
QUANTUM COMPUTER SIMULATOR BASED ON 
QUTRITS AND THE CIRCUIT MODEL OF QUANTUM 

COMPUTATION 

Md. Shamsul Kaonain 
Student 10: 06101002 

Department of Computer Science and Engineering 
December 2009 

BRAe University, Dhaka, Bangladesh 



ii 

DECLARATION 

I hereby declare that this thesis is based on the results found by myself. 

Materials of work found by other researcher are mentioned by reference. This 

Thesis, neither in whole nor in part, has been previously submitted for any 

degree. 

Signature of Signature of 

Supervisor Author 

Dr. Mumit Khan Md. Shamsul Kaonain 



iii 

ACKNOWLEDGMENTS 

I would like to begin by thanking my thesis supervisor Dr. Mumit Khan for 

allowing me to work on this thesis under his supervision and for his continuous 

support and guidance. It was a wonderful experience for me, and I shall remain 

grateful to him forever. 

I would like to thank Dr. Arshad Momen for extending every possible help 

when asked for, and giving his valuable time to answer my questions even if they 

were trivial. 

I would also like to thank out lecturer Mr. Annajiat Alim Rasel for his 

suggestions and advice from time to time. 

I would also like to thank my family members, especially my parents for 

their support and belief in me all throughout. 

Last but not the least, I would like to thank Almighty Allah for his blessings, 

without which nothing is possible. 



iv 

ABSTRACT 

The number of quantum bits that can currently be realized is limited; therefore 

extending the state space to explore multi-valued options is reasonable. A 

quantum computer simulator based on qutrits (3 valued quantum bits) and the 

circuit model of quantum computation is presented along with an implementation 

of Quantum Fourier Transform using the simulator. 

Keywords: Quantum Computer, Quantum Computing, Ternary logic, 

Multi valued logic, Quantum Fourier Transform, Quantum Computer simulator 



1 

Table of Contents 
DECLARATION ......... .......... ... .......... .. ..... ...... .............. ... ....... ....... ii 

ACKNOWLEDGMENTS ........ .. ........ ... .. .. ... .... ... .... ....... ...... ... ......... iii 

ABSTRACT .... ........ ........... .......... ..... .......... ....... ...... ..... ... .... ........ iv 

Table of Contents ... .................. ..... .. ... ..... .. ... ...... .. ...... ... .... .... .... .. . 1 

List of Figures ... ..... .. .... .. .... .... .... .................. .. ..... ....................................... 3 -
List of Tables .... ...... .... ... .......... .. ........ ............... ........ ...... ...... ...... .... ........... 3 

CHAPTER 1: INTRODUCTION ......... .... ..... .. .. .... .. .. .. .. .. ...... .. ...... ....... .... .... 4 

CHAPTER 2: BASIC CONCEPTS .. ......... ........... .. .......... .... .. ....... .......... .... 8 

2. 1 Linear Algebra ................ ........... ............ ................ .... .. ........... .. .... .. .. 8 

2.1.1 Braket Notation ... ........ .... ....... ........ ...... .... ....... ..... ...... ....... .... .... .. .... ... .. ... .. ... 8 

2.1.2 Hilbert Space ................. .... ..... ........ .. .......... ............. ........... ........ .. .. ... ............ 9 

2.2 Quantum Mechanics .... .. ..... ........................................................... 11 

2.2.1 State Space .. ................................................. ............................................... 11 

2.2.2 Evolution ... ... .... .... ... ... ........ .. ... ... .. ... ....... .... ................................................. 12 

2.2 .3 Measurement .... .... .... .... ... .... ... ... ..... .. .... .... .... ... ..... ..... .... ... .... .... .. ... .. ... ... .. .. 12 

CHAPTER 3: BASICS OF QUANTUM COMPUTING ........ ...... .. ...... .. ...... 14 

3.1 Basic concepts ........ .. .. .. ....... .. ... .. ...... .. ................. .... ...... .. .............. 14 

3.2 Quantum Gates ... .. .. ..... .. .... .. ........................................................ .. 17 

3.2.1 Single qubit gates .. ............. .. .. .. .................... .... .... ...... ........ ...... .......... ...... .. . 17 

3.2.2 Two qubit gates .......................................................................................... 20 

3.2.3 Three qubit gates .............. ....... ....... ... .......... .... .. ..... ........... ..... ... .. .. ......... .... 23 

CHAPTER 4: QUANTUM COMPUTING BASED ON QUTRITS .............. 25 

4.1 Need for Multivalued quantum bits ... .......................................... .... 25 

4.2 Qutrits .. ... ... ....... .. .... .. .... ..... ........ ..... ..... .. .. ...... ... ............. ... .... ... ....... 26 

4.3 Ternary Quantum Gates .... ... .. ....... .... ........................... .... ........ .... .. 27 

CHAPTER 5: THE QUANTUM COMPUTER SIMULATOR ..... ..... .... ...... . 28 

-



-
2 

- 5.1 Development Tools ...... ... .... ... .............................................. ....... ... 28 

5.2 Design .............. ...... .. ... ............. .... .. ............................................... . 28 

5.3 Implementing QFT using the simulator. ......... .... .. .. .... ............. ...... .. 29 

CHAPTER 6 CONCLUSION .......... .... ..... ........ .... .... .... .......................... .. . 31 

6.1 Successes and failures ....................... ............ .... ................. .......... 31 

- 6.2 Future work .... ....... ... ... ..... .................. ..... ....................................... 31 

6.3 Concluding Remarks ........................... ........ ....... .. ......................... . 32 

REFERENCES ........ ... ...... ... .. ... ... .... ...... ..... ................... ........ ..... .......... ... 33 

APPENDIX A: JAVA CODE FOR THE MAIN SIMULATOR CLASS ........ 34 

APPENDIX B: SCREEN DUMP AND OUTPUT OF SIMULATOR FOR 

- QFT ......... ... .... ....... ... ... ..... .. ..... ...... .. ....... ..... ........ ....... ...... ... ..... ...... ..... ..... 43 

-



3 

List of Figures 

Fig 1.1 Moore's Law Statistics ....... ... ........ .. ....... ... ... ... ...... ... , .. , .. , .. ... ....... .. 1 

Fig 3.1 Oubit represented by two electronic labels in an atom .. ........ ..... ... .... .... .. 14 

Fig 3.2 Bloch sphere representation of a qubit.. ......... ... .. .... ... .. ....... ... ... ...... 16 

Fig 3.3 Matrices for the Pauli Gates .... ........ .... .. .... ........... ..... ..... ........ ... .. . 17 

Fig 3.4 Circuit symbols used for the Pauli gates ............ ..... .. .... .... .... ... ....... . 18 

Fig 3.6 The Hadamard Gate ............... .. .................................................. 18 

Fig 3.7 Visualization of the Hadamard gate on the Bloch sphere, acting on 

(10) + 11) / 12 .... ... ... .................... .......... ......... .......... ... .... .. ..... ...... . 19 

Figure 3.8 Circuit symbol for CNOT gate and the matrix representation of the 
gate ........... ............ ................................. ... ... ...... ... .. ... .. ....... ..... ... ...... 20 

Fig 3.9 Circuit for swapping two qubits, and the general symbol for the swap 
gate ......................... ..... .......... ... .......... ........... ... .............. .... .... ... .... . .20 

Fig 3.10 Circuit symbol and matrix representation of controlled-Z gate ............ 21 ... 
Fig 3.11 Circuit symbol and matrix representation of controlled-phase gate ...... 21 

... 
Fig 3.12 Circuit symbol and matrix representation of the Toffoli gate ..... .... ...... 22 

... Fig 3.13 Circuit symbol and matrix representation of the Fredkin gate ..... ....... . 23 

Fig 4.1 Exponential increase of state space with multi-valued logic .. ... ....... .... 25 

Fig 4.2 Matrix representation of the Chrestenson Gate .. ........... .. ...... .... ..... .. 26 

Fig 5.1 Pseudo code for the simulator .............. ...... .................................. 27 

Fig 5.2 Implementation of OFT using ternary gates .......... ..... ............ ...... .. .. 28 

List of Tables 

Table 2.1 Commonly used Expression in Dirac Notation ... ...................... ..... 8 



-

-

-

-

4 

CHAPTER 1: INTRODUCTION 

After the invention of the transistor in 1947, rapid development of 

computer hardware began. Computer hardware has grown in power at an 

amazing pace ever since, so much that the growth was codified by Gordon 

Moore in 1965, in what has come to be known as Moore's Law. 

Moore's law describes a long-term trend in the history of computing 

hardware. Since the invention of the integrated circuit in 1958, the number of 

transistors that can be placed inexpensively on an integrated circuit has 

increased exponentially, doubling approximately every two years. The trend was 

first observed by Intel co-founder Gordon E. Moore in a 1965 paper. It has 

continued for almost half a century and in 2005 was not expected to stop for at 

least another decade. 

Amazingly enough, Moore's law has approximately held true in the 

decades since the 1960s. Nevertheless, most observers expect that this dream 

run will end sometime during the first two decades of the twenty-first century. 
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Current methods of fabrication of computer chips are beginning to run up 

against fundamental difficulties of size. As integrated circuits and electronic 

devices are made smaller and smaller, Quantum effects are beginning to 

interfere with the functioning of such circuits and devices. 

One of the possible solutions to the problem posed by eventual failure of 

devices in a sub atomic scale is to move to a different architecture of computing. 

One option is provided by the theory of quantum computation, which is based on 

the idea of carrying out computation using quantum mechanics as opposed to 

conventional computing which uses the laws of classical physics. 

At the turn on the 20th century, classical physics gave rise to a series of 

crises, by predicting absurdities such as the existence of "ultra violet catastrophe" 

involving infinite energies, or electrons spiraling inexorably into the atomic 

nucleus. At first such problems were resolved by addition of ad hoc hypotheses 

to classical physics, but as we gained better understanding of atoms and 

radiation, these attempted explanations became more and more convoluted. 

The crisis came to a head in the early 1920s with the creation of the modern 

theory of Quantum Mechanics. 

Quantum Mechanics is a mathematical framework or set of rules for the 

construction of physical theories. For example, there is a physical theory known 

as quantum electrodynamics which describes with fantastic accuracy the 

interactions of atoms and light. Quantum Electrodynamics is built up within the 

framework of quantum mechanics, but it contains specific rules not determined 

by quantum mechanics. The relationship of Quantum mechanics to specific 

physical theories like quantum electrodynamics is rather like the relationship of a 

computer's operating system to specific applications software - the operating 

system sets certain basic parameters and modes of operation, but leaves open 

how specific tasks are accomplished by the applications. 
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In early 1980s, interest arose in whether it might be possible to use 

quantum effects to send signals faster than light, a big no-no according to 

Einstein's theory of relativity. The resolution of this problem turns out to hinge on 

whether it is possible to clone an unknown quantum state, that is, construct a 

copy of a quantum state. Cloning turns out not to be possible in general in 

quantum mechanics. 

This no cloning theorem, discovered in the early 1980s, is one of the 

earliest results in this field . Many refinements of this theorem have since been 

developed, and now we have conceptual tools which allow us to understand how 

well a (necessarily imperfect) quantum cloning device would work. 

A major 1970 development is the complete control over single quantum 

systems. Since the 1970s many techniques for controlling single quantum 

systems have been developed. For example, methods have been developed for 

trapping a single atom in 'atom trap', isolating it from the rest of the world and 

allowing us to probe many different aspects of its behavior with incredible 

precision. The scanning tunneling microscope has been used to move single 

atoms around, creating designer arrays of atoms at will. Electronic devices 

whose operation involves the transfer of only single electrons have been 

demonstrated. By obtaining complete control over single quantum systems, we 

are controlling untouched regions of nature in the hopes of discovering new and 

unexpected phenomena. 

Quantum Computation and Quantum Information fit naturally into this 

program. They provide useful series of challenges at varied levels of difficulty for 

people devising methods to better manipulate single quantum systems, stimulate 

the development of new experimental techniques and provide the most 

interesting directions in which to take the experiment. Conversely, the ability to 

control single quantum systems is essential if we are to harness the power of 

quantum mechanics for applications to Quantum Computing and Quantum 

Information. 



7 

Ordinary computers cannot simulate a quantum computer efficiently, thus 

we can conclude that quantum computers would offer us an essential speed 

advantage over classical computers. This advantage is so significant that many 

researchers are of the opinion that any amount of progress in classical 

computation would fail to bridge the gap between the powers of a classical 

computer and that of a quantum computer. 

In spite of this intense interest, there has been modest success to date in 

the development of Quantum Computers. Small quantum computers, capable of 

doing dozens of operations on few qubits represent state of the art in Quantum 

Computation [1). 

This paper is organized as follows. Chapter 2 reviews basics of linear 

algebra and quantum mechanics followed by the basics of Quantum Computing 

in chapter 3 which includes description of basic quantum gates based on a 2 

dimensional Hilbert space (see chapter 2.1.2 for definition) and the circuit model 

of quantum computing. Chapter 4 deals with ternary versions of quantum gates 

followed by a description of the quantum computer simulator in Chapter 5. 

• 



-

-

-

8 

CHAPTER 2: BASIC CONCEPTS 

2.1 Linear Algebra 

2.1.1 Braket Notation 

The "braket" notation is a very compact formalism for linear algebra which 

was introduced by Paul Dirac. It was introduced by Dirac in order to describe in a 

uniform manner vectors and linear operators both in the abstract Hilbert space 1 

1{ . This is the standard notation of quantum mechanics for linear algebraic 

concepts, so Braket notation will be used throughout the paper. Table 2.1 lists 

the most commonly used expressions. 

Table 2.1 

Commonly used Expression in Dirac Notation 

Notation Description 

I ) general "ketO vector, e.g . I ) = (CO,Cl , ... ) " 

('if; I dual "bra" vector to I'if;) e.g. ( I = (cO, ci, ' , .) 

In) d h basis vector of some standard basis N = {iO), II ), ... } 

Iii) basis vector of an alternate basis iii = {1(i) , li ) ... ,} 

( I' ) inner product of I'({I) and I¢» 

I¢) 0 1 J) tensor product of I ) and I ) 

I¢» I ) abbreviated tensor product I¢» ® I'if;) 

Ii, j ) abbreviated tensor product of the basis vectors Ii ) and Ii) 

Mt adjoint operator (matrix) Mt = (MT )· 

(ctJI M 1'1/1) inner product of I¢» and M I'if;) 

II 'if; II abbreviated norm 11 1'w)11 
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2.1.2 Hilbert Space 

All quantum mechanical states have an associated complex Hilbert space 

associated with it. Following are definitions that are required to define Hilbert 

space followed by the definition of Hilbert Space. 

Definition 2.1.2.1 A set V is called vector space over a scalar field F iff the 

operations +: V x V --> V (vector addition) and .: F x V --> V (scalar multiplication) 

are defined, and 

(i) (V, +) is a commutative group, 

(ii) AI ~) = I )A, 

(iii) A(p.I'1») = (Ap,) I :I) , 
(iv) (;\ + I"~)I'I/) ) = Ale) + p, lt ), 
(v) --' (I } + 14») = /\1'1/;) + /\14»· 

All vector spaces considered here are complex vector spaces, i.e. F = C. 

Definition 2.1.2.2 Let V be a complex vector space. A function (-1- ) : V x V --> C 

is called inner product iff 

(i) (il (AI ) + J.L lx) = A( I ) + ~t( I), 

(ii) ( I ) = (t/> I'1»" 

(iii ) (' IJ) E R , ('1/) 1'1» :::: 0, ( I J) = 0 ¢:} I I) = o. 

An inner product also defines the norm III ) II = / ( I ) (also written as 111/'11,· 

The following inequalities apply: 

I( It/»I < II IIII¢II 

III ) + It/» II -:; II /I + 1It/>1I 

( chwar'z in quality) 

(triangl in quality) 

(2.1 ) 

(2.2) 
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Definition 2.1.2.3 (Completeness) Let V be a vector space with the norm II . II 

and l7,&n) E V a sequence of vectors. 

(i) 11{'1l) is a Cauchy sequence iff V > 0 3iV > 0 such that 

Vn ,m. > iV, III In) - I' TIl) II < f (2.3) 

(ii) n) is convergent iff there is a I ) E V such that 

(2.4) 

Definition 2.1.2.4 A complete vector space 1t with an inner product ( ·I· ) and the 

corresponding norm II II = j ( I ) is called Hilbert space. 

A Hilbert space 1t is separable if there exists an enumerable set S C;;; 1{ which 

is dense in 1t , i.e. for any I ) E 1{ and f > 0 there exists a la ) E S with 

III ) -la )ll< f . 

Separable Hilbert spaces are considered when dealing with Quantum 

Computing. 

2.1.3 Linear Operators 

Definition 2.1.3.1 Let V be a vector space and A be a function A: V --+ V. A is 

called linear operator on V iff 

.4 " I'll') + tt l ) ) = AA(I7,&) ) + ttA(I¢») = AAI- ) + ttA I¢» (2.5) 

In Cn
, a linear operator A can be written as a n x n matrix with the matrix 

elements C/,;j = (iIAlj) 

A = = L O"'j Ii) (jl (2.6) 
ij 
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Because of (2.5), a liner operator on a vector space V with the basis B is 

completely defined by its effect on the basic vectors, so the above operator A 

could also be written as 

A: In) -4 L ukn lk) 'With Ik) E B 
I: 

Definition 2.1.3.2 The operator At - (AT)' - L;iJ aji' li)(j1 is called 

adjoint operator of A. 

(2.7) 

Suppose A is any linear operator on a Hilbert space, V. It turns out that there 

exists a unique linear operator At on Vsuch that for all vectors Iv}, Iw} E 1I, 

(Iv), Alw) ) = (At Iv), Iw)) (2.8) 

As already shown above, this linear operator is known as the adjoint or Hermitian 

conjugate of the operator A. 

An operator A whose adjoint is equal to itself is known as a Hermitian or 

self-adjoint operator. 

2.2 Quantum Mechanics 

2.2.1 Postulate 1(State Space) Associated to any isolated physical system is a 

complex vector space with inner product (that is, a Hilbert space) known as the 

state space of the system. The system is completely described by its state 

vector, which is a unit vector in the system's space. 

How the state space of a given physical system is constructed is beyond 

the scope of this postulate. 

In Quantum Computing, the state of a quantum bit or qubit is the simplest 

non-trivial quantum mechanical system with a state space B = C2
. The state of 

the qubit can be described by a linear combination of the basis states. 
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2.2.2 Postulate 2(Evolution) The evolution of a closed quantum system is 

described by a unitary transformation. Ti l 't/J) " the state of a system in time 

t l is relatEl '¢>' ) the state of the system at time t2 by a unitary operator U 

which depends only on the times tl and t2, 

I't/J' ) = UI't/J) (2.9) 

Just as quantum mechanics does not tell us the state space or quantum 

state of a particular quantum system, it does not tell us which unitary operators U 

describe real world quantum dynamics. Quantum mechanics merely assures us 

that the evolution of any closed system can be described in this manner. An 

obvious question that may come to mind is: which unitary operators would need 

to be considered? In the case of single qubits, it turns out that any unitary 

operator can be realized in realistic systems. 

2.2.3 Postulate 3 (Measurement) Quantum measurements are described by a 

collection {MmJ of measurement operators. These are operators acting on the 

state space of the system being measured. The index m refers to the 

measurement outcomes that may occur in the experiment. If the sl; I't/J) ·f the 

quantum system is immediately before the measurement then the probability 

that result m occurs is given by 

(2.10) 

and the state of the system after the measurement is 

(2.11 ) 



The measurement operators satisfy the completeness equation, 

~Mt M =I L...J m m 

m 

13 

(2.12) 

The completeness equation expresses the fact that probabilities sum to one: 

(2.13) 
m m 
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CHAPTER 3: BASICS OF QUANTUM COMPUTING 

3.1 Basic concepts 

The fundamental concept of Quantum computation is the "quantum bit" or 

"qubit", which is analogous to the classical bit. Qubits can be thought to be 

mathematical objects with certain specific properties. 

Like bits, qubits are physically realizable. However, treating qubits as 

abstract entities give us freedom to construct a general theory for Quantum 

Computation and Quantum Information which does not depend upon a specific 

system for its realization. 

Like the bit, the qubit also has states. The state space of a qubit is the 

Hilbert space B = C2
• Two possible states for a qubit are 10) and 11). Here " I ) " 

is the Dirac notation. The orthonormal system { I 0), 11) } is called computational 

basis. 

The states 10) and 11) are analogous to the classical bit states 0 and 1. 

The fundamental difference between the bit and the qubit is that the qubit can be 

in a state other than 10) or 11). It is also possible for them to exist as a linear 

combination of the basis states ( 10) and I] ) ), often called superpositions: 

17J!) = a lO) + ,BI I ). (3.1 ) 

The numbers a and p are complex numbers. The state of a qubit is a 

vector in a two-dimensional complex vector space. As stated above, the special 

states 10) and 11) are known as the computation basis states, and they form an 

orthonormal basis for this vector space. 

Unlike a classical computer, a qubit cannot be measured to give 

information about its quantum state, i.e. the values of a and p. When we 

measure the qubit, we get either the result 0 with probability lal2
, or the result 1 
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with probability I [3 12. Since total probability is 1, 1012 + I [3 12 = 1. Thus in general, 

a qubit's state is unit vector in a two-dimensional complex vector space. 

A qubit, as we saw already, can be in a superposition state, and this is 

counter to our intuition or "common sense" understanding of the world around us. 

The classical bit can be thought of as a coin, which when you throw, can yield 

either a head or a tail, assuming it's an ideal coin, and doesn't balance on its 

edge. On the other hand, a qubit can exist in a continuum of states between 10) 

and 11) until it is observed. However, when measured, it can only yield either 0 or 

1 probabilistically. For example, a qubit can be in the state 

I 1 
-10) + - 11 ) J2 J2 

(3.2) 

which when measured gives the result 0 fifty percent (11"/21 2
) of the time, and the 

result 1 fifty percent of the time. This state is sometimes denoted 1+). 

A qubit can be realized as two different polarizations of a photon, as the 

alignment of nuclear spin in a uniform magnetic field, or as the two states of an 

electron orbiting a single atom such as shown in figure 3.1. 

10) 

Fig 3.1 Qubit represented by two electronic labels in an atom 
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In the atom model, the electron can exist in the "ground" or "excited" 

states, which we will call 10) and 11) respectively. By shining light on the atom, 

with appropriate energy and for an appropriate length of time, it is possible to 

move the electron from state 10) to the state 11) and vice versa . By reducing the 

time we shine the light, and electron initially in the state 10) can be moved 

halfway between 10) and 11), that is the 1+) state. 

A geometric representation for qubits exists, which is useful for thinking 

about qubits. Because 1012 + 1 ~ 12 = 1, we may rewrite equation 3.1 as 

. (B . B) 11P) = ell cos 210) + e''P sin 211) (3.3) 

where e, rp and yare real numbers. We can ignore the factor of ei l in the front 

because it has no observable effects, and for that reason we can effectively write 

Or . ° 1'1/1) = cos 20) + e''P sin 211). (3.4 ) 

The numbers e and rp define a point on the three dimensional sphere as 

shown in figure 3.2. This sphere called the Bloch sphere and it provides a useful 

means of visualizing the state of a single qubit and thus serves as an excellent 

tool for ideas about quantum computation and quantum information. 
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10) 
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I'¢) 

e , 
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11) 
Fig 3.2 Bloch sphere representation of a qubit 

3.2 Quantum Gates 

3.2.1 Single qubit gates 

Classical computer circu its are composed of wires and logic gates. The 

wires are required to carry information around the circuit, and the logic gates are 

used to manipulate the information to convert it from one form to another. The 

only non-trivial member of classical single bit logic gates is the NOT gate, whose 

operation is defined by its truth table, in which 0 -+ 1 and 1 -> 0, that is the states 

o and 1 are interchanged. 

The quantum analogous to the classical NOT gate acts linearly, that is, it 

takes the state 

aiD) +,B II) (3.5) 

to the corresponding state in which the roles of 10) and 11) has been 

interchanged. 

al l ) + f310) (3.6) 
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Why the quantum NOT gate acts linearly and not in a nonlinear fashion is 

not obvious right away. It turns out that linear behavior is a general property of 

quantum mechanics. Using a matrix X to represent the quantum NOT gate, we 

can express the NOT gate as: 

(3 .7) 

Therefore, quantum gates on a single qubit can be described by two by 

two matrices. Normalization requires 1012 + 113 12 = 1 for a quantum state 

Q 10) +,B 11) 

This must also be true for the resulting state a gate has been applied. It 

turns out that the appropriate condition on the matrix representing the gate is that 

the matrix U describing the single qubit gate be unitary, that is the matrix U 

multiplied by its adjoint or Hermitian conjugate would give the identity matrix I. 

Amazingly, this is the only constraint on quantum gates. Any unitary matrix 

is a valid quantum gate. In contrast to the classical case, where only one non­

trivial single bit gate exits, there are many non-trivial single qubit gates. 

The common single qubit gates are Pauli gates, Phase and Tr/8 gates, and 

the Hadamard Gate. Symbols and matrices for the gates are given below. 

x ;;; U" = (1 1) . y ;;; uy = ( 

Fig 3.3 Matrices for the Pauli Gates 
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Pauli-X 

Pauli-Y 

Pauli-Z 

Fig 3.4 Circuit symbols used for the Pauli gates 

Of these, the Z gate leaves 10) unchanged, and flips the sign of 11) to give -11). 

Phase 

7r /8 

Fig 3.5 Matrices and circuit symbols for the Phase and IT/8 gates 

Hadamard 1 [ 1 1] 
Vi 1 - 1 

Fig 3.6 The Hadamard Gate 

The Hadamard gate is sometimes described as the "square root of NOT" 

gate, in that it turns a 10) into (10) + 11))/ V2 ,that is halfway between 10) and 

II) , and turns II ) into (10) - ll ))/ V2, which is also halfway between 10) and II ) . 
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The Hadamard gate is one of the most useful quantum gates and it is 

worth trying to visualize its operation by considering the Bloch sphere picture 

given below: 

10) 
z z z 

- • • . . • . . . . . . . . . . . .. • ¥. 

" . . - . - -

II ) 

Fig 3.7 Visualization of the Hadamard gate on the Bloch sphere, acting on 

inputstate (10) + II))/ v'z 

It turns out that single qubit gates correspond to rotations and reflections 

of the sphere in this picture. The Hadamard operation is just a rotation of the 

sphere about the y axis by 90 degrees, followed by a reflection through the x-y 

plane, as shown in figure 3.7. 

3.2.2 Two qubit gates 

The prototypical multi-qubit quantum logic gate is the controlled-NOT or 

CNOT gate. This gate has two input qubits, known as the control qubit and target 

qubit, respectively. If the control qubit is set to 0, then the target qubit passes the 

gate unchanged. If the control qubit is set to 1, then the target qubit is flipped . 

The following equations illustrate the action of the CNOT gate: 

100) -+ 100); 101) -+ 101); PO) -+ Ill ); \I I) -+ 110). (3.8) 
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One way of describing the CNOT gate is as a generalization of the 

classical XOR gate. We can summarize the action of the gate as IA ,8) --> lA, B El3 A) 
where EB is addition in modulo two, which is what the XOR gate does. 

Another way of describing the action of the CNOT gate is via its matrix 

representation which is given in the figure 3.8, along with the circuit symbol used 

to represent CNOT gates. 

controlled-NOT 

IA) IA) 

IE ) IE EB A) 

[' 0 0 

1] UCN = ~ 1 0 
0 0 
0 1 

Figure 3.8 Circuit symbol for CNOT gate and the matrix representation of 
the gate. 

Other useful two qubit gates include swap gates, controlled-Z and 

controlled-phase gates. 

Swap gates, as the name suggests accomplished the simple but useful 

task of swapping the state of two qubits. A swap gate can be achieved as a 

combination of CNOT gates, and shown in the figure below. 

'-V 

Fig 3.9 Circuit for swapping two qubits, and the general symbol for the 
swap gate 
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It may be useful to mention here that unlike classical circuits, "loops", i.e. 

feedback from one of the circuit to another is not allowed in quantum circuits. 

Quantum circuits are acyclic. Classical circuits allow wires to be joined together, 

an operation known as FANIN. This operation is obviously not reversible and 

therefore not unitary, and is not allowed in quantum circuits. Also, the inverse of 

this operation, FANOUT, where several copies of a bit are produced from a 

single wire but is not allowed in quantum circuits. As mentioned earlier in the text, 

quantum mechanics forbids the copying of a qubit, making the FANOUT 

operation impossible. 

The matrix and circuit symbols for the controlled-Z and controlled-phase 

gates are given in Figures 3.10 and 3.11, which are controlled versions of the 

Pauli-Z and phase gates respectively. For any unitary matrix U, we can have a 

controlled-U gate, where the value of the control qubit decides whether the input 

qubits pass unmodified or the gate U is applied. 

=1 [j 
o 0 
1 0 
o I 
o 0 

Fig 3.10 Circuit symbol and matrix representation of controlled-Z gate 

[

1 0 0 0] o J 0 0 
00 1 0 
0 00 i 

Fig 3.11 Circuit symbol and matrix representation of controlled-phase gate 
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3.2.3 Three qubit gates 

Is it possible to simulate classical logic circuits using quantum circuits? 

The answer to this question is yes. The answer is surprising because classical 

elements are inherently irreversible whereas quantum elements are reversible. 

so one would expect that we cannot directly simulate classical logic circuits using 

quantum circuits. Using a three qubit gate known as Toffoli gate. it is possible to 

make an equivalent quantum circuit to replace any classical circuit. 

The Toffoli gate has three input bits and three output bits. Two of the bits 

are control bits that are unaffected by the action of the Toffoli gate. The third bit is 

the target bit that is flipped if both control bits are set to 1, and otherwise is left 

alone. Applying the Toffoli gate twice to a set of bits brings them back to their 

initial state, and hence, the Toffoli gate is a reversible gate because it has an 

inverse, itself! 

I 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 I 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 I 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

Fig 3.12 Circuit symbol and matrix representation of the Toffoli gate 

Another three qubit gate that needs discussion is known as the Fredkin 

gate. The properties of this gate can be used to get an informative overview 

about general characteristics of reversible logic gates and circuits. It has three 

input qubits and three output qubits, out of which the third bit is the control bit, 

which remains unchanged by the action of the Fredkin gate. If the control qubit is 

0, the two target qubits pass the gate unchanged. However, if the control qubit is 

set to 1, the states of the target qubits are swapped. 
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An interesting property of the Fredkin gate is the number of 1 s is 

conserved between the input and output qubits. Such conservative properties are 

of interest to physicists because they can be motivated by fundamental physical 

principles. The Fredkin gate is a universal gate as well, i.e. it can be cascaded to 

simulate any classical circuit. Figure 3.13 shows the circuit symbol and matrix 

representation for the Fredkin gate. 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 

Fig 3.13 Circuit symbol and matrix representation of the Fredkin gate 
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CHAPTER 4: QUANTUM COMPUTING BASED ON QUTRITS 

4.1 Need for Multivalued quantum bits 

The main obstacle in quantum computing in current times is posed by the 

inability to realize practical quantum systems operating on a large number of 

qubits [3] [4] . 

It is extremely difficult to isolate a multi particle quantum system, and 

interaction with the environment would make the system lose its quantum 

coherence, that is the states of the quantum bits would change due to interaction 

with the environment, a process known as decoherence. 

Due to these problems, currently realizable quantum computers can only 

be of a small number of qubits and researchers are thinking about using multiple 

valued quantum bits. 

Using multiple-valued instead of binary logic has a significant impact on 

the representable state space and the computational power of quantum 

machines. It is also worth noting that some known quantum circuit technologies, 

such as ion traps or quantum dots, are actually three-valued (ternary), rather 

than binary [3] [4]. 

The graph in figure 4.1 illustrates the exponential increase in state space 

as we move from binary to multi-valued logic. 



-

26 

70000 I 
60000 I --
50000 

~ 40000 
Q. 
~ - base 2 
~ 
~ a 30000 - base 3 

- base 4 

20000 

10000 

0 
0 1 2 3 4 5 6 7 8 9 

No of bits 

Fig 4.1 Exponential increase of state space with multi-valued logic 

4.2 Qutrits 

Definition 4.2.1 A q-ary quantum digit is a multiple valued logic system over 

basis { 1 0 ). 11 ) ..... 1 q-1)}. 

The ternary quanturn digit is often referred to as a qutrit in literature. and 

this notation is adapted in this paper. The state space is a three dimensional 

Hilbert space. The basis states of a qutrit are { 1 0) .11 ) .12) } . 

Like its binary counterpart . the state of a qutrit is expressed as a linear 

combination of the basis states as shown below 

Co 10) + ctl1) + c2!2) (4 .1 ) 

where co. Cl . and C2 are complex numbers. 
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4.3 Ternary Quantum Gates 

Any 3 x 3 unitary matrix specifies a valid 1 qutrit ternary quantum gate. 

Modulo 3 operations are required for qutrits. 

Although the q-valued quantum states (q > 2) come naturally in many 

cases [5], there exist a few explicit constructions of q-valued gates [4]. Of these, 

only the ternary version of the Walsh Hadamard gate and the controlled phase 

shift gate is considered here. 

The ternary version of the Hadamard gate was constructed from the 

generalized Walsh Hadamard Gate, called as Chrestenson gate after the 

Chrestenson transform [4] [6]. 

The Chrestenson gate performs the mapping as given by figure 4.2. 

Fig 4.2 Matrix representation of the Chrestenson Gate 

Multivalued quantum gates used in 3-valued implementations include a 

controlled phase shift gate, which applies to the incoming signal the multiplication 

by a factor (iox) , where x is the input controlling the amount of shift. Unlike the 

binary case, there are three possible amounts by which the signal is phase 

shifted [4] . If the value of x is 0, then there is no change in the input. If it is 1, then 

the input qutrits are multiplied by a factor of e(i(>a; ), and if it's 2, then the 

multiplication factor is twice the factor e(i(>x) . 
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CHAPTER 5: THE QUANTUM COMPUTER SIMULATOR 

5.1 Development Tools 

~ NetBeans IDE 6.7.1 (Build 200907230233) 

~ JDK 1.6.0_17; Java HotSpot(TM) Client VM 14.3-b01 

5.2 Design 

The complex matrix class developed by Micheal Thomas Flanagan was 

used (http://www.ee.ucl.ac.uk/-mflanaga/java/). 

The simulator provides 5 qutrits on which at present only Chrestenson 

gates and controlled shift gates can be applied . Up to 5 stages of ternary gates 

can be applied to the 5 qutrits. 

A simple pseudo code of the quantum simulator is given below: 

(1) Start 

(2) For each qutrit, 

2.1 Check base state selected (NOP,O,l ,2) 

2.2 Set qutrit to appropriate base slate. 

(3) For each qutrit, 

3.1 Check Quantum gate selected (CH or Controlled Shift) 

3.2 Apply selected gate to qutrit 

(4) For each qutrit 

4.1 Output probabil ities for each base state. 

Fig 5.1 Pseudo code for the simulator 
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Complete code of the QuReg class used to implement the quantum 

register and the gates is given in Appendix 1 (page). 

5.3 Implementing QFT using the simulator 

29 

An implementation of QFT (Quantum Fourier Transform) using temary 

gates is given in [4], as shown in figure 5.2, by applying Chrestenson gate once 

to each qubit, followed by the p X k (k < l}e, controlled by 

(
- 27riX ) 

Xp 31-k+l 

?.f------.fvn> 

1h:..J-----iv, > 
• •• • •• 

~--------------~-----4----~ CH > 

Fig 5.2 Implementation of QFT using ternary gates 

The phase shift gates for the implementation of QFT were calculated 

using (5.1) as given below: 

Qutrit 1: No phase shift applied. (I = 0, k = 0) 

Qutrit 2: exp[-2TTi/32j with Qutrit 1 used as control. (/ = 1, k = 0, for k < / ) 

(5.1 ) 
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Qutrit 3: exp[-2rril32j with Qutrit 2 used as control and exp[-2rri/33j with Qubit 

1 as control. (I = 2, k = {D , 1}, for k < I) 

Qutrit 4: exp[-2rri/32j with Qutrit 3 used as control, exp[-2rri/33j with Qutrit 2 

as control and exp[-2rri/34 j with Qutrit 1 as control. (I = 3, k = {D,1 ,2}, for k < I ) 

Qutrit 5: exp[-2rri/32j with Qutrit 4 used as control , exp[-2rri/33j with Qutrit 3 

used as control , exp[-2rri/34j with Qutrit 2 used as control and exp[-2rri/35j 

with Qutrit 1 used as control. (I = 4, k = {D,1 ,2,3}, for k < I ) 

For the simulator, the first Qutrit is Qutrit 1; in (5.1) the first qutrit is Xo, 

which accounts for the differences between the control qutrit obtained by putting 

in the values of I and k and the actual qutrit used in the simulator. 

The complete output of the QFT implementation in the simulator and the 

screen dump of the GUI is given in Appendix B (page). 
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CHAPTER 6 CONCLUSION 

6.1 Successes and failures 

The quantum computer simulator was used to implement Chrestenson 

gates. where the outputs from the simulator match with the expected output. 

However. there are still small precision errors in output. For e.g. if the 

Chrestenson gate is applied twice to the state 0 of a qutrit, the expected output is 

state 0 with a probability of 100%. However, results from the simulator indicate 

the probability of State 0 to be slightly over 100%, while that of the other two 

states come to values in the order of 10-31 which can be taken to be 

approximately equal to zero at this stage. 

For the phase shift gates however, the multiplicative factor appears to be 

very small and only changes in the order of 10-9 or 10-10 is seen in the 

probabilities which is not acceptable. It is possible that the interpretation of the 

phase shift gate as shown in chapter 5.3 is erroneous and requires further study 

to rectify. 

6.2 Future work 

A lot of work needs to be done with the simulator. Only two gates have 

been implemented so far. Ternary versions of Toffoli gates, Muthukrishnan 

Shroud gates and Feynman Gates are available, and a lot others has been 

proposed. The simulator needs to be upgraded to incorporate all such gates. 

Entanglement has not been considered, that is in the present design there 

is no way to know whether a state is entangled or not. One of the major 

challenges in Quantum Computation is due to entanglement, i.e. determining 

whether a state is entangled or not, quantification of the entanglement, i.e. 

calculating the amount of entanglement, and controlling and predicting 

entanglement. Therefore, the simulator needs to the upgraded so that it can 

handle entanglement. 

• 
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Graphical output of the probability distribution would also be helpful for 

visualizing the output of the simulator. Increasing the number of qutrits that can 

be handled by the simulator would also be a major improvement. 

A web version of the simulator can also be developed that would make it 

easier for other people to access and use it. 

6.3 Concluding Remarks 

Multi-valued quantum logic has enormous potential in boosting the power 

of Quantum algorithms and Quantum computers. For a lot of people, the luster of 

Quantum Computing seemed to become dim because the promised exponential 

speedup could be shown only in factoring algorithms which do not have much 

use outside cryptography. 

However, researchers at MIT proposed a quantum algorithm that gives 

exponential advantage in the solution of linear systems of equations, whose 

solution is crucial to image processing, video processing , signal processing, 

robot control, weather modeling, genetic analysis and population analysis, to 

name just a few applications [7]. 

Physicists at the National Institute of Standards and Technology (NIST) in 

USA have demonstrated the first "universal" programmable quantum information 

processor able to run any program allowed by quantum mechanics using two 

qubits. The processor could be a module in a future quantum computer, which 

theoretically could solve some important problems that are intractable today [8]. 

Also, search giant Google talks about using Quantum algorithms in 

Machine Learning via adiabatic quantum computers in their research blog. 

If such developments continue, Quantum Computers will become a 

practical reality sooner than we think, and transform the computational 

capabilities of mankind into the unthinkable. 
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APPENDIX A: JAVA CODE FOR THE MAIN SIMULATOR 

CLASS 



-

-

-

-

package simulator; 

import flanagan.complex.· ; 

import flanagan .math.*; 

/* • 

• 

• @author Md. Shamsul Kaonain 

·1 

public class QuReg ( 

ComplexMatrix register = new ComplexMatrix(1 ,3) ; 

lITo set the qubit to 0,1,2 or NOP 

public void setBase(int base) 

{ 

if (base==O) 

( 

} 

this.register.setElement(0 ,0,1.0,0); 

this .register.setElement(0,1,0 ,0); 

this.register.setElement(0,2,0,0); 

else if (base==1) 

( 

) 

register.setElement(O,O,O,O); 

register.setElement(0,1,1 .0,0); 

register.setElement(0,2 ,0,0); 

else if (base==2) 

( 

register.setElement(O,O,O,O); 

register.setElement(0,1,0,0); 

35 



} 

register.setElement(0 ,2,1.0,0); 

} 

else 

{ 

} 

register.setElement(O,O,O,O); 

register.setElement(0 ,1,0,O); 

register.setElement(0,2,0,O); 

IICode to print out the base values 

public String PrintBaseO 

{ 

} 

Complex test; 

String out; 

test = register.getElementCopy(O,O); 

out = ("(" + test.getRealO + " + i" + test.getimagO+ ", "); 

test = register.getElementCopy(0,1); 

out = out + (test.getReaIO+ " + i" + test.getlmagO+ ", "); 

test = register.getElementCopy(0,2); 

out = out + (test.getReaIO+ " + i" + test.getimagO+ ")"); 

return out; 
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II Code to measure the state probabilities. 

public String MeasureO 

{ 

} 

String output; 

Complex test; 

double test1; 

test = register.getElementCopy(O,O); 

test1 =Fmath.truncate( (test.squareAbsO*1 00),5); 

output = "10> -> " + test1 + "%" + ", "; 

test = register.getElementCopy(O,1); 

test1 =Fmath.truncate( (test.squareAbsO*1 00),5); 

output = output + "11> ->" + test1 + "%" + ", "; 

test = register.getElementCopy(O,2); 

test1 =Fmath.truncate((test.squareAbsO*100),5); 

output = output + "12> -> " + test1 + "%"; 

return output; 
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IICode for implementing the Chrestenson Gate 

public void CHgateO 

( 

ComplexMatrix Cgate = new ComplexMatrix(3 ,3); 

Complex col1 ,coI2,coI3,old1 ,old2,old3; 

Cgate .setElement(O, 0 ,( 1/Math. sqrt(3)), 0); 

Cgate.setElement(0,1 ,(1/Math.sqrt(3)),0); 

Cgate .setElement(O ,2, (1/Math. sqrt(3)), 0); 

Cgate.setElement(1 ,0,( 1/Math.sqrt(3)),0); 

Cgate.setElement(1 ,1 ,«Math.cos« -2'Math. PI)/3)/Math.sqrt(3.0))),«Math .sin( (-

2'Math. PI )/3) )/Math .sqrt(3.0))); 

Cgate .setElement( 1 ,2, «Math. cost (-4 'Math. PI )/3 )/Math .sqrt(3. 0))), « Math .sin( (-

4 'Math. PI )/3) )/Math. sqrt(3. 0))); 

Cgate .setElement(2, 0, (1/Math. sqrt(3)), 0); 

Cgate .setElement(2, 1 ,«Math .cos« -4 'Math .P1)/3)/Math .sqrt(3.0))),«Math.sin«-

4 'Math.PI )/3) )/Math.sqrt(3.0))); 

Cgate .setElement(2,2 ,( (Math .cos( (-2'Math. P I )/3 )/Math .sqrt(3. 0))), «Math. si n « -

2'Math. PI )/3) )/Math .sqrt(3. 0))); 

old1 =register.getElementCopy(O,O); 

old2 =register.getElementCopy(0,1); 

old3 =register.getElementCopy(0,2); 

col1 =old1 .times«Cgate.getElementCopy(0,0))); 

coI1.plusEquals( old2. times«Cgate.getElementCopy( 1 ,0)))); 

coI1.plusEquals(old3.times«Cgate.getElementCopy(2,0)))); 

col2 = old1.times«Cgate.getElementCopy(0, 1))); 

coI2.plusEquals(old2.times«Cgate.getElementCopy(1 , 1 )))); 

coI2.plusEquals(old3.times«Cgate.getElementCopy(2, 1 )))); 
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col3 - old1.times«Cgate.getElementCopy(0,2))); 

coI3.plusEquals(old2.times«Cgate.getElementCopy(1 ,2)))); 

coI3.plusEquals(old3.times«Cgate.getElementCopy(2,2)))); 

register.setElement(0,1 ,coI2); 

register.setElement(0,0,coI1 ); 

register.setElement(0,2 ,coI3); 

} 

public int getRandomArbitary(double min, double max) 

{ 

return (int)«Math.randomO * (max - min)) + min); 

} 

/I To determine the truth value of the control qubit for use with the shift gate. 

public int TruthValueO 

( 

double prob1 , prob2, prob3; 

Complex test; 

int Tvalue; 

Tvalue = 0; 

test = register.getElementCopy(O,O); 

prob1 = test.squareAbsO*100; 

test = register.getElementCopy(0,1); 

prob2 =test.squareAbsO*1 00; 

test = register.getElementCopy(0,2); 
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prob3 - test.squareAbsO*1 00; 

if ((prob1 ==prob2) && (prob2==prob3)) 

( 

} 

IIRandom function required 

Tvalue = getRandomArbitary(0,3); 

else 

{ 

if (prob1 >prob2) 

{ 

if (prob1 >prob3) 

{ 

IIProb 1 is the largest 

Tvalue=O; 

} 

else if (prob1 <prob3) 

{ 

IIProb3 is the largest 

Tvalue=2; 

} 

else 

( 

Tvalue = getRandomArbitary(0,3); 

while (Tvalue==1) 

( 

Tvalue = getRandomArbitary(0,3); 

} 

} 

} 

else if (prob1 <prob2) 

{ 
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} 

-
-. 

} 

} 

if (prob2>prob3) 

{ 

} 

IIProb2 is the largest 

Tvalue=1 ; 

else if (prob2<prob3) 

{ 

} 

IIProb3 is the largest 

Tvalue=2; 

else 

( 

} 

IIRandom fuction required 

Tvalue = getRandomArbitary(O,3); 

while (Tvalue==O) 

( 

Tvalue = getRandomArbitary(O,3); 

} 

return Tvalue; 
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IICode to implement the controlled phase shift gate 

public void CPS(int control, int power) 

( 

double value; 

Complex Multiplier,old1 ,old2,old3; 

- value = (-2'Math.PI )/(3'power); 

value = value'control; 

Multiplier = this .register.getElementCopy(O, 0); 

Multiplier.setReal(Math. sin(value)); 

Multiplier.setlmag(Math .cos(va lue)); 

old1 = this.register.getElementCopy(O,O); 

old2 = this.register.getElementCopy(O,1); 

old3 = this.register.getElementCopy(O,2); 

old1 .times(Multiplier) ; 

old2.times(Multiplier); 

old3.times(Multiplier); 

this .register.setElement(O,O,old 1 ); 

this .register.setElement(O,1,old2); 

this.register.setElement(O,2,old3); 

} 

} 

-
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APPENDIX B: SCREEN DUMP AND OUTPUT OF 

SIMULATOR FOR OFT 
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Fig A.1 Screen dump of OFT simulation 



-

.., 

Full output of QFT simulation 

Outrit 1 set to 10> 

10> -> 100.0%, 11> -> 0.0%, 12> -> 0.0% 

Outrit 2 set to 11 > 

10> -> 0.0%,11> -> 100.0%, 12> -> 0.0% 

Outrit 3 set to 12> 

10> -> 0.0%,11> -> 0.0%, 12> -> 100.0% 

Outrit 4 set to 11 > 

10> -> 0.0%, 11> -> 100.0%, 12> -> 0.0% 

Outrit 5 set to 12> 

10> -> 0.0%, 11> -> 0.0%, 12> -> 100.0% 

Starting Stage 1 

Applying CH Gate to Outrit 1 

45 

(0.5773502691896258 + iO.O, 0.5773502691896258 + iO.O, 0.5773502691896258 + iO.O) 

10> -> 33.33333%,11> -> 33.33333%,12> -> 33.33333% 

Applying CH Gate to Outrit 2 

(0.5773502691896258 + iO.O, -0.28867513459481275 + i-0.5000000000000001,-

0.28867513459481314 + i0.49999999999999994) 

10> -> 33.33333%,11> -> 33.33333%, 12> -> 33.33333% 

Applying CH Gate to Outrit 3 

(0.5773502691896258 + iO.O, -0.28867513459481314 + iO.49999999999999994, -

0.28867513459481275 + i-0.5000000000000001) 

10> -> 33.33333%, 11> -> 33.33333%,12> -> 33.33333% 

Applying CH Gate to Outrit 4 

(0.5773502691896258 + iO.O, -0 .28867513459481275 + i-0.5000000000000001, -

0.28867513459481314 + i0.49999999999999994) 

10> -> 33.33333%,11> -> 33.33333%, 12> -> 33.33333% 

Applying CH Gate to Outrit 5 

(0.5773502691896258 + iO.O, -0.28867513459481314 + iO.49999999999999994,-

0.28867513459481275 + i-0.5000000000000001) 

10> -> 33.33333%, 11> -> 33.33333%, 12> -> 33.33333% 

Starting Stage 2 
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Applying Shift Gate to Qutrit 2 with Qutrit 1 as control 

The truth value is 2 

(0.5773502691896258 + iO.O, -0 .28867513459481275 + i-0.5000000000000001 , -

0.28867513459481314 + i0.49999999999999994) 

10> -> 33.33333%, 11> -> 33.33333%, 12> -> 33.33333% 

Applying Shift Gate to Qutrit 3 with Qutrit 2 as control 

(0.5773502691896258 + iO.O, -0.28867513459481314 + i0.49999999999999994,-

0.28867513459481275 + i-0.5000000000000001) 

10> -> 33.33333%,11> -> 33.33333%, 12> -> 33.33333% 

Applying Shift Gate to Qutrit 4 with Qutrit 3 as control 

(0.5773502691896258 + iO.O, -0.28867513459481275 + i-0.5000000000000001,-

0.28867513459481314 + i0.49999999999999994) 

10> -> 33.33333%,11> -> 33.33333%, 12> -> 33.33333% 

Applying Shift Gate to Qutrit 5 with Qutrit 4 as control 

(0 .5773502691896258 + iO.O, -0.28867513459481314 + i0.49999999999999994, -

0.28867513459481275 + i-0.5000000000000001) 

10> -> 33.33333%, 11> -> 33.33333%,12> -> 33.33333% 

Starting Stage 3 

Applying Shift Gate to Qutrit 3 with Qutrit 1 as control 

(0.5773502691896258 + iO.O, -0.28867513459481314 + i0.49999999999999994, -

0.28867513459481275 + i-0.5000000000000001) 

10> -> 33.33333%, 11> -> 33.33333%,12> -> 33.33333% 

Applying Shift Gate to Qutrit 4 with Qutrit 2 as control 

(0.5773502691896258 + iO.O, -0.28867513459481275 + i-0.5000000000000001 , -

0.28867513459481314 + iO.49999999999999994) 

10> -> 33.33333%, 11> -> 33.33333%, 12> -> 33.33333% 

Applying Shift Gate to Qutrit 5 with Qutrit 3 as control 

(0.5773502691896258 + iO.O, -0.28867513459481314 + i0.49999999999999994,-

0.28867513459481275 + i-0.5000000000000001) 

10> -> 33.33333%, 11> -> 33.33333%, 12> -> 33.33333% 

Starting Stage 4 

Applying Shift Gate to Qutrit 4 with Qutrit 1 as control 

(0.5773502691896258 + iO.O, -0.28867513459481275 + i-0.5000000000000001,-
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0.28867513459481314 + iO .49999999999999994) 

10> -> 33.33333%, 11> -> 33.33333%, 12> -> 33.33333% 

Applying Shift Gate to Outrit 5 with Outrit 2 as control 

(0.5773502691896258 + iO.O, -0.28867513459481314 + i0.49999999999999994,-

0.28867513459481275 + i-0.5000000000000001) 

10> -> 33.33333%, 11> -> 33.33333%, 12> -> 33.33333% 

Starting Stage 5 

Applying Shift Gate to Outrit 5 with Outrit 1 as control 

(0.5773502691896258 + iO.O, -0.28867513459481314 + i0.49999999999999994,-

0.28867513459481275 + i-0.5000000000000001) 

10> -> 33.33333%, 11> -> 33.33333%,12> -> 33.33333% 
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