as shown in Figure 4.1 These use cases all provide a way to

add, update or delete Alarm database entities, to search for alarms entities, to provide

feedback for Alarm entities. Lastly a registration and log in system is necessary when

storing user-specific data to differentiate among various roles described in the use case.

23 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Figure 4.2 Use Cases

In above diagram use cases relevant for the Web Portal is shown there are two different

actors for the web portal and they are the admin user and the Engineers. An admin user has

four major use cases whereas the three primarily has three major use case.

4.1.3 Registration and Login

For any activities, the user is required to have an account and be logged in. In order to

register for an account, the user must enter a valid email address, a preferred username and

a password into corresponding fields or use domain accounts to sign in. After having

created an account or entered a correct email-password pair, the user will be logged into the

application and stay logged in.

24 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

4.1.4 Connect Alarm Databases

Users should be able to launch the application, login and immediately start looking for

suitable Alarm logs in Databases. There should be a search function that allows the user to

type in search keywords, searches the database of entities and displays results.

After having found or discovered a databases, the user should be able to view all detail

information (see section 4.2.2).

4.1.5 Change or Modify Alarm Databases

Admin users must have the possibility to create a new DB entity. Each DB entity consists of

a title describing the name of the entity, a more detailed description of the entity which

includes IP address, DB details.

In addition to the ability to add a DB entity, an admin user must also be able to edit a DB

entity details to reflect any changes, also the admin user should have the functionality to

remove a DB entity necessary. Any newly created DB entity should be uploaded to the back

end server immediately to ensure availability of data.

4.1.6 Escalate to Stakeholders

Using the application engineers should be able to escalate alarm with feedback. Once a user

complete searching a log alarm he or she can see the detailed view of that particular entity

and should be able to edit response for his unit in order to meet SLA.

4.1.7 Alarm Closure

25 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

The system should also offer the engineers to close alarm entities. A closing report can also

be generated according to SLA.

4.1.8 Non-Functional Requirements

Apart from the functional requirements mentioned above, the system in general must

adhere to certain behavioral requirements:

1. Performance: The system shall display an activity indicator when elements take time to

be loaded.

2. Availability: The system must be available at all times, except when upgrading or

restarting the backend database. In case of no network connection the system shall enable

the admin to add, update or delete medical entities to the server once the network

connection becomes available again.

3. Usability: Error messages shall only be presented when the user can (try to) perform an

action that could potentially fix the erroneous situation. Therefore, error messages shall

always include a proposed solution to the problem.

4. Security: The system shall insure that data is protected from unauthorized access. All

authorization communication between client and server needs to be encrypted (username

and password data).

5. Capacity and Scalability: The system have a modular object base to enhance and

integrate with future development.

4.2 Software Development Strategy

The project’s software development strategy is based on Agile Software Development

disciplines. Against the traditional software development methodologies, the leaders of the

software development approaches having similar opinions as Extreme Programming (XP),

Scrums, Crystal Methodologies, Feature-Driven Programming formed an alliance and put

out the Agile Manifesto in 2001 which is;

26 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan
That is, while there is value in the items on the right, we value the items on the left more."

The main goal is bringing speed and effectiveness in modelling and documentation of

developing software systems. Teamwork, collaboration, rapid and continuous delivery of

high-quality software are the main principles laying behind agility. Agile approach does not

oppose the design activities but it is against to design a software at the beginning of a

software project. At the beginning of the project, system is pre-designed. The design is

flourished with the evolvement of requirements, code and test results. Design is mentioned

as output of the process, rather than being input.

According to the agile approach, tasks have to be broken into small increments with

minimal planning. Long-term planning is opposed. All development activities have to be

done iteratively. Each iteration of 3-4 weeks is composed of a full software development

cycle including planning, requirements analysis, design, coding, unit testing, and

acceptance testing. At the end of an iteration, a workingsoftware must be delivered to the

customer. Stakeholder involvement takes an important place in agile methods. As stated in

the principles of the Agile Manifesto, "Business people and developers must work together

daily throughout the project." This method is believed to improve the requirements analysis

and finding the defects earlier, which increases software quality. To gain agility to the

process, tool usage is encouraged. Tools for unit and functional testing and techniques such

as continuous integration, pair programming, test driven development, design patterns,

domain-driven design, code refactoring are often used to improve quality.

4.2.1 Planning Phase

In this paper, only the first iteration is ensample as a cross cut of the overall system. The

project plan is prepared with respect to agile project planning approach and the first

27 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

iteration starts with the requirement analysis phases. The overall context of the system is

analyzed and represented as the Data Flow Diagram Level 0, in the following figure-

Figure 4.3 Context Diagram

After gaining an understanding of the major functionalities of the system, the requirements

are stated as user stories and they are prioritized. Then the prototyping phase initiates. The

user interfaces is developed and started to sketch the system. This prototype enabled us to

analyze the requirements in a deeper manner. The design of the system is shaped with the

development of requirements and the prototype.

4.2.2 Requirement Analysis

After the requirements are gathered, they are prioritized. The first prototype of the system is

developed in the first iteration, due to the user stories. The functional requirements are;

1. User can login to the application.

2. User can connect Alarm Databases.

28 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

3. User can select an item and view details.

4. User can set an action.

5. User can view resolution.

Non-functional Requirements:

1. Performance:

An application should be fast and efficient. There is a tendency in the computing world

these days to assume that Moore's Law will solve all our problems related with

performance. It is important to write efficient code for independent platform. Writing fast

code means keeping memory allocations to a minimum, writing tight code, and avoiding

certain language and programming idioms that can cripple performance. In object-oriented

terms, most of this work takes place at the method level, on the order of actual lines of code,

loops, and so on.

2. Responsiveness:

The applications that feel slow, hang or freeze for significant periods, or take too long to

process input are insufficiently responsive and will frequently cause the system to pop up

"Application Not Responding" (ANR) message. Generally, this happens if application

cannot respond to user input. For example, if applicationblocks on some I/O operation

(frequently a network access), then the main application thread won't be able to process

incoming user input events. After a time the system will conclude that your application has

hung, and give the user the option to kill it. The fix is usually to create a child thread, and

do most of your work there. This keeps the main thread running, and prevents the system

from concluding code has frozen.

3. Seamless:

There are some seamless parameters, we should concern while designing and implementing

system. These are:

a. Do not drop data:

29 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

If the user was editing data in your application when the other Activity appeared, your

application will likely lose that data when your application is killed. A classic example of a

good use of this behavior is a mail application. If the user was composing an email when

another Activity started up, the application should save the in process email as a draft.

c. Got a Lot to do? Take it to a Thread:

If application needs to perform some expensive or long running computation, we should

probably move it to a thread. This will prevent the dreaded "Application Not Responding"

dialog from being displayed to the user, with the ultimate result being the fiery demise of

the application.

d. Avoiding Huge Activities:

Any application worth using will probably have several different screens. When

partitioning UI, need to be sure about to make effective use of Activities.

e. Assuming the Network is slow:

We should always code your applications to minimize network accesses and bandwidth.

We can't assume the network is fast, so you should always plan for it to be slow.

4.2.3 Design

The first generation of Web applications, dedicated to e-commerce, content publication and

management, focused on enabling users to perform simple operations, like searches, data

uploads, and browsing of large volumes of data structured in hypertexts. More recently, the

Web has become a popular implementation platform for B2B applications, whose goal is not

only the navigation of content, but also the enactment of intra- and inter- organization

business processes. Web-based B2B applications exhibit much more sophisticated

interaction patterns than traditional Web applications: they are developed to support a well-

defined process, consisting of activities and their execution constraints, serving different

user roles whose joint work is coordinated. They may be distributed across different

30 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

processor nodes, due to organizational constraints, design opportunity, or existence of

legacy systems to be reused. B2B Web applications demand novel methodologies for their

analysis, specification and implementation, because they are more complex than either

process based systems, or pure data- centric Web applications.

The application logic for a system will be expressed in programs that will be written during

construction of the new system. Program design is the part of the design phase of the SDLC

during which analysts determine what programs will be written, create instructions for the

programmers about how the code should be written, and identify how the pieces of code

will fit together to form a program.[3]

Program design techniques are still very important, however, for two reasons. First, even

preexisting code needs to be understood, organized, and pieced together. Second, it is still

common for the project team to have to write some (if not all) code and produce original

programs that support the application logic of the system.

During design, physical process models are created to show implementation details and

explain how the final system will work. These details can include references to actual

technology, the format of information moving through processes, and the human

interaction that is involved. In some cases, most often when packages are used, the use cases

may need to be revised as well. These to-be models describe characteristics of the system

that will be created, communicating the “systems view” of the new system.[3]

In this paper we argue that good Web applications should be, first of all, good hypermedia

applications, i.e. they should provide easy navigational access to large information

resources, preventing users from being lost in the cyberspace, and providing consistent

navigation operations even when other kind of transactional behavior is involved. As

navigation problems have been largely discussed in hypertext literature (see for example

[3]) we should be able to reuse existing knowledge on building good Web applications.

31 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

The physical DFD contains the same components as the logical DFD (e.g., data stores, data

flows), and the same rules apply (e.g., balancing, decomposition). The basic difference

between the two models is that a physical DFD contains additional details that describe how

the system will be built. Five steps have followed to perform making the transition to the

physical DFD.

To summarize the discussion above, we can intuit that there are distinguishing features in

Web applications that present new design requirements vis-à-vis traditional systems. In a

broad sense, we can categorize them in three groups. The first group of design issues has to

do with navigation, addressing questions such as:

• What constitutes an “information unit” with respect to navigation?

• How does one establish what are the meaningful links between information units?

• Where does the user start navigation?

• How does one organize the navigation space, i.e., establish the possible sequences of

information units the user may navigate through?

• If we are adding a WWW interface to an existing system, how do we map the existing

data objects onto “information units”, and what relationships in the problem domain should

be mapped onto links?

The second group of design issues has to do with the organization of the interface,

addressing questions such as:

• What interface objects the user will perceive? How do these objects relate to the

navigation objects?

• How will the interface behave, as it is exercised by the user?

• How will navigation operations be distinguished from interface operations and from

“data processing” (i.e., application operations)?

• How will the user be able to perceive his location in the navigation space?

32 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

The third group of design issues has to do with implementation, addressing questions such

as:

• How are information units mapped onto pages?

• How are navigation operations implemented?

• How are other interface objects implemented?

• How are existing databases integrated into the application?

We have followed the Object-Oriented Hypermedia Design Method focusing how we build

navigational models as views on conceptual models; then we have designed navigational

contexts as a structuring mechanism for navigation. Finally, we have reviewed some

ongoing work on mining navigation patterns and present some further work on designing

and implementing these kind of systems.

The OOHDM Design Framework

The Object-Oriented Hypermedia Design Method [Schwabe 98, Schwabe 96] is a model-

based approach for building large hypermedia applications. It has been extensively used to

design different kinds of applications such as: Web sites and information systems,

interactive kiosks, multimedia presentations, etc. It should be stressed the OOHDM has

been applied outside the academic environment, such as in government agencies,

telecommunications companies, oil companies, IT service companies, etc.[4]

OOHDM comprises four different activities namely, Conceptual Design, Navigational

Design, Abstract Interface Design and Implementation. During each activity a set of object-

oriented models describing particular design concerns are built or enriched from previous

iterations.

We explicitly separate conceptual from navigation design since they address different

concerns in Web applications. Whereas conceptual modeling and design must reflect objects

33 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

and behaviors in the application domain, navigation design is aimed at organizing the

hyperspace taking into account users’ profiles and tasks. Though applications views are not

new in the literature [4], the hypermedia paradigm as it appears in the Web raises

additional concerns such as orientation, cognitive overhead, etc. that should be treated in a

separate design activity.

Considering conceptual, navigational and interface design as separate activities allows us

not only to concentrate on different concerns at a time, but mainly to obtain a framework for

reasoning about the design process, encapsulating design experience specific to each

activity. As we explain below, navigational design is a key activity in the implementation of

Web applications and it must be explicitly separated from conceptual modeling.

OOHDM design primitives can be mapped onto non object-oriented implementation

settings using some simple heuristics. We next discuss the first three activities in more

detail.

Conceptual Modeling

During this step we build a model of the application domain, using well known object-

oriented modeling principles and primitives similar to those in UML [3]. The product of this

step is a class schema built out of Sub-Systems, Classes and Relationships.

We chose UML because it is a modeling standard whose syntax and semantic are clear and

well-understood. The major differences with UML are the use of multiple valued attributes,

and the use of directions explicitly in the relationships. Aggregation and

generalization/specialization hierarchies are used as abstraction mechanisms.

Conceptual Modeling is aimed at capturing the domain semantics as “neutrally” as possible,

with little or no concern for the types of users and tasks. When the application involves

some sophisticated behavior in conceptual objects, it may evolve into an object model in the

implementation environment. However it can be implemented in a straightforward way in

34 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

current Web platforms combining for example a relational database with some stored

procedures. The main thesis in this paper is that the conceptual model may not reflect the

fact that the application will be implemented in the WWW environment, since the key

application model will be built during navigational design. This view allows using the same

strategy for implementing “legacy” applications in the Web, by considering their conceptual

model as the product of this OOHDM activity.

Classes in the conceptual model will be mapped to nodes in the navigational model using a

viewing mechanism and relationships will be used to define links among nodes. It will also

be shown that there are other links that do not correspond to relationships in the conceptual

model.

Using a behavioral object-oriented model for describing different aspects of Web

applications allows to express a rich variety of computing activities, such as dynamic

queries to an object-base, on-line object modifications, heuristics-based searches, etc. The

kind of behavior required in the conceptual model depends upon the desired features of the

application. For many Web applications, in particular those implementing plain browsing

(i.e. read-only) functionality, class behavior beyond linking functionality is unnecessary and

does not need to be specified.

35 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

-Access
-Description

Privilege

-PositionName
-Title
-FirstName
-MiddleName
-LastName
-DateOf Birth
-Address
-City
-Phone
-Email

Engineer

-Username
-Password
-IsDisable

Account

-UnitName
-Phone
-Address
-City
-Email
-Description

Unit

-LogonTime
-LogoutTime
-Activity

Trace

-DeptName
-Description

Department

-MachineNo
-MachineName
-Description

Machine IP

-Status
-Description

AlarmStatus

-AlarmID
-AlarmName
-Description
-DomainNo
-DateOfCreation
-Impact
-CurrentStatus
-RecommendedAction

Alarm

-CategoryName
-CategoryCode
-Description

Category

-AlarmID
-AlarmType
-Description
-AlarmImpact
-Actions
-Custodian
-Score

Resolution

0..*

0..*

1
1

1

1..*

11

1

0..*

1

0..*

1

1

1..*

0..*

1

1

1..*

SingletonMediator
Command

Adapter

Observer

Factory

Fig 4.2: Conceptual Schema of NLCS

Navigational Design

In OOHDM, an application is seen as a navigational view over the conceptual model. This

reflects a major innovation of OOHDM with respect to other methods, at it recognizes that

the objects (items) the user navigates are not the conceptual objects, but other kinds of

objects that are “built” (through a view mechanism) from one or more conceptual objects.

Moreover, it is important to stress that the user navigates through links, many of which

cannot be directly derived from conceptual relationships.

36 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

For each user profile we can define a different navigational structure that will reflect objects

and relationships in the conceptual schema according to the tasks this kind of user must

perform. The navigational class structure of a Web application is defined by a schema

containing navigational classes. In OOHDM there is a set of predefined types of

navigational classes: nodes, links, anchors and access structures. The semantics of nodes,

links and anchors are the usual in hypermedia applications. Access structures, such as

indexes, represent possible ways for starting navigation.

The most outstanding difference between our approach and others using object viewing

mechanisms is that while the latter consider Web pages mainly as user interfaces that are

built by “observing” conceptual objects, we clearly favor an explicitly representation of

navigation objects (nodes and links) during design.

Abstract Interface Design

In the Abstract Interface Design activity, we specify which interface objects the user will

perceive and how the interface will behave. For each attribute (either contents or anchors)

we must define its appearance. By distinguishing between navigation and interface design

we can build different interfaces for the same application and besides achieve

implementation independence.

During this activity we define the way in which different navigational objects will look like,

which interface objects will activate navigation, the way in which interface objects will be

synchronized and which interface transformations will take place. In OOHDM, we use the

Abstract Data View (ADV) design approach for describing the user interface of a

hypermedia application. Though not completely related with the aim of this paper, it is

important to stress that building a formal model of the interface of Web applications is a

rewarding activity as user interfaces tend to change even faster than navigation topologies.

We clearly need a precise design specification to be able to support changes smoothly.

Following steps are some matrix to achieve our objective.
37 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Step 1: Adding Implementation References The first step in creating a physical DFD is to

begin with the existing logical DFD and add references to the ways in which the data stores,

data flows, and processes will be implemented. Data stores on physical DFDs will refer to

files and/or database tables; processes, to programs or human actions; and data flows, to

the physical media for the data, such as paper reports, bar code scanning, input screens, or

computer reports. The names for the various components on the physical DFD should

contain references to these implementation details. By definition, external entities on the

DFD are outside of the scope of the system and therefore remain unchanged in the physical

diagram.

Step 2: Drawing a Human-Machine Boundary The second step is to add a human–machine

boundary. Physical DFDs differentiate human and computer interaction by a human-

machine boundary, a line drawn on the model to separate human action from automated

processes.

Step 3: Adding System-Related Data Stores, Data Flows, and Processes In step 3 adding to

the DFD additional processes, stores, or flows that are specific to the implementation of the

system and have little (or nothing) to do with the business process itself. These additions

can be due to technical limitations or to the need for audits, controls, or exception handling.

Technical limitations occur when technology cannot support the way in which the system is

modeled logically.

Step 4: Update the Data Elements in the Data Flows The fourth step was to update the

elements in the data flows. The data flows will appear to be identical in both thelogical and

physical DFDs, but the physical data flows may contain additionalsystem-related data

elements, for reasons similar to those described in the previoussection. For example, most

systems add system-related data elements to data flowsthat capture when changes were

made to information (e.g., a last update dataelement) and who made the change (e.g., an

updated by data element). Another physical data element is a system-generated number

38 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

used to uniquely identify eachrecord in a database. During step 4, the physical data

elements are added to themetadata descriptions of the data flows in the CASE repository.

Step 5: Update the Metadata in the Computer-Aided Software Engineering Repository

Finally, the project team needs to make sure that the information about the DFD

components in the CASE repository is updated with implementation-specific information.

This information can include when batch processes will be run and how often, names of the

actual tables or files that are represented by data flows, and the sizes and projected growth

rates of the data stores.

39 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Chapter 5: Implementation

In this section we approached on a basic implementation strategy focusing a quality

development within a short span of time.

5.1 Data Model

Fig 5.1: The basic data model

40 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

5.1.1 User Access & Login:

Here a User access page has been used for log in. Users are created through manual process

as privacy needs to be maintainedhighly. So, only Administrator has the responsibility to

add,modify,and delete users and passwords also following the specific user. No self-registry

option.

You need to find what your local network's IP of that computer is. Then other people can

access to your site by that IP.

5.1.2 User Database creation:

Figure: 5.1 Basic user creation process

41 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

The below is the prompt for manually creation of Users:

Figure: 5.2

Figure: 5.3

42 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

5.1.3 Tools Login Page

Tool has an initial prompt is look like

Figure: 5.4

43 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Logout option is also available after finishing the work as below:

Figure: 5.5

5.1.4 Clear Old alarm list

At first we need to clear the previous data from the table of database. Here truncate function

is used for truncating data from table.

$sql1 = mysql_query("TRUNCATE TABLE cc");

Database is used here as “db”

Trim () function is used to remove the character from the strings.

Location of Current alarm is table cc in database db. So, when query goes to the database, it

starts to truncate data following truncate function .After completion of removing data from

table, it pops out a window which tells user that “Current alarm is ready to be parsed ”. So,

it is ready to parse the new data to the table.

44 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Figure: 5.6

5.1.5 Upload Current Alarm

For uploading alarms into the table of database, firstly we have to parse the alarms into this

prompt. We have huge alarms generated from 3 U2000 servers. We have to parse all the

alarms into this parse button in .csv format after collecting those alarms from U2000. We

need to keep 'Severity' as first column row (1, 1) position for calling function in another

script. For this a warning sentence will be shown as a reminder.

Figure: 5.7

45 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

After parsing successfully, “Parsing Successfully Done” will be pop out. Firstly data are

transferred to a file named “fl” from there.

move_uploaded_file($_FILES["file"]["tmp_name"],

 "fl/" . $_FILES["file"]["name"]);

There some trimming occurred through which unnecessary data are being trimmed.

After that it enters data into the database again by following some logic.

Figure: 5.8

5.1.6 Show Correlated Alarm list

Show current Alarms button leads to Current alarm list page. Here we can get sorted out

form of alarms. One can get required department’s current alarm by using drop down

menu.

46 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Figure: 5.9

Sorted out alarms according to the Department:

Here is drop down menu. There we can find the department’s name –

• BSC Alarms
• BTS Alarms
• RNC Alarms
• Node B alarms
• OSS Alarms

We can query the database to send back the alarms only for those departments. Then we can

export those alarms in a excel file format.

One of the sorting logic is as below:

if ($search==2)

{$sql = mysql_query("SELECT * FROM cc where ((Alarm_ID BETWEEN 25600 AND 26529)

OR (Alarm_ID BETWEEN 26532 AND 26540) OR (Alarm_ID BETWEEN 26542 AND 26750)

OR (Alarm_ID BETWEEN 26754 AND 28052) OR (Alarm_ID BETWEEN 2114 AND 2622)

47 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

OR (Alarm_ID BETWEEN 3570 AND 4016) OR (Alarm_ID BETWEEN 10246 AND 13330)

OR (Alarm_ID BETWEEN 4100 AND 9770) OR (Alarm_ID BETWEEN 21801 AND 21807))");

Figure: 5.10

We can export those alarms in a excel file format when we click CURRENT_ALARM_LIST

.An user can get his specific department’s alarm, if any one try to get the whole current

alarm list, he can get it by pressing the same button.

Main logic behind the correlation will be based on the resolution table of database. Problem

resolutions will be stored in a table along with a scoring system based on Engineers

feedback. Existing alarmID will be cross-matched with the resolution of historical data.

5.1.7 Alarms against VIP sites

This is a button by pressing we will get some alarms of important VIP sites. Only VIP sites

alarms will be chosen here.

5.1.8 Historical Alarms

48 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

To get the Historical alarms, same procedure has to be followed by user. This alarms are

needed to analysis the previous day’s Critical situations.

5.1.9 Uploading alarm for mail & Send mail

The below is a sample of mail that generates by this button. We need to parse the segregated

data in “Uploading alarm for mail”. Then after pressing send mail, it will go to that location

where mail server connected and mail to proper department.

49 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

Chapter 6: Conclusion

In conclusion, the work and contribution of this paper is summarized below. A literature

review was conducted that revealed a need for applying modern technologies in correlation

technique. Current technology trends were examined to determine how this could be used

to solve this problem. Requirements for a web application that helps to resolve this issue

were elicited and a prototypical application was implemented. Furthermore a literature

review was also conducted to identify what are the major software engineering challenges

to develop web application according our case. Four major issues that were identified are

Creating Universal User Interfaces, Enabling Software Reuse across DB Platforms, Event

driven Applications, Balancing Agility and Uncertainty in Requirements.

6.1 Further Scope

While the potential of the application and its supportive structure for telecom engineers,

there is a need for a review of the user interface of the application in order to decrease its

complexity. Apart from a user interface re-design, there are also many capabilities and

functionalities that could potentially increase the usefulness of the prototypical application.

New elements such as possibility to correlate through internet and international solution

bases. Another useful addition would be sharing possibilities with different platforms

which could increase solution information base. Due to a lack of time, the features

mentioned above could not be implemented however in future these areas of improvement

should be explored. Also it was not possible to conduct an evaluation of the application by

distributing it among a selected group of users. It is very much necessary that in future an

evaluation is conducted to find out potential shortcomings of the application both from

software and hardware perspectives.

50 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

References

[1] The Telecommunications Handbook. Ed. KornelTerplan, Patricia Morreale
[2] International telecommunication Union, record/T-REC-M.3010
[3] Book- Systems analysis and design /Alan Dennis, Barbara Haley Wixom, Roberta M.
Roth.–5thed.p. cm.
[4] Boehm, B., "When Models Collide: Lessons from Software Systems Analysis," IT
Professional, Vol. 1, No. 1, 1999, pp. 49-56.
[5] Stephens, R., "Measuring Enterprise Reuse in Large Corporate Environment,"
Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory, 2004, pp. 565-
569.
[6] Book-DCN Introduction Dr. John Sum Institute of Electronic Commerce
[7] http://atlas.tk.informatik.tu-darmstadt.de/Publications/1999/web.pdf
[8] http://www.slideshare.net/secomps/telecommunicationppt?next_slideshow=1
[9] National Chung Hsing University/NetworkManagement
[10] http://www.tutorialspoint.com/gsm/gsm_specification.htm
[11] https://en.wikipedia.org/wiki/Operations_support_system
[12] https://en.wikipedia.org/wiki/Operations_support_system
[13] http://e.huawei.com/en/products/wireless/gsm-r/oss/m2000
[14] http://www.ossline.com/what-is-oss
[15] http://www.webml.org/webml/upload/ent5/2/BrambillaEtAl.pdf

51 | P a g e

N e t w o r k L o g C o r r e l a t i o n S y s t e m
© P r o j e c t T e a m , M C A F a l l 2 0 1 6 , B R A C U n i v e r s i t y

http://atlas.tk.informatik.tu-darmstadt.de/Publications/1999/web.pdf
http://www.slideshare.net/secomps/telecommunicationppt?next_slideshow=1
http://www.tutorialspoint.com/gsm/gsm_specification.htm
https://en.wikipedia.org/wiki/Operations_support_system
https://en.wikipedia.org/wiki/Operations_support_system
http://e.huawei.com/en/products/wireless/gsm-r/oss/m2000
http://www.webml.org/webml/upload/ent5/2/BrambillaEtAl.pdf

