CARTOGRAPHER

A REPORT SUBMITTED TO DR. BELAL HOSSAIN BHUIAN
OF COMPUTER SCIENCE AND ENGINEERING
DEPARTMENT OF BRAC UNIVERSITY IN FULFILLMENT
OF THE REQUIREMENTS FOR THESIS WORK

[stefan Islam Preetom, ID: 06210008
Tanvir Ahmed Shovon, ID: 06210019
And
Tahsin Mahmud, I1D: 06210020

December 2010

0

Declaration

We hereby declare that this thesis is based on the results found by ourselves.
Materials of work found by other researchers are mentioned by reference. This thesis,

neither in whole nor in part, has been previously submitted for any degree.

Signatyre Supervisor Signature of the Author
s
< 55\:0‘3

¥ W

ACKNOWLEDGEMENT

At first we would like to thank our supervisor Dr Mohammed Belal Hossain Bhuian for
giving us the opportunity to work on this project under his supervision and also for his

invaluable support and guidance throughout the period of pre-thesis and thesis semester.

Through his supervision, we have learned a lot.

Lastly, we would like to thank Dr. Khalilur Rahman, Asif and Jonayet for their support
and guidance in our project.

(2]

Objective

Here we described our approach on developing a mobile platform that will automatically
move around and create a map of an enclosed area with possible obstacle positions. A
brief explanation on why we chose this project is given afterwards. Then the discussion
describes some of the similar ongoing research projects. The paper then explains about
the devices we took into considerations and later on it points out the problems we faced
and came up with solutions.

The purpose of this report is to show what has already been done in our project field and
what we are going to achieve.

Sometimes disastrous situations occur where it becomes difficult and at times impossible
for a normal human being to handle. There are also situations when human beings can’t
reach a place but need to gather information regarding same. To solve such difficulties
computer and electrical engineers are researching on making automatic vehicles on
reaching such difficult places. We can see *mars rover’ that is roaming on the planes of
mars and sending us pictures from there. There are also autonomous underwater vehicles
(AUVs) that can operate without human supervision. Competitions on making rescue
robots are also taking place these days.

Project Overview

The vehicle consists of three motors, one of them is for the web cam movement and the
other two is for - forward and backward movement and left/right movement respectively.
A microcontroller is interfaced with a web cam, Darlington pairs, converter and motors.
According to the given signal by the microcontroller to the motors, the motors rotate. The
web cam store images as the command given to the microcontroller and the image is
read. This process keeps on going unless the required work is done.

Initially the cartographer takes a picture by the web cam and if it sees a clear path, then it
moves forward. If it doesn’t find a suitable path then it stops and finds an alternative way.
Whenever it stops reaching a desired location, the web cam rotates at an angle of 45 ° to
each left and right sides by the stepper motor fixed to it, and then it again moves forward
in accordance. Thus the process continues.

(d

Thesis Progress

Two major sectors have been built:
I. Car Controller

2. Image Capture

To build these we have used microcontrollers (ATmegal6 & PICI16F877A), Converters,
Darlington pairs, H-Bridge, CMOS Camera and Motors as required.

Darlington Pairs

The ULN2003A is a high voltage, high current Darlington arrays each containing
seven open collector Darlington pairs with common emitters. Each channel
rated at 500mAand can withstand peak currents of 600mA.

Suppression diodes are included for inductive load driving and the inputs are
pinned opposite the outputs to simplify board layout. The version interface to all
common logic families:

ULN2001A General Purpose, DTL, TTL, PMOS,CMOS
ULN2002A 14-25V PMOS
ULN2003A 5V TTL, CMOS

ULN2004A 6-15V CMOS, PMOS

These versatile devices are useful for driving a wide range of loads including
solenoids, relays DC motors; LED displays filament lamps, thermal print heads
and high power buffers.

The ULN2003A is being supplied in 16 pin plastic DIP packages with a copper
Lead frame to reduce thermal resistance. They are available also in small outline
package (SO-16) as ULN2001D/2002D/2003D/2004D.

Diagram Of ULN2003A:

PIN CONNECTION

INT) 16 OUT 1
IN 2 2 15 oUT 2
N3 2 14 out 3
IN & 4 13 OUT 4
IN5 § 12 OUT 5
INE & 1 ouT 6
N7 7 10 ouT 7
oND B | g COMMON FREE

| ? WHEELING O100ES

5-197111

= SEVEN DARLINGTONS PER PACKAGE

= QOUTPUT CURRENT 500mA PER DRIVER

« (600MA PEAK)

« OUTPUT VOLTAGE 50V INTEGRATED SUPPRESSION DIODES FOR

= INDUCTIVE LOADS OUTPUTS CAN BE PARALLELED FOR

= HIGHER CURRENT

= TTL/CMOS/PMOS/DTLCOMPATIBLE INPUTS INPUTS PINNED OPPOSITE
OUTPUTS TO SIMPLIFY LAYOUT

Converter

Meet or Exceed TIA/EIA-232-F and ITU Recommendation V.28
(| Operate With Single 5-V Power Supply
' Operate Up to 120 kbit/s
'] Two Drivers and Two Receivers
| £30-V Input Levels
! Low Supply Current . . . 8 mA Typical
| Designed to be Interchangeable With Maxim MAX232
| ESD Protection Exceeds JESD 22
— 2000-V Human-Body Model (A114-A)
| Applications:
TIA/EIA-232-F
Battery-Powered Systems
Terminals
Modems
Computers

MAX232...D, DW, N, OR NS PACKAGE
MAX232!...D, DW, OR N PACKAGE

(TOP VIEW)
C1+[1 J 16]VCC
Vg:] 2 15[] GND
Ci-[]3 14]] T1OUT
c2+[4 13[IRIN
C2-[]5 12[] R1OUT
Vs_[] 6 1] T1IN

T20UT[] 7 10f] T2IN

R2IN[] 8 of] R20UT

The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply EIA-
232 voltage levels from a single 5-V supply. Each receiver converts EIA-232 inputs to 5-V
TTL/CMOS levels. These receivers have a typical threshold of 1.3 V and a typical hysteresis of
0.5V, and can accept +30-V inputs. Each driver converts TTL/CMOS input levels into EIA-232
levels.

MICROCONTROLLER:

Here we are using a PIC16F877A microcontroller. It is the best suited microcontroller for
our project. If we look at the features of it we can get a very good idea of it.

The PIC16F877A CMOS FLASH-based 8-bit microcontroller is upward compatible with
the PIC16C5x, PICI2Cxxx and PIC16C7x devices. It features 200 ns instruction
execution, 256 bytes of EEPROM data memory, self programming, an ICD, 2
Comparators, 8 channels of 10-bit Analog-to-Digital ~ (A/D) converter, 2
capture/compare/PWM functions, a synchronous serial port that can be configured as
either 3-wire SPI or 2-wire 12C bus. a USART, and a Parallel Slave Port.

High-Performance RISC CPU

» Lead-free: RoHS-compliant

e Operating speed: 20 MHz. 200 ns instruction cycle

e Operating voltage: 4.0-5.5V

» Industrial temperature range (-40° to +85°C)

e 15 Interrupt Sources

e 35 single-word instructions

« All single-cycle instructions except for program branches (two-cycle)

Special Microcontroller Features

o Flash Memory: 14.3 Kbytes (8192 words)

e Data SRAM: 368 bytes

o Data EEPROM: 256 bytes

o Self-reprogrammable under software control

e In-Circuit Serial Programming via two pins (5V)
« Watchdog Timer with on-chip RC oscillator

e Programmable code protection

« Power-saving Sleep mode

« Selectable oscillator options

e In-Circuit Debug via two pins

Peripheral Features

e 33 1/O pins; 5 I/O ports
e Timer0: 8-bit timer/counter with 8-bit prescaler
o Timerl: 16-bit timer/counter with prescaler
o Can be incremented during Sleep via external crystal/clock
» Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
» Two Capture, Compare, PWM modules
o 16-bit Capture input; max resolution 12.5 ns
o 16-bit Compare; max resolution 200 ns

o 10-bit PWM
» Synchronous Serial Port with two modes:
o SPI Master

o [2C Master and Slave
« USART/SCI with 9-bit address detection
e Parallel Slave Port (PSP)

o 8 bits wide with external RD. WR and CS controls
« Brown-out detection circuitry for Brown-Out Reset

Analog Features

» 10-bit, 8-channel A/D Converter
* Brown-Out Reset
» Analog Comparator module
o 2 analog comparators
o Programmable on-chip voltage reference module
Programmable input multiplexing from device inputs and internal VREF
Comparator outputs are externally accessible

OPTICAL CHOPPER:

Pulsed laser systems working at relatively low frequencies (below say 1 kHz) often have
a requirement to output every 2nd, 4th, 8th, etc pulse. There are two main considerations,
the shape of the optical chopper disk required and the synchronization of the optical
chopper disk with the laser pulses. Each of these problems will be considered in turn.

The shape required for the optical chopper disk can be very simple as shown below.

The outer set of 16 slots is used for synchronization with the laser pulses. The inner set of
slots has the laser shone through it and in this case will allow through every 4th pulse as
shown below.

Pulsed
Laser

uses TN,

Output T

Pulses

To allow through different numbers of pulses, different disks are required. This can get
expensive due to the cost of having custom disks made. Fortunately, by mounting two
disks simultaneously it is possible to produce a number of different options as shown in
the following picture.

HEFE

Disk 1 Disk 2
Disk 1 &2 Disk 1 & 2
Position 1 Position 2

Disk 1 & 2
Position 3

Disk I used by itself will allow every 2nd pulse to be allowed through. Mounting disk |
and disk 2 together on the same chopper head will allow different numbers of pulses
through depending on the mutual relationship. Position 1 allows | in every 4 pulses
through, position 2 allows through 1 in every 8 and position 3 allows through 1 in every
16.

Care has been taken with design of the disks to ensure that they are balanced. Having two
disks has the advantage that it is possible to have a visually unbalanced disk, such as that
shown in position 3 above, that is actually balanced.

Please note that due to manufacturing tolerances. the combination of two disks in this
way may not completely block light as shown. Small gaps where the disks overlap may
allow a small amount of light through though this will not be a problem in a pulse picking
application as these small gaps occur in between the pulses.

Synchronization of the laser pulses with the rotating chopper disk is obviously critical.
There are two ways of achieving this. the laser can be synchronized to the chopper or the
chopper can be synchronized to the laser.

Method 1: Laser Synchronized to the Chopper

The optical chopper will generate a series of pulses from an opto-switch on the outside
set of slots. This can be used to trigger the laser and is by far the simplest method of
synchronization since the laser will automatically track the optical chopper as it speeds
up and slows down.

PRI 8 . oo i wnin nuuns Jn

Laser
F 3

Chopper
Reference

Chopper
Control Unit

Method 2: Chopper Synchronized to the Laser

Synchronizing the chopper to the laser is a lot harder than the other way around as the
optical chopper is a mechanical device and can't react quickly to changes in operating
frequencies. A system is required that monitors the laser pulses and the optical chopper
reference and speeds up or slows down the optical chopper as required. The Scitec
[nstruments optical chopper synchronizer is suitable for this application.

PAISEE I .. assnnnnsinsie
Laser

Laser
Reference

Chopper
Synchroniser

Chopper Chopper
Control Reference

Opto
Switch

Chopper
Control Unit

Unfortunately, this system is not perfect as it can take the system up to 10 minutes to
stabilize. Jitter is also a problem being approx £15° for the 16 slot disk shown. Method |
is therefore recommended wherever possible.

H-BRIDGE:

This circuit drives small DC motors up to about 100 watts or 5 amps or 40 volts,
whichever comes first. Using bigger parts could make it more powerful. Using a real H-
bridge 1C makes sense for this size of motor, but hobbyists love to do it themselves, and [
thought it was about time to show a tested H-bridge motor driver that didn't use exotic
parts.

Operation is simple. Motor power is required, 6 to 40 volts DC. There are two logic level
compatible inputs, A and B, and two outputs, A and B. If input A is brought high, output
A goes high and output B goes low. The motor goes in one direction. If input B is driven.
the opposite happens and the motor runs in the opposite direction. If both inputs are low,
the motor is not driven and can freely "coast". and the circuit consumes no power. If both
inputs are brought high, the motor is shorted and braking occurs. This is a special feature
not common to most discrete H-bridge designs, drive both inputs in most H-bridges and
they self-destruct. About 0.05 amp is consumed in this state.

To do PWM(pulse width modulation) speed control, you need to provide PWM pulses.

PWM is applied to one input or the other based on direction desired, and the other input
is held either high(*“locked rotor™) or low(“float™). Depending on the frequency of PWM
and the desired reaction of the motor, one or the other may work better for you. Holding

the non-PWM'ed input low generally works best for low frequency PWM., and holding
the non-PWM'ed input high generally works best at high frequencies, but is not efficient
and produces a lot of heat, especially with these Darlingtons. so locked rotor is not
recommended for this circuit.

:[v or12v
RB =(100 ohmte 1k) gy DA }

\ fJMnaeo Dsso

From RC kit T +_'@_J

[D3
\ 4 ‘f\/—d—- Daso DS&OF

E Aok

s

=8

Truth table:

Here ‘0" mean input low or no connection ‘1" means input high or connected. So if A is
‘1" the motor will go forward and if B is *1” the motor will go backward. For breaking
purpose we will switch the connection.

Overall circuit diagram for distance measurement and speed control :

LASER
0 ‘I: [RL? R9

" S
i %ﬂ & - 1‘
T Q7
/ RLNK Pz i
0 R?
3 Towinum gy (-2 b
‘| 0SCZCLOUT [ED
PR |
b REFFGH
2 RATRN1 (Y
FAZRNZUREF-CVREF 75
FAJRNIHRER+ RESRGC R?
1 flpumokciolr emmc (-
L RASANUESCTIT "
_ foamosoren 8
REASAD ACITOSCER |2
g 3 SELAGATE FC2CCH - E
L reancs REIRCKECL L
S reisoies 2 » R?
L] T CRAGRTHY RCsE00 ok b —
ROSTHCK L #
RCTRXT v =
- 9 3
com 5
i s 7 Hy opE 0
RDURSF . | x e Q
AO2RSH2 F x 0
L uapses -2 4 of2 lis
ADGFSH e g« ‘f LY
ADSASHS ? # & :u i
1 ROBRSHE T L5 ”
i TIVIET. CTRN-H1D R o
| o
*
§a
o
R? @
1
H S| i| w7 ll N2
J? .2 CH
u
£l
OQ_E. e R?
H C’T' — 3 3 —
GG I RRUT Do [
Lo tovr w2
i T [s riguT A2
P O 1A riour i (U
L
] (23 Cle S
M CONN-DSF rienane CarControllerDSN D4TE
I R —— 1212010
8 PAGE
m; 1o 1
BY: <NONE» REENONE: | TME aisiam
3 E— T T T T T 3 T 3 T iy T T i X

General depiction

The OV6120 CMOS Image sensors are single-chip video/imaging camera devices
designed to provide a high level of functionality in a single, small-footprint package.
Both devices incorporate a 352 x 288 Image array capable of operating up to 60 frames
per second image capture. Proprietary sensor technology utilizes advanced algorithms to
cancel Fixed Pattern Noise (FPN), eliminate spreading, and drastically reduce blooming.
All needed camera functions including exposure control, gamma, gain, white balance,
color matrix, windowing, and more, are programmable through an SCCB (Serial Camera
Control Bus) interface. Both devices can be programmed to provide image output in
either 4, 8 or 16-bit digital formats. Applications include: Video Conferencing, Video
Phone, Video Mail, Still Image, and PC Multimedia.

Features of OV6620

101,376 pixels, 1/4™ lens, CIF/QCIF format
Progressive scan read out

Data format - YCrCb 4:2:2, GRB 4:2:2, RGB Raw Data

8/16 bit video data: CCIR601, CCIR656. ZV port
Wide dynamic range, anti-blooming, zero smearing

Electronic exposure / Gain / white balance control

Image enhancement - brightness, contrast, gamma, saturation, sharpness, window, etc.
Internal/external synchronization Frame exposure/line exposure option

5-Volt operation, low power dissipation

< 80 mW active power

< 10 mA in power-save mode

Gamma correction (0.45/0.55/1.00)

SCCB programmable (400 kb/s): color saturation, brightness, contrast, white balance,
exposure time, gain

16

Getting Image from the sensor

The initial frequency of PCLK is 17.73 MHz and the ATmegal6 is not fast enough to
read each pixel at this frequency two solutions could be taken:
« Use additional hardware to read and store the image.
* Decrease the frequency of PCLK by writing in the register Ox11.

e [ncrease the frequency of at mega 16
This last solution was the one taken. The frequency taken to read the image depends on
the way we read the image. If we read the image by horizontal lines we need to put the
lowest frequency allowed that it is: 69.25KHz. This let us to read one line at the same
time that is stored in the memory of the ATmegal6. The other mode we read a vertical
line of the image in each frame. In this case a higher frequency of 260KHz is used, but
we need to read as many frames as vertical lines has an image to get a complete one. In
the case of the horizontal lines reading the resulting image is too bright, and that is the
reason why the vertical reading is used, even if we need to read as many frames as
vertical lines. The horizontal reading is used to read one horizontal line and make a little
image process of it. The selection of this frequencies was made experimentally trying to
use the highest as possible frequency. When we want to send an image to the computer
the headers and the palette are send to the computer and then we proceed to read the
image from the camera. We read from the first frame the first column and send pixel by
pixel with the serial port to the computer, after that the second column, and so on until we

are done with the whole image.

12C Communication with the sensor

The 12C bus is a communication protocol developed by Philips. In this protocol two pins
are used. one is the clock and the other is the data. Also this protocol has a Master-Slave
architecture. In our case the master is the Atmegal6 and the slave the C3320 camera
sensor. Registers of the sensor can be read or written by the AVR. In the writing
operation the master put in the bus the writing address of device and after that put the
address of the register it wants to write, and finally the byte it wants to write in the
register. The reading operation is similar: first the master put in the bus the writing
address of the device it wants to write, after that the register address to read from. and
then the device reading address. Finally the slave puts in the bus the data requested. The
[12C communication was the most difficult part of the project, because 12C protocol is not
implemented hardware in the microcontroller used. Second because the C3320 camera
sensor implements the SCCB protocol that it is almost the same as 12C. Three solutions
were through to implement the 12C bus:

|. Use a parallel to [12C hardware converter like PCF8584. This was rejected because it
will use at least 10 of the pins of the microcontroller and it will not make the software
much easier.

2. Implement by software directly all the protocol.

3. Use the TWI (Two Wire Interface) present in the ATmegal6, that is a synchronous bus
as the 12C, and that used with some changes can implement the 12C protocol.

The last solution was the one chosen. As in the case of the usart. a library found in
Internet was used. To test this library another 12C device was connected to the [2C bus.
Once readings and writings were working in this device, the same operations were tried
in the camera. The result was that the writing worked, but not the reading. After some
investigations with the oscilloscope the problem was detected and solved, it was a timing
problem. The read register and write register functions are implemented in the camera

Sensor.

Serial Communications

The communications with the computer via serial port was the first thing to be
implemented because it allows to debugging by printing messages in the computer. In the
computer side two text terminals were used: HyperTerminal of Windows and Real Term
of the open source community. The serial port settings implemented are the next: 115200
bps. 8 bits, | stop bit, 0 parity bits. A velocity of 230400 bps could have been
implemented in the microcontroller, but the computer cannot work with it. Because code
for the serial port is widely used, the code used was based in the library Atmel AVR
USART Library for GCC. The functions from the library were modified to fit the
necessities of this project. These functions implement a receiving buffer: the received
bytes are read by an interruption and saved in the buffer. This is the only interruption
used in the system. To send bytes there is no buffer and the sending functions are

blocking. We can find these functions in USART.H and USART.C.

V1O

A
CAMMA DENB
r - | Y(7:0)
g b i x4 ~—{ AD’C — =t -~ q
) D A ""\ -f:’ 8.
analog processing Y ;. s o
— Ch e i PP E |8 ['wiro
Cr ML CADC bl & | S
i \\,_h
1 | * Note: Oueuies e are gm’r
— b“.lhne availabls on the Q16120
erect alance
column sense amp detect 1
2 (356x292)
)
7 image ,
= array '
= registers
J WB SCCB
sys-clkl video timung generator exposure control control mterface
. . S §
4 : AWB AWBTH .
l PCLK | FODD cnsn‘c-T MIR BEES: T AWBTM $10-1 SI0-0 SBB
PROG FZEX

HREF VYSYNC [FREZ FSIN

Fig-
Block Diagram of OV6620

OV6620 necessary pin configuration for circuit implementation:

Pin number Function

I SVDD Vin Array power (+5VDC)

8 AVDD Vin Analog power supply (+5VDC)

14 ADVDD Vin Analog power supply (+5VDC)

16 VSYNC/CSYS I/0 Vertical sync output. At power up. read as CSYS.

18 HREF/VSFRAM [/O HREF output. At power up, read as VSFRAM

30 DGND Vin Digital ground

31 DOGND Vin Digital interface output buffer ground

2 DOVDD Vin Digital interface output buffer power supply (+5VDC)

33 PCLK/PWDB 1I/0 PCLK output. At power up sampled as PWDB.

34 Y7/CS0 /O Bit 7 of Y video component output. At power up, sampled as
CSo0.

35 Y6/CS2 1/0 Bit 6 of Y video component output. At power up, sampled as
82

36 Y5/SHARP 1/0 Bit 5 of Y video component. At power up, sampled as
SHARP.

37 Y4/CS1 /0 Bit 4 of Y video component. At power up, sampled as CSI

38 Y3/RGB /O Bit 3 of Y video component output. At power up, sampled as
RGB.

40 Y1 /O Bit | of Y video component output.

41 YO/CBAR I/O Bit 0 of Y video component output. At power up, sampled
as CBAR

45 SIO-1 1 SCCB serial interface clock input

46 S10-0 I/0O SCCB serial interface data input and output.

48 SGND Vin Array ground

39 Y2/G2X 1/0 Bit 2 of Y video component output. At power up, sampled as

G2X.

21

Configuring the OV6620 Image Sensors

Two methods are provided for configuring the OV6620 ICs for specific application
requirements. At power up, the OV6620 sensors read the status of certain pins to
determine what, if any, power up default settings are requested. Once the
reading of the external pins is completed, the device configures its internal
registers according to the specified pins. Not all device functions are available for
configuration through external pin.

Depiction of the work

The overall communication is done by 12C protocol. We have used S10-0 and SIO-1 and
Y1.Y2,Y3.Y4,Y5,Y6,Y7 for capturing image.Y |-Y7 pins are used for capturing gray
scale image we can also use VRCAP-1 and VRCAP-3 for capturing color photo. There is
another pin which can be used for capturing image at dark and that is VSYCC pin. We
have used CMYK color format and BMP as picture format. Other PINS are used for RGB
formatting of captured image. SCL of camera Sensor and Pc’s SCL as clock matching.
Than Microcontroller’s SDA and sensor’s SDA will be shorted . We used Max232 for
serial communication with pe.It also convert pc’s 12 V to Sv to fed lens and
microcontroller as Atmegal6 and sensor only can operate at 5V. The on-chip 8-bit A-to-
D converters operate at up to 9 MHz, fully synchronous to the pixel rate. Actual
conversion rate is set as a function of the frame rate. A-to-D black-level calibration
circuitry ensures the following:

— the black level of Y/CMYK is normalized to a value of 16
— the peak white level is limited to 240

— CrCb black level is 128

— Peak/Bottom is 240/16

— RGB raw data output range is 16/240

But The ATmegal6 operates up to 8Mhz and the OV6620 Operates up to 17.17 MHZ. So
we had to add a Crystal Oscillator to speed up the operating frequency of Atmegal6 up to
17.73Mhz. We ware able to generate 16Mhz by using crystal oscillator which was fine to
get data. After building up the circuit we connect it with Computers Serial
communication Port. Than we Connect to HyperTerminal function from of the PC. Than
We select

Bits per sec to 19200
Data Bit-8

Parity None

Stop Bits-1

Flow control -None

2
(9]

Thus the circuit got connected to the serial Bus of PC.

Now we Used Terminal VI9B to check whether the OV6220 Sensor is sensing image or
not.

We were able to see some bits streaming throw the lens.

The YCrCb/RGB Raw Data signal from the analog processing section is fed to two on-
chip 8-bit Analog-to-Digital (A-to-D) converters: one for the Y channel and one shared
by the CrCb/ channels. The A-to-D converted data stream is further conditioned in the
digital formatter. The processed signal is delivered to the digital video port through the
video multiplexer which routes the user-selected 16-, 8-, or 4-bit video data the correct
output pins.

Microcontroller

We used Atmegal6 microcontroller to operate the system. This microcontroller has built
in 16Kb programmable flash memory moreover it has the ability to read raw data and
conversion ability which can convert the sensor image to bmp format and USART port as
our whole communication process is based on serial communication this is the basic
region to choose Atmegal 6.Basic features and used pin are described here

SCL and SDA Pins These pins interface the AVR TWI with the rest of the MCU system.
The output drivers contain a slew-rate limiter in order to conform to the TWI
specification. The input stages contain a spike suppression unit removing spikes shorter
than 50 ns. Note that the internal pull-ups in the AVR Pads can be enabled by setting the
PORT bits corresponding to the SCL. and SDA pins, as explained in the [/O Port section
of Atmegal6 data sheet. The internal pull-ups can in some systems eliminate the need for
external ones.

Bit Rate Generator

Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period
is controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in
the TWI Status Register (TWSR). Slave operation does not depend on Bit Rate or
Prescaler settings, but the CPU clock frequency in the slave must be at least 16 times
higher than the SCL frequency. Note that slaves may prolong the SCL low period,
thereby reducing the average TWI bus clock period. The SCL frequency is generated
according to the following equation:

SCL frequency= CPU Clock frequency/16 + 2(TWBR)*4TWPS

* TWBR = Value of the TWI Bit Rate Register

* TWPS = Value of the prescaler bits in the TWI Status Register
Note: Pull-up resistor values should be selected according to the SCL frequency and the
capacitive bus line load.

[S®]
I

TWI Bit Rate Register

- TWBR

« Bits 7..0 - TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator
is a frequency divider which generates the SCL clock frequency in the Master
modes.

TWI Control Register —
TWCR

The TWCR is used to control the operation of the TWI. It is used to enable the
TWI, to initiate a master access by applying a START condition to the bus, to
generate a receiver acknowledge, to generate a stop condition, and to control
halting of the bus while the data to be written to the bus are written to the TWDR.
It also indicates a write collision if data is attempted written to

TWDR while the register is inaccessible.

* Bit 7 — TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects
application software response. If the [-bit in SREG and TWIE in TWCR are set,
the MCU will jump to the TWI interrupt Vector. While the TWINT Flag is set, the
SCL low period is stretched. The TWINT Flag must be cleared by software by
writing a logic one to it. Note that this flag is not

automatically cleared by hardware when executing the interrupt routine. Also
note that clearing this flag starts the operation of the TWI, so all accesses to the
TWI Address Register (TWAR), TWI Status Register (TWSR), and TWI Data
Register (TWDR) must be complete before clearing this flag.

* Bit 6 - TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit
is written to one, the ACK pulse is generated on the TWI bus if the following
conditions are met:

1. The device’'s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode. By
writing the TWEA bit to zero, the device can be virtually disconnected from the
Two-wire

Serial Bus temporarily. Address recognition can then be resumed by writing the
TWEA bit to one again.

* Bit5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a master
on the Two wire Serial Bus. The TWI hardware checks if the bus is available, and
generates a START condition on the bus if it is free. However, if the bus is not
free, the TWI waits until a STOP condition is detected, and then generates a new
START condition to claim the bus Master status. TWSTA must be cleared by
software when the START condition has been transmitted.

* Bit4 - TWSTO: TWI STOP Condition Bit

Wiriting the TWSTO bit to one in Master mode will generate a STOP condition on
the Two-wire Serial Bus. When the STOP condition is executed on the bus, the
TWSTO bit is cleared automatically. In slave mode, setting the TWSTO bit can
be used to recover from an error condition. This will not generate a STOP
condition, but the TWI returns to a well-defined unaddressed

slave mode and releases the SCL and SDA lines to a high impedance state.

* Bit 3 - TWWC: TWI Write Collision Flag

The TWWOC bit is set when attempting to write to the TWI Data Register - TWDR
when TWINT is low. This flag is cleared by writing the TWDR Register when
TWINT is high.

* Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When
TWEN is written to one, the TWI takes control over the I/O pins connected to the
SCL and SDA pins, enabling the

slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched
off and all TWI transmissions are terminated, regardless of any ongoing
operation.

* Bit 1 — Res: Reserved Bit

This bit is a reserved bit and will always read as zero.

* Bit 0 — TWIE: TWI Interrupt Enable

When this bit is written to one, and the |-bit in

(o]
N

BMP formation

BMP file contain 4 group of data structure

1. BMP File Header Stores general information about the BMP file.

2. Bitmap Information Stores detailed information about the bitmap image.

3. Color Palette Stores the colors use for indexed color bitmaps. This is for
1,4.8 bits per pixel.

4. Bitmap Data Stores the actual image, pixel by pixel.

Max232 IC

This IC is used for serial communication between microcontroller and pc or
wireless device Rf module RST-tx. It contains two transmitters and receivers port
to communicate with pc and microcontroller

111l uF
+ ! Rx
(TOP VIEW) | To uC
N e \E,'l Serial
m - s
2 151}
M[3 = 14 } L)
-l-ri > .-h
1 uFEj o . F
o 2 12]
§ 1 2 L
Qv 0|
18 ofl TR
$ <A I PC DB9 Female
u
‘T TlO uF

www.SoDoltYourself.com
Other Apparatus Used in Circuit

Crystal oscillator: It is used for pull up the microcontroller frequency to mach with
camera sensor’s frequency

Resistor: We used four resistors of 10k ohm

Capacitor: Connected with max232, here five capacitors of Imicro fared used

Overall circuit design in pcb layout

e e e e
e |
b e

oooooooooo cabaul!»éc'

_lmégi aaaaaaaa
e

T

This the real image of our work.

Output taken from cmos camera sengor :

5. Terminal v1,9 - 200609208 - by Bray:+

" i COM Port Baudrate j Databits Party 1 Stopbits Handshaking -

Disoorrect | TV »] C60 CW0 CSBI0 r5 Grone gq 6 rone

il o] |10 CI9I0 END0 ap | ol r RTSACTS

Hep | L om0 © 128000 ry Cem C15 T XONKOF
Aok e e e i ¢ s | ek RTS/CTSAXONMOFF

g@ | CC 0 CH0 T Cosm 8 | Cges ©2 CRISeIX T et
Selirgs

safon | [Auto DisdCorect [Time [Shigamlog customER FNCF':TI A5Citble | Serpling Bcrs o
S| pdSatScig [CRAFT SpenTop [P0 (7 8 Gaph | _Fenoe (= [l [
Rezeive ; :

s @ HEX [Dec [Bi
g | Pewcome|[13 3] Cart=6 L jcn gH‘fj " sutlog| oioi| _REQRES |

Dec 52010 13:18:46... Cortrol Camera Program... ;n cartographar for bela! sirhType HELP and refurn for helpnACK/NNHELP MENU-Commands: nnRR argWR argl
atg2READALLRESET/AMIRRORONIMIRRORCOFFInPHOTOMTESTEMP/NPANORAMICINSERYO arg! SCANMOVESERYOTRACK
42 4D B6 53 00 00 00 00 00 00 36 04 00 00 26 00 00 00 F4 00 00 00 60 01 00 00 01 00 08 00 00 00 00 00 06 00 00 00,00 60 00 00 00 00 00 00 00 X1 00 0000 00 00 0000 H00G 0001 01 0100
(1202102 00 03 03 03 00.04 04 04 00 05 05 05 00 06 06 06 00 07 07 07 (0 06 08 08 00 08 03 09 00 0A 0A 0A 00 08 06 0B 00 0C 0C OC 00 0D 2D 0D 00 OE OF 0E 00 OF OF OF 0040101000 11
111100121212001313130014 14 140015151500 161616001717 1700 1818180013181900 1A1A1A001B1B1B001C1C1C 001D 1D1DO0MIETE1EQO1FIF1F 002020
001 22210022200232323002424240025252500262626002727270026282800282029002A242A00282828 0020 2C2C00 2D D D00 EE2E0F F OF
003030300031 31 3100323232003333330034 34 340035353500 36 36 36 003737 37003638 36 003339 3900 34 34 34 00 36 3B 3B 00 3C 3C 3C 003D 3D 3000 E 3E 3E 00
FIFIF0040404000414141004242420043434300444444004545450048464600474747004645480049434900424A4A004B4D48004C4C4C004D4D4DO0SE
4E4EOD4F 4F 4F 005050500051 51 51 0052525200 5353530054 545400 55 555500 56 5656 00 57 57 57 00 56 5858 00 58 59 53 00 5SA 5A SA 00 5B 5B 5B 00 SC5C5C 005D 5
5D 00 SE 5E 5€ 00 5F 5F 5F 00 60 60 60 00 61 81 61 00 62 62 62 00 63 63 63 00 64 64 64 00 55 65 65 00 66 65 66 00 67 67 67 00 63 66 68 00 63 63 69 00 6A 6A 64 00 6B 68 6B 00 6C 6C 6C
006D 6D 6D 00 BEBEREOOBF BF BF 007070700071 T 71 007272720073 7373007474 740075757500T6 76760077 7777 0073787600797973 00 TATATAOOTB7E 7R 00
TCTCTCO0T0TOTDO07E7ETEQO7F 7F 7FO0B0BO B0 00 31 6161 008282620083838300648484 008585850086 86060087 6787 00886563008069890084 84840088
BBEB00ECECACO0BDEDED 00 AEBESE 00 5F BF BF 009030900091 91 91009292920093 93930094 3494 009585550096 96 96 0057 97 97 0058 36 9800 399993 00 SA 9A
3A009B9B9B005CICACO0SDYDAD N0 GESESEODOF 9F 9F 00 AD AD AD OO AT A1 A1 00 A2 A2 A200 A3 A3 A300 A4 Ad A4 00 AS A5 AS00 AF AB AB 00 AT AT AT 00 AB AB A8 00
AJAIATO0 AL AL AL DD AB AB AB OO AC AC ACO0 AD AD AD 00 AE AE AE 00 AF AF AF 00 BOBO B0 00 B B1 B1 00 B2 B2 B2 00 B3 B3 B3 00 B4 B4 B4 00 BS BS 65 00 BE B6 BE 00 57
867 B7 00 55 B8 Ba 00 B3 B BS 00 BA BA BA 00 BB BE BE 00 BC BC BC 00 B0 BD BD 00 BE BE BE 00 BF BF BF 00 COCOCO00CI C1 C1 00C2C2C200C3C3CI00C4C4C400C5C5C5
00CECECE00CTCTCTO0CECECR00CICaCI00CACACADDCECECBO0CCCCCCO0CDCDCD0OCECECEDOCFCFCFO0DOD0DO0ID! D1 D1 00D2D2D200D3D3 D3 00 D4
D4 D4 00 D5 05 DS 00 D6 DS DE 00 D7 D7 D7 00 08 D8 D8 00 D3 DI 09 00 DA DA DA 00 DB DB 08 00 DC DC DC 00 DD 0D BD 00 DE DE OE 00 DF OF OF 00 EDEOEDO0E1 E1 E1 DOE2E2E200
E3E3 £3 00 E4 £4 E4 00 E5 E5ES 00 EG E6 E6 00 E7 E7 E7 00 B8 EG EB 00 E3 E9 £3 00 EA EA EA (0 EB EB B 00 £C EC EC 00 ED ED ED 00 EE EE EE 00 EF EF EF 00FO FOFOOOF1 F1 F1 00F2
F2F200 F3F3F300 F4 F4 F4 00 FSF5FS5 00 F6 F6F6 00 F7 F7 F7 00 F8 F8 F8 00 FS F3FS00 FA FA FA 00 FBFB FB 00 FC FC FC 00 FD FD FD 00 FE FE FE DO FF FF FF 00

CLEAR Send ik |g—“§f [” CR=CR#F 0K
.M.ms.,._,._.. il el M o
SetMacsos | M1 M2| M3 | M4 | M5 MB| M7 | MB | M3 | MID] MIT{ M12|

| - [" +IR

S3E8333833a8

EIF3FIESEAARES

¥

B Br1s

5 Bend |
s e s i

Conrected R Txdl
' o M2Wndms. | RS-, B Akbedos..

Here the out put shows only Hexadecimal value because the software we used for serial
communication is unable to show picture. To get a complete picture we need to use this
value for image processing which can be done by MATLAB simulation or by C++
programming. For time scarcity we cant complete this task. As

Conclusion

The purpose of this report is to show what has already been done in our project field and
what we are going to achieve. In this context we thought of our current perspectives and
motivated in implementing similar featured platform with its own area mapping and
obstacle detection capability to handle dangerous and difficult situations. In this paper we
presented the devices we need such as microcontrollers and others to work out.

Thus we will be able to implement it in the future. One of the major parts that is
wirelessly data transfer and image capturing wirelessly can be implemented in the future
work.

[t is concluded that further research and experiments with new devices that are being
developed every day. will help us improve and optimize our current project to be more
accurate and precise. It is also suggested that a successful implementation of our project
will help in handling situations that are difficult in normal context.

Future Work:
O Implement heat sensor
O Integrate with robotic arm

O Integrate Artificial Intelligence.
O Implementation of Wireless Communication

30

References

[1] Cosmanescu A, Miller B, Magno T, Ahmed A, Kremenic I. Design and
implementation of a wireless (Bluetooth [registered trademark]) four channel
bio-instrumentation amplifier and digital data acquisition device with userselectable
gain, frequency, and driven reference, EMBS Annual International

Conference, [EEE Sep. 3, 2006.

[2] McDermott-Wells P. What is Bluetooth?, Potentials, IEEE 2005; 23(5): 33-35.

[3] Advantages of stepper motor. htip://www.sapiensman.com/ESDictionary/docs/d6.him

[4] Microcontroller specification.
htip://'www.atmel.com/dyn/resources/prod documents/doc2503.pdf

[5] USART. http://www.ip-extreme.com/downloads/usart _brochure 080121 pdf

[6] http://www.radio.gov.uk/topics/conformity/conform-index.htm

[7] http://www.ai.sri.com/people/flakey/control.html

[8] Hee Chang Moon; Kyoung Moo Min; Jung Ha Kim; Vision system of
Unmanned Ground Vehicle.

[9] Madhavan, R.; Schlenoff, C. The effect of process models on short-term
prediction of moving objects for unmanned ground vehicles.

[10] Jong Hoon Ahnn, Project Title: Robot control using the wireless communication and
the serial communication

INDEX

#include "bmp.h"

vold createheader (char *header, int heigh, int width) {
char *p;
char bytelow;
char bytehigh;
int sizefile = 1078 +(heigh*width);
bytelow = sizefile & Ox00FF;
bytehigh = (sizefile & O0xFF00)>>8;
p = header;

//2 Bytes --BM Starting

*p = 'RV:
ptt;
*p — .M';
pt+:

//4 Bytes -- Size of file in bytes = 14 + 40 +1024 + HEIGH * WIDTH
(100*100) = 2078 = 0x049A
*p = bytelow;

pt+i

*p = bytehigh;
pt+;

mp=0;

p++i

*P = 0;

pt+:

//4 Bytes of reserved (= 0)
o= 0;

p++;

*p = 0;

pt+:

*p = 0;

pt+:

*p:O’-

pt;

//4 Bytes of offset to the init of the data
*p = 0x36;
p++:

*p = 0x04;
prtts

*p = 0;

P+

*o = 0;

p++:

}

void createinfoheader (char *infoheader, int heigh, int width){
char *p:

char heighlow;
char heighhigh;
char widthlow;
char widthhigh;

heighlow = heigh & OxO00FF;
heighhigh = (heigh & O0xFF00)>>8;
widthlow = width & OxQ00FF;
widthhigh = (width & OxFFO00)>>8;

p = infoheader;

//4 Bytes -- Size of InfoHeader =40

*» = 40;

pt++;

o = 0;

Dt

*P = 0;

pt++;

*oo= 0;

p++,'

//4 Bytes —-- specifies the width of the image, in pixels.
*p = widthlow;

o

*p = widthhigh;

p++:

*p = O;

pt+i:

*p = 0;

p++;

//4 Bytes -- specifies the heigth of the image, in pixels.
*p = heighlow;

pt+i

*p = heighhigh;

pt++;

*n o= 0;

pt++;

*vp = 0;

pt+;

//2 Bytes -- Number of planes of the image
¥po= 1;

Pt

*p = 0'-

pt++;

//2 Bytes Bits per Pixel -- In our case 8.
*p = 8;

pt++:

*p = 0;

pt+;

//4 bytes -- Type of Compression 0 = BI_RGB no compression
o= 0z

ptt:

*p = O;

pt+i

*p = 0;

pt+:

*p:O;

p++;

//4 bytes -- ImageSize (compressed) It is valid to set this =0
20 = 0

pt+;

o= 0;

p4+;

¥y = 0;

ptt+;

*P p=t O;

p¥+;

//¥pixelsPerM 4 bytes horizontal resoclution: Pixels/meter
*p = 0;

pt+;

*p = 0;

p++;

*p = O;

p++;

*p = 07

ptti

//YpixelsPerM 4 bytes vertical rescolution: Pixels/meter
;p = O,’

p++;

* = 03

pt+i

-A-p = O;

o 2 2

ip — 0;

pt+:

//ColorsUsed 4 bytes Number of actually used colors =256
o=

pt++;
*p:l;

p++;

g o= O

pt++;

*p = 0;

pt++;

//ColorsImportant 4 bytes Number of important celers 0 = all
*p = 03

pt++;

*p:O;

pt+;

*p = 0;

pt+:

*o = 0;

pt+;

}

void usart putnumchars(char *header, int num) {
chayr *p;
p = header;
for(int i=0; i<num;i++) {
usart putc(*p);
Pt B
}

void sendtable(void) {
for(int i=0; i<256:i++){
usart_putc(i);
usart pute(i):
usart putc(i);
usart putc(0);

}
void senddata(void) {
for(int i=0; 1<244;i++){
for(int J=0; j<44;j++){
usart putc(0+5*%j);
usart putc(10+5%3);
usart putec (20+5*3);
' usart putc(0+2*i);
usart_putc(50+2*i);
usart putec (0+9*%j);
usart putec(10+49%j);
usart putc(20+9*j);
}

#include "cam.h"

#include "delay.h"
#include "usart.h"
#include "servo.h"

void camports_init(void) {
DDRY = 0x00;
DDRD = (DDRD & OxE3);

}

void photo(void) {
for(int ¥ = 0; y<352; y++){
while (isVSYNup) ;
while (isVSYNdown) ;
for(int r = 0;r<244;r++){
while (isHREFdown) ;
for(int h = 0;h<y;h++){
while (isPCLKup);
while (isPCLKdown) ;
}
usart_putc (PINY);
while (isHREFup) ;

}

void panoramic(void) {
for(int % = —850; x<=080; xt++){
set _servo pos(-x):
Delay 1lms(30);:
while (1sVSYNup) ;
while (1s8VSYNdown) ;
for(int r = 0;r<244;r++) {
while (isHREFdown) ;
for(int h = 0;h<176;h++){ // I take the center celumn
while (isPCLKup) ;
while (isPCLKdown) ;
}
usart putc(PINY);
while (isHREFup);

}

int getcenter (char *row) {
int maxvalue = 0;
int maxpos 0:
int previous = 0;
int center = -1;

char *p;
P = row;

while (1isVSYNup) ;
while (isVSYNdown) ;
for(int ¥ = 0;r<20;r++) 1 // I wait for row 20
while (isHREFup) ;
while (isHREFdown) ;
}
while (isHREFup) {
while (isPCLKdown) ;
*p = PINY;
p++;
while (isPCLKup) ;
while (1sPCLKdown) ;
while (isPCLKup) ;
while (isPCLKdown) ;
while (isPCLKup) ;
while (isPCLKdown) ;
while (isPCLKup) ;

p = row;
for(int i = 1;i<=88;1i++){
if (*p >= 225){
previous++;
if (previous>=maxvalue) {
maxvalue = previous;
maxpos=i;
}
} else previous = 0;

D4+

}

if (maxvalue>l) center = (int) maxpos - (maxvalue/2);
return center;

#include "delay.h"

void Delay 100us(unsigned char t) {

unsigned int i;

if (t==0) return;

while (t-=-) for(i=0;i<K DELAY 100us; i++);
}

void Delay lms(unsigned char t) ({

unsigned int 1i;

if (t==0) return:;

while (t--) for(i=0;i<K DELAY lms; i++);
}

void Delay 10ms(unsigned char t) {
unsigned int i;
if (t==0) return;
while (t--) for(i=0;i<K DELAY 10ms; i++);

#ineclude <avr/ioc.h>
#define F CPU 16000000

#define K DELAY 100us F CPU/61349
#define K DELAY 1lms F_CPU/6013
#define K_DELAY 10ms F _CPU/600

veid Delay 100us (unsigned char t}):
void Delay 1ms (unsigned char t):
void Delay 10ms(unsigned char t);

inglude "I2C CEM.R"

void
e dinit(int clk)

{

/* initialize TWI clock: 100 kHz clock, TWPS = 0 => prescaler

#if defined (TWPSO)

1

i

/* has prescaler (megal28 & newer) */

TWSR = 0;
#endif
TWBR = (¢clk*1000000 / 100000UL - 16) / 2;

}

int
i2c read bytes(uintl6é_t eeaddr, int len, uint8_t *buf)
{

unsigned long int counter=0;
uint8 t sla, twer, n = 07
int rv = 0;

/* patch high bits of EEPROM address into SLA */

sla = TWI SLA CAM | (((eeaddr >> B) & 0x07) << 1);
/«
* Note [6]
* First cycle: master transmitter mode
4
resbarcts
if (n++ >= MAX ITER)
return -1;
begin:
TWCR = BV(TWINT) | BV(TWSTA) | BV(TWEN); /* send start condition
o
while ((TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */

switch ((TW_STATUS))
{

case TW_REP START: /* OK, but should not happen */
case TW_START:

break;
case TW_MT ARB _LOST: /* Note (7] */

goto begin:

default:
return -1; /* error: not in start condition */
/* NB: do /not/ send stop condition */

/* Note [B] */
/* send SLA+W */
TWDR = sla | TW_WRITE:

TWCR = BV (TWINT) | _BV(TWEN); /* clear interrupt to start
transmission */
while ((TWCR & BV (TWINT)) == 0) ; /* wait for transmission */

switch ((TW_STATUS))
{
case TW_MT SLA ACK:
break;

case TW_MT SLA NACK: /* nack during select: device busy

writing */
/* Note [9] */

goto restart;

case TW_MT ARB_LOST: /* re—arbitrate */
goto begin;

default:
gote error; /* must send stop condition */
}
TWDR = eeaddr; /* low 8 bits of addr */
TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start
transmission */
while ((TWCR & BV(TWINT)) == 0) ; /* walt for transmission */

switch ((TW_STATUS))

!
case TW_MT_DATA ACK:
break:;

case TW_MT_DATA NACK:
gote quit;

case TW_MT ARB LOST:
gote begin;

default:
goto error; /* must send stop condition */

}

TWCR = 0; // Stop the twi interface to make the camera able to
rescognise the new start

while (counter != 0x0020)
{
counter++;
}
/ *
* Note [10]
* Next cycle(s): master receiver mode
./
TWCR = BV(TWINT) | _BV(TWSTA) | BV{(TWEN):; /* send (rep.) start
condition */
while ({(TWCR & _BV(TWINT)) == 0) ; /* wait for transmission */
switch ((TW_STATUS))
{
case TW_START: /* OK, but should not happen */
case TW_REP_START:
break;

case TW_MT ARB LOST:
goto begin;

default:
goto error:;

}

send SLA+R */
(sla | TW_READ):
TWCR _BV(TWINT) | _BV(TWEN):
transmission */
while ((TWCR & _BV(TWINT)) == 0)
switch ((TW_STATUS))
{
case TW MR SLA ACK:
break;

/*
TWDR

case TW MR SLA NACK:
goto quit;

case TW_MR ARB LOST:
goto begin;

default:
goto error;
}

for (twcr _BV(TWINT)
len > 0;

len—-)

if)
_BV(TWINT)
twecr;
((TWCR & _BV(TWINT))

((TW_STATUS))

(len ==
twecr
TWCR
while
switch
{
case TW_MR _DATA NACK:

len 0;

/* FALLTHROQUGH */
case TW_MR DATA ACK:

*buf++ TWDR;

rv++;

break;

default:
goto error;

}
quit:
/* Note [12]
TWCR

a4
_BV(TWINT)

| _BV(TWSTO)
return rv;
error:

By = =13
gotoe quit;

BV (TWEN)

BV (TWEN) ;
/* clear int to start transmission */
== 0)

/* clear interrupt to start

/* wait for transmission */

.
’

| _BV(TWEA) /* Note [11] */;

/* send NAK this time */

/* wait for transmission */

r

/* force end of loop */

| BV(IWEN); /* send stop condition */

int
i2c write page(uintlé t eeaddr, int len, uint8_t *buf)
{

uintB_t sla, n = 0;

int rv = 0;

uintlé t endaddr;

if (eeaddr + len < (eeaddr | (PAGE SIZE - 1}))
endaddr = eeaddr + len;
else
endaddr = (eeaddr | (PAGE_SIZE - 1)) + 1;
len = endaddr - eeaddr;

/* patch high bits of EEPROM address into SLA */
sla = TWI_SLA CAM | (((eeaddr >> 8) & 0x07) << 1);:

restart:

if (n++ >= MAX ITER)
return -1;

begin:

/* Note 13 */
TWCR = BV(TWINT) | _BV(TWSTA) | BV(TWEN); /* send start condition
#y

while ((TWCR & BV (TWINT)) == 0) ; /* wait for transmission */
switch ((TW_STATUS)]

{

case TW_REP START: /* OK, but should not happen */

case TW_START:

break;

case TW_MT ARB LOST:
goeto begin;

default:
return -1; /* error: not in start condition */
/* NB: do /not/ send stop condition */
}

/* send SLA+W */
TWDR = sla | TW _WRITE;

TWCR = _BV(TWINT) | _BV(TWEN); /* clear interrupt to start
transmission */
while ((TWCR & BV(TWINT)) == 0) ; /* wait for transmission */

switch ((TW_STATUS))
{
case TW_MT SLA ACK:
break;

case TW _MT SLA NACK: /* nack during select: device busy
writing */
goto restart;

case TW _MT ARB LOST: /* re-arbitrate */
goto begin;

default:

gote error; /* must send stop condition */
}

TWDR = eeaddr; /* low 8 bits of addr */

TWCR = BV(TWINT) | BV(TWEN); /* clear interrupt to start
transmission */

while ((TWCR & BV(TWINT)) == 0) ; /* walt for transmission */

switch ((TW_STATUS))

{
case TW_MT DATA ACK:
break;

case TW _MT DATA NACK:
goto quit;

case TW_MT ARB LOST:
goto begin;

default:
gotoc error; /* must send stop condition */

}

for (; len > 0; len--)
{

TWDR = *buf++;
TWCR = BV(TWINT) | _BV(TWEN); /* start transmission */
while ((TWCR & BV(TWINT)) == 0) ; /* wait for transmission */

switch ((TW_STATUS))

{
case TW_MT DATA NACK:

goto error; /* device write protected -- Note [14]

s

case TW _MT DATA ACK:
7 gl b O
break;

default:
goto error;
}

1
quit:

TWCR = _BV(TWINT) | _BV(TWSTO) | _BV(TWEN); /* send stop condition */

return rv;

error:

e = =l

goto quit;
}

int
i2c write bytes(uintlé t eeaddr, int len, uint8 t *buf)
{

int rv, total;

total = 0;

do
{
#if DEBUG
printf("Calling i2¢ write page(%d, %d,
eeaddr, len, buf);

Q

"‘P) "J'

#endif

rv = iZ2c write_ page(eeaddr, len, buf);
#1f DEBUG

printf(" => %d\n", rv):
#endif

if (rv == -1)

return -1;
eeaddr += rv;
len == rv;
buf += rv;
total += rv;

}
while (len > 0);

return total;
}

int write register(uintl6_t numregister, uint8 t value){
uint8 t *pvalue;
int num;
pvalue = &value;

num = i2c_write bytes(numregister, 1, pvalue);

if (maml=1) return -1;
else return 1;

1

int read_register(uintl6é_t numregister) {
int num;
uint8 t *pvalue;
uint8 t value = 0;
pvalue = &value;

num = i2c¢ read bytes(numregister, 1, pvalue);

if (num!=1) return -1;
else return (int)*pvalue;

#include <avr/io.h>
#include <avr/signal.h>
#include <avr/interrupt.h>
#include <string.h>
#include "usart.h"

char usart_buffer[USART BUFFER SIZE]:

volatile unsigned char usart buffer pos first = 0,
usart buffer pos last = 0;
volatile unsigned char usart_buffer overflow = 0;

void usart init(unsigned char baud divider) {
// Baud rate selection
UBRRH = 0x00;
UBRRL = baud_divider;

// USART setup

UCSRA = 0x02; // 0000 0010

// U2X enabled
UCSRC = 0xB86; // 1000 0110

// Access UCSRC, Asyncronous 8N1
UCSRB = 0x98; // 1001 1000

// Receiver enabled, Transmitter enabled
// RX Complete interrupt enabled
geil) i // Enable interrupts globally
}

void usart putc(char data) |{
while (! (UCSRA & 0x20));
empty
// Transmit data
UDR = data;

// Wait untill USART data register is

}

void usart puts(char *data) ({
int len, counts

len = strlen(data);
for (count = 0; count < len; count++)
usart_putc(* (datat+count));
}

char usart getc(void) {
// Wait untill unread data in ring buffer
if (!usart buffer overflow)
while(usart_buffer pos_ first == usart buffer pos_last):
usart_buffer overflow = 0;
// Increase first pointer
if (++usart buffer pos first >= USART BUFFER SIZE)
usart buffer pos first = 0;
// Get data from the buffer
return usart_buffer[usart buffer pos_ first];

}

unsigned char usart_unread data(void) {

if (usart_buffer overflow)
return USART BUFFER SIZE;

if (usart buffer pos last > usart buffer pos first)
return usart buffer pos last - usart buffer pos first:;

if (usart buffer pos last <« usart buffer pos first)
return USART BUFFER SIZE-usart buffer pos first

+ usart_buffer pes last;
return 0;

}

SIGNAL(SIG UART RECV)} {

// Increase last buffer

if (++usart buffer pos last >= USART BUFFER SIZE)
usart buffer pos_last = 0;

if (usart buffer peos first == usart buffer pos last)
usart buffer overflow++;

// Put data to the buffer

usart_buffer[usart buffer pos last] = UDR;

