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Abstract 

 
   In time-shared systems, selection of the time quantum plays a pivotal role in performance of 
CPU. In this paper, the static use of dynamic time quantum as CPU Time Slice is reviewed and a 
new algorithm for CPU scheduling named Improved Optimum Dynamic Time Slicing Round 
Robin Algorithm (IODTSRR) is proposed for process and thread scheduling. The proposed 
algorithm is based upon dynamic nature of allocation, calculation of the value of time quantum 
which varies according to the state of queue along with the capability of executing ready 
processes arriving at the same or different time. The concept of multi-threading by using Dummy 
Thread is introduced to hold the added processes in the queue during all arrival time intervals 
respectively. The performance is compared with Optimum Dynamic Time Slicing Using Round 
Robin (ODTSRR) and the results revealed that the proposed algorithm is much better 
specifically in response time and turnaround time. As process gets fully or partially executed 
while others arrive simultaneously, the context switch rates, waiting time and throughput 
improves hence resulting in optimized CPU performance. 

 

Keywords — scheduling algorithm; randomized control trial; time quantum; context and 
thread switching; response time; turnaround time; waiting time; fairness; multi-threading; 
synchronization; arrival time interval; dynamic queue; first come shortest job first (FCSJF); 
improved optimum dynamic time slicing round robin algorithm (IODTSRR); optimum 
dynamic time slicing using round robin (ODTSRR) 
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Chapter 1 

 Introduction 
1.1 Background 

 
Process Management is one of the mandatory and fundamental tasks for operating system 
of any given platform to run different applications. It sententiously depends upon CPU 
scheduling algorithms which derive the overall extent of performance of operating 
system. In single processor system, non-preemptive scheduling were used, i.e, only one 
process can be executed at a time, any other process or processes must wait until the CPU 
becomes free. Operating systems today, are moving towards multitasking environments 
due to emergence of running multiple process of different level as per usage. Thus, multi-
level programming for process management are implemented to maximize CPU 
utilization by having some processes running all the time. But imprudent use and 
allocation of the CPU can dwindle the efficiency of system in multiprogramming 
environments. More than one processes are being kept in memory to achieve maximum 
CPU utilization. As a result, process scheduling still remains an elemental activity of 
fulfilling the purpose of the operating system. CPU scheduling is imperative because it 
can have immense impact on CPU utilization, overhead and inclusive performance of the 
system. Scheduler requires conscientious consideration to ensure fairness and avert 

process starvation in the CPU. This allocation involves a scheduler and dispatcher of 
long-term, middle-term, short-term basis respectively. 
 
Since the era of multi-programming and multi-threaded scheduling, the default Round 
Robin algorithm and its various modification has been eventually used for CPU as non-
monotonic scheduling in newer versions of operating system platforms such as Windows, 
Linux, Unix, AIX, Mac-OS respectively. There exists no “pure” form of scheduling 
algorithm or RR variations which contemplated lack of efficient queue handling and 
implementation of core multi-threading programming (where processes are executed like 
threads) etc. As a result of trivial queue implementation and conventional modification, 
the existing RR variations tempted to increase CPU overhead, idleness while scheduling 
in different types of processes and system-cases. So unlike previous RR variations, the 
attained time-slicing CPU scheduling algorithm will be able to remove the kernel-based 
complexity of different schedulers by simultaneously scheduling and executing ready 
processes. 
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1.2 Motivation 

This section discusses three key aspects and factors which essentially motivated me for 
research and experimentation for unique but effecting CPU scheduling approaches. 

1.2.1 Better CPU time slicing 

As per my research and knowledge, till now, the median which has been calculated 
trivially has been outperformed the other way of calculation for allocating CPU time slice 
unit. But in different input cases, overall performance are negligible due to imbalance of 

amount of quantity of time quantum. So I searched for better efficient way to calculate 
the “perfect time quantum” which will be ultimately faster but effective way to calculated 
and allocate CPU time slices respectively. Thus, ensuring either lower-cost or less 
amount of run-time while searching for perfect time quantum ensuring more efficient 
execution. 

1.2.2 Potentiality of secure multi-threading programming  
 
There is prospective to use secure multi-threading where resources are created, used and 
disposed within the thread i.e. concurrently executing multiple processes along with that 
of scheduling respectively. Thread switches cost lesser than context switches and can be 
faster without falling in dead-lock conditions. Hence, it can be useful in maximizing 
overall performance of scheduling and execution of processes arriving in different time 
by using only one synchronized and dynamic queue instead of separate ready queue and 
blocking queue. 
 

1.2.3 Minimizing context switches costs and performance consistency  

 
Due to multi-processing architecture and development of resourceful computability in the 
operating system, I find large possibility of more consistent performance with careful and 
intelligent memory allocation and data structures. Despite of different variation of input 
cases, hyper-threading can bring notable improvement in decreasing the total time for 
scheduling and running processes simultaneously using modern 64-bit processor 
architecture. On the other hand, thread switches are faster and cheaper making the cost 
and amount of context switches between two processes non-effective in case of longer 
lists of processes with high burst time. 
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1.3 Challenges and constraints 

 
Initially, I faced some minor but general challenges while conducting my research 
analysis regarding study materials and implementation. Following are the indications 
narrating and discussing the constraints. 
 

1.3.1 Scarcity of test cases 

Generally, CPU scheduling algorithm are analyzed and experimented with as usual input 
or test cases derived from various authenticated and followed textbooks related to the 
study of Operating Systems. All the input cases are lists of one of more processes with its 
given ID#, amount of burst time and amount of arrival time in specific unit respectively. 
Due to few datasets, I also had to consider those trivial test cases along with those of 
different articles which were used for their particular experimentation as per similarity of 
the input case structures. Otherwise, the availability of most of the possible types of input 
cases would not be established for more thorough analysis. 

Despite of that, I have also created some of my own sample input cases derived from 
above stated resources for more solid and further comparative experimentation of 
outcome.  

1.3.2 Handling concurrent scheduling and programming complexities 

Most of the previous implementation and simulations of state-of-the-art RR variations 
were handling either processes arriving at the same time or via multi-programming 
instructions to the default queues for those arriving at different times respectively. Hence, 
urge of necessity of multi-threading programming for cost and resource effective 
execution of processes seemed viable and implementable for next generation CPU 
scheduling algorithm. Despite of its programming advantages, handling the con-current 
situation, such as, scheduling a process in the dynamic queue accordingly while 
executing or continuing allocating CPU time slices for running processes simultaneously 
entering the critical section code. 

Programming a RR variation for time-shared multi-core system not only requires a deep 
understanding of the hardware architecture of the system, but also careful tailoring of the 
program to that specific hardware [16]. The coding implementation for exact simulation 
were tough due to continuous but dynamically required trade-off between run-time and 
space complexities while considering enough thread-safe resource management and its 
correctness as per algorithm.  
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1.3.3 Balancing process prioritization of processes 
 
Prioritization of processes has been crucial while effectively scheduling and completing 
execution of process in lesser time. It also significant in decreasing CPU overhead and 
inner starvation of the processes respectively.  
Previously, proper as well as ultimately required priority of processes while scheduling 
were balanced via variations of priority queue scheduling. The other extension and due 
versions of RR algorithms at best give priority to the processes arriving in ascending 

order. 
But it does not necessarily balance the priority of the process list as longer ones arriving 
at the same time get equal priority and effect overall waiting and turn-around time. Thus, 
it consecutively provides enough room for efficiency by coming up with a fixed and 
consistent standard of process-ordering while maintaining fruitful delivery of faster 
performance. 
 
 

Chapter 2 

Background Analysis 
      

2.1 Overview 

The following section elaborates various nomenclature related to CPU scheduling 
algorithm for further conceptual clearance.  

 

2.1.1 Scheduling Nomenclature  

          It is necessary to be familiar with different scheduling terminologies defined below: [1] 

Ready Queue: The processes which reside in Main Memory and waiting for the CPU 
time are put in a queue called ready queue.  

Concurrent Queue: A ready queue that additionally supports operations that wait for the 
queue to become non-empty when retrieving an element, and wait for space to become 
available in the queue when storing an element. 
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CPU Utilization: It is defined as the amount of time CPU is in use. Maximizing CPU 
utilization is usually the aim of any scheduling algorithm. 

Context Switch: Context switch is a process of keeping and restoring context of a pre-
empted process, so the execution can be carried on from the same position at later time. 
Context switching is wastage of time and memory which results in increase in overhead 
of the scheduler. 

Turnaround Time: It is defined as the total time which is used to complete the process, 
from entering in to the ready queue till its complete execution. 

Waiting Time: It is defined as the total amount of time a process waits in ready queue. 

Response Time: It is defined as the time consumed by the system to give first response 
to a particular process. 

Starvation: It means the long process blocks the way of short process vice versa and the 
higher priority process out run the lower priority processes. 

Priority: Give preferential treatment to processes with higher priorities. 

 

2.1.2 Scheduling Metrics 

Characteristics of good scheduling algorithms are mentioned as follows [1]: 

 

 Minimum CPU overhead, number of context switches and waiting, turnaround, response 
time. 

 Maximum CPU utilization and throughput. 

 Avoid indefinite blocking or starvation. 

Enforcement of priorities 

 

2.2  Literature Review 

Round Robin is the simplest, fairest and most widely used scheduling technique in timeshared 
systems. Use a fixed time slice for scheduling also known as time quantum. It choose process 
from head of ready queue and run that process for at most 1 time slice, and if it is not 
completed, add it to the end of the ready queue. If that process terminates or blocks before its 
time slice is completed, choose another process from the head of the ready queue, and run that 
process for at most 1 time slice. It achieves the fairness of resource allocation and result in 
minimized response time as compared to the Shortest Job First and First Come First Serve 
algorithms. But, due to the static time quantum concept it increases the turnaround time and 
waiting time resulting in dilapidation of system performance. Response time is good for short 
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processes, while long processes may have to wait. Fairness factor which penalizes I/O-bound 
processes (may not use full time slice). Starvation is not possible as every process is getting the 
equal share of time, and the CPU Overhead is low. [1] 

Aashna Bisht et al. [1] proposed Enhanced Round Robin algorithm (ERR). ERR allocates CPU 
to a process for designated time quantum after the completion of which, it checks the 
remaining CPU burst time of the process currently in execution, if the remaining CPU burst 
time of the currently running process is less than (average burst time/time quantum) value, then 
CPU is again allocated to the currently running process for remaining CPU burst time. 

Rami J. Matarneh et al. [1] proposed an algorithm named “Self- Adjustment Time Quantum in 
Round Robin Algorithms Depending on Burst Time of the Now Running Processes algorithm 
the time quantum is repetitively adjusted according to the burst time of the currently running 
processes using median. 

Lalit Kishor and Dinesh Goyal [1] proposed median based round robin algorithm. This 
algorithm is a blend of two techniques, the processes are arranged in ascending order first, and 
then the time quantum is set according to the value of median. 

H.S. Behera and Brajendra Kumar Swain [1] proposed an algorithm named “A New proposed 
precedence based Round Robin with dynamic time quantum scheduling algorithm for soft real 
time systems” in which precedence value is allocated to all the processes according to their 
priority and burst time. RR algorithm is then applied on the processes on the basis of their 
precedence. This Proposed algorithm is developed by taking dynamic mean time quantum in to 
account. Time quantum is computed dynamically by taking the mean of priority values and 
burst times. 

Ali Jbaeer Dawood et al. [1] proposed an algorithm “Improved Efficiency of Round Robin 
Scheduling Using Ascending Quantum and Minimum-Maximum Burst Time” in which 
processes were arranged in ascending order with shortest remaining burst time and calculated 
the time quantum by multiplying the average summation of minimum and maximum burst 
time by (80) percentage. The (80) percentage is chosen depending to two reasons: First, if the 
TQ calculated depending only on the summation the algorithm is become as the Short Job First 
(SJF). Second, the rule of thumb is that 80 percent of the CPU bursts should be shorter than the 
time quantum. 

Radhe Shyam and Parmod Kumar [3] on the article “Improved Round Robin with Shortest Job 
First Scheduling” proposed an algorithm combining Round Robin with shortest Job first 
scheduling. The TQ studied to improve the efficiency of RR and performs degrades with 
respect to context switching, Average Wait Time and Average turned around time. The 
processes were ascending with shortest remaining burst time and then TQ are given to that 
ascending process to CPU and also continue to allocate TQ again if the remaining burst time is 
less than 1 time quantum. While ready queue is not empty or any new process enter in the 
queue, the execution is regulated. The proposed algorithm (IRRSJF) performs better than 
Round Robin (RR), Improved Round Robin (IRR), FCFS and some other scheduling algorithm 
in terms of reducing the number of context switches, average waiting time and average 
turnaround time. 

Anju Muraleedharan et al. [4] lodged an article “Dynamic Time Slice Round Robin 
Scheduling Algorithm with Unknown Burst Time” where their approach mainly focuses on 
how round robin will perform if the processes burst times are unknown at the beginning. They 
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propose a refinement to simple RR by altering the time quantum while execution. First and 
foremost, put a small value to initial time quantum, and carry through the first cycle with this 
time quantum. In succeeding cycles, they multiply the time quantum by two if no processes 
finished its work. It will scrutinize the number of processes completed in each cycle. If at 
least one of them is completed, then continue the next iteration with an unchanged time 
quantum. By this method, some of the problems with static time quantum are partially solved. 
If the time slice used is larger, then the average waiting time will reduce, in normal cases. But 
a factor that affects the average waiting time of the RR is the arrival time of the jobs – if 
several new processes arrived in during the execution, then it may cause an increase in the 
average waiting time. 

 
Wasim Firuj Ahmed and Sahana Parvin Muquit [5] brought up a new method in their article 
named “Improved Round Robin Scheduling Algorithm with Best Possible Time Quantum and 
Comparison And Analysis with the RR Algorithm” to find the best possible time quantum to 
make the traditional Round-Robin algorithm an efficient one. Instead of usual fixed time 
quantum, calculated value of the time quantum unit becomes a rounded-up magnitude of the 
square root of the multiple of the median and highest burst time respectively applied in RR 
algorithm. 

 
Mohammad Salman Hafeez and Farhan Rasheed [1] proposed an algorithm in ”An Optimum 
Dynamic Time Slicing Scheduling Algorithm Using Round Robin Approach” article where the 
time quantum is determined dynamically with median value and the continuity of the 
execution of a process with the remaining burst time lesser than the time quantum set by the 
median value. 

Following that, an article paper called “An Enhanced Round Robin CPU Scheduling 
Algorithm”, Jayanti Khatri [6] proposed an algorithm is similar to traditional Round Robin 
algorithm with a small improvement. The proposed algorithm (ERR) allocates the processor to 
the first process of the ready queue for a time interval of up to 1 time quantum. Then it checks 
the remaining burst time of the currently running process and if the remaining burst time is less 
than or equal to 1 time quantum, the processor again allocated to the same process. After 
completing the execution, this process is removed from the ready queue. If the remaining burst 
time of the currently running process is longer than 1 time quantum, the process will be added 
at the tail of the ready queue.  

Omar Hani Mohammad Dorgham and Dr. Mohammad Othman Nassar [7] came up with 
attempts to introduce an alternative method in RR algorithm in the paper “Improved Round 
Robin Algorithm: Proposed Method to Apply SJF using Geometric Mean” which combines 
two algorithms together and calculate a dynamic time quantum using the geometric mean 
method to enhance the CPU utilization and minimize the waiting and turnaround time in CPU 
scheduling. Geometric Mean can be calculated by applying the nth root of the product of n 
numbers, where these numbers is considered as the burst times of the processes, and then take 
the ceil of the result as a time quantum. On the other hand, the proposed algorithm will take 
into consideration two cases, first one, when the processes have an arrival times, and the 
second case, when there is no arrival time. Algorithm will depends on the arrival time, and 
here the proposed algorithm applies the second algorithm which it is First Come First Serve to 
take the proper process, where the first process enter the ready queue will be execute first. 
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Accordingly, if there exist a process which need more than 1 time quantum, the remaining 
burst time will be compared with the other processes burst times by applying the SJF 
algorithm to choose the proper process to start execution in the CPU. Without Arrival Time, 
the algorithm applies the SJF only to choose the lowest burst time between all processes, 
where the shortest burst will enter the CPU for the execution and if the lowest burst time 
needs more than 1 time quantum, the remaining burst time will be compared between other 
burst times by applying the SJF algorithm, then it will choose the lowest burst time again. 

 

 

Chapter 3 

 Research Design and Feasibility  
 

3.1  Research Methodologies 

While constructing and developing the quantitative research, I have analyzed the journals 
publishing various latest and also significant RR variations especially along with 
ODTSRR algorithm. Primarily, I begin testing hypotheses derived from theory and/or 
being able to estimate the size of a phenomenon of interest. Hence, my long-term 
research initiatives were followed by considering ODTSRR as randomized control trial 
and denoted the main factors such as experimental, control group, along with data 
sampling process etc. 

Based on time-to-time research and analysis, I took attention to the key focus, 

intervention, control of variables derived and followed Quasi-experimental approach as 
the quantitative research method. After repetitive pre- and post-test study designs, studies 
determined those and other fundamental blocks for proving overall improvement in 
performance of ODTSRR initially but along with being thorough with other RR 
variations accordingly.  

Independent variables falls under the experimental group refer number of processes, total 
arrival time, arrival and burst time of each processes etc. Also potential constituents like 
con-current execution of processes in a single scheduling queue, way of calculating and 
allocating time quantum, following standard protocol for prioritization of processes are 
notable for comparative research and experimentation.   
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On the other hand, control group consisted the constant flows of fixed and required 
variable such as the flow of IF and ELSE statement along with the static variable stored 
in register allocating time slices, null checking of ready queue, variables holding arrival 
and burst time of processes respectively. 

After in-depth observation and calculation of various types of sample datasets and input 
cases gained from previous relevant researches, I were able to accumulate some amount 
of reliable experimental data with coherence and patterns for building numerous test 
cases for analyzing research outcomes.  Despite some randomness in data sets used for 

several trials, most data were collection on basis of situational characteristics. Convenient 
sampling and experimental modification through some of the datasets are performed 
longitudinally to statistically control and analysis the underlying influences on the 
dependent, or outcome, variable.  

Consequently, proposed algorithm has been programmed via Java SE language for fast 
and accurate simulation of each and every test case, in the spirit of rigorous comparison 
of outcomes of different metrics measuring performances.     

 

3.2   Overview of Feasibilities 

Following section emphasize various factors which denotes the overall feasibility of  this 
research and experimentation.  

 

3.2.1 Theoretical Feasibility 

Feasibility of the research theory mainly pertained to consider major factors of study 
aiming consistent and better performance. Specifically the following figure shows that 
most of the processes to be scheduled have shorter burst time i.e. less than 10 
milliseconds respectively. Proper resource and time slice allocation may impose 
probability of more efficiency in scheduling processes in fixed priorities. 

While applying Little’s Law in series of test case simulation, IODTSRR sounds highly 
feasible for scheduling, better than other RR variations respectively. Also by avoiding 
process starvation, no aging required due to fixed standard of prioritization. Thus, 
balancing resources with minimum possibility of waiting in queue unnecessary which is 
promising for lowering response and waiting time.  
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               Fig 1. Histogram of CPU Bursts Duration 

 

3.2.2 Programming Compatibility  

For running parallel applications, the scheduler may use explicit thread and data 
placement to achieve the best performance.  

Most thread library implementations provide support for pinning threads to assign threads 
to specific CPUs (i.e., hardware threads) and to restrict their migration. Thread libraries 
on operating systems such as both Windows and POSIX, etc. give clients some control 
over thread scheduling. Since the architecture of many-core systems is still evolving, 
portability is needed to allow the same program to run well on different kinds of many-
core systems [16]. 

 

3.2.3 Technical and Operational Plausibility  

The proposed method is derived to be implemented either totally in software, totally in 
hardware, or as a hardware/software combination. It has potential for targeting single 
CPU architectural platform for many-core processors. 

While running in multi-threaded environment, the proposed method have feasibility of 
being flexible and independent of individual kernel configurations. It provides capability 
for user-level memory management, I/O, interrupt handling tasks etc on behalf of kernel.  
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For Windows kernel, the algorithm can be plausible for implementing in a Windows 
kernel synchronization mechanism in IPC (Inter-Process Communication) of WinFSP as 
it provide similar characteristics to KQUEUE i.e. kernel portion of I/O completion ports. 
By profiling with xperf, system threads were handled for transitioning from the signaled 
to non-signaled state by EventSet and EventWait synchronization events. The processed 
scheduler may impose its dynamic queue mutually with KQUEUE along with core I/O 
Queues which must provide additional services, such as IRP cancelation, IRP expiration, 
etc. Proper configuration can be done with independence of re-setting compiler-internal 
and library operations, dynamic and static linking with linking library. 

Kernels in UNIX or LINUX distribution have easy approach to implement any new or 
custom scheduling algorithm. In this cases, the feasibility may be ensured by using any of 
the implementation pattern. There are only three files in the default directory 
kernel/sched which are : core.c , debug.c , fair.c etc. They are responsible for dispatching 
tasks i.e. both processes and threads as they are treated as same in the Linux kernel 
scheduler.  

System Administrator may have create new .c file and attempt to duplicate the key 
functions such as CONFIG_SMP,  CONFIG_FAIR_GROUP_SCHED etc and implement 
structure for e.g. sched_class fair_sched_class inside the default fair.c file holding the 
scheduler which runs CFS (Completely Fair Scheduling) algorithm. Initial functions will 
have to be wiped away from memory after the kernel have executed them during startup. 
Then he/she have to set the init() routine as general scheduling class initialization 
routines to initial modified structures along with the functions. At runtime, scheduling 

class which is used is configurable - just switching via the use of function pointer, and so 
inside core scheduling related file. 

 

 

 

 

 

 



 
 

18 
 

Chapter 4 

Algorithm 
 

4.1  Implementation Framework 

Framework assumption is extremely crucial while scoping the design and implemental 

criterias of any good algorithm wheter its for Scheduling or finding the shortest path from 
complex graph. I considered maximum traditional implementation in OS kernel and 
process scheduler as a “whole and complete” scheduling dispatcher rather than most of 
the CPU scheduling algo according to configuration parameters, process behavior, and 
user requests. 

IODTSRR follows the time-sharing policy for adjusting process priorities to balance the 
throughput of processes that use a lot of CPU time, while  allows task parallelism at 
high level of abstraction. This results in formulation of more tractable scheduling 
problems which in classical form are computationally hard.   

 

4.2  Synopsis of Core Design  

In broader perspective, the principal requirement from any short-term CPU scheduler like 
IODSRR is process handling. However, some kernel i.e those of Linux distributions treat 

processes and thread kind of equally where thread is executed and get allocation of 
virtual memory spaces as light-weighted processes.  

It is core conditionality of the scheduling dispatcher like IODTSRR to be able to provide 
high-level guidance while balancing the level of abstraction and the amount of control 
while imposing in Kernel as scheduler respectively. 

As mentioned earlier, designing have also considered hardware and software 
compatibility of single CPU architectural platform for many-core processors. In a single 
processor system, no kernel process and no time-sharing process runs while a runnable 

real-time process exists while also having compatibility for multi-processor scheduling 
along with adjusting itself for concurrent thread scheduling too.  

Being immune to I/O interruption, cache-memory loss and management complexities are 
considered in design development. I also emphasized in developing dynamic but easily 
configurable structure of algorithm in respect of assigning it to any OS kernel as main 
scheduler while following Multi-threading and synchronization nomenclature etc. 
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4.2.1 Abstraction  

When the list of processes to be scheduled has same arrival time, time quantum is also 
calculated dynamically using the proposed calculation of median. The processes are arranged 
in ascending order with the shortest remaining CPU burst time and placed accordingly in the 
priority queue. The median value is set as the time quantum which will be the value of CPU 
Time Slice. If the process is in its execution state and consumed its time slice and its remaining 
CPU burst time is less than or equal to the time quantum, the CPU will continue its execution 
till it finishes, Otherwise the process will be placed at the end of the dynamic queue (Here, it is 
performing like a Synchronized Ready queue). After all the processes in the ready queue are at 
least once attended by the CPU, it will again sort the process in ascending order with shortest 
remaining burst time. If a process is suspended by CPU for I/O wait or other reasons, the very 
same queue will dynamically perform as a Synchronized Blocking queue where the process 
will be placed in and will stay there until the waiting state is over. 

If the list of processes to be scheduled has different arrival times, time quantum for executing 
processes is calculated differently before and after all the processes arrived in the queue. Let, N 
be the total time required for the arrival of all the processes and k be the arrival interval of the 
processes arrived already. At first, add the processes in the queue (one or multiple) arriving in 
kth interval (where k<=N and initially k = 0). The queue execute those processes based on my 
modified FCSJF algorithm till the next (k+1)th time interval arrives. When the summation of 
the arrival interval of the processes become equivalent to the total arrival time of all processes, 
I perform ODTSRR with my modified median to the processes either added or have remaining 
CPU Burst Time existing in the same queue. 

 

First Come Shortest Job First (FCSJF) 

The time quantum for executing the process is also calculated dynamically using the proposed 
calculation of median. The process ready for the execution are placed in the dynamic queue. 
At first processes are arranged in ascending order with the shortest remaining CPU burst time 
on basis of early arrival. After sorting, if the processes is in its execution state and consumed 
its time slice, the processes only with remaining CPU burst times will be placed at the end of 
the queue. After all the processes in the queue are at least once attended by the CPU, it will 
again sort the process in ascending order with shortest remaining burst time respectively. 
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Fig 2. Flowchart of basic design of IODTSRR algorithm 

 

4.2.2 Policies  

In this algorithm, the processes are arranged in ascending order according to their burst 
time’s existent upon early arrival in the ready queue. Instead of using static time slices. I 
also used optimum time slicing approach where heuristic and multi-level programming 
reformation dynamically change the basis of calculating Time Quantum (i.e.  Time 
Quantum is calculated differently before and after the completion of arrival of all the 
processes to be scheduled).  



 
 

21 
 

For scheduling and executing the ready queue where all the process have same arrival 
time, I modified ODTSRR algorithm where my proposed modified median is calculated 
and used only if there exist even number of processes in the queue respectively. 

 

4.2.3 Pseudo Code  

 

Begin 

 

1. Initialize, Ready_queue, Number_of_process, Arrival_counter, Total_arrival_time. 
2. IF ( Total_arrival_time> 0 && Arrival_counter != Total_arrival_time) 
3. While ( Arrival_counter<= Total_arrival_time) 
4. If ( Arrival Time of Process[Number_of_process] == Arrival_counter)  
// Number_of_process indicates which process to arrive next 

 

Add the Process to Ready_queue; 

Number_of_process = Number_of_process + 1; // Referring the next immediate Process 
  

 

EndofIf 

 

5.    Else 

Sort Elements in ascending order of remaining CPU burst time based on the order of 
arrival 

 

6.  If ( Ready_queue != NULL) 

Arrival_counter = Arrival_counter +1; 

 

7. Start Execution // Processes placed in Ready_queue 

Time Slice = 1; 

 

8. If (Remaining Burst Time>0) 
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           Place the process with remaining burst time at the End of the Ready Queue. 
 

EndofIf 

EndofIf 
   

EndofElse 

EndofWhile 

EndofIF 

 

9. ELSE 

  

 10. While (Ready_queue!=NULL) 

  

 11. For, Sort Elements in Ascending Order 
 

            Calculate Median_Value 
 

 If (Odd) 

 Select Middle;    //Trivial median value  
 

 If (Even) 

 Select Ceiling (Middle + (Middle-1))/2; // Optimizing the median value   

 

 12. Start Execution //Ready Queue 

 

 Set TQ = Median_Value; 

       

 

 13. For, all Processes Entering CPU 
 

IF (Remaining Burst Time <= Time Quantum) 

 Time Slice = TQ + Remaining Burst Time // Continued Execution of the process 
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Else 
 

END of Iteration. 
 

Place the process at the End of the Ready Queue. 

 

EndofIF 

EndofFor 
 

Endof WHILE 

Endof ELSE 

 

End 

      

The above pseudo code of the algorithm is explained step by step as follows: 

Step 1: Initialize the Number_of_process as the serial number of the process, 
Arrival_counter as a counter of the arrival time intervals (k), Total_arrival_time as the 
total value of the arrival times of all the processes along with the Ready Queue, where 
the processes are placed by the Long-term scheduler. 

Step 2: In the 2
nd

step, the algorithm defines an IF statement for a check whether the 
processes arrives at the same time or not. If multiple processes arrives in different times and 
also the counter of the arrival time intervals are not equal to Total_arrival_time, then 
perform the following tasks. Else go to Step 11. 

 

Step 3: While the counter of the arrival time intervals is less than or equal to 
Total_arrival_time, perform the following tasks respectively. 

Step 4: In the 4
th

step, the algorithm defines an IF statement for a check whether the arrival 
time of the process arrives at the same arrival time interval or not. If yes, we add all the 
processes arriving in that arrival time interval by referring the Number_of_process to the 
next immediate process. Else perform the following task. 

 

Step 5: Sort all the processes in the queue in ascending order of remaining CPU burst 
time based on the order of their arrival. 

Step 6: Next arrival time interval is referred to Arrival_counter. If there are any 
processes available in the queue, perform the following task. 
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Step 7: Set CPU Time Slice = 1. Here, Time Quantum is not calculated and necessary to 
refer it as CPU Time Slice. Start the execution of the first process from the sorted queue. 

Step 8: If the remaining CPU burst time of the process is greater than zero, place the 
process at the end of the queue. 

Step 9: All the processes has arrived. They have been fully or partially executed.  

Step 10 to 14: Check whether the queue is empty or not and perform IODTSRR 
algorithm accordingly. Here, the previous algorithm (ODTSRR) set the Time Quantum 
and CPU Time Slice equal to the median value obtained from my proposed calculation 
respectively. 

 

4.3 Analysis 

The following section has huge fundamental research impact in order to proof the correctness 
and performance magnitude by continuous analysis via thorough observation, comparison, 
experimentation, simulation. The in-depth analytical insights are discussed in the following 
sub section for clear understanding. 

 

4.3.1 Algorithmic Analytics  

The FCFS is better for a small burst time. The SJF is better if the process comes to processor 
simultaneously. While Round Robin is better to adjust the average waiting time desired [2], I 
have considered the above relative insights correspondingly. The processes are arranged in 
ascending order according to their burst times upon early arrival in the ready queue. Instead of 
using static time slices. I also used optimum time slicing approach where heuristic and multi-
level programming reformation dynamically changes the basis of calculating Time Quantum. 
For scheduling and executing the ready queue where all the process have same arrival time, I 
modified and used ODTSRR algorithm where my proposed modified median is calculated and 
used only if there exist even number of processes in the queue respectively. 

It might be considered as modified form of existing Optimum Dynamic Time Slicing Using 
Round Robin Scheduling Algorithm (ODTSRR). Rather than the use of different queues 
during scheduling, I used a concurrent dynamic queue as both ready and blocking queue 
respectively. The CPU Time Slice for process execution is calculated dynamically on basis of 
complete arrival of processes. 
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4.3.2 Comparative Findings  

One or multiple processes can be scheduled in the queue upon instant arrival while the current 
process gets fully or partially executed. Unlike ODTSRR, where no other processes can be 
scheduled in the queue before the execution of the current processes is fully completed, 
scheduling and execution can be done simultaneously. Due to dynamic nature of the 
calculation of time quantum and process handling in the queue, lesser CPU overhead and 
higher throughputs are unavoidable for larger input respectively. Whereas, the performance of 
ODTSRR decreases significantly and gradually when scheduling processes arriving in 
different times as both scheduling and execution cannot be done at the same time. 

  
Importantly, in IODTSRR, if multiple processes with same remaining CPU burst time are 
scheduled, the processes with earlier arrivals will get the chances to be executed foremost.  
Hence, CPU will be implementing real time enforcement of priorities to always avoid Dead-
lock condition and starvation as being functioned like a blocking queue respectively. 

 

4.3.3 Asymptotic Complexity 

IODTSRR calculates the value of median in O (n (log n)) in both average and worst cases 
respectively for total n number of processes in the queue respectively. [8]. 

When one or more processes in the scheduler all arrives at the same time, IODTSRR and 
ODTSRR will be executed in O (n (n+1) (log n)) for all n > 0 in every cases. 

When processes arrives at different times, ODTSRR runs in total of O (n^2(n+1) log n) 
and O (n (n+1) log n) during worst cases (i.e. neither one nor multiple processes arrives at 
the same time). Thus, exponential growth of total runtime occurs when there are large 
number of processes to be scheduled.  

Whereas, complete execution of processes arriving at different times with IODTSRR will 
be in O (n^2 (log n)) in best and average cases. In worst case scenarios, the runtime 
complexity will be equal to either (n^2 (log n)) or (n (n+1) (log n)) + (n^2 (log n)) which 
fairly depends on the pattern of arrival of the process along with the variance of its burst 
time. Consequently, quick but constant rate of improvement in scheduling performance 
can be further noticed.  In the Table 1, the total amount of runtime cost occur when both 
algorithm is scheduled for 5<= Tn <=200 are given in the next page as follows. 
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TABLE I 
 

Calculation of Asymptotic Complexity of ODTSRR and IODTSRR 
 

Amount of 
Processes 

ODTSRR IODTSRR 

5 125.81 38.44 

10 1210 210 

20 11475.08 1066.84 

50 220951.05 8579.8 

75 812276.54 21235.07 

100 2040200 40200 

150 7442558.52 184542.61 

200 18592782.57 184542.61 

 

 

 

Fig. 1. Difference of the asymptotic complexities between ODTSRR and IODTSRR for 5 <= ∑n <= 200. 

 

      The above presentation of data in tabular format (Table 1) and graph chart (Fig 1) both 
theoretically conclude promising performance results of IODTSRR having not only constant but 
also quadratic rate of improvement in each and every cases comparative to ODTSRR. 
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Specifically, when there are 50 or more than that number of processes assumed to be of same 
priority have to be executed fairly while taking lesser time. 

 

 

 Chapter 5 

Experimental Details 
 

5.1 Estimations  

The processes are homogenous and independent of both full and reduced level of 
computational time requirements. The system runs the algorithm only when it is in a 
stable state, that is, p < l/R. Irrespective of I/O bound, all processes are CPU bounded 
.The time unit is considered to be millisecond (ms). All attributes like burst time, number 
of processes and the time slice of all the processes are known before submitting the 
processes to the processor as performance metrics.  

In-depth analysis and calculation of the evaluation metrics states overall and average 
performances of most of the state of the art variations in RR algorithms published 
periodically especially before and after ODTSRR are either less or equal to that of 
ODTSRR respectively. 

 

5.2   Experimental Framework 

The experiment consists of a number of input and output parameters. The input 
parameters consist of Burst Time<BT>, arrival time<AT>and total number of processes 

<Tn>. The output parameters consist of average response time, average waiting time, 
average turnaround time and number of context switches, fairness factor, throughput and 
CPU overhead. 
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5.3   Procedure 

Suggested algorithm can work effectively with large number of data input and cases. In 
order to prove the supremacy of performances and standard of our proposed algorithm, 
same data sets used in the experimentation of ODTSRR along with mentioned RR 
variations are considered directly as majority of test cases of the proposed algorithm.  

 

 

Chapter 6 

Comparative Analysis and Outcome 
 

6.1 Introduction 

I have compared our proposed algorithm on basis of all mandatory performance metrics 
and results with only that of ODTSRR as it’s the considered standard algorithm in my 
comparative analysis. Instead of the traditional approach where the processes in blocking 
and ready state are stored in two separate queues, a concept of only one synchronized 
blocking queue is considered.  

Thus, it can perform much faster than both ready and blocking queue together for being 
able to handle concurrency dynamically. 

 
6.2 Illustration 

Example 1  
 

The above algorithm is exhibited along with considerable empirical evidence as follows: 
 

Let’s assume 8 processes named P1, P2, P3, P4, P5, P6, P7 and P8 are given with their 
respective CPU burst time and arrival time.  
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     Input Table 

 

Process ID Arrival Time CPU burst time 

P1 1 20 

P2 2 69 

P3 3 53 

P4 4 94 

P5 5 82 

P6 6 36 

P7 7 100 

P8 8 7 

 

 
A queue with eight processes P1, P2, P3, P4, P5, P6, P7 and P8 has been considered for 
illustration purpose. The processes are arriving at time 1, 2, 3, 4, 5, 6, 7, 8 with burst 
time 20, 12, 15, 60, 42, 9, and 19 respectively.  
First, we initialize our queue along with the important variables. Set the 
Number_of_process = 8, Arrival_counter = 1(the arrival time of P1) as arrival time 
interval and Total_arrival_time = 8 (i.e. the arrival time of the last process i.e. P8). 
Therefore, the processes arrive in different time interval so the dynamic queue will not 
perform IODTSRR directly. 
 
When Arrival_counter = 1 or 1st second, only P1 is added to the queue as no other 
processes arrived at that time.The Number_of_process is referred to P2. 
Then we execute it for only one millisecond (ms), keep it in the queue and increment the 
Arrival_counter by 1. 
  
When Arrival_counter = 2, P2 is added along with P1 in the queue and the 
Number_of_process is referred to P3. As no more processes will arrive at 2nd  second, 
the Arrival_counter will be incremented by 1 indicating the arrival time of one or more 
processes coming in the next arrival time interval (k+1th) . Sort the processes’ serial ID 
for execution in the queue according to their burst time in ascending order then to their 
arrival time in descending order respectively. The first available process in the sorted 
queue will be executed with a constant CPU Time Slice unit only till (k+1)th  interval. 
Here P1 is executed for another 1 millisecond (ms) with remaining burst time of 18 
millisecond  (ms).  
 



 
 

30 
 

At 3rd second, P3 arrives and added to the queue. The Number_of_process is referred to 
P4. As no more processes will arrive at 3rd second, the Arrival_counter will be 
incremented by 1. After sorting the order of the processes in the queue, P1 will be 
executed for 1 ms again having 17 ms remaining. 

 
At 4th second, P4 arrives and added to the queue as usual. The Number_of_process is 
referred to P5. The Arrival_counter will be incremented by 1. As no more processes will 
arrive at 3rd second, the order of the processes are sorted in the queue and P1 will be 
executed for another 1 ms accordingly. 

 
At 5th second, P5 added to the queue as usual. The Number_of_process is referred to P6 
and also Arrival_counter will be incremented by 1. As no more processes will arrive at 
5th second, P1 will be executed for another 1 ms with remaining burst time of 15 ms 
after sorting the order of the processes in the queue.  

 
At 6th second, P6 arrives and added to the queue. The Number_of_process is referred to 
P7 and Arrival_counter will be incremented by 1. As no more processes will arrive at 6th 
second, P1 will be executed for another 1 ms with remaining burst time of 14 ms after 
sorting the order of the processes in the queue accordingly. 

 
At 7th second, P7 added to the queue. The Number_of_process is referred to P8. As no 
more processes will arrive at 7th second, P1 will be executed for another 1 ms with 
remaining burst time of 13 ms after sorting the order of the processes in the queue. 
Arrival_counter will be incremented by 1 indicating next process will arrive at k+1th 

arrival time interval respectively. 
 

At 8th second, P8 arrives hence added to the queue. Both Arrival_counter and the 
Number_of_process will be incremented by 1 indicating whether next process (one or 
multiple) will arrive at k+1th arrival time interval respectively. P8 will be executed for 
only 1 ms with remaining burst time of 6 ms after sorting the order of the processes in 
the queue. Since, Arrival_counter is now greater than Total_arrival_time and all the 
processes have arrived in the queue whether partially executed with a single context 
switch, this very queue will start executing its processes using IODTSRR algorithm. 

 
Now, the processes P1, P2, P3, P4, P5, P6 , P7 and P8  in the queue are arranged in the 
ascending order of their burst time in then in descending order of their arrival time which 
gives the sequence P8, P1, P6, P3, P2, P5, P4 and P7. The time quantum value is set 
equal to the median value obtained from proposed calculation i.e. 45 (it’s the ceiling of 
round value of 44.5). CPU time slices for a time quantum of 45 milliseconds (ms) is 
allocated to the processes P8, P1, P6, P3, P2, P4 and P7 respectively. 
 
During first cycle, the remaining burst time for the processes P8, P1, and P6 will be 
exactly equal to zero. Now it is turn to execute P3, P3 CPU burst time is 53 and the 
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allotted time slice is 45 which means it need 8 ms to complete its execution and it is less 
than or equal to the time quantum i.e. 45. CPU will continue its execution till it finishes, 
it will take 8 ms more to complete its execution. Next process in the ready queue is P2 
and its CPU burst time is 69 ms. 45 ms will be allotted to P2, but the remaining burst 
time for P2 will be 69 -  45 = 24, which is also less than or equal to the time quantum i.e. 
45. CPU will also continue its execution for another 24 ms to finish it. 
The following process in the queue is P5 and its CPU burst time is 82 ms. 45 ms will be 
allotted to P5 as usual but the remaining burst time for P2 will be 82 - 45 = 37, which is 
also less than or equal to the time quantum i.e. 45. CPU will let continuing the execution 
of the process till it completes. 

 
Except the only context switches for P1 during the completion of arrival of all the 
processes, it also means that P8, P1, P6, P3, P2 and P5 processes will be completed 
without any context switch after that, thus completing in 15, 28, 64, 117, 186 and 268 ms 
respectively. 

 
Next process following in the queue is P4 and its CPU burst time is 94 ms. 45 ms will be 
allotted to P4; the remaining burst time for P4 will be 94 - 45 = 49, which is greater than 
the time quantum i.e. 45.CPU will stop its execution after 45 ms and place it at the end of 
the queue.  

 
The immediate process in the queue is P7 and its CPU burst time is 100 ms. 45 ms will be 
allotted to P7, but the remaining burst time for P7 will be 100 - 45 = 55, which is also 
greater than the time quantum i.e. 45. Hence, CPU will stop its execution after allotting 
45 ms to P7 and place it at the end of the queue.  

 
One cycle of execution is completed. Again, the processes in the ready queue will be 
sorted in ascending order with respect to their remaining CPU burst time. There are only 
two processes left in the queue i.e. P4 and P7 respectively. After sorting the order will be 
same in this case as P4’s remaining burst time is less than that of P7. Now, time quantum 
will be set to 52 after taking the proposed improved median value. As the process at the 
front of queue is P4 with its remaining CPU burst time 49 ms, time quantum 52 ms will 
be allotted to the process P4 and it will complete its execution and leave CPU just after 
49 ms. Now there is only one process remaining in the ready queue P7 with its remaining 
burst time 55 ms, time quantum 52 ms will be allotted to P7 but the remaining burst time 
for P7 will be 55 - 52 = 3, so the CPU will complete its execution. 

 
Thus, P2 and P5 processes will be completed with two context switches making total no. 
of context switches to 3 which might degrade the overall performance either gracefully or 
in negligible margin 
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Gantt Chart 
IODTSRR  

P1(19) P1(18) P1(17) P1(16) P1(15) P1(14) P1(13) P8 P1 P6 P3 P2 P5 P4 P7 

1          2             3              4              5             6             7              8        15      28       64       117     186    268      362   462 

 
Average Response time: 124.75 ms 

 
Average waiting time: 125.63 ms 

 
Average turnaround time: 183.25 ms 

 
No of Context switches: 3 

 
Fairness: Yes 

 
Starvation: No 

 
 

Gantt Chart 

ODTSRR 
P1 P8 P6 P3 P2 P5 P4 P7 

1                 21                  28                    64                  117                 186                  268                 362            462 

 
Average Response time: 126.38 ms 
 
Average waiting time: 126.25 ms 

 
Average turnaround time: 184 ms 

 
No of Context switches: 0 

 
Fairness: Yes 

 
Starvation: No 
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Example 2 
 

Now, let us look at another test case and analysis of ODTSRR and IODTSRR are shown 
below: 

 
Let 5 Processes P1, P2, P3, P4 and P5 all are arriving at zero millisecond (ms) with their 
burst time of 140, 75, 320, 280 and 125 ms respectively.  

 
The Gantt chart of my proposed algorithm and ODTSRR illustrating the scheduling and 
execution of the process in each step is shown in Table 2 and 3 perceptively. 
 
In accordance with, the result of summation of average of turn-around, waiting and response 
times of every process are mentioned as follows. 
 

 

Gantt Chart 

IODTSRR 

P2 P5 P1 P4 P3 (180) P3 

0                       75                          200                          340                          620                        760                    940 
 
 
 

Average Response time: 247 ms 
 

Average waiting time: 247 ms 
 

Average turnaround time: 435 ms 
 

No of Context switches: 1 
 

Fairness: Yes 
 

Starvation: No 

 
 

Gantt Chart 

ODTSRR 

P2 P5 P1 P4  (140) P3 (180) P4 P3 

0                    75                     200                    340                     480                     620                     760               940 
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Average Response time: 219 ms 
 

Average waiting time: 275 ms 
 

Average turnaround time: 463 ms 
 

No of Context switches: 2 
 

Fairness: Yes 
 

Starvation: No 

 
 
 

6.3  Comprehensive differentiations 

The experiential comparison in scheduling approaches, performances, data structure 
along with limitations between ODTSRR and my proposed IODTSRR are explained as 
follows: 

Improved ODTSRR: 

1. One or multiple processes can be scheduled in the queue upon instant arrival while 
the current process gets executed (fully or partially). 

2. Scheduling and execution can be done simultaneously. 
3. Average Response Time greatly improved due to FCSJF where every processes 

arriving during in every arrival time intervals gets fair chance of execution with 
constant CPU Time Slices. The summation of it equals to the desired Time Quantum 
respectively. 

4. Average Waiting Time also decreases significantly due to FCSJF along with the 
proposed calculation of the median value for setting it as Time Quantum. As a result, 
the longer processes avoid indefinite blocking and starvation. 

5. The average amount of time to complete the execution of one process is less than or 
equal to that of previous algorithm. 

6. Overall performances either remain same or improve significantly if the queue has 
multiple numbers of processes arriving at the same time. 

7. Less CPU overhead due to concurrent scheduling and execution of processes in the 
queue. 

8. More throughputs in most of the cases. 
9. Due to the dynamic nature of the Time Quantum, it is calculated differently before 

and after the completion of arrival of all the processes to be scheduled.  
10. Instead of the traditional approach where the processes in blocking and ready state 

are stored in two separate queues, a concept of only one synchronized blocking 
queue is considered. It can perform much faster than both ready and blocking queue 
together for being able to handle concurrency dynamically. Importantly, it will allow 
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CPU to always avoid Dead-lock condition while functioning like a blocking queue 
simultaneously. 

11. Its multi-level programming requires hardware virtualization causes overhead of the 
main memory. 

12. Less number of context switches as a process gets fully executed if its remaining 
burst time is not only less than but also equal to the current value of the Time 
Quantum. The optimizations of the value of Time Quantum with the proposed 
median value decrease the chance of unnecessary context or even thread switches 
respectively.   

13. If multiple processes with same remaining CPU burst time are scheduled, the 
processes with earlier arrivals will get the chances to be executed foremost. This 
enforcement of priorities increases fairness of the algorithm without any starvation. 

14. Fairness is always guaranteed due to FCSJF where time slice for all Processes are 1 
leading to desired TQ. Also for improvement in median value in ODTSRR. 

 

ODTSRR: 

1. No other processes can be scheduled in the queue before the execution of the current 
processes is fully completed. 

2. Scheduling and execution cannot be done at the same time. 
3. Average response time is much higher as the time quantum is set to the trivial 

median formula, the waiting time for each process cannot get better even though they 
arrive. 

4. Average waiting time is also higher in case processes arrive at different times. 
5. Average turnaround time is greater than or equal to that of proposed algorithm. 
6. Overall performance is constant only when all the process arrives at the same time. It 

decreases significantly when it arrives at different time. 
7. More CPU overhead. 
8. Less or equal throughput in many cases. 
9. Static nature of calculation of Time quantum done dynamically. 
10. The concept of tradition ready queue was used for process scheduling. 
11. Does not require hardware virtualization hence no memory overhead. 
12. The number of Context switches is constant. 
13. Real time enforcement of priorities was not implemented. It might affect the fairness 

and create chances of starvation. 
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Chapter 7 

Experimentation 

 
7.1 Explanatory Results  

Overall performances of above algorithms on all types of input dataset used for analysis 
are stated in Fig 2 and Table 5 respectively. The test cases are used as input individually 
in respect of its types and complexities, where each test case represents any queues or list 
of processes to be scheduled and executed. 

 

 

TABLE V 

Complete projection of sum of the average 
Turn-around, waiting and response time of all input cases 

 

Metrics ODTSRR IODTSRR 

Mean Turnaround Time 79.15 75.08 

Mean Waiting Time 52.66 48.06 

Mean Response Time 41.95 41.73 
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Complete projection of sum of the average turn-around, waiting and response time for n amount of test cases 

(where ∑ n = 32). 

 

Consecutively, illustration of the performance gap between my proposed algorithm and 
ODTSRR when both are executed on the list of processes in queue (where at least one or 
more process arrives in different time) are stated as follows in Table 6 along with 
corresponding graph chart in Figure 3. 

 

 

TABLE VI 

Cumulative difference of sum of the average turn-around, 
Waiting and response time of list of processes 

Scheduled in dissimilar arrival times 

 

 Metrics ODTSRR IODTSRR 

Mean Turnaround Time 216.97 212.3 

Mean Waiting Time 154.64 149.83 

Mean Response Time 153.95 148.58 

 

79.15

52.66

41.95

75.08

48.06

41.73
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Fig Cumulative difference of sum of the average turn-around, waiting and response time of n number of 
test cases scheduled in dissimilar arrival times(where ∑n = 21 respectively). 

 

Thus, all the tabular data and graphs resulted above from competitive test cases ensures 
that my proposed method ultimately takes lesser turn-around, waiting and response time 
than ODTSRR for scheduling processes at the same or different time period of their 
arrivals. Especially when there are large amount of processes in queue to be executed, no 
matter it have same or different priorities or extreme variation of their burst time 
consequently. 

 

Chapter 8 

 Outcomes and Limitations  
 

8.1  Outcomes and Contribution 

Here, I discussed the various insightful outcomes and contribution of the research 
underlying to improve application throughput and overall system utilization.  

 

216.97

154.64 153.95

212.3

149.8 148.58
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8.1.1  Empirical Contribution 

My research accumulated and developed improved datasets with reliability, the 
programming runs explicit thread and data placement to achieve the best performance for 
their parallel applications. Faster cache allocation and management at the end of every 
scheduling dispatched via minimum required  flag pointer (Total arrival time) are found 
along with being compatible with virtualization of modern hardware architectures. 

Derived Blocking queue can be able to handle thread communication delays while 
dispatching multiple number of scheduling with IODTSRR concurrently.  allow clients to 
specify a scheduling policy and priority for their threads. Furthermore, thread libraries 
typically provide some support for binding a thread where to run threads and allocate data 
to one or more processors. The dynamic queue utilizes a coherent shared memory model 
with a single shared address space and runs the application thread in hardware thread 
(HWT) although this may have NUMA characteristics due to hierarchical caches.[16] 

As kernel scheduler allows the user to provide a small amount of additional information 
such as whether to emphasize load balancing or proximity to data, and whether gang 

scheduling is required. Because scheduling dispatcher does not require the developer to 
supply architecture-dependent information, such as the specific cache level threads 
should share, it helps to preserve the application portability that general-purpose 
developer’s need [16]. 

 

8.1.2   Theoretical Contribution  

   The proposed scheduling method have shown immense contribution in fixing 
consistent and effective standard of process-ordering in a scheduler which differs it from 
other RR variation as per its excellency. 

The dynamic allocation of the CPU Time slice with time quantum which is calculated 
and used as time slice each time for decreasing any possible CPU Idleness and resource 
wastes. Also by careful instructional approaches, not bringing software-based 
architectural complexity of scheduling processes while multi-threading via arrival time 

interval for single many-core processors bring a lot of theoretical senses in effective 
development of CPU scheduler. 
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8.1.3   Methodological Contribution  

Introduction of concept of dummy-threading while coding the IODTSRR algorithm has 
been a major turn-up as a portrait of clever trade off against memory allocation for 
efficient and faster scheduling performances. 

Despite the traditional fixed thread-to-processor mappings, the proposed programming 
of the algorithm have compatibility to  it would be reasonable for the operating system 
to control only the number of processors granted to a parallel application and leave the 
control of the threads to the application (i.e. to the compiler and the programmer)[16]. 

Threads distribution widely among the different CPUs is beneficial. On the other hand, 
the threads of array-based programs typically share data heavily, so scheduling the 
threads on nearby CPUs to share data in common caches provides the best 
performance. 

 

8.2   Limitations  

Primarily, the algorithm targets single CPU architectural platform for many-core 
processors. It will be essential to reduce shared cache misses since the on-die caches of 
many-core processors will be relatively small for at least the next several years, and 
memory latencies have grown to several hundred cycles [7].  

Similarly, choosing which threads run concurrently on a processor is important since 
cache contention and bus traffic can significantly impact application performance. It can 
also be important to decide which threads to run on each core since simultaneous-
multithreaded (SMT) cores share low-level hardware resources such as TLBs among all 
threads. Interrupts, in OS terms, creates both hardware and software-based boundaries in 
two flavors: 

Hardware interrupts - those initiated by an actual hardware signal from a peripheral 
device. These can happen at, (nearly) any time and switch execution from whatever 
thread might be running to code in a driver. Hardware peripherals can rapidly make 
threads ready/running that ware waiting for data from that hardware, without any latency 
resulting from threads that do not yield or waiting for a periodic timer reschedule. 

Software interrupts - those initiated by OS calls from currently running threads. Either 
interrupt may request the scheduler to make threads that were waiting ready/running or 
cause threads that were waiting/running to be preempted. 

On multicore systems, the OS has an interprocessor driver that can cause a hardware 
interrupt on other cores, so allowing the OS to interrupt/schedule/dispatch threads onto 
multiple cores.  
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High memory requirements, been a considerable resource problem in processing,  it has 
not yet been assessed how to optimally distribute partitions and/or alignment sites to 
processors, in particular when the number of cores is significantly smaller than the 
number of partitions. I find that, by distributing partitions (of varying lengths) 
monolithically to processors, the induced load distribution problem essentially 
corresponds to the well-known multiprocessor scheduling problem. 

 

 

Chapter 9 

Inference 
 

9.1   Recommendations  

As a result, one challenge for mainstream many-core programming is to develop 
mechanisms that provide the ability to do HPC-style customization for performance but 
do not compromise portability and programmability [16]. 

It will be essential to reduce shared cache misses since the on-die caches of many-core 
processors will be relatively small for at least the next several years, and memory 
latencies have grown to several hundred cycles [7]. Similarly, choosing which threads run 
concurrently on a processor is important since cache contention and bus traffic can 

significantly impact application performance. It can also be important to decide which 
threads to run on each core since simultaneous-multithreaded (SMT) cores share low-
level hardware resources such as TLBs among all threads.  

The proposed algorithm is not suitable for parallel scheduling and divisible 
computational task. Thus, Co-scheduling is a scheduling policy proposed to avoid these 
difficulties. Co-scheduling consists in granting simultaneously (in the same time 
quantum) the processors to the threads of the same application. It has been demonstrated 
in that co-scheduling performs quite well in a wide range of conditions and for various 
models of parallel applications. In the performance of a parallel application using barrier 
synchronization was studied. The co-scheduling policy (called here gang scheduling) has 
been compared, both theoretically and in practice, with blocking. In blocking the thread 
releases a processor as soon as it completes its share of the work. For coarse-grain 
parallelism blocking performs well. For parallel application co-scheduling is better. Thus, 
co-scheduling is postulated in parallel systems. Observe that co-scheduled applications 
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occupy several processors at the same moment of time and as such are multiprocessor 
tasks [15].  

 

9.2   Further Insights and Works 

For future work and potential research studies, I have great hope to modify the IODTSRR  
further and recommend making it cross-kernel compatible scheduler as per due points 
mentioned below: 

 Divisible Task Concept 

 Formulation of algorithms for scheduling preemptive multiprocessor 

 Experimentation with tasks having linear speedup on parallel processors. 

 Formulation of low-order complexity algorithms for scheduling preemptive 

 Scheduling multiprocessor tasks with linear speedup for mean completion time 

criterion  

 Formulation of polynomial-time algorithms for scheduling preemptive 

 Scheduling divisible tasks on other architectures. 

Soon in the near future, practical verifying divisible task concept for other applications 
and other architectures. Can portfolio huge possibilities for many-core hardware threads 
running much software threads respectively. 

 

9.3  Conclusion 

I believe, from the above illustration of results and comparative analysis, IODTSRR as 
“complete” CPU scheduling algorithm has overall ascending performances not 
specifically scheduling and executing processes arriving in different times than other but 
also that of one or multiple processes arriving at the same time respectively. The 
suggested architectural implementation of a singular dynamic queue rather than handling 
that of both ready and block queue shows significant possibilities of decreasing but 
consistent run-time complexity of executing and scheduling processes. Unlike other 
variations of RR algorithm, the approached method effectively calculates the Time 
Quantum being feisty and performs its dynamic allocation as CPU time slice unit too. It 
ensures lower-cost along with decrease of context switches between longer processes due 
to CPU resources utilization by multi-threading programming. Despite of hardly 
sufficient input cases available i.e., both custom and derived for testing the benchmarks, 
the stated performance can be observed by operating in the offered dynamic queue 
architecture. For very long list of process scheduling, the trade-off with space and 
negligible cost in thread and context switches against CPU idleness can be worth 
considering. Further extension of research in the future, faster modification of the 
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algorithm with intelligent CPU resource utilization and con-currency handling of 
scheduling can be possible. IODTSRR may have practical employment and fruitful 
experimentation when accordingly imposed in the real time operating system and along 
with other version of known OS platforms such as Windows, Linux, MacOS etc. 
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