

1

Improved Optimum Dynamic Time
Slicing CPU Scheduling Algorithm based on

Round Robin approach

 Conducted By:

 MD. Shihab Ullah - 11201047

 Supervised By:

 Dr. Jia Uddin

 Assistant Professor

Department of Computer Science and

 Engineering

 BRAC University

2

Declaration

This is to certify that this final thesis report entitled ‘Improved Optimum Dynamic Time
Slicing Round Robin Algorithm based on Round Robin approach’ is submitted by the authors
for the purpose of obtaining the degree of Bachelor of Science in Computer Science. We hereby declare
that all the instances of work presented in this thesis are original and inspirations for the work that we
have made use of have been duly accredited with proper referencing.

 Signature of Supervisor Signature of Author

 Dr. Jia Uddin MD. Shihab Ullah

3

Abstract

 In time-shared systems, selection of the time quantum plays a pivotal role in performance of
CPU. In this paper, the static use of dynamic time quantum as CPU Time Slice is reviewed and a
new algorithm for CPU scheduling named Improved Optimum Dynamic Time Slicing Round
Robin Algorithm (IODTSRR) is proposed for process and thread scheduling. The proposed
algorithm is based upon dynamic nature of allocation, calculation of the value of time quantum
which varies according to the state of queue along with the capability of executing ready
processes arriving at the same or different time. The concept of multi-threading by using Dummy
Thread is introduced to hold the added processes in the queue during all arrival time intervals
respectively. The performance is compared with Optimum Dynamic Time Slicing Using Round
Robin (ODTSRR) and the results revealed that the proposed algorithm is much better
specifically in response time and turnaround time. As process gets fully or partially executed
while others arrive simultaneously, the context switch rates, waiting time and throughput
improves hence resulting in optimized CPU performance.

Keywords — scheduling algorithm; randomized control trial; time quantum; context and
thread switching; response time; turnaround time; waiting time; fairness; multi-threading;
synchronization; arrival time interval; dynamic queue; first come shortest job first (FCSJF);
improved optimum dynamic time slicing round robin algorithm (IODTSRR); optimum
dynamic time slicing using round robin (ODTSRR)

4

Acknowledgements

First and foremost, unparalleled recognition and appreciation to Almighty Allah (SWT) who
gave me the opportunity, determination, strength and intelligence to complete my thesis with
gradual hardship under Brac University.

Due to sole guidance, continuous supervision and consultation, special thanks to Dr. Jia Uddin
for laying the foundation for our thesis concept along with its development process.

For careful notifications and responses, sincere gratitude are also due to honorable faculties Mr.
Rubel Biswas, Amitabha Chakrabarty, and Hossain Arif respectively.

Furthermore, due to consistent but unflinching support and encouragement, I would really like to
express my over-whelming indebtedness to my parents Mrs. Shahida Akhter and Md. Baki
Ullah. Also few peers and friends who were worth mentioning for desired result and completion
throughout the whole time.

5

Table of Contents

Introduction

 1.1 Background 7

 1.2 Motivation 8

 1.2.1 Better CPU time slicing 8

 1.2.2 Potentiality of secure multi-threading programming 8

 1.2.3 Minimizing context switches costs and performance consistency 8

 1.3 Challenges and constraints 9

 1.3.1 Scarcity of test cases 9

 1.3.2 Handling concurrent scheduling and programming complexities 9

 1.3.3 Balancing process prioritization of processes 10

Background Analysis

 2.1 Overview 10

 2.1.1 Scheduling Nomenclature 10

 2.1.2 Scheduling Metrics 11

 2.2 Literature Review 11

Research Design and Feasibility

 3.1 Research Methodologies 14

 3.2 Overview of Feasibilities 15

 3.2.1 Theoretical Feasibility 16

 3.2.2 Programming Compatibility 16

 3.2.3 Technical and Operational Plausibility 17

Algorithm

 4.1 Framework 18

 4.2 Synopsis of Design 18

 4.2.1 Abstraction 19

 4.2.2 Policies 21

6

 4.2.3 Pseudo Code 22

 4.3 Analyses 25

 4.3.1 Algorithmic Analytics

 4.3.2 Comparative Findings 25

 4.3.3 Asymptotic Complexity 26

Experimental Details

 5.1 Estimations 28

 5.2 Experimental Framework 28

 5.3 Procedure 28

Comparative Analysis and Outcomes

 6.1 Introduction 29

 6.2 Illustration 29

 6.3 Comprehensive differentiations 34

Experimentation

 7.1 Explanatory Results 36

Outcomes and Limitations

 8.1 Outcomes and Findings 38

 8.1.1 Empirical Contributions 38

 8.1.2 Algorithmic Contributions 39

 8.1.3 Methodological Findings 40

 8.2 Limitations 40

 Inference

 9.1 Recommendations 42

 9.2 Further Insights and Works 43

 9.3 Conclusion 43

 References 43

7

Chapter 1

 Introduction
1.1 Background

Process Management is one of the mandatory and fundamental tasks for operating system
of any given platform to run different applications. It sententiously depends upon CPU
scheduling algorithms which derive the overall extent of performance of operating
system. In single processor system, non-preemptive scheduling were used, i.e, only one
process can be executed at a time, any other process or processes must wait until the CPU
becomes free. Operating systems today, are moving towards multitasking environments
due to emergence of running multiple process of different level as per usage. Thus, multi-
level programming for process management are implemented to maximize CPU
utilization by having some processes running all the time. But imprudent use and
allocation of the CPU can dwindle the efficiency of system in multiprogramming
environments. More than one processes are being kept in memory to achieve maximum
CPU utilization. As a result, process scheduling still remains an elemental activity of
fulfilling the purpose of the operating system. CPU scheduling is imperative because it
can have immense impact on CPU utilization, overhead and inclusive performance of the
system. Scheduler requires conscientious consideration to ensure fairness and avert

process starvation in the CPU. This allocation involves a scheduler and dispatcher of
long-term, middle-term, short-term basis respectively.

Since the era of multi-programming and multi-threaded scheduling, the default Round
Robin algorithm and its various modification has been eventually used for CPU as non-
monotonic scheduling in newer versions of operating system platforms such as Windows,
Linux, Unix, AIX, Mac-OS respectively. There exists no “pure” form of scheduling
algorithm or RR variations which contemplated lack of efficient queue handling and
implementation of core multi-threading programming (where processes are executed like
threads) etc. As a result of trivial queue implementation and conventional modification,
the existing RR variations tempted to increase CPU overhead, idleness while scheduling
in different types of processes and system-cases. So unlike previous RR variations, the
attained time-slicing CPU scheduling algorithm will be able to remove the kernel-based
complexity of different schedulers by simultaneously scheduling and executing ready
processes.

8

1.2 Motivation

This section discusses three key aspects and factors which essentially motivated me for
research and experimentation for unique but effecting CPU scheduling approaches.

1.2.1 Better CPU time slicing

As per my research and knowledge, till now, the median which has been calculated
trivially has been outperformed the other way of calculation for allocating CPU time slice
unit. But in different input cases, overall performance are negligible due to imbalance of

amount of quantity of time quantum. So I searched for better efficient way to calculate
the “perfect time quantum” which will be ultimately faster but effective way to calculated
and allocate CPU time slices respectively. Thus, ensuring either lower-cost or less
amount of run-time while searching for perfect time quantum ensuring more efficient
execution.

1.2.2 Potentiality of secure multi-threading programming

There is prospective to use secure multi-threading where resources are created, used and
disposed within the thread i.e. concurrently executing multiple processes along with that
of scheduling respectively. Thread switches cost lesser than context switches and can be
faster without falling in dead-lock conditions. Hence, it can be useful in maximizing
overall performance of scheduling and execution of processes arriving in different time
by using only one synchronized and dynamic queue instead of separate ready queue and
blocking queue.

1.2.3 Minimizing context switches costs and performance consistency

Due to multi-processing architecture and development of resourceful computability in the
operating system, I find large possibility of more consistent performance with careful and
intelligent memory allocation and data structures. Despite of different variation of input
cases, hyper-threading can bring notable improvement in decreasing the total time for
scheduling and running processes simultaneously using modern 64-bit processor
architecture. On the other hand, thread switches are faster and cheaper making the cost
and amount of context switches between two processes non-effective in case of longer
lists of processes with high burst time.

9

1.3 Challenges and constraints

Initially, I faced some minor but general challenges while conducting my research
analysis regarding study materials and implementation. Following are the indications
narrating and discussing the constraints.

1.3.1 Scarcity of test cases

Generally, CPU scheduling algorithm are analyzed and experimented with as usual input
or test cases derived from various authenticated and followed textbooks related to the
study of Operating Systems. All the input cases are lists of one of more processes with its
given ID#, amount of burst time and amount of arrival time in specific unit respectively.
Due to few datasets, I also had to consider those trivial test cases along with those of
different articles which were used for their particular experimentation as per similarity of
the input case structures. Otherwise, the availability of most of the possible types of input
cases would not be established for more thorough analysis.

Despite of that, I have also created some of my own sample input cases derived from
above stated resources for more solid and further comparative experimentation of
outcome.

1.3.2 Handling concurrent scheduling and programming complexities

Most of the previous implementation and simulations of state-of-the-art RR variations
were handling either processes arriving at the same time or via multi-programming
instructions to the default queues for those arriving at different times respectively. Hence,
urge of necessity of multi-threading programming for cost and resource effective
execution of processes seemed viable and implementable for next generation CPU
scheduling algorithm. Despite of its programming advantages, handling the con-current
situation, such as, scheduling a process in the dynamic queue accordingly while
executing or continuing allocating CPU time slices for running processes simultaneously
entering the critical section code.

Programming a RR variation for time-shared multi-core system not only requires a deep
understanding of the hardware architecture of the system, but also careful tailoring of the
program to that specific hardware [16]. The coding implementation for exact simulation
were tough due to continuous but dynamically required trade-off between run-time and
space complexities while considering enough thread-safe resource management and its
correctness as per algorithm.

10

1.3.3 Balancing process prioritization of processes

Prioritization of processes has been crucial while effectively scheduling and completing
execution of process in lesser time. It also significant in decreasing CPU overhead and
inner starvation of the processes respectively.
Previously, proper as well as ultimately required priority of processes while scheduling
were balanced via variations of priority queue scheduling. The other extension and due
versions of RR algorithms at best give priority to the processes arriving in ascending

order.
But it does not necessarily balance the priority of the process list as longer ones arriving
at the same time get equal priority and effect overall waiting and turn-around time. Thus,
it consecutively provides enough room for efficiency by coming up with a fixed and
consistent standard of process-ordering while maintaining fruitful delivery of faster
performance.

Chapter 2

Background Analysis

2.1 Overview

The following section elaborates various nomenclature related to CPU scheduling
algorithm for further conceptual clearance.

2.1.1 Scheduling Nomenclature

 It is necessary to be familiar with different scheduling terminologies defined below: [1]

Ready Queue: The processes which reside in Main Memory and waiting for the CPU
time are put in a queue called ready queue.

Concurrent Queue: A ready queue that additionally supports operations that wait for the
queue to become non-empty when retrieving an element, and wait for space to become
available in the queue when storing an element.

11

CPU Utilization: It is defined as the amount of time CPU is in use. Maximizing CPU
utilization is usually the aim of any scheduling algorithm.

Context Switch: Context switch is a process of keeping and restoring context of a pre-
empted process, so the execution can be carried on from the same position at later time.
Context switching is wastage of time and memory which results in increase in overhead
of the scheduler.

Turnaround Time: It is defined as the total time which is used to complete the process,
from entering in to the ready queue till its complete execution.

Waiting Time: It is defined as the total amount of time a process waits in ready queue.

Response Time: It is defined as the time consumed by the system to give first response
to a particular process.

Starvation: It means the long process blocks the way of short process vice versa and the
higher priority process out run the lower priority processes.

Priority: Give preferential treatment to processes with higher priorities.

2.1.2 Scheduling Metrics

Characteristics of good scheduling algorithms are mentioned as follows [1]:

 Minimum CPU overhead, number of context switches and waiting, turnaround, response
time.

 Maximum CPU utilization and throughput.

 Avoid indefinite blocking or starvation.

Enforcement of priorities

2.2 Literature Review

Round Robin is the simplest, fairest and most widely used scheduling technique in timeshared
systems. Use a fixed time slice for scheduling also known as time quantum. It choose process
from head of ready queue and run that process for at most 1 time slice, and if it is not
completed, add it to the end of the ready queue. If that process terminates or blocks before its
time slice is completed, choose another process from the head of the ready queue, and run that
process for at most 1 time slice. It achieves the fairness of resource allocation and result in
minimized response time as compared to the Shortest Job First and First Come First Serve
algorithms. But, due to the static time quantum concept it increases the turnaround time and
waiting time resulting in dilapidation of system performance. Response time is good for short

12

processes, while long processes may have to wait. Fairness factor which penalizes I/O-bound
processes (may not use full time slice). Starvation is not possible as every process is getting the
equal share of time, and the CPU Overhead is low. [1]

Aashna Bisht et al. [1] proposed Enhanced Round Robin algorithm (ERR). ERR allocates CPU
to a process for designated time quantum after the completion of which, it checks the
remaining CPU burst time of the process currently in execution, if the remaining CPU burst
time of the currently running process is less than (average burst time/time quantum) value, then
CPU is again allocated to the currently running process for remaining CPU burst time.

Rami J. Matarneh et al. [1] proposed an algorithm named “Self- Adjustment Time Quantum in
Round Robin Algorithms Depending on Burst Time of the Now Running Processes algorithm
the time quantum is repetitively adjusted according to the burst time of the currently running
processes using median.

Lalit Kishor and Dinesh Goyal [1] proposed median based round robin algorithm. This
algorithm is a blend of two techniques, the processes are arranged in ascending order first, and
then the time quantum is set according to the value of median.

H.S. Behera and Brajendra Kumar Swain [1] proposed an algorithm named “A New proposed
precedence based Round Robin with dynamic time quantum scheduling algorithm for soft real
time systems” in which precedence value is allocated to all the processes according to their
priority and burst time. RR algorithm is then applied on the processes on the basis of their
precedence. This Proposed algorithm is developed by taking dynamic mean time quantum in to
account. Time quantum is computed dynamically by taking the mean of priority values and
burst times.

Ali Jbaeer Dawood et al. [1] proposed an algorithm “Improved Efficiency of Round Robin
Scheduling Using Ascending Quantum and Minimum-Maximum Burst Time” in which
processes were arranged in ascending order with shortest remaining burst time and calculated
the time quantum by multiplying the average summation of minimum and maximum burst
time by (80) percentage. The (80) percentage is chosen depending to two reasons: First, if the
TQ calculated depending only on the summation the algorithm is become as the Short Job First
(SJF). Second, the rule of thumb is that 80 percent of the CPU bursts should be shorter than the
time quantum.

Radhe Shyam and Parmod Kumar [3] on the article “Improved Round Robin with Shortest Job
First Scheduling” proposed an algorithm combining Round Robin with shortest Job first
scheduling. The TQ studied to improve the efficiency of RR and performs degrades with
respect to context switching, Average Wait Time and Average turned around time. The
processes were ascending with shortest remaining burst time and then TQ are given to that
ascending process to CPU and also continue to allocate TQ again if the remaining burst time is
less than 1 time quantum. While ready queue is not empty or any new process enter in the
queue, the execution is regulated. The proposed algorithm (IRRSJF) performs better than
Round Robin (RR), Improved Round Robin (IRR), FCFS and some other scheduling algorithm
in terms of reducing the number of context switches, average waiting time and average
turnaround time.

Anju Muraleedharan et al. [4] lodged an article “Dynamic Time Slice Round Robin
Scheduling Algorithm with Unknown Burst Time” where their approach mainly focuses on
how round robin will perform if the processes burst times are unknown at the beginning. They

13

propose a refinement to simple RR by altering the time quantum while execution. First and
foremost, put a small value to initial time quantum, and carry through the first cycle with this
time quantum. In succeeding cycles, they multiply the time quantum by two if no processes
finished its work. It will scrutinize the number of processes completed in each cycle. If at
least one of them is completed, then continue the next iteration with an unchanged time
quantum. By this method, some of the problems with static time quantum are partially solved.
If the time slice used is larger, then the average waiting time will reduce, in normal cases. But
a factor that affects the average waiting time of the RR is the arrival time of the jobs – if
several new processes arrived in during the execution, then it may cause an increase in the
average waiting time.

Wasim Firuj Ahmed and Sahana Parvin Muquit [5] brought up a new method in their article
named “Improved Round Robin Scheduling Algorithm with Best Possible Time Quantum and
Comparison And Analysis with the RR Algorithm” to find the best possible time quantum to
make the traditional Round-Robin algorithm an efficient one. Instead of usual fixed time
quantum, calculated value of the time quantum unit becomes a rounded-up magnitude of the
square root of the multiple of the median and highest burst time respectively applied in RR
algorithm.

Mohammad Salman Hafeez and Farhan Rasheed [1] proposed an algorithm in ”An Optimum
Dynamic Time Slicing Scheduling Algorithm Using Round Robin Approach” article where the
time quantum is determined dynamically with median value and the continuity of the
execution of a process with the remaining burst time lesser than the time quantum set by the
median value.

Following that, an article paper called “An Enhanced Round Robin CPU Scheduling
Algorithm”, Jayanti Khatri [6] proposed an algorithm is similar to traditional Round Robin
algorithm with a small improvement. The proposed algorithm (ERR) allocates the processor to
the first process of the ready queue for a time interval of up to 1 time quantum. Then it checks
the remaining burst time of the currently running process and if the remaining burst time is less
than or equal to 1 time quantum, the processor again allocated to the same process. After
completing the execution, this process is removed from the ready queue. If the remaining burst
time of the currently running process is longer than 1 time quantum, the process will be added
at the tail of the ready queue.

Omar Hani Mohammad Dorgham and Dr. Mohammad Othman Nassar [7] came up with
attempts to introduce an alternative method in RR algorithm in the paper “Improved Round
Robin Algorithm: Proposed Method to Apply SJF using Geometric Mean” which combines
two algorithms together and calculate a dynamic time quantum using the geometric mean
method to enhance the CPU utilization and minimize the waiting and turnaround time in CPU
scheduling. Geometric Mean can be calculated by applying the nth root of the product of n
numbers, where these numbers is considered as the burst times of the processes, and then take
the ceil of the result as a time quantum. On the other hand, the proposed algorithm will take
into consideration two cases, first one, when the processes have an arrival times, and the
second case, when there is no arrival time. Algorithm will depends on the arrival time, and
here the proposed algorithm applies the second algorithm which it is First Come First Serve to
take the proper process, where the first process enter the ready queue will be execute first.

14

Accordingly, if there exist a process which need more than 1 time quantum, the remaining
burst time will be compared with the other processes burst times by applying the SJF
algorithm to choose the proper process to start execution in the CPU. Without Arrival Time,
the algorithm applies the SJF only to choose the lowest burst time between all processes,
where the shortest burst will enter the CPU for the execution and if the lowest burst time
needs more than 1 time quantum, the remaining burst time will be compared between other
burst times by applying the SJF algorithm, then it will choose the lowest burst time again.

Chapter 3

 Research Design and Feasibility

3.1 Research Methodologies

While constructing and developing the quantitative research, I have analyzed the journals
publishing various latest and also significant RR variations especially along with
ODTSRR algorithm. Primarily, I begin testing hypotheses derived from theory and/or
being able to estimate the size of a phenomenon of interest. Hence, my long-term
research initiatives were followed by considering ODTSRR as randomized control trial
and denoted the main factors such as experimental, control group, along with data
sampling process etc.

Based on time-to-time research and analysis, I took attention to the key focus,

intervention, control of variables derived and followed Quasi-experimental approach as
the quantitative research method. After repetitive pre- and post-test study designs, studies
determined those and other fundamental blocks for proving overall improvement in
performance of ODTSRR initially but along with being thorough with other RR
variations accordingly.

Independent variables falls under the experimental group refer number of processes, total
arrival time, arrival and burst time of each processes etc. Also potential constituents like
con-current execution of processes in a single scheduling queue, way of calculating and
allocating time quantum, following standard protocol for prioritization of processes are
notable for comparative research and experimentation.

15

On the other hand, control group consisted the constant flows of fixed and required
variable such as the flow of IF and ELSE statement along with the static variable stored
in register allocating time slices, null checking of ready queue, variables holding arrival
and burst time of processes respectively.

After in-depth observation and calculation of various types of sample datasets and input
cases gained from previous relevant researches, I were able to accumulate some amount
of reliable experimental data with coherence and patterns for building numerous test
cases for analyzing research outcomes. Despite some randomness in data sets used for

several trials, most data were collection on basis of situational characteristics. Convenient
sampling and experimental modification through some of the datasets are performed
longitudinally to statistically control and analysis the underlying influences on the
dependent, or outcome, variable.

Consequently, proposed algorithm has been programmed via Java SE language for fast
and accurate simulation of each and every test case, in the spirit of rigorous comparison
of outcomes of different metrics measuring performances.

3.2 Overview of Feasibilities

Following section emphasize various factors which denotes the overall feasibility of this
research and experimentation.

3.2.1 Theoretical Feasibility

Feasibility of the research theory mainly pertained to consider major factors of study
aiming consistent and better performance. Specifically the following figure shows that
most of the processes to be scheduled have shorter burst time i.e. less than 10
milliseconds respectively. Proper resource and time slice allocation may impose
probability of more efficiency in scheduling processes in fixed priorities.

While applying Little’s Law in series of test case simulation, IODTSRR sounds highly
feasible for scheduling, better than other RR variations respectively. Also by avoiding
process starvation, no aging required due to fixed standard of prioritization. Thus,
balancing resources with minimum possibility of waiting in queue unnecessary which is
promising for lowering response and waiting time.

16

 Fig 1. Histogram of CPU Bursts Duration

3.2.2 Programming Compatibility

For running parallel applications, the scheduler may use explicit thread and data
placement to achieve the best performance.

Most thread library implementations provide support for pinning threads to assign threads
to specific CPUs (i.e., hardware threads) and to restrict their migration. Thread libraries
on operating systems such as both Windows and POSIX, etc. give clients some control
over thread scheduling. Since the architecture of many-core systems is still evolving,
portability is needed to allow the same program to run well on different kinds of many-
core systems [16].

3.2.3 Technical and Operational Plausibility

The proposed method is derived to be implemented either totally in software, totally in
hardware, or as a hardware/software combination. It has potential for targeting single
CPU architectural platform for many-core processors.

While running in multi-threaded environment, the proposed method have feasibility of
being flexible and independent of individual kernel configurations. It provides capability
for user-level memory management, I/O, interrupt handling tasks etc on behalf of kernel.

17

For Windows kernel, the algorithm can be plausible for implementing in a Windows
kernel synchronization mechanism in IPC (Inter-Process Communication) of WinFSP as
it provide similar characteristics to KQUEUE i.e. kernel portion of I/O completion ports.
By profiling with xperf, system threads were handled for transitioning from the signaled
to non-signaled state by EventSet and EventWait synchronization events. The processed
scheduler may impose its dynamic queue mutually with KQUEUE along with core I/O
Queues which must provide additional services, such as IRP cancelation, IRP expiration,
etc. Proper configuration can be done with independence of re-setting compiler-internal
and library operations, dynamic and static linking with linking library.

Kernels in UNIX or LINUX distribution have easy approach to implement any new or
custom scheduling algorithm. In this cases, the feasibility may be ensured by using any of
the implementation pattern. There are only three files in the default directory
kernel/sched which are : core.c , debug.c , fair.c etc. They are responsible for dispatching
tasks i.e. both processes and threads as they are treated as same in the Linux kernel
scheduler.

System Administrator may have create new .c file and attempt to duplicate the key
functions such as CONFIG_SMP, CONFIG_FAIR_GROUP_SCHED etc and implement
structure for e.g. sched_class fair_sched_class inside the default fair.c file holding the
scheduler which runs CFS (Completely Fair Scheduling) algorithm. Initial functions will
have to be wiped away from memory after the kernel have executed them during startup.
Then he/she have to set the init() routine as general scheduling class initialization
routines to initial modified structures along with the functions. At runtime, scheduling

class which is used is configurable - just switching via the use of function pointer, and so
inside core scheduling related file.

18

Chapter 4

Algorithm

4.1 Implementation Framework

Framework assumption is extremely crucial while scoping the design and implemental

criterias of any good algorithm wheter its for Scheduling or finding the shortest path from
complex graph. I considered maximum traditional implementation in OS kernel and
process scheduler as a “whole and complete” scheduling dispatcher rather than most of
the CPU scheduling algo according to configuration parameters, process behavior, and
user requests.

IODTSRR follows the time-sharing policy for adjusting process priorities to balance the
throughput of processes that use a lot of CPU time, while allows task parallelism at
high level of abstraction. This results in formulation of more tractable scheduling
problems which in classical form are computationally hard.

4.2 Synopsis of Core Design

In broader perspective, the principal requirement from any short-term CPU scheduler like
IODSRR is process handling. However, some kernel i.e those of Linux distributions treat

processes and thread kind of equally where thread is executed and get allocation of
virtual memory spaces as light-weighted processes.

It is core conditionality of the scheduling dispatcher like IODTSRR to be able to provide
high-level guidance while balancing the level of abstraction and the amount of control
while imposing in Kernel as scheduler respectively.

As mentioned earlier, designing have also considered hardware and software
compatibility of single CPU architectural platform for many-core processors. In a single
processor system, no kernel process and no time-sharing process runs while a runnable

real-time process exists while also having compatibility for multi-processor scheduling
along with adjusting itself for concurrent thread scheduling too.

Being immune to I/O interruption, cache-memory loss and management complexities are
considered in design development. I also emphasized in developing dynamic but easily
configurable structure of algorithm in respect of assigning it to any OS kernel as main
scheduler while following Multi-threading and synchronization nomenclature etc.

19

4.2.1 Abstraction

When the list of processes to be scheduled has same arrival time, time quantum is also
calculated dynamically using the proposed calculation of median. The processes are arranged
in ascending order with the shortest remaining CPU burst time and placed accordingly in the
priority queue. The median value is set as the time quantum which will be the value of CPU
Time Slice. If the process is in its execution state and consumed its time slice and its remaining
CPU burst time is less than or equal to the time quantum, the CPU will continue its execution
till it finishes, Otherwise the process will be placed at the end of the dynamic queue (Here, it is
performing like a Synchronized Ready queue). After all the processes in the ready queue are at
least once attended by the CPU, it will again sort the process in ascending order with shortest
remaining burst time. If a process is suspended by CPU for I/O wait or other reasons, the very
same queue will dynamically perform as a Synchronized Blocking queue where the process
will be placed in and will stay there until the waiting state is over.

If the list of processes to be scheduled has different arrival times, time quantum for executing
processes is calculated differently before and after all the processes arrived in the queue. Let, N
be the total time required for the arrival of all the processes and k be the arrival interval of the
processes arrived already. At first, add the processes in the queue (one or multiple) arriving in
kth interval (where k<=N and initially k = 0). The queue execute those processes based on my
modified FCSJF algorithm till the next (k+1)th time interval arrives. When the summation of
the arrival interval of the processes become equivalent to the total arrival time of all processes,
I perform ODTSRR with my modified median to the processes either added or have remaining
CPU Burst Time existing in the same queue.

First Come Shortest Job First (FCSJF)

The time quantum for executing the process is also calculated dynamically using the proposed
calculation of median. The process ready for the execution are placed in the dynamic queue.
At first processes are arranged in ascending order with the shortest remaining CPU burst time
on basis of early arrival. After sorting, if the processes is in its execution state and consumed
its time slice, the processes only with remaining CPU burst times will be placed at the end of
the queue. After all the processes in the queue are at least once attended by the CPU, it will
again sort the process in ascending order with shortest remaining burst time respectively.

20

Fig 2. Flowchart of basic design of IODTSRR algorithm

4.2.2 Policies

In this algorithm, the processes are arranged in ascending order according to their burst
time’s existent upon early arrival in the ready queue. Instead of using static time slices. I
also used optimum time slicing approach where heuristic and multi-level programming
reformation dynamically change the basis of calculating Time Quantum (i.e. Time
Quantum is calculated differently before and after the completion of arrival of all the
processes to be scheduled).

21

For scheduling and executing the ready queue where all the process have same arrival
time, I modified ODTSRR algorithm where my proposed modified median is calculated
and used only if there exist even number of processes in the queue respectively.

4.2.3 Pseudo Code

Begin

1. Initialize, Ready_queue, Number_of_process, Arrival_counter, Total_arrival_time.
2. IF (Total_arrival_time> 0 && Arrival_counter != Total_arrival_time)
3. While (Arrival_counter<= Total_arrival_time)
4. If (Arrival Time of Process[Number_of_process] == Arrival_counter)
// Number_of_process indicates which process to arrive next

Add the Process to Ready_queue;

Number_of_process = Number_of_process + 1; // Referring the next immediate Process

EndofIf

5. Else

Sort Elements in ascending order of remaining CPU burst time based on the order of
arrival

6. If (Ready_queue != NULL)

Arrival_counter = Arrival_counter +1;

7. Start Execution // Processes placed in Ready_queue

Time Slice = 1;

8. If (Remaining Burst Time>0)

22

 Place the process with remaining burst time at the End of the Ready Queue.

EndofIf

EndofIf

EndofElse

EndofWhile

EndofIF

9. ELSE

 10. While (Ready_queue!=NULL)

 11. For, Sort Elements in Ascending Order

 Calculate Median_Value

 If (Odd)

 Select Middle; //Trivial median value

 If (Even)

 Select Ceiling (Middle + (Middle-1))/2; // Optimizing the median value

 12. Start Execution //Ready Queue

 Set TQ = Median_Value;

 13. For, all Processes Entering CPU

IF (Remaining Burst Time <= Time Quantum)

 Time Slice = TQ + Remaining Burst Time // Continued Execution of the process

23

Else

END of Iteration.

Place the process at the End of the Ready Queue.

EndofIF

EndofFor

Endof WHILE

Endof ELSE

End

The above pseudo code of the algorithm is explained step by step as follows:

Step 1: Initialize the Number_of_process as the serial number of the process,
Arrival_counter as a counter of the arrival time intervals (k), Total_arrival_time as the
total value of the arrival times of all the processes along with the Ready Queue, where
the processes are placed by the Long-term scheduler.

Step 2: In the 2
nd

step, the algorithm defines an IF statement for a check whether the
processes arrives at the same time or not. If multiple processes arrives in different times and
also the counter of the arrival time intervals are not equal to Total_arrival_time, then
perform the following tasks. Else go to Step 11.

Step 3: While the counter of the arrival time intervals is less than or equal to
Total_arrival_time, perform the following tasks respectively.

Step 4: In the 4
th

step, the algorithm defines an IF statement for a check whether the arrival
time of the process arrives at the same arrival time interval or not. If yes, we add all the
processes arriving in that arrival time interval by referring the Number_of_process to the
next immediate process. Else perform the following task.

Step 5: Sort all the processes in the queue in ascending order of remaining CPU burst
time based on the order of their arrival.

Step 6: Next arrival time interval is referred to Arrival_counter. If there are any
processes available in the queue, perform the following task.

24

Step 7: Set CPU Time Slice = 1. Here, Time Quantum is not calculated and necessary to
refer it as CPU Time Slice. Start the execution of the first process from the sorted queue.

Step 8: If the remaining CPU burst time of the process is greater than zero, place the
process at the end of the queue.

Step 9: All the processes has arrived. They have been fully or partially executed.

Step 10 to 14: Check whether the queue is empty or not and perform IODTSRR
algorithm accordingly. Here, the previous algorithm (ODTSRR) set the Time Quantum
and CPU Time Slice equal to the median value obtained from my proposed calculation
respectively.

4.3 Analysis

The following section has huge fundamental research impact in order to proof the correctness
and performance magnitude by continuous analysis via thorough observation, comparison,
experimentation, simulation. The in-depth analytical insights are discussed in the following
sub section for clear understanding.

4.3.1 Algorithmic Analytics

The FCFS is better for a small burst time. The SJF is better if the process comes to processor
simultaneously. While Round Robin is better to adjust the average waiting time desired [2], I
have considered the above relative insights correspondingly. The processes are arranged in
ascending order according to their burst times upon early arrival in the ready queue. Instead of
using static time slices. I also used optimum time slicing approach where heuristic and multi-
level programming reformation dynamically changes the basis of calculating Time Quantum.
For scheduling and executing the ready queue where all the process have same arrival time, I
modified and used ODTSRR algorithm where my proposed modified median is calculated and
used only if there exist even number of processes in the queue respectively.

It might be considered as modified form of existing Optimum Dynamic Time Slicing Using
Round Robin Scheduling Algorithm (ODTSRR). Rather than the use of different queues
during scheduling, I used a concurrent dynamic queue as both ready and blocking queue
respectively. The CPU Time Slice for process execution is calculated dynamically on basis of
complete arrival of processes.

25

4.3.2 Comparative Findings

One or multiple processes can be scheduled in the queue upon instant arrival while the current
process gets fully or partially executed. Unlike ODTSRR, where no other processes can be
scheduled in the queue before the execution of the current processes is fully completed,
scheduling and execution can be done simultaneously. Due to dynamic nature of the
calculation of time quantum and process handling in the queue, lesser CPU overhead and
higher throughputs are unavoidable for larger input respectively. Whereas, the performance of
ODTSRR decreases significantly and gradually when scheduling processes arriving in
different times as both scheduling and execution cannot be done at the same time.

Importantly, in IODTSRR, if multiple processes with same remaining CPU burst time are
scheduled, the processes with earlier arrivals will get the chances to be executed foremost.
Hence, CPU will be implementing real time enforcement of priorities to always avoid Dead-
lock condition and starvation as being functioned like a blocking queue respectively.

4.3.3 Asymptotic Complexity

IODTSRR calculates the value of median in O (n (log n)) in both average and worst cases
respectively for total n number of processes in the queue respectively. [8].

When one or more processes in the scheduler all arrives at the same time, IODTSRR and
ODTSRR will be executed in O (n (n+1) (log n)) for all n > 0 in every cases.

When processes arrives at different times, ODTSRR runs in total of O (n^2(n+1) log n)
and O (n (n+1) log n) during worst cases (i.e. neither one nor multiple processes arrives at
the same time). Thus, exponential growth of total runtime occurs when there are large
number of processes to be scheduled.

Whereas, complete execution of processes arriving at different times with IODTSRR will
be in O (n^2 (log n)) in best and average cases. In worst case scenarios, the runtime
complexity will be equal to either (n^2 (log n)) or (n (n+1) (log n)) + (n^2 (log n)) which
fairly depends on the pattern of arrival of the process along with the variance of its burst
time. Consequently, quick but constant rate of improvement in scheduling performance
can be further noticed. In the Table 1, the total amount of runtime cost occur when both
algorithm is scheduled for 5<= Tn <=200 are given in the next page as follows.

26

TABLE I

Calculation of Asymptotic Complexity of ODTSRR and IODTSRR

Amount of
Processes

ODTSRR IODTSRR

5 125.81 38.44

10 1210 210

20 11475.08 1066.84

50 220951.05 8579.8

75 812276.54 21235.07

100 2040200 40200

150 7442558.52 184542.61

200 18592782.57 184542.61

Fig. 1. Difference of the asymptotic complexities between ODTSRR and IODTSRR for 5 <= ∑n <= 200.

 The above presentation of data in tabular format (Table 1) and graph chart (Fig 1) both
theoretically conclude promising performance results of IODTSRR having not only constant but
also quadratic rate of improvement in each and every cases comparative to ODTSRR.

27

Specifically, when there are 50 or more than that number of processes assumed to be of same
priority have to be executed fairly while taking lesser time.

 Chapter 5

Experimental Details

5.1 Estimations

The processes are homogenous and independent of both full and reduced level of
computational time requirements. The system runs the algorithm only when it is in a
stable state, that is, p < l/R. Irrespective of I/O bound, all processes are CPU bounded
.The time unit is considered to be millisecond (ms). All attributes like burst time, number
of processes and the time slice of all the processes are known before submitting the
processes to the processor as performance metrics.

In-depth analysis and calculation of the evaluation metrics states overall and average
performances of most of the state of the art variations in RR algorithms published
periodically especially before and after ODTSRR are either less or equal to that of
ODTSRR respectively.

5.2 Experimental Framework

The experiment consists of a number of input and output parameters. The input
parameters consist of Burst Time<BT>, arrival time<AT>and total number of processes

<Tn>. The output parameters consist of average response time, average waiting time,
average turnaround time and number of context switches, fairness factor, throughput and
CPU overhead.

28

5.3 Procedure

Suggested algorithm can work effectively with large number of data input and cases. In
order to prove the supremacy of performances and standard of our proposed algorithm,
same data sets used in the experimentation of ODTSRR along with mentioned RR
variations are considered directly as majority of test cases of the proposed algorithm.

Chapter 6

Comparative Analysis and Outcome

6.1 Introduction

I have compared our proposed algorithm on basis of all mandatory performance metrics
and results with only that of ODTSRR as it’s the considered standard algorithm in my
comparative analysis. Instead of the traditional approach where the processes in blocking
and ready state are stored in two separate queues, a concept of only one synchronized
blocking queue is considered.

Thus, it can perform much faster than both ready and blocking queue together for being
able to handle concurrency dynamically.

6.2 Illustration

Example 1

The above algorithm is exhibited along with considerable empirical evidence as follows:

Let’s assume 8 processes named P1, P2, P3, P4, P5, P6, P7 and P8 are given with their
respective CPU burst time and arrival time.

29

 Input Table

Process ID Arrival Time CPU burst time

P1 1 20

P2 2 69

P3 3 53

P4 4 94

P5 5 82

P6 6 36

P7 7 100

P8 8 7

A queue with eight processes P1, P2, P3, P4, P5, P6, P7 and P8 has been considered for
illustration purpose. The processes are arriving at time 1, 2, 3, 4, 5, 6, 7, 8 with burst
time 20, 12, 15, 60, 42, 9, and 19 respectively.
First, we initialize our queue along with the important variables. Set the
Number_of_process = 8, Arrival_counter = 1(the arrival time of P1) as arrival time
interval and Total_arrival_time = 8 (i.e. the arrival time of the last process i.e. P8).
Therefore, the processes arrive in different time interval so the dynamic queue will not
perform IODTSRR directly.

When Arrival_counter = 1 or 1st second, only P1 is added to the queue as no other
processes arrived at that time.The Number_of_process is referred to P2.
Then we execute it for only one millisecond (ms), keep it in the queue and increment the
Arrival_counter by 1.

When Arrival_counter = 2, P2 is added along with P1 in the queue and the
Number_of_process is referred to P3. As no more processes will arrive at 2nd second,
the Arrival_counter will be incremented by 1 indicating the arrival time of one or more
processes coming in the next arrival time interval (k+1th) . Sort the processes’ serial ID
for execution in the queue according to their burst time in ascending order then to their
arrival time in descending order respectively. The first available process in the sorted
queue will be executed with a constant CPU Time Slice unit only till (k+1)th interval.
Here P1 is executed for another 1 millisecond (ms) with remaining burst time of 18
millisecond (ms).

30

At 3rd second, P3 arrives and added to the queue. The Number_of_process is referred to
P4. As no more processes will arrive at 3rd second, the Arrival_counter will be
incremented by 1. After sorting the order of the processes in the queue, P1 will be
executed for 1 ms again having 17 ms remaining.

At 4th second, P4 arrives and added to the queue as usual. The Number_of_process is
referred to P5. The Arrival_counter will be incremented by 1. As no more processes will
arrive at 3rd second, the order of the processes are sorted in the queue and P1 will be
executed for another 1 ms accordingly.

At 5th second, P5 added to the queue as usual. The Number_of_process is referred to P6
and also Arrival_counter will be incremented by 1. As no more processes will arrive at
5th second, P1 will be executed for another 1 ms with remaining burst time of 15 ms
after sorting the order of the processes in the queue.

At 6th second, P6 arrives and added to the queue. The Number_of_process is referred to
P7 and Arrival_counter will be incremented by 1. As no more processes will arrive at 6th
second, P1 will be executed for another 1 ms with remaining burst time of 14 ms after
sorting the order of the processes in the queue accordingly.

At 7th second, P7 added to the queue. The Number_of_process is referred to P8. As no
more processes will arrive at 7th second, P1 will be executed for another 1 ms with
remaining burst time of 13 ms after sorting the order of the processes in the queue.
Arrival_counter will be incremented by 1 indicating next process will arrive at k+1th

arrival time interval respectively.

At 8th second, P8 arrives hence added to the queue. Both Arrival_counter and the
Number_of_process will be incremented by 1 indicating whether next process (one or
multiple) will arrive at k+1th arrival time interval respectively. P8 will be executed for
only 1 ms with remaining burst time of 6 ms after sorting the order of the processes in
the queue. Since, Arrival_counter is now greater than Total_arrival_time and all the
processes have arrived in the queue whether partially executed with a single context
switch, this very queue will start executing its processes using IODTSRR algorithm.

Now, the processes P1, P2, P3, P4, P5, P6 , P7 and P8 in the queue are arranged in the
ascending order of their burst time in then in descending order of their arrival time which
gives the sequence P8, P1, P6, P3, P2, P5, P4 and P7. The time quantum value is set
equal to the median value obtained from proposed calculation i.e. 45 (it’s the ceiling of
round value of 44.5). CPU time slices for a time quantum of 45 milliseconds (ms) is
allocated to the processes P8, P1, P6, P3, P2, P4 and P7 respectively.

During first cycle, the remaining burst time for the processes P8, P1, and P6 will be
exactly equal to zero. Now it is turn to execute P3, P3 CPU burst time is 53 and the

31

allotted time slice is 45 which means it need 8 ms to complete its execution and it is less
than or equal to the time quantum i.e. 45. CPU will continue its execution till it finishes,
it will take 8 ms more to complete its execution. Next process in the ready queue is P2
and its CPU burst time is 69 ms. 45 ms will be allotted to P2, but the remaining burst
time for P2 will be 69 - 45 = 24, which is also less than or equal to the time quantum i.e.
45. CPU will also continue its execution for another 24 ms to finish it.
The following process in the queue is P5 and its CPU burst time is 82 ms. 45 ms will be
allotted to P5 as usual but the remaining burst time for P2 will be 82 - 45 = 37, which is
also less than or equal to the time quantum i.e. 45. CPU will let continuing the execution
of the process till it completes.

Except the only context switches for P1 during the completion of arrival of all the
processes, it also means that P8, P1, P6, P3, P2 and P5 processes will be completed
without any context switch after that, thus completing in 15, 28, 64, 117, 186 and 268 ms
respectively.

Next process following in the queue is P4 and its CPU burst time is 94 ms. 45 ms will be
allotted to P4; the remaining burst time for P4 will be 94 - 45 = 49, which is greater than
the time quantum i.e. 45.CPU will stop its execution after 45 ms and place it at the end of
the queue.

The immediate process in the queue is P7 and its CPU burst time is 100 ms. 45 ms will be
allotted to P7, but the remaining burst time for P7 will be 100 - 45 = 55, which is also
greater than the time quantum i.e. 45. Hence, CPU will stop its execution after allotting
45 ms to P7 and place it at the end of the queue.

One cycle of execution is completed. Again, the processes in the ready queue will be
sorted in ascending order with respect to their remaining CPU burst time. There are only
two processes left in the queue i.e. P4 and P7 respectively. After sorting the order will be
same in this case as P4’s remaining burst time is less than that of P7. Now, time quantum
will be set to 52 after taking the proposed improved median value. As the process at the
front of queue is P4 with its remaining CPU burst time 49 ms, time quantum 52 ms will
be allotted to the process P4 and it will complete its execution and leave CPU just after
49 ms. Now there is only one process remaining in the ready queue P7 with its remaining
burst time 55 ms, time quantum 52 ms will be allotted to P7 but the remaining burst time
for P7 will be 55 - 52 = 3, so the CPU will complete its execution.

Thus, P2 and P5 processes will be completed with two context switches making total no.
of context switches to 3 which might degrade the overall performance either gracefully or
in negligible margin

32

Gantt Chart
IODTSRR

P1(19) P1(18) P1(17) P1(16) P1(15) P1(14) P1(13) P8 P1 P6 P3 P2 P5 P4 P7

1 2 3 4 5 6 7 8 15 28 64 117 186 268 362 462

Average Response time: 124.75 ms

Average waiting time: 125.63 ms

Average turnaround time: 183.25 ms

No of Context switches: 3

Fairness: Yes

Starvation: No

Gantt Chart

ODTSRR
P1 P8 P6 P3 P2 P5 P4 P7

1 21 28 64 117 186 268 362 462

Average Response time: 126.38 ms

Average waiting time: 126.25 ms

Average turnaround time: 184 ms

No of Context switches: 0

Fairness: Yes

Starvation: No

33

Example 2

Now, let us look at another test case and analysis of ODTSRR and IODTSRR are shown
below:

Let 5 Processes P1, P2, P3, P4 and P5 all are arriving at zero millisecond (ms) with their
burst time of 140, 75, 320, 280 and 125 ms respectively.

The Gantt chart of my proposed algorithm and ODTSRR illustrating the scheduling and
execution of the process in each step is shown in Table 2 and 3 perceptively.

In accordance with, the result of summation of average of turn-around, waiting and response
times of every process are mentioned as follows.

Gantt Chart

IODTSRR

P2 P5 P1 P4 P3 (180) P3

0 75 200 340 620 760 940

Average Response time: 247 ms

Average waiting time: 247 ms

Average turnaround time: 435 ms

No of Context switches: 1

Fairness: Yes

Starvation: No

Gantt Chart

ODTSRR

P2 P5 P1 P4 (140) P3 (180) P4 P3

0 75 200 340 480 620 760 940

34

Average Response time: 219 ms

Average waiting time: 275 ms

Average turnaround time: 463 ms

No of Context switches: 2

Fairness: Yes

Starvation: No

6.3 Comprehensive differentiations

The experiential comparison in scheduling approaches, performances, data structure
along with limitations between ODTSRR and my proposed IODTSRR are explained as
follows:

Improved ODTSRR:

1. One or multiple processes can be scheduled in the queue upon instant arrival while
the current process gets executed (fully or partially).

2. Scheduling and execution can be done simultaneously.
3. Average Response Time greatly improved due to FCSJF where every processes

arriving during in every arrival time intervals gets fair chance of execution with
constant CPU Time Slices. The summation of it equals to the desired Time Quantum
respectively.

4. Average Waiting Time also decreases significantly due to FCSJF along with the
proposed calculation of the median value for setting it as Time Quantum. As a result,
the longer processes avoid indefinite blocking and starvation.

5. The average amount of time to complete the execution of one process is less than or
equal to that of previous algorithm.

6. Overall performances either remain same or improve significantly if the queue has
multiple numbers of processes arriving at the same time.

7. Less CPU overhead due to concurrent scheduling and execution of processes in the
queue.

8. More throughputs in most of the cases.
9. Due to the dynamic nature of the Time Quantum, it is calculated differently before

and after the completion of arrival of all the processes to be scheduled.
10. Instead of the traditional approach where the processes in blocking and ready state

are stored in two separate queues, a concept of only one synchronized blocking
queue is considered. It can perform much faster than both ready and blocking queue
together for being able to handle concurrency dynamically. Importantly, it will allow

35

CPU to always avoid Dead-lock condition while functioning like a blocking queue
simultaneously.

11. Its multi-level programming requires hardware virtualization causes overhead of the
main memory.

12. Less number of context switches as a process gets fully executed if its remaining
burst time is not only less than but also equal to the current value of the Time
Quantum. The optimizations of the value of Time Quantum with the proposed
median value decrease the chance of unnecessary context or even thread switches
respectively.

13. If multiple processes with same remaining CPU burst time are scheduled, the
processes with earlier arrivals will get the chances to be executed foremost. This
enforcement of priorities increases fairness of the algorithm without any starvation.

14. Fairness is always guaranteed due to FCSJF where time slice for all Processes are 1
leading to desired TQ. Also for improvement in median value in ODTSRR.

ODTSRR:

1. No other processes can be scheduled in the queue before the execution of the current
processes is fully completed.

2. Scheduling and execution cannot be done at the same time.
3. Average response time is much higher as the time quantum is set to the trivial

median formula, the waiting time for each process cannot get better even though they
arrive.

4. Average waiting time is also higher in case processes arrive at different times.
5. Average turnaround time is greater than or equal to that of proposed algorithm.
6. Overall performance is constant only when all the process arrives at the same time. It

decreases significantly when it arrives at different time.
7. More CPU overhead.
8. Less or equal throughput in many cases.
9. Static nature of calculation of Time quantum done dynamically.
10. The concept of tradition ready queue was used for process scheduling.
11. Does not require hardware virtualization hence no memory overhead.
12. The number of Context switches is constant.
13. Real time enforcement of priorities was not implemented. It might affect the fairness

and create chances of starvation.

36

Chapter 7

Experimentation

7.1 Explanatory Results

Overall performances of above algorithms on all types of input dataset used for analysis
are stated in Fig 2 and Table 5 respectively. The test cases are used as input individually
in respect of its types and complexities, where each test case represents any queues or list
of processes to be scheduled and executed.

TABLE V

Complete projection of sum of the average
Turn-around, waiting and response time of all input cases

Metrics ODTSRR IODTSRR

Mean Turnaround Time 79.15 75.08

Mean Waiting Time 52.66 48.06

Mean Response Time 41.95 41.73

37

Complete projection of sum of the average turn-around, waiting and response time for n amount of test cases

(where ∑ n = 32).

Consecutively, illustration of the performance gap between my proposed algorithm and
ODTSRR when both are executed on the list of processes in queue (where at least one or
more process arrives in different time) are stated as follows in Table 6 along with
corresponding graph chart in Figure 3.

TABLE VI

Cumulative difference of sum of the average turn-around,
Waiting and response time of list of processes

Scheduled in dissimilar arrival times

 Metrics ODTSRR IODTSRR

Mean Turnaround Time 216.97 212.3

Mean Waiting Time 154.64 149.83

Mean Response Time 153.95 148.58

79.15

52.66

41.95

75.08

48.06

41.73

38

Fig Cumulative difference of sum of the average turn-around, waiting and response time of n number of
test cases scheduled in dissimilar arrival times(where ∑n = 21 respectively).

Thus, all the tabular data and graphs resulted above from competitive test cases ensures
that my proposed method ultimately takes lesser turn-around, waiting and response time
than ODTSRR for scheduling processes at the same or different time period of their
arrivals. Especially when there are large amount of processes in queue to be executed, no
matter it have same or different priorities or extreme variation of their burst time
consequently.

Chapter 8

 Outcomes and Limitations

8.1 Outcomes and Contribution

Here, I discussed the various insightful outcomes and contribution of the research
underlying to improve application throughput and overall system utilization.

216.97

154.64 153.95

212.3

149.8 148.58

39

8.1.1 Empirical Contribution

My research accumulated and developed improved datasets with reliability, the
programming runs explicit thread and data placement to achieve the best performance for
their parallel applications. Faster cache allocation and management at the end of every
scheduling dispatched via minimum required flag pointer (Total arrival time) are found
along with being compatible with virtualization of modern hardware architectures.

Derived Blocking queue can be able to handle thread communication delays while
dispatching multiple number of scheduling with IODTSRR concurrently. allow clients to
specify a scheduling policy and priority for their threads. Furthermore, thread libraries
typically provide some support for binding a thread where to run threads and allocate data
to one or more processors. The dynamic queue utilizes a coherent shared memory model
with a single shared address space and runs the application thread in hardware thread
(HWT) although this may have NUMA characteristics due to hierarchical caches.[16]

As kernel scheduler allows the user to provide a small amount of additional information
such as whether to emphasize load balancing or proximity to data, and whether gang

scheduling is required. Because scheduling dispatcher does not require the developer to
supply architecture-dependent information, such as the specific cache level threads
should share, it helps to preserve the application portability that general-purpose
developer’s need [16].

8.1.2 Theoretical Contribution

 The proposed scheduling method have shown immense contribution in fixing
consistent and effective standard of process-ordering in a scheduler which differs it from
other RR variation as per its excellency.

The dynamic allocation of the CPU Time slice with time quantum which is calculated
and used as time slice each time for decreasing any possible CPU Idleness and resource
wastes. Also by careful instructional approaches, not bringing software-based
architectural complexity of scheduling processes while multi-threading via arrival time

interval for single many-core processors bring a lot of theoretical senses in effective
development of CPU scheduler.

40

8.1.3 Methodological Contribution

Introduction of concept of dummy-threading while coding the IODTSRR algorithm has
been a major turn-up as a portrait of clever trade off against memory allocation for
efficient and faster scheduling performances.

Despite the traditional fixed thread-to-processor mappings, the proposed programming
of the algorithm have compatibility to it would be reasonable for the operating system
to control only the number of processors granted to a parallel application and leave the
control of the threads to the application (i.e. to the compiler and the programmer)[16].

Threads distribution widely among the different CPUs is beneficial. On the other hand,
the threads of array-based programs typically share data heavily, so scheduling the
threads on nearby CPUs to share data in common caches provides the best
performance.

8.2 Limitations

Primarily, the algorithm targets single CPU architectural platform for many-core
processors. It will be essential to reduce shared cache misses since the on-die caches of
many-core processors will be relatively small for at least the next several years, and
memory latencies have grown to several hundred cycles [7].

Similarly, choosing which threads run concurrently on a processor is important since
cache contention and bus traffic can significantly impact application performance. It can
also be important to decide which threads to run on each core since simultaneous-
multithreaded (SMT) cores share low-level hardware resources such as TLBs among all
threads. Interrupts, in OS terms, creates both hardware and software-based boundaries in
two flavors:

Hardware interrupts - those initiated by an actual hardware signal from a peripheral
device. These can happen at, (nearly) any time and switch execution from whatever
thread might be running to code in a driver. Hardware peripherals can rapidly make
threads ready/running that ware waiting for data from that hardware, without any latency
resulting from threads that do not yield or waiting for a periodic timer reschedule.

Software interrupts - those initiated by OS calls from currently running threads. Either
interrupt may request the scheduler to make threads that were waiting ready/running or
cause threads that were waiting/running to be preempted.

On multicore systems, the OS has an interprocessor driver that can cause a hardware
interrupt on other cores, so allowing the OS to interrupt/schedule/dispatch threads onto
multiple cores.

41

High memory requirements, been a considerable resource problem in processing, it has
not yet been assessed how to optimally distribute partitions and/or alignment sites to
processors, in particular when the number of cores is significantly smaller than the
number of partitions. I find that, by distributing partitions (of varying lengths)
monolithically to processors, the induced load distribution problem essentially
corresponds to the well-known multiprocessor scheduling problem.

Chapter 9

Inference

9.1 Recommendations

As a result, one challenge for mainstream many-core programming is to develop
mechanisms that provide the ability to do HPC-style customization for performance but
do not compromise portability and programmability [16].

It will be essential to reduce shared cache misses since the on-die caches of many-core
processors will be relatively small for at least the next several years, and memory
latencies have grown to several hundred cycles [7]. Similarly, choosing which threads run
concurrently on a processor is important since cache contention and bus traffic can

significantly impact application performance. It can also be important to decide which
threads to run on each core since simultaneous-multithreaded (SMT) cores share low-
level hardware resources such as TLBs among all threads.

The proposed algorithm is not suitable for parallel scheduling and divisible
computational task. Thus, Co-scheduling is a scheduling policy proposed to avoid these
difficulties. Co-scheduling consists in granting simultaneously (in the same time
quantum) the processors to the threads of the same application. It has been demonstrated
in that co-scheduling performs quite well in a wide range of conditions and for various
models of parallel applications. In the performance of a parallel application using barrier
synchronization was studied. The co-scheduling policy (called here gang scheduling) has
been compared, both theoretically and in practice, with blocking. In blocking the thread
releases a processor as soon as it completes its share of the work. For coarse-grain
parallelism blocking performs well. For parallel application co-scheduling is better. Thus,
co-scheduling is postulated in parallel systems. Observe that co-scheduled applications

42

occupy several processors at the same moment of time and as such are multiprocessor
tasks [15].

9.2 Further Insights and Works

For future work and potential research studies, I have great hope to modify the IODTSRR
further and recommend making it cross-kernel compatible scheduler as per due points
mentioned below:

 Divisible Task Concept

 Formulation of algorithms for scheduling preemptive multiprocessor

 Experimentation with tasks having linear speedup on parallel processors.

 Formulation of low-order complexity algorithms for scheduling preemptive

 Scheduling multiprocessor tasks with linear speedup for mean completion time

criterion

 Formulation of polynomial-time algorithms for scheduling preemptive

 Scheduling divisible tasks on other architectures.

Soon in the near future, practical verifying divisible task concept for other applications
and other architectures. Can portfolio huge possibilities for many-core hardware threads
running much software threads respectively.

9.3 Conclusion

I believe, from the above illustration of results and comparative analysis, IODTSRR as
“complete” CPU scheduling algorithm has overall ascending performances not
specifically scheduling and executing processes arriving in different times than other but
also that of one or multiple processes arriving at the same time respectively. The
suggested architectural implementation of a singular dynamic queue rather than handling
that of both ready and block queue shows significant possibilities of decreasing but
consistent run-time complexity of executing and scheduling processes. Unlike other
variations of RR algorithm, the approached method effectively calculates the Time
Quantum being feisty and performs its dynamic allocation as CPU time slice unit too. It
ensures lower-cost along with decrease of context switches between longer processes due
to CPU resources utilization by multi-threading programming. Despite of hardly
sufficient input cases available i.e., both custom and derived for testing the benchmarks,
the stated performance can be observed by operating in the offered dynamic queue
architecture. For very long list of process scheduling, the trade-off with space and
negligible cost in thread and context switches against CPU idleness can be worth
considering. Further extension of research in the future, faster modification of the

43

algorithm with intelligent CPU resource utilization and con-currency handling of
scheduling can be possible. IODTSRR may have practical employment and fruitful
experimentation when accordingly imposed in the real time operating system and along
with other version of known OS platforms such as Windows, Linux, MacOS etc.

References

[1] Mohammad Salman Hafeez, and Farhan Rasheed, “An Optimum Dynamic Time Slicing Scheduling

Algorithm Using Round Robin Approach,” IJCSIS, vol. 14, pp. 778-798, Jun. 2016.

[2] Andysah Putera, and Utama Siahaan, “Comparison Analysis of CPU Scheduling : FCFS, SJF and Round
Robin,” IJEDR, vol. 4, no. 3, pp. 124-131, Jul. 2016.

[3] Radhe Shyam, and Parmod Kumar, “Improved Round Robin with Shortest Job First Scheduling,”

IJARCSSE, vol. 5, no. 3, pp. 156–162, Mar. 2015.

[4] Anju Muraleedharan et al. (2016, February). Dynamic Time Slice Round Robin Scheduling Algorithm
with Unknown Burst Time. INDJST [Online]. 9(8). pp. 1-6. Available:
http://www.indjst.org/index.php/indjst/article/view/76368

[5] Wasim Firuj Ahmed, and Sahana Parvin Muquit, “Improved Round Robin Scheduling Algorithm with
Best Possible Time Quantum and Comparison And Analysis with the RR Algorithm,” IRJET, vol. 3, no. 3,
pp. 1357-1361, Mar. 2016.

[6] Jayanti Khatri, “An Enhanced Round Robin CPU Scheduling Algorithm,” IOSRJCE, vol. 18, no. 4, pp.
20-24, Jul.-Aug. 2016.

[7] Omar Hani Mohammad Dorgham, and Dr. Mohammad Othman Nassar, “Improved Round Robin
Algorithm: Proposed Method to Apply SJF using Geometric Mean,” IJASCSE, vol. 5, no. 11, pp. 112-119,
Nov. 2016.

[8] M. Naftalin and P. Wadler, “Queues,” in Java Generics and Collections, 1st ed. Sebastopol: O’Reilly
Media, 2006, ch. 14, sec. 5, pp. 210-211.

[9] Centre For Innovation In Research and Teaching. (2017). Quantatitive Approaches. Retrived from
https://cirt.gcu.edu/research/developmentresources/research_ready/quantresearch/approaches

[10] University of Winconsin. Data Collection Methods. Retrived from
https://people.uwec.edu/piercech/ResearchMethods/Data%20collection%20methods/DATA%20COLLEC
TION%20METHODS.htm

http://www.indjst.org/index.php/indjst/article/view/76368

44

	/

