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ABSTRACT

This thesis discusses the role of AdS/CFT correspondence in high-energy physics. It
concentrates on studying the mathematical black holes in various backgrounds, particularly in
the anti deSitter(AdS) space. In this thesis, we discusses the emergence of Hawking radiation
and the information paradox relating to its entropy. An extensive study of the correlation
between the conformal field theory and the anti-deSitter space is given.In addition, we studied
the holographic entanglement entropy of a black hole using the theories of quantum field and
gauge/gravity duality which was then used to address the existing problem of information
theory paradox. Finally, we calculated the entanglement entropy of simple configurations
using the reduced matrix formalism.

3



Contents

List of Figures 6

1 Introduction 7

2 Black Hole Coordinates 10
2.1 The Schwarzschild solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Properties of the Schwarzschild solution . . . . . . . . . . . . . . . . 13
2.2 Interpretation of the mass in the solution . . . . . . . . . . . . . . . . . . . . 14
2.3 Singularities of the Schwarzschild solution . . . . . . . . . . . . . . . . . . . 14
2.4 Characterizing the coordinate system . . . . . . . . . . . . . . . . . . . . . . 15

3 Eddington-Finkelstein Coordinate 16
3.1 Motivation for a new coordinate system . . . . . . . . . . . . . . . . . . . . . 16
3.2 Eddington-Finkelstein solution . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Event horizon: Schwarzschild and Eddington- Finkelstein . . . . . . . . . . . 17

4 The Kruskal Coordinate 19
4.1 The Kruskal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Features of the Kruskal solution . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Compactification of the Kruskal solution . . . . . . . . . . . . . . . . . . . . 20

5 Hawking Radiation 22
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Consequence of the Hawking radiation . . . . . . . . . . . . . . . . . . . . . 22
5.3 Vacuum fluctuations near a black hole . . . . . . . . . . . . . . . . . . . . . 23
5.4 Determining the Hawking temperature: mathematical approach . . . . . . . 24
5.5 Black hole thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 DeSitter and Anti-deSitter Spacetime 27
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Maximal symmetry of the deSitter and anti-deSitter space . . . . . . . . . . 29

6.2.1 Isometries of the spacetime . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.2 Coset manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 Reimann curvature tensor for dSd and the AdSd . . . . . . . . . . . . . . . . 30
6.4 Schwarzschild space from the AdS space . . . . . . . . . . . . . . . . . . . . 32
6.5 Conformal coordinates for AdS spacetime . . . . . . . . . . . . . . . . . . . . 33
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Chapter 1

Introduction

In 1687, Sir Issac Newton introduced the concept of absolute time and space and used them to
explain the mechanics around us and formulated the law of universal gravitation. According
to the Law of Universal Gravitation, every point mass M attracts any other mass m with
a gravitational force F that is proportional to the product of the masses, and inversely
proportional to the square of their distances r = rr̂:

F = −GMm

r2
r̂

The formulation of classical electrodynamics by Maxwell in 1865 challenged the laws of
classical mechanics as given by Sir Issac Newton, precisely the idea of absolute time and
space. The concepts of space and time were unified by one of the prominent scientists of
the last century, Albert Einstein, who introduced the the idea of spacetime as a fundamental
notion of his theory of Special Relativity. Einstein proposed in his theory6 in 1905. His
theory was based on two postulates: (i) the speed of light c is the same in any inertial
frame and (ii) the laws of physics are invariant in any inertial frame. The laws of classical
mechanics proposed by Newton were then modified by Einstein so that the laws were invariant
under Lorentz transformation- as the equations of the classical electrodynamics formulated
by Maxwell and also consistent with the postulates of the Special Relativity.
This discrepancies of the theories led Einstein to develop a more general theory of spacetime
in 19157. In his theory, Einstein treated gravity no longer as a force, but as a manifestation of
the curvature of the spacetime. Spacetime curvature is generated by the presence of matter.
Einstein formulated his theory based on two principles: (i) the equivalence principle which
states that at every spacetime point in an arbitrary gravitational field, a locally inertial
coordinate system can be chosen, such that, within a sufficiently small region of this point,
all physical laws take the form of those of special relativity and (ii) the principle of general
covariance which states that the equations that express the laws of physics should be generally
covariant, i.e. they should preserve their form under a general transformation such as the
Lorentz transformation or the Poincare transformation.2 19

General Relativity can be summarized, according to18 3, as follows. Given that the spacetime
is a four-dimensional manifold M endowed with a pseudo-Riemannian metric gµν , the
curvature of the spacetime is related to the matter distribution as given by the Einstein
equation

Gµν = Rµν −
1

2
Rgµν =

8πG

c4
Tµν
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Figure 1.1: Solution of the Einstein’s Equation

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci Scalar and the Tµν
is the Stress-Energy tensor. The laws of motion formulated by Newton is the slowly moving
approximation of the Einstein’s equation.
One of the most significant consequences of the general relativity is the existence of black

holes, as shown in 1.1 .A black hole is a region of spacetime where the field is so strong that
even light cannor escape the horizon, i.e. the boundary of the black hole.15. Generally, a
black hole is formed when the size of the gravitating object of mass M becomes smaller than
its gravitational radius rs = 2GM

c2
8, the event-horizon, boundary of black a hole.

Although the discovery of astrophysical black holes gave a solid foundation to the predictions
made from Einstein equation yet the theoretical study of black holes and their properties
using different mathematical models is currently one of the most interesting topics of interest
to scientists. Study of theoretical black holes shed light on Einstein’s dream of unifying
all the fundamental forces of nature, specially studying black holes using string theory and
its correspondence to the quantum field theory one can model particle physics beyond the
existent standard model of particle physics.
Another interesting aspects of black hole comes in when we consider black holes as a
thermodynamic quantum mechanical objects where entanglement between two quantum
states plays a vital role in understanding the undergoing physical phenomena in them. As
professor Lenoard Susskind once said,”The phenomenon of entanglement is the essential fact
of quantum mechanics, the fact that make it so different from classical physics.” In order to
understand entanglement in a quantitative sense we calculated entanglement entropy of some
ideal system. In chapter 4 where we discussed Hawking radiation and black hole entropy we
have seen unlike classical thermodynamical object, black holes entropy is proportional to the
area of the black hole rather than the volume. In this thesis, I tried to attempt the following
things.
Firstly, I review one of the solutions to Einstein equation, the Schwarzschild solution and
then in next couple of chapters I studied about the analytical extension of the solution
where I tried to learn about the different algebraic, topological and physical analysis of those
solutions. Secondly, after getting a clear picture of black hole horizon from those solution,
I focused on studying the horizon in details and I tried to learn about the most celebrated
Hawking Radiation and its peculiarity with respect to other thermodynamical objects. In
addition, in the forthcoming chapters I studied about AdS spacetime and its mathematical
properties and analysis which was a mathematical warm up for the next chapter where
I studied conformal field theories and the correlation between conformal field theory and
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quantum gravity. Finally, using all these theories in hand, I tried to tackle the problem of
information paradox and quantum gravity. In the last chapter I learned about holographic
entanglement entropy which can be used to tackle the problem of the information paradox
and quantum gravity.
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Chapter 2

Black Hole Coordinates

2.1 The Schwarzschild solution

One of the famous analytical solutions to Einstein equation is known as the Schwarzschild
Solution to Einstein Vacuum equation. This solution is done by idealizing the solution,
i.e. suppressing some of the physical possibilities and considering various symmetries. As
introduced in the earlier chapter, the famous Einstein equation is written as:

Rij −
1

2
Rgij + Λgij =

8πG

c4
Tij (2.1)

where Rij is the Ricci Curvature Tensor, R is the Scalar Curvature, gij is the metric tensor,
Λ is the cosmological constant, G is Newton’s gravitational constant and c is the speed of
light in vacuum, and Tij is the stressenergy tensor.
To solve the given equation we first assume that the cosmological term in the equation 2.1
vanishes, then we use the following equation7

Rij −
1

2
Rgij =

8πG

c4
Tij

where we assume that the solution is static in nature. In addition, to solve the equation we
further assume that the solution is of vacuum, otherwise known as the vacuum solution to
the Einstein equation, which is given by:

Rij −
1

2
Rgij = 0

where the right hand side of the equation vanishes because the energy-momentum tensor
Tij = 0. Thus we get the following equation 2.1. Now, to get a solution of the equation we
need to assume a distance function that will be used to calculate the remaining terms in the
equation, namely the metric gij, the Ricci curvature tensor, Rij and the Ricci scalar, R. The
Ricci curvature tensor and the Ricci scalar is calculated from the symmetric tensor, Reimann
curvature tensor.
The distance function is chosen in such a way that the time-like component in it and the
distance-like component in it always have the signature (+,−,−,−). Thus the components
are chosen to be exponential functions. Moreover, we are assuming the non-vanishing terms
in the distance function to be isotropic, homogeneous and time-independent.The distance
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CHAPTER 2. BLACK HOLE COORDINATES

function is assumed as5:

ds2 = e2λdt2 − e2µdr2 − r2(dθ2 + sin2θdφ2)

= ηijσ
iσj

(2.2)

where λ and ν are chosen to be the functions of r and σi and σj are chosen to the basis of
1− form, which are: 

σt

σr

σθ

σφ

 =


σ0

σ1

σ2

σ3

 =


eλdt
eµdr
rdθ

r sin θdφ


Now the task is to find the unknown functions in the metric which are µ and λ. In order to
do so, we first calculate the torsion free Levi-Civita connection which is given by:

dσi = −wij ∧ σj (2.3)

Moreover, using the metric compatibility

wrr = wφφ = 0

wφr = −wrφ = 0

wrφ ∧ rdφ = 0

dr ∧ dφ− wrφ ∧ dr = 0

we calculate for i = 0 or t, which is shown below:

dσ0 = −(w0
0 ∧ σ0 + w0

1 ∧ σ1 + w0
2 ∧ σ2 + w0

3 ∧ σ3)

= −w0
r ∧ σr

= −w0
r ∧ eµdr

= σr ∧ w0
r

(2.4)

We also calculate dσ0 in the following way:

dσ0 = d(eλ)

= λ′eλdr ∧ dt
= σr ∧ (λ′e−µ σ0)

(2.5)

And now by comparing equation 2.4 and equation 2.5 we get:

w0
1 = wtr = λ′e−µ ∧ σ0 (2.6)

11



CHAPTER 2. BLACK HOLE COORDINATES

Using the properties of the metric used, i.e. ηij, in a similar way we calculate all of the rest
Levi-Civita connection component for i = 1, 2, 3 = r, θ, φ which are listed below12

w0
1 = λ′e−µ ∧ σ0 = w1

0

w0
2 = w0

3 = w2
0 = w3

0 = 0

w1
2 = −1

r
e−µθ2

w2
1 =

1

r
e−µθ2

w1
3 = −1

r
e−µθ3

w3
1 =

1

r
e−µθ3

w2
3 = − 1

cot θ
θ3

(2.7)

Now using the equation 2.7 we have calculated the curvature components, otherwise known
as the curvature 2− form using the following equation:

Ωi
j = dwij + wik ∧ wkj (2.8)

Using equation 2.8 and assigning i = 0 and j = 1 we proceed with our calculations:

Ω0
1 = dw0

1 + w0
0 ∧ w0

1 + w0
1 ∧ w1

1 + w0
2 ∧ w2

1 + w0
3 ∧ w3

1

= d(λ′e−µ ∧ σ0)

= λ”e−µ ∧ dr ∧ σ0 − λ′µ′e−µ ∧ dr ∧ σ0 + (λ”)2e−µ ∧ dr ∧ σ0

= −(λ”− (λ′)2 + λ′µ′)e−2µ ∧ σ0 ∧ σ1

Similar to this, we calculated the rest of the non-zero curvature components using equation
2.8, which are listed below:

Ω0
2 = −1

r
λ′e−2µ σ0 ∧ σ2

Ω0
3 = −1

r
λ′e−2µ σ0 ∧ σ3

Ω1
2 =

1

r
µ′e−2µ σ1 ∧ σ2

Ω1
3 =

1

r
µ′e−2µ σ1 ∧ σ3

Ω2
3 =

1

r2
(1− e−2µ) σ2 ∧ σ3

(2.9)

The next part for solving the Einstein equation i.e. to find the unknown functions in the
Schwarzschild line element led us to find the Riemann tensor and we can use the relation
between the curvature component calculated above and the equation 2.10 below to find them.
The equation is given by:

Ωi
j =

1

2
Ri
mnjσ

m ∧ σn (2.10)
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CHAPTER 2. BLACK HOLE COORDINATES

All the non-zero Riemann curvature tensor are calculated using the above equation, which
are listed below12:

R0
011 = −(λ′′ − (λ′)2 − λ′µ′)e−2µ

R0
022 = −1

r
λ′e−2µ

R0
033 = −1

r
λ′e−2µ

R1
122 =

1

r
µ′e−2µ

R1
133 =

1

r
µ′e−2µ

R2
233 =

1

r

2

(1− e−2µ)

(2.11)

Then contracting the Riemann curvature tensor and using the approximation that for an
isolated system the values of both λ and µ is zero (i.e. as r tends to infinity λ and µ goes to
zero). We then calculated the Ricci tensors using Rab = Rc

acb, which are listed below:

R00 = e2λ−2ν(λ′′ + λ′µ′ − 2λ′

r
− λ′2)

R11 = λ′′ + λ′′2 − λ′µ′ − 2µ′

r
R22 = e−2µ(1− e2µ + r(λ′ − µ′))
R33 = sin2 θ e−2µ(1− e2µ + r(λ′ − µ′))
Rij = 0 for i 6= j

(2.12)

Now equating these equations to zero and using the boundary conditions, locally spherically
symmetric and function vanishes at infinity, we get:

g00 = e2λ =

(
1 +

k

r

)
Moreover, approximating the value of g00 from the Newton’s gravitational potential we have:

g00 ≈ (1 + 2Φ + Θ(ε2))

Thus we get:
k

r
= 2Φ = −2GM

r
(2.13)

Now substituting the value of equation 2.13 into the equation 2.2 we get the Schwarzschild
solution to the Einstein equation, which is:

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
(2.14)

2.1.1 Properties of the Schwarzschild solution

The coordinates (xa) = (x0, x1, x2, x3) = (t,−→r ) of the metric for a region (r > 2m) has
t as a time-like and r as a space-like coordinate. It is also seen from equation 2.14 that

13



CHAPTER 2. BLACK HOLE COORDINATES

the solution if equation is time-symmetric, since it is invariant under the time reflection
t→ t′ = −t and time translation invariant, since it is also invariant under the transformation
t → t′ = t + constant. Moreover, using Birkhoff’s Theorem: ”A spherically symmetric
vacuum solution in the exterior region is necessarily static” it can be said that the solution
in static as well as stationary. Furthermore, taking the limit r →∞, we obtain the flat space
metric of special relativity in spherical polar coordinate:

ds2 = dt2 − dr2 − r2(dθ2 + sin2θdφ2) (2.15)

Hence it can be further concluded that the Schwarzschild spherically symmetric vacuum
solution is asymptotically flat.

2.2 Interpretation of the mass in the solution

From Newtonian theory, a point mass M situated at the origin gives rise to a potential
φ = −GM

r
, comparing this with the weak-field limit g00 = 1 + 2φ

c2
+O(v

c
) we see that

m =
GM

c2
(2.16)

in non-relativistic units. Therefore, the Schwarzschild solution can also be interpreted as
simply the mass of a particle at the origin, but from the solution, it is also seen that that m
has a dimension of length4. Hence, it is also sometimes referred to as the geometric mass.

2.3 Singularities of the Schwarzschild solution

We know that in general a coordinated system associated with a manifold M covers only a
portion of the manifold. In fact, this is also true for the Schwarzschild solution and there
exist several singularities of the line element, where the line element degenerates and the
metric ceases to be of the rank 4 tensor. The singularities can be of two types:

• Coordinate singularities

• Intrinsic, curvature or real singularities

The coordinate singularities are usually removable by a change in the coordinate system. For
example, when θ = 0 in the solution, the Schwarzschild line element becomes degenerate.
This degeneracy can be removed by introducing the Cartesian coordinate system, where:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (2.17)

There is another removable coordinate singularities of the line element at r = 2M , which is
conventionally also known as the Schwarzschild Radius, which can be removed by taking
into account the fact the Riemann tensor scalar invariant RabcdR

abcd = 48m2r−6 is the same
in all coordinate system. The singularity at r = 0 is irremovable and therefore it is often
termed as the intrinsic or real singularity of the coordinate system. Two other important
intrinsic geometric quantities of the horizon are:

• Area of the spatial section
A = 4πr2 = 16πG2

NM
2

• Surface Gravity K

K =
1

2
f ′(r) =

1

4GNM

14



CHAPTER 2. BLACK HOLE COORDINATES

2.4 Characterizing the coordinate system

The line element of the Schwarzschild solution can be written in the form:

g00 =

(
1− 2m

r

)−1

g11 = −
(

1− 2m

r

)
g00 = − 1

r2
g33 = − 1

r2sin2θ
(2.18)

It follows from this that x0 = t is time-like and x1 is space-like as long as r > 2m and both
x2 = θ and x3 = φ are space-like. Again, since there is no cross terms in the metric, we can
say that the metric is static and further conclude that t is the invariantly defined world time.
By this characterization, it is seen that the manifold M is divided into two disconnected
parts:

• 2m < r <∞

• 0 < r < 2m

Since the line element swaps signs in the region II, i.e t and r reverse their character, hence,
t becomes a space- like coordinate and r becomes a time-like coordinate. In addition, we can
see that the line element is time reversal invariant, i.e. a transformation of the form t→ −t.
Hence it can be said that the Scwarzschild metric does not represent a black that might be
formed from a gravitational collapse, it is a mathematical idealization that helps us to study
the properties of black holes and its relation to various physical theories.
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Chapter 3

Eddington-Finkelstein Coordinate

3.1 Motivation for a new coordinate system

The geodesic equation is given by4,

∂K

∂xa
− d

du

(
∂K

∂ẋa

)
= 0

where u is the affine parameter along the geodesic line and 2K = gµν ẋµẋν = constant. For
a radially in-falling particle moving on a time-like geodesic is given by the equations4(

1− 2m

r

)
ṫ = k(

1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 = 1

where the dot represents differentiation with respect to proper time , τ , and k is some
constant.Now, if we choose k = 1, corresponds to zero initial velocity, we find that

τ − τ0 =
2

3(2m)1/2
(
r

3/2
0 − r3/2

) (3.1)

where the particle is at r0 at proper time τ0. No singular behaviour is seen at the
Schwarzschild radius and the body falls continuously to r = 0 in finite proper time. On
contrary, if we now use the Schwarzschild coordinate to describe the motion of the system,
i.e use x0 = t, then we get,

t− t0 =− 2

3(2m)1/2

(
r3/2 − r3/2

0 + 6mr1/2 − 6mr
1/2
0

)
+ 2mln

(
r1/2 + (2m)1/2

) (
r

1/2
0 − (2m)1/2

)
(
r

1/2
0 + (2m)1/2

)
(r1/2 − (2m)1/2)

Here we can see that for situations where r0 and r are much larger than 2m, equation 2.9
and equation 2.10 are approximately the same. If, however, r is very near to 2m then we
find:

r − 2m = (r0 − 2m)e−(t−to)/2m (3.2)
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CHAPTER 3. EDDINGTON-FINKELSTEIN COORDINATE

from which it is clear that as t → ∞ ⇒ r − 2m → 0 so that r = 2m is approached but
never passed. From the discussion, it is clear that two reference frames having two different
observers see the same situation completely differently. Therefore, it can be concluded that
the Schwarzschild time coordinate is not appropriate for describing the motion of an radially
in-falling particle. In addition, the coordinate system goes bad at r = 2m, hence to overcome
the ambiguities and to get a well- behaved function to describe the motion we introduce the
Eddington- Finkelstein coordinates.12

3.2 Eddington-Finkelstein solution

As discussed in earlier section, the Schwarzschild time-like coordinate is not suitable for
describing an in-falling particle in the black hole because of the difference in observation
of the two reference frame. Moreover, there is a coordinate singularity at r = 2m in the
Schwarschild coordinate. Therefore, a transformation of the time-like coordinate is required
i.e. t → t, to ensure that the observation, of a radially in-falling particle, made by the
observer at infinity and the reference frame of the in-falling particle matches. To begin with,
a transformation of the form t → t = t + 2m ln(r − 2m) is made so that the ingoing radial
null geodesics become straight line. Moreover, using the geodesic equation, we get:

t = −(r + 2mln|r − 2m|+ const.) (3.3)

and using the equations given above we get:

t = −r + const. (3.4)

Differentiating t we get,

dt = dt+
2m

r − 2m
dr (3.5)

Now, substituting these we get the Eddington- Finkelstein line element,

ds2 =

(
1− 2m

r

)
dt

2 − 4m

r
dtdr −

(
1 +

2m

r

)
dr2 − r2(dθ2 + sin2dφ2) (3.6)

From the line element, we can see, although, all our purpose of the coordinate transformation
is not achieved yet the transformation made our line element continuous in the previously
partitioned space; i.e. the transformation equation 2.12 extended the coordinate range to
0 < r <∞ . Now from this, we see that there is a region, 2m < r <∞, which overlaps, and
hence they must represent the same solution, if Eddington- Finkelstein line element is used
to describe the motion. The solution of this coordinate system is not time- symmetric, as
seen in the line element, there is a cross-term. A transformation of t→ t∗ = t2mln(r − 2m)
will help us to get the time- symmetric line element, i.e. the Schwarzschild metric.

3.3 Event horizon: Schwarzschild and Eddington-

Finkelstein

The division of the space at r = 2m, as seen in the Schwarzschild line element, plays a vital
role in studying properties and dynamics of black hole as a whole. At r = 2m, only radially
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CHAPTER 3. EDDINGTON-FINKELSTEIN COORDINATE

outgoing particles stay where they are, whereas all the rest are dragged inwards. In region
II, r < 2m, all the particles , even the radially outgoing ones are dragged inwards towards
the singularity, r = 0, intrinsic singularity. Therefore, it is clear that the surface r = 2m acts
as a one-way membrane, i.e. it does not allow any particle or information to pass from the
region II to region I(r > 2m). This surface is conventionally known as the ”event horizon”
because this represent the boundary of all events which can be observed, in principle, by an
external inertial observer.
The Schwarzschild event horizon is absolute because it seals off all the internal events from
the external observer(the internal and the external is referred to as the region divided by
r = 2m). On the contrary, if we consider the Eddington- Finkelstein event horizon along with
a time-like coordinate transformation, w = t∗−r, the membrane allows only the past-directed
time-like or null curves cross from the outside to the inside.
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Chapter 4

The Kruskal Coordinate

4.1 The Kruskal solution

A manifold having a geometry is said to be maximal if for every geodesic originating from
any arbitrary point of the manifold either can be extended to infinite values along the
geodesics in both directions or terminates on any intrinsic or physical singularities4.Moreover,
if all the originating geodesics from any arbitrary point of the manifold can be extended
to both directions, i.e. the geodesic can be extended to infinity and also terminates at
the intrinsic singularities then the manifold is said to be geodesically complete12. The
Kruskal solution to the Einstein field equation is simply a maximal analytic extension of
the Eddington-Finkelstein geometry of a non- rotating black holes. The line element of the
Kruskal geometry can be derived by introducing both an advance null coordinate v and a
retarded null coordinate w. Thus the Schwarschild line element in the coordinates (v, w, θ, φ)
becomes:

ds2 =

(
1− 2m

r

)
dvdw − r2(dθ2 + sin2 θdφ2) (4.1)

where r is a function of v and w determined implicit by:

1

2
(v − w) = r + 2m ln(r − 2m) (4.2)

Moreover, we can see that since dΩ2 = r2(dθ2 + sin2 θdφ2) is constant. The 2-space metric is:

ds2 =

(
1− 2m

r

)
dv dw (4.3)

Two new parameters x and t are defined such that the above 2-space metric takes the form,

ds2 = (1− 2m

r
)(dt2 − dx2) (4.4)

where

t =
1

2
(v + w) x =

1

2
(v − w) (4.5)

The 2- space metric has θ = const. and φ = const. and hence it suffice the necessary
conditions to be a conformally flat space. The most general coordinate transformation which
leaves the 2-space in such conformally flat double null coordinates is:

v → v′ = v′(v) w → w′ = w′(w) (4.6)
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where v′ and w′ are arbitrary, which leads to:

ds2 =

(
1− 2m

r

)
dv

dv′
dw

dw′
dv′ dw′ (4.7)

Introducing

t′ =
1

2
(v′ + w′) x′ =

1

2
(v′ − w′) (4.8)

we can write the 2-space metric in the most general form

ds2 = F 2(t′, x′)(dt′2 − dx′2) (4.9)

A particular choice ofv′ and w′ will then determine the precise form of the line element. For
the Kruskel line element the functions are chosen to be:

v′ = e
v

4m

w′ = −e−
w
4m

(4.10)

The radial coordinate r is to be considered a function of t′ and x′ determined implicitly by
the equation:

t′2 − x′2 = −(r − 2m)e
r

2m (4.11)

and the F that was introduced as a general function in the line element earlier takes the
following form:

F 2 =
16m

r
e
−r
2m (4.12)

Using all these transformations, the Kruskel-line element takes the form:

ds2 =

(
16m2

r

)
exp

(
−r
2m

)
dt′2 −

(
16m2

r

)
exp

(
−r
2m

)
dx′2 − dΩ2 (4.13)

4.2 Features of the Kruskal solution

The incoming and outgoing radial null geodesics are straight lines in Kruskal coordinates
which can be derived from the line element equation considering ds = 0. This tells us that
the line cone in Kruskal coordinate system will look the same as in Minkowski space time
coordinate. Moreover, a signal originating at the event horizon (r = 2m) would remain in the
horizon at all times. The equation t′2−x′2 = −(r−2m)e

r
2m , it is also seen that the space-time

is bounded by two hyperbolas representing the intrinsic singularity at r = 0 . These two
hyperbolas are known as the past singularity and the future singularity. The asymptotes of
the hyperbolas represent the event horizons corresponding to r = 2m. These asymptotes
divide the space-time region into four regions, these are labelled as I, II , I’ and II’ in the
figure. The regions I and II correspond to the Eddington- Finkelstein solution with region I
corresponding to the Schwarschild solutions for r > 2m .

4.3 Compactification of the Kruskal solution

In the previous section, only a two dimensional solution of the Kruskal is drawn.In fact,
the Kruskal solution is time symmetric with respect to t′. At t′ = 0, the Kruskal manifold
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Figure 4.1: Penrose Diagram of the Kruskal solution

can be thought of as being formed by two distinct but asymptotically flat Schwarzschild
manifolds joined at r = 2m. At r = 0 these two distinct universes are connected and is
thought hypothetically to be connected via an Einstein-Rosen bridge2. As t′ increases
the the two flat universes get completely separated each containing a singularity at r = 0 .
Although, the Kruskal solution is very informative near the horizon and the solution reveals
a lot of information about the black hole, yet as x′ →∞ very less is known and the Kruskal
solution does not seem to reveal a lot of information.

A compactification of the Kruskal solution known as the Conformal compactification4 of the
Kruskal can be obtained by defining new advanced and retarded null coordinates in terms of
the previously defined null coordinates v′ and w′. The new coordinates are defined as follows:

v′′ = tan−1

(
v′

(2m)1/2

)
w′′ = tan−1

(
w′

(2m)1/2

) (4.14)

for the coordinate range

− 1

2
π < v′′ <

1

2
π

− 1

2
π < w′′ <

1

2
π

− π < v′′ + w′′ < π

(4.15)

These transformation of the Kruskal Solution is drawn in figure 4.1 and this diagram is known
as the Penrose Diagram of the Kruskal Solution which is the conformally compactified
space time diagram of the Kruskal solution. Similar to the space time diagram of the previous
Kruskal solution, the regions I and II are there in the Penrose diagram. In addition, the region
I ′ and II ′ are redefined to be III and IV.The regions I and II represent the geometry of the
a real black hole and the regions III and IV represents a different kind of hypothetical or
mathematical hole known as the white hole. At r = 2m, an outward radial null geodesic
ends up at I + but an inward radial null geodesic ends up at the future singularity.Also, any
point lying inside r = 2m, both the outward and inward radial null geodesics end up to the
future singularity.
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Chapter 5

Hawking Radiation

5.1 Introduction

The event horizon or the Schwarschild radius sets a limit of the radius of the black hole.
As seen in the earlier chapters that nothing can get out of a black hole or radius of the
Schwarschild black hole. The spacetime is wrapped in such a way that even light rays cannot
make a way out of it once it is inside the horizon of the black hole, seen on the Penrose
diagram of the Kruskel solution to the Einstein’s equation. This holds true only when we
are considering classical physical phenomena around the event horizon. However, this does
not hold true when we incorporate the quantum characteristics, for instance particle poping
out of a vacuum, of the black hole2.This is depicted in the figure 5.1. Black holes radiate as
black bodies in thermodynamics, each with a temperature characteristic of the specific black
hole. The temperature of the radiation, known as the Hawking temperature TH of the black
holes can be estimated purely by using dimensional analysis. Considering the gravitational
field around an object of mass M , the mass of the black hole, and the Newtonian universal
gravitational constant G being proportional to the gravitational field we assume the constant
GM to be proportional to it. In natural units (only c = ~ = 1), the combination of GM is a
length and hence it is an inverse mass. Moreover, temperature has the dimension of energy
of a mass with c = 1. Hence, it can be said that:

TH ≈
1

GM
≈ ~c3

GM
(5.1)

5.2 Consequence of the Hawking radiation

Although the dimensional analysis was trivial yet it has unprecedented consequences. It
suggests that the black hole radiates energy, as M goes down, TH goes up and thus black
hole radiates even faster. The radiative mass accelerates. According to the second law of
thermodynamics, dE = TdS where E and is related to the mass of the black hole by:

dS

dE
=

1

T
≈ GM (5.2)

Since the radius of the black hole is Rs and R ≈ GM thus the surface area of the black,
A ≈ R2

s we can say:

S ≈ R2
s

G
≈ A

l2p
(5.3)
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Figure 5.1: Schematic Diagram of the Hawking Radiation

where lp is the Planck length. This concludes that black hole has an entropy proportional
to its surface area rather than its volume which is the general case for any other
thermodynamical black body.

5.3 Vacuum fluctuations near a black hole

Using the Schwarschild metric on Einstein equations, at the horizon Rs = 2GM , we see the
coefficients of the dt2 and the dr2 interchanges sign, indicating the interchanging of time and
the spatial coordinates, thus the interchange of energy and the momentum. If we assume
that a pair of electron- positron pops out near the horizon and during the short time of their
existence one of the particles falls through the horizon, at which point its energy becomes
a momentum component and the other particle is liberated from the constrain of energy
conservation and Heisenberg’s principle and can exist forever. In Kruskel diagram, at Rs = 0
the particle which crossed the horizon reaches singularity and the other one escapes toward
I +. For the conservation of energy-momentum, the black hole would lose a bit of energy
and with recoil mass M much greater than the typical energy of the escaping particle, these
effects will be negligible. These fluctuations occur around the horizon and the black hole
keeps on radiating15. Incidentally, this leads to the ”Black hole information paradox”. What
happens to the information contained in the material that fell into and became a part of the
black hole. The material end up becoming thermal radiation, which according to standard
considerations, does not contain information at all. But the law of quantum mechanics does
not permit a pure state to be transformed to a thermal state by any unitary operator. Thus
there appears to be a basic contradiction with quantum mechanics and statistical mechanics,
hence is the black hole information paradox.
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5.4 Determining the Hawking temperature:

mathematical approach

Let |F 〉 and |I〉 be the final state and the initial quantum state of a system respectively.
Heisenberg’s formulation of a quantum state after a time T is governed by the evolution
operator e−iHT with H being the Hamiltonian of the system. The probability amplitude for
the transformation is given by the partition function:

Z = 〈F |e−iHT |I〉 (5.4)

According to thermodynamics, the relative probability of a state |n〉 of energy En occurring
is given by e−βEn where β ≡ 1

′Temperature′
. The partition function of a quantum mechanical

system with the Hamiltonian is then defined as:

Z =
∑
n

〈n|e−βH |n〉

=
∑
n

e−βEn

= Tr(eβH)

(5.5)

where e−βH is regarded as a matrix.
Let us now consider an electromagnetic field governed by the action:

S =

∫
d4x
√
−g

(
−1

4
gµρgνσFµνFρσ

)
propagating in the Schwarzschild spacetime described by

ds2 = −
(

1− Rs

r

)
dt2 +

(
1− Rs

r

)−1

dr2 + r2dθ2 + r2 sin2 dθdφ2

Near the horizon,

ds2 ≈ r −Rs

Rs

dt2 +
Rs

r −Rs

dr2 + r2 sin2 dθdφ2

when r → ρ where ρ2 ≡ 4Rs(r −Rs)

ρdρ = 2Rsdr

⇒ ρ2dρ2 = 4R2
sdr

2

⇒ (r −Rs)dρ
2 = Rsdr

2

(5.6)

then,

ds2 = − ρ2

4R2
s

dt2 + dρ2 + r2 sin2 dθdφ2

ds2 =
ρ2

4Rs

dt2E + dρ2 + r2 sin2 dθdφ2

where t ≡ −itE which is imaginary and cyclic. Again if tE = 2Rsψ then

ds2 ≈ dρ2 + ρ2dψ2 + r2 sin2 dθdφ2

24



CHAPTER 5. HAWKING RADIATION

The first two terms in the equation given above describes a plane with polar radius ρ and
the polar angle ψ apart from the already existing solid angle in the distance function.
The (3 + 1) dimensional spacetime has been analytically continued in to 4-dimensional
Euclidean space consisting of a plane, at every point of which is attached a sphere of
radius Rs. Moreover, ψ is an angular variable and it seen that tE = 2Rsψ has a period of
2Rs(2π = 4πRs. Using the concept that the inverse of the recurrence period β 11, temperature
can be determined and is equal to

TH =
1

4πRs

=
1

8πGM
=

~c3

8πGM
(5.7)

which is the Hawking temperature.

5.5 Black hole thermodynamics

Black holes are interesting thermodynamical objects. In the past, it was thought that
black holes violated the second law of thermodynamics but the theoretical understanding
of Hawking radiation made us think otherwise. Hawking radiation is the emission of a black
body radiation which can be thought of as emission of a black body. One of the possible
explanations for the existence of this radiation is the Unruh effect11, which tells us that an
observer who moves with constant acceleration observes black body radiation coming from
a vacuum while a stationary observer sees nothing. The Unruh effect gives rise to a black
body spectrum of the form:

n(E) =
1

exp
[
E
TU

]
− 1

where E is the energy of the emitted radiation and TU is given by:

TU =
a

2π

is the Unruh temperature and a is the ’proper’ acceleration. This acceleration is provided
the surface gravity in the vicinity of the black hole horizon. The surface gravity is given as
in4 by:

κ =
1

4m

where m is the mass of the black hole. Therefore the temperature takes the following form:

TH =
1

8πm

which is the same as the expression derived for the Hawking temperature earlier in the
chapter. Now using the first law of thermodynamics we can write the black hole entropy as:

dE = dm = THdSBH

where dSBH is the black hole entropy or the Bekenstein-Hawking entropy. Now we calculate
dS = 8πmdm and then we can get the expression for entropy as:

S = 4πm2 =
1

4

kBc
3

~G
A ∼ A

4
(5.8)
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and again we get the same result for the entropy as in our earlier calculations.
There are several problems with this theoretical notion of black hole entropy. Two of the
most interesting them are:

• Where does the entropy of black hole comes from?

• Why is the entropy of a black hole dependent on the area rather than the volume?

To give answer to these and several other questions, black holes have been interpreted in
different models and in different geometric spaces; one of them being the black hole entropy
as the multiplicity of horizon gravitational states or with string theory. Having that in mind,
we try to study in the upcoming chapters about one of the most promising candidates known
as the AdS/CFT correspondence21 and about the entanglement in quantum field theory.
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Chapter 6

DeSitter and Anti-deSitter Spacetime

6.1 Introduction

A d-dimensional sphere Sd of radius L is defined as the set of all point (X1, X2, ....Xd+1) in
a (d+ 1) dimensional Euclidean space Ed+1, a space with the distance function defined as:

ds2 = (dX1)2 + (dX2)2 + · · · · · ·+ (dXd+1)2 = L2

Similarly, a d-dimensional de Sitter spacetime dSd with length scale L is the set of all points
(X0, X1, ....Xd) in a (d + 1) dimensional Minkowskian space Md,1, a spacetime with the
distance function defined as:

ds2 = −(dX0)2 + (dX1)2 + · · · · · ·+ (dXd)2 = L2

Only by renaming Xd+1 as X0 and turning it into a timelike coordinate we have designed
a Minkowskian version of the sphere which lives in the Minkowskian spacetime and this
spacetime is known as the de Sitter spacetime20. The difference in the sign of the timelike
and the spatial coordinate is very crucial and it forms a (d − 1) dimensional sphere Sd−1

defined by:

(dX1)2 + · · · · · ·+ (dXd)2 = L2 + (X0)2

The time coordinate X0 goes from −∞ to +∞, the radius
√
L2 + (X0)2 of Sd−1 starts at

infinity and contracts to a minimum value of L and then again expands to infinity as shown
in figure 6.1. The d-dimensional anti de Sitter spacetime AdSd is analogously defined as the
set of all points (X0, X1, · · · · · ·Xd) in a (d + 1) dimensional Minkowskian type spacetime
M (d−1),2, a spacetime with two timelike coordinates, having the distance function as:

ds2 = −(dX0)2 + (dX1)2 + · · · · · ·+ (dXd−1 − (dXd)2)2 = L2

satisfying the following equation:

−(X0)2 + (X1)2 + · · ·+ (Xd)− (Xd)2 = −L2

which can also be written using the summation notation as in equation 6.1.

(X0)2 −
d−1∑
i=1

(Xi)
2 + (Xd)2 = L2 (6.1)

In the figure 6.2 we can see the differences between a dSd spacetime and the AdSd spacetime.
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Figure 6.1: The d-dimensional de Sitter Spacetime20

Figure 6.2: The d-dimensional anti de Sitter Spacetime
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6.2 Maximal symmetry of the deSitter and

anti-deSitter space

6.2.1 Isometries of the spacetime

An isometry between two groups is defined to be a bijective map between two metric spaces
that preserves the distance function20. The isometry group of a sphere Sd is SO(d + 1),
the rotation group of the embedding space Ed+1 which has the Killing generators −XN ∂

∂XM

where M,N = 1, 2, · · ·Xd+1.

6.2.2 Coset manifold

If we assume a Lie group G and a subgroup H of G and the group elements g1 and g2 which
belong to the group G. Then, we can consider g1 and g2 to be equivalent if there exists an
element h of H such that the following relation is maintained9.

g1 = g2h

This relation allows us to define equivalence classes. Hence, we can define a space or manifold
by associating each equivalence class with a point in the space. The resulting manifold
is known as the coset manifold and is expressed by G/H The sphere Sd can therefore be
considered as the coset manifold: SO(d + 1)/SO(d) where the quotient group SO(d) is the
subgroup of the parent group SO(d + 1) which leaves a point on the sphere Sd invariant.
The isometry group of the deSitter spacetime dSd is SO(d+ 1) and the Lorentz group of the
embedding space Md,1. Thus the Killing generators fall into two sets, d-dimensional rotations
and boosts, they are:

XM ∂

∂XN
−XN ∂

∂XM
XM ∂

∂X0
−X0 ∂

∂XM

for all M,N = 1, 2, · · · , d.
Similar to the sphere Sd, deSitter spacetime is also a coset manifold: dSd = SO(d, 1)/SO(d−
1, z). The group SO(d, 1) rotates the point on dSd around but keeps the distance function
invariant. Hence it can be concluded that just like the sphere, deSitter spacetime is also
maximally symmetric. Comparing between the distance function, as in equation 6.2 of the
deSitter spacetime with the anti deSitter spacetime:

(X0)2 −
d−1∑
i=1

(Xi)
2 + (Xd)2 = L2 for the AdSd and

− (X0)2 +
d−1∑
i=1

(Xi)
2 + (Xd)2 = L2 for the dSd

(6.2)

and going through the same argument, as for the deSitter spacetime and the sphere, we can
say that the AdS is also maximally symmetric. However, there is a difference between the
symmetry groups of the deSitter and the anti deSitter spacetimes. The dS spacetime has
the isometry group SO(d, 1) but the isometry group of the AdS spacetime is SO(d − 1, 2)
because there exist two timelike coordinates in the AdS spacetime. Consequently, the AdSd
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is the coset manifold of SO(d − 1, 2)/SO(d − 2, 2). For instance for a particular value of d,
say d = 6, AdS would be the coset manifold of:

AdS5 =
SO(4, 2)

SO(4, 1)

6.3 Reimann curvature tensor for dSd and the AdSd

A maximally symmetric space has 1
2
D(D+ 1) constrain on the Reimann curvature tensor18.

This 1
2
D(D + 1) constrain is enough to uniquely determine a Reimann curvature tensor for

any d-dimensional space. In addition, for such space the Reimann curvature tensor

Rµνλσ = K(gµλgνσ − gµσgνλ)

where K is some constant that depends on the choice of the dimensions of the d-dimensional
space. If the deSitter coordinates is chosen to have the dimension of length and gµν is
normalized to be dimensionaless, then by dimensional analysis, the Riemann curvature must
be:

Rµνλσ =
1

L2
(gµλgνσ − gµσgνλ)

Now, if we coordinatized deSitter spacetime with W = Xd ad use Xµ with µ = 0, 1, · · · , d−1
as the coordinates then we have W 2 = L2 −X.X then

(WdW )2 = (−X.dX)2

⇒ dW 2 =
(X.dX)2

W 2

⇒ dW 2 =
(X.dX)2

L2 −X.X

(6.3)

Therefore, we can write the distance function as:

ds2 = ηµνdX
µdXν + dW 2

= ηµνdX
µdXν +

(X.dX)2

L2 −X.X

=

(
ηµν −

ηµληνρX
λXρ

X.X − L2

)
dXµdXν

(6.4)

Now when X → 0 in the equation 6.4, the metric becomes locally flat at Xµ = 0. Now if we
expand the metric at that point using the Taylor expansion we get:

gµν=ηµν+ 1
L2 ηµληνρX

λXρ

By defining a new tensor as follows:

Bµν,λρ ≡
1

L2
(ηµληνρ + ηµρηνλ)
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And using the fact that for a locally flat tensor the Riemann tensor is:

Rτρµν = Bτν,µρ −Bρν,µτ −Bτµ,νρ −Bρµ,ντ

= Bτν,µρ −Bρν,µτ −Bτµ,νρ +Bρµ,τν

= (Bτν,µρ +Bρµ,τν)− (Bρν,µτ +Bτµ,νρ

=
1

L2
(ητµηρν − ητνηρµ)

(6.5)

Similar to the dSd spacetime we can construct the Riemann tensor for the AdSd spacetime.
The dS and the AdS differs only y a sign, therefore to treat dS and AdS together we can
introduce a costant σ = ±1 and hence we can unify both the metric and then the metric can
be written simply as:

ηµνX
µXν + σ(XD)2 = σL2

with µ, ν = 0, 1, · · · , d− 1 and σ = +1 for the dS and σ = −1 for the AdS. For constructing
the Riemann curvature tensor againd, W 2 = L2 − σX.X, this time along with the defines
constant σ = ±1. Similarly,

WdW = −σX.dX

⇒dW 2 =
(X.dX)2

L2 − σX.X
(6.6)

Thus the distance function becomes:

ds2 = ηµνdX
µdXν + σdW 2

=

(
ηµν −

ηµληνρX
λXρ

X.X − σL2

)
dXµdXν

(6.7)

The Reimann tensor for the AdS space thus becomes:

Rµνλσ = − 1

L2
(gµλgνσ − gµσgνλ)

Since the general metric can be approximated as:

gµν ' ηµν +
σ

L2
ηµληνρX

λXρ

the metric is locally flat as X → 0 at Xµ then the Riemann tensor becomes:

Rτρµν =
σ

L2
(ητµηρν − ητνηρµ)

which is similar to the previously derived dS Riemann curvature tensor and only differs by
the sign of the σ, which was previously defined to be σ = +1 for the dS space and σ = −1
for the AdS space. Now, for solving the Einstein equation we can use the contraction law
for tensors and get the Ricci tensors required for both the dS space and the AdS space.
Furthermore, it is also possible for us to contract the Ricci tensor further to get the Ricci
scalar.
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6.4 Schwarzschild space from the AdS space

The anti deSitter metric can be mathematically manipulated20 in order to derive the
Schwarzschild metric from it. The Minkowskian spacetime Md,1 of the special relativity has
one timelike coordinate. In contrast, the locally flat AdSd spacetime can be thought of as
the Md−1,2 Minkowskian spacetime with two timelike coordinates. The timelike coordinates
can be mathematically manipulated using a number of ways, for instance the Wick rotation.
In order to get the Schwarzschild metric hidden in AdS metric, we need to work with a
particular value of d in the AdSd metric. Let us consider the value of d to be 3. Now, using
the equation:

(X0)2 −
d−1∑
i=1

(X i)2 + (Xd)2 = L2

and choosing X0 = T , X1 = T , X2 = W and X3 = Y the metric for AdS3 takes the form:

(T 2 +W 2)− (X2 + Y 2) = L2

Since we have now two timelike Minkowskian metric, the signature of the metric is η =
(−1,+1,+1,−1) of the embedding space M2,2 and the distance function becomes:

ds2 = −(dT 2 + dW 2) + (dX2 + dY 2)

By using the replacement of (T,W )→ (R, t) where (R, t) are the polar coordinates:

T = R cos t

W = R sin t
(6.8)

and also by replacing (X, Y ) by the polar coordinates (r, θ), i.e.

X = r cos θ

Y = r sin θ
(6.9)

then, the distance function takes the form:

ds2 = −(dR2 +R2dt2) + (dr2 + r2dθ2)

Now if we consider L = 1, we can see that the apparent temporal coordinate R is not
independent of the spatial coordinate since there is a constrain, to be specific R2 − r2 = 1.
Also, we have RdR = rdr and hence:

dR2 − dr2 =

(
r2

R2
− 1

)
dr2

= − 1

1 + r2
dr2

Substituting all these transformation into the distance function gives us:

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dθ2
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Thus we end up with only one timelike coordinate. Hence we can say that AdS3 is more
generalized spacetime metric that can be used to figure out the already established metric
as in the above given equation. It can be further concluded that AdSd can be used to obtain
any metric which are spherically symmetric and the distance function can be written as:

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

d−2

This form of the the metric is similar to that of the Schwarzschild metric:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−2

For the particular case of d = 3 we have seen that f(r) = 1 + r2. One of the most important
features of this metric is that it does does not have a coordinate singularity at the horizon
since f(r) = 1 + r2, therefore it is always positive and hence it does not even change the
signature of the metric and also does not become zero to give us an undefined distance
function.

6.5 Conformal coordinates for AdS spacetime

Setting the value of d = 3 we get the metric for AdS3 where η = (−1,+1+1,−1) and defining
X0 = T , X0 = X,X1 = T ,X2 = W and X3 = Y we get the distance function to be:

ds2 = −(dT 2 + dW 2) + (dX2 + dY 2)

In addition, setting the value of L = 1 in the AdS metric and doing the following coordinate
transformation:

X = r cos θ T = R cos θ

Y = r sin θ W = R sin t
(6.10)

we get:

ds2 = −(dR2 +R2dt2) + (dr2 + r2dθ2)

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dθ2

where we hvae taken the constrain R2−r2 into account. Now if we do another transformation
of coordinates by setting:

r = tanψ

r2 = tan2 ψ

(dr)2 = (sec2 ψdψ)2

Then

ds2 = −(1 + tan2 ψ)dt2 +
sec2 ψdψ2

1 + tan2 ψ
+ tan2 ψdθ2

= − 1

cos2 ψ
dt2 +

1

cos2 ψ
dψ2 +

sin2 ψ

cos2 ψ
dΩ2

d−2

=
1

cos2 ψ

(
−dt2 + dψ2 + sin2 ψdΩ2

d−2

)
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Figure 6.3: Figure Showing how the Conformal AdS is Bounded in the Spatial Direction

Or more compactly it can be written as:

ds2 =
1

cos2ψ

(
−dt2 + dΩ2

d−1

)
(6.11)

In the equation 6.11, the timelike coordinate is unbounded, it has the values from −∞ to
+∞, this is shown in the figure 6.3, the time strip extends upto ∞ whereas the the spatial
coordinates are bounded between ψ = 0 to ψ = π/2. Therefore, this transformation can
be regarded as the conformal compactification 20 of metric in the spatial direction with a
compactification factor of 1

cos2 ψ
. The spatial coordinates of the AdS metric is bounded by

Sd−2 which is similar to the Euclidean space Ed−2 with the spatial infinity identified at a
single point. If we take the time coordinate into consideration, we go to the Minkowskian
space, Md−2,1 from Ed−2. Hence we can say that by this conformal compactification of the
AdS spacetime becomes bounded by the Minkowskian space Md−2,1, Thus it can be further
implied that we might be living on the boundary of a (4 + 1) dimensional AdS5 spacetime
where the usual M3,1 spacetime is embedded. The conformal group for M3,1 is SO(4, 2) and
the isometry group for AdS5 is also SO(4, 2), therefore, it can also be concluded that the
conformal group is the manifestation of the isometry group on the boundary of the spacetime.
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6.6 Poincaré coordinate for anti deSitter spacetime

Using the equation (T 2 −X2) + (W 2 − Y 2) = 1 and relabelling them as:

T =
t

w

X =
x

w

Y =
1

2

(
x2 − t2

w
+ w − 1

w

)
Y =

1

2w

(
x2 − t2 + w2 − 1

)
W =

1

2

(
x2 − t2

w
+ w +

1

w

)
W =

1

2w

(
x2 − t2 + w2 + 1

)
Then we get:

T 2 −X2 =

(
t

w

)2

−
( x
w

)2

=
t2 − x2

w2

and then we get:

W 2 − Y 2 = 1 +
x2 − t2

w2

Now differentiating we get:

dT =
dt

w
⇒ (dT )2 =

dt2

w2

dX =
dx

w
⇒ (dX)2 =

dx2

w2

Differentiating Y parameter of the metric we get:

Y =
1

2w

(
x2 − t2 + w2 − 1

)
dY =

1

w

(
x2 − t2 + w2 − 1

)
dw

dY 2 =
1

w2

(
x2 − t2 + w2 − 1

)2
dw2

Similarly differentiating W and differentiating Y parameter of the metric we get:

W =
1

2w

(
x2 − t2 + w2 + 1

)
dW =

1

w

(
x2 − t2 + w2 + 1

)
dw

dW 2 =
1

w2

(
x2 − t2 + w2 + 1

)2
dw2

35



CHAPTER 6. DESITTER AND ANTI-DESITTER SPACETIME

Substituting all the equations into the metric ds2 = −dT 2 + dX2 − dW 2 + dY 2 we get:

ds2 = −dt
2

w2
+
dx2

w2
+

1

w2

[(
x2 − t2 + w2 + 1

)2 −
(
x2 − t2 − w2 − 1

)2
]
dw2

=
1

w2

(
−dt2 + dx2 + dw2

) (6.12)

The equation 6.12 given above is the Minkowskian version of the Poincaré half plane. Now,
defining the lightcone coordinates of the metric 6.12 as:

W+ ≡ W + Y =
1

w
(x2 − t2) + w

W− ≡ W − Y =
1

w

The equation (T 2 − X2) + (W 2 − Y 2) = 1 can be written as T 2 − X2 + W+W− = 1.
Generalizing this concept further for d = 4, i.e. AdS4 and writing:

T =
t

w

X =
x

w

Y =
y

w

and then lightcone coordinates becomes:

W+ ≡ W + Z =
1

w
(x2 + y2 − t2) + w

W− ≡ W − z =
1

w

Similarly for d = 5, i.e. for AdS5 the metric would be:

ds2 =
1

w2

(
−dt2 + dx2 + dy2 + dz2 + dw2

)
Thus we can see that a slice of 5-dimensional spacetime at some specific value of w, for
instance w0 with the metric given above is the 4-dimensional Minkowskian spacetime where:

ds2 =
1

w2
0

(
−dt2 + dx2 + dy2 + dz2

)
Since we know a metric is invariant under the scaling and Lorentz transformations, thus the
factor of 1

w2
0

will keep it the same.

6.7 Motion of photons and matter in Poincaré

coordinates

Since the metric is conformally equivalent to the Minkowskian metric ds̃2 =
(−dt2 + dx2 + dy2 + dz2), so the path followed by a light particle is determined by ds =
0 = ds̃. Now, for instance, if we consider a light beam sent by an observer located at
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w = w0 toward the boundary w = 0. The time taken for the particle to come back would
be treturn = 2w0, if by some mechanism we made it reflect back to the origin. However, if
a massive particle is projected towards the boundary in (t − w) plane, using definition of
proper time:

gµν
dxµ

dτ

dxν

dτ
= −1

we get: (
dt

dτ

)2

−
(
dw

dτ

)2

= w2

Moreover, the isometry under t→ t+ we get:

d

dτ

(
w−2 dt

dτ

)
= 0 (6.13)

and

dt

dτ
=
b2

b

Thus we get: (
dw

dt

)2

+
b2

w2
= 1

Hence we get the potential in the plane V (w) = + b2

w2 and we see that the massive particle
cannot reach the boundary but turns back at wreturn = b with b determined by its initial
position and the speed.

6.8 Stereographic projection for AdS spacetime

Anti deSitter spacetime can be stereographically projected by mapping, for example the set
of AdS coordinates (X0, X1, X3, X4) can be projected into (X0, X1, X3) by the following
transformation:

XM =
1

1− x2

4L2

δMµ x
µ (6.14)

where M = 0, 1, 2, 3 and

X4 = L

(
1 + x2

4L2

1− 1
4L2

)
where x2 ≡ −(x0)2 + (x1)2 + (x2)2 + (x3)2. Now by using equation 6.14 we see that:

X0 =
1

1− x2

4L2

(
δ0

0x
0
)
⇒ x0

1− x2

4L2

X1 =
1

1− x2

4L2

(
δ1

1x
1
)
⇒ x1

1− x2

4L2

X2 =
1

1− x2

4L2

(
δ2

2x
2
)
⇒ x2

1− x2

4L2

X3 =
1

1− x2

4L2

(
δ3

3x
3
)
⇒ x3

1− x2

4L2
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Thus if

x2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2

then the metric becomes:

ds2 =

(
1

1− x2

4L2

)2

ηµνdx
µdxν

Again we can see that the stereographic projection is similar to the Minkowskian metric with
a conformal factor. Again, it can be concluded that anti deSitter space is conformally a flat
space.

6.9 Isomorphism between AdS3 and SL(2,<)
A general 2× 2 matrix with all real entries can be written as:

U =

(
T +X Y +W
Y −W T −X

)
If U is constrained to have a determinant detU = +1 which implies T 2−X2−Y 2 +W 2 = 1.
Under multiplication, the set of all matrices with real entries and unit determinant clearly
generates a group know as SL(2,<). Therefore, it can be said that AdS3 is isomorphic to
the universal cover of the SL(2,<) : there is a 1− to− 1 correspondence between the points
of AdS3 to that of the elements of SL(2,<). Moreover, if V and Z are the group elements of
SL(2,<) we can define U ′ ≡ V UZ which should also have det = +1 and thus an element of
SL(2,<) which corresponds to another point on AdS3. To be precise, the isometry group of
AdS3 is SL(2,<)× SL(2,<). Thus we know that the isometry group of AdS3 is SO(2, 2). It
can be concluded then SL(2,<)× SL(2,<) must be isomorphic to SO(2, 2), i.e.

SO(2, 2) = SL(2,<)× SL(2,<)
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Chapter 7

Conformal Field and Correlation
Function

7.1 Introduction

In theoretical physics, when two different concepts are related to each other at the
fundamental level, they are often described as dual to each other. One of such dualities
is the gauge/gravity duality, otherwise known as the AdS/CFT correspondence, which is a
comparatively new type of duality realized by Maldacena in 1997. This correspondence claims
that quantum field theory on flat spacetime is correlated to string theory. Furthermore, the
correspondence is also a cognizance of the holographic principle. The principle states that in a
gravitational theory the number of degrees of freedom in a given volume V scales as the surface
area δV of that volume. To elaborate14, ”in the context of semi-classical considerations for
quantum gravity, the holographic principle asserts that the information stored in a volume
of the dimension Vd+1 is encoded in its boundary area Ad measured in in units of the Planck
area ldp.” The theory of quantum gravity involved in the AdS/CFT correspondence is defined
on a manifold of the form AdS×χ, where AdS is the anti-deSitter spacetime and the χ is the
compact space or the boundary. The quantum field theory is assumed to be defined on the
conformal boundary of the compact space of the AdS spacetime. Hence, in order to study
such correspondence, the AdS/CFT conjecture, we need to start by studying the symmetries
in a field theory and their associated transformation laws and algebras that arise because of
the continuous symmetries in the field theory.

7.2 Role of symmetries in field theories

Symmetries play an important role in mathematics and physics, it helps us to identify the
underlying physical meaning of a theory. Symmetries can be classified in a number of ways,
but for our purpose we will be taking about two fundamental classification of symmetries,
the local and global symmetries of a field and the continuous and discrete symmetries. In
this chapter, firstly, we will be taking about the symmetries of quantum field theories which
will eventually lead us to conformal symmetry and supersymmetry. In particular, we will
discuss the tensor and spinor representation of the Lorentz algebra. Moreover, we will be
talking about the massless and massive states within the Poincare algebra. Both these
symmetries are related to the study of the spacetime of special relativity. The Lorentz
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symmetry and the Poincare symmetry which lead us to conformal symmetry is useful because
these symmetries constrain the correlation function of the Conformal Field theory which gives
us the fundamental picture of the conjecture, AdS-CFT correspondence or the gauge/gravity
duality. The fundamental idea behind supersymmetry is to add spinorial charges to the
Poincare algebra, extension of the Poincare algebra, which satisfies the anti-commutation
relation of the Poincare algebra.

7.3 Lorentz group and its algebra

A Lorentz transformation is of the form xµ → x′µ = Λ(ω)µνx
ν that leaves a spacetime

coordinate and the line element of the spacetime invariant. For an infinitesimal
transformation we can expand Λ(ω) as:

Λ(ω)µν = δµν + ηµνωρν

where ωρν is antisymmetric under the exchange of two indices ρ and ν because the
transformation needs to satisfy the relation, ΛηΛT = η. A finite transformation can be
constructed by exponentiation the infinitesimal form and by introducing the generators of
the Lorentz group Jµν , which are d× dmatrices such that:

Λ(ω)µν = δµν +
i

2
ωρσ(Jρσ)µν

The components of Jρσ are specified by:

(Jρσ)µν = i
(
ηρνδ

µ
σ − ησνδµρ

)
and must satisfy the commutation relation of the Lie algebra ∼o(d− 1, 1) which is:

[Jµν , Jρσ = i (ηµρJνσ + ηνσJµρ − ηνρJµσ − ηµσJνρ)] (7.1)

The generators Jkl with k, l = 1, ..., d−1 corresponds to rotations and J0k corresponds to the
boosts of the spacetime coordinates. The generators of the rotation may be Hermitian but
the generators of the boosts must be anti-Hermitian, i.e.

(Jkl)
† = Jkl (J0k)

† = −J0k

A finite transformation under Lorentz symmetry can be written in the form:

Λ(ω) = exp

(
i

2
ωµνJ

µν

)
(7.2)

In addition, a field φ(x) transforms under a infinitesimal Lorentz transformation as:

δφa =
i

2
ωµν(J µν)abφ

b (7.3)

where J satisfies the Lorentz algebra 7.1 and a finite transformation of the field follows

φ′(x) = D(Λ(ω))abφ
b(Λ−1x) (7.4)

with

D(Λ(ω)) = exp

(
i

2
ωµνJ

µν

)
The J µν satisfy the commutation relations 7.1 and the matrices J µν form the representation
of the Lorentz algebra. A representation can either be classified as reducible representation
or an irreducible representation. The irreducible representation of a group is of our primary
interests since they correspond to the elementary fields.
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7.3.1 Tensor representation

One of the important finite dimensional irreducible representation of the Lorentz algebra
is ∼o(d − 1, 1). This representation can be used to describe objects like scalars, vectors
or even a n-dimensional objects, which are otherwise known as the tensors. The scalar
representation is also known as the trivial or singlet and the vector space associated with the
singlet or scalars is known as the one dimensional vector space or field, φ. The generators
of this representation are defined to be J ρσ

1 = 0 which satisfies the algebra of the group 7.1.
The second type of object with a single index is known as the vector representation of the
Lorentz algebra which has a dimension of d. The field associated with the vectors φ has d
components, hence represented as φd where d = 0, . . . , d − 1. The generators of the algebra
are the d× d matrices J ρσ

d which is given by:

(J ρσ
d )µν = i (δρνη

µσ − δσν ηµρ)

Similarly, for the representation of a field, φµ1,...,µn we need to consider a n tensor product
of their individual vector representations. The representation of the resulting object are in
general reducible since they can be break down into a symmetric part and an anti-symmetric
part. Using the language of tensor product, ⊗ we can denote the decomposition of a tensor
using vectors, for instance the rank two tensor product representation d ⊗ d can be broken
down into a direct sum of a symmetric rank two tensor and an anti-symmetric rank two
tensor as follows:

dd = (d⊗S d)⊕ (d⊗A d)

where S and A represent symmetric and anti-symmetric parts respectively. The dimension
of the symmetric part is given by 1

2
d(d + 1) and the dimension of the anti-symmetric part

is given by 1
2
d(d − 1). In general, it is not always true that either d ⊗s d or d ⊗A d is

irreducible. The representation can be reduced further by contracting the indices using an
invariant tensor like the metric tensor of the Minkowskian space. Particularly for the group
SO(p, q), the metric ηµν or its inverse ηµν are the invariant tensors that can be used to get the
irreducible representation of the group. The symmetric rank two tensor can be decomposed
into a traceless symmetric rank two tensor, denoted by S and its trace part as:14

d⊗S = 1⊕ S

Similarly we can decompose a rank two antisymmetric tensor into its self-dual and its anti-self
dual, as explained in14 in four spacetime dimensions as:

4⊗A 4 = 3+ ⊕ 3−

7.3.2 Spinor representation

The other group of irreducible representation of the Lorentz group can be constructed using
the Clifford algebra which are known as the spinor representation of the Lorentz group. The
Clifford algebra9 is given by:

γµγν + γνγµ ≡ γµ, γν = −2ηµν1 (7.5)

Mathematically speaking, spinors are representations of the spin group which is the double
cover of the Lorentz group which implies thaat that spinors are projective representation of
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the Lorentz group14. The γµ are known as the Dirac matrices.The anti-commutation relation
in equation 7.5 can be used and the following values of the matrices can be written down as:

(γ0)2 = 1 (γk)
2 = −1

where k = 1, ...., d− 1. Thus it is seen that the eigenvalues of the γ0 matices are ±1 while te
γk has the eigenvalues ±i. Hence we can say that γ0 are Hermitian and γk are anti-Hermitian.
The Dirac matrices can be used to construct the representation of the Lorentz algebra:

J µν =
i

4
[γµ, γν ] (7.6)

where γµ = ηµνγν and are known as the Dirac spinor representation. This Dirac spinor
representation, in case of odd d gives us two inequivalent complex irreducible representations
of the Clifford algebra and in case of even d gives us one complex irreducible representation
of the Clifford algebra. For both of the cases, the irreducible complex representation is of
the complex dimension 2[d/2]. Up to a similarity transformation:

BγµB−1 = (γµ)† (7.7)

where B = γ0, the other Dirac matrices γµ forms a unique irreducible representation of the
Clifford algebra. In order to relate −γTµ to γµ we can introduce a matrix C, known as the
charge conjugation and the following relation can be used to relate them as:

CγµC−1 = −γTµ

Furthermore, using these similarity transformations it is possible to define projection
conditions on spinors. The two most commonly known projection conditions are:

• Weyl Spinors

• Majorana spinors

A Dirac spinor Ψ can be projected on a complex teo component left and right handed Weyl
spinors, ΨL and ΨR defined by:

ΨL =

(
ΨL

0

)
= P+Ψ ΨR =

(
0

ΨR

)
= P−Ψ

where P± is given by:

P± =
1

2
(1± γ5)

Similarly, we can derive the following relationship:

BCJ µν(BC−1) = −(J µν)∗

The complex conjugated Dirac spinor Ψ∗ transforms in the same way as BCΨ under Lorentz
transformation and imposing the reality condition Ψ∗ = BCΨ. This two dimensional
representation is defined as the Majorana spinor
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7.4 Poincaré group and its algebra

Poincaré algebra can be constructed by an extension to the Lorentz algebra, i.e. along with
the generator of Lorentz algebra, Jµν we have another generator of infinitesimal translations,
Pµ for the Poincaé algebra. The generators need to satisfy the commutation relations as in
equation 7.8:

[Jµν , Pρ] = i(ηµνPν − ηνρPµ), [Pµ, Pν ] = 0 (7.8)

The generators Pρ transforms as a vector under Lorentz transformations and the momenta
commutes. The extension of the Lorentz group, the Poincareé group- a non-compact group
is a semi-direct product of translations and Lorentz transformations.
The Poincaré group is not compact because boosts and translations are non-compact
transformations. A non- compact group does not have a finite-dimensional representation.
Therefore, the representation have to parametrized by a continuous parameters. This
labelling is done in Poincaré algebra by the momentum, pµ. In four spacetime dimensions, the
different infinite-dimensional representations of the Poincaré algebra corresponds to massive
and massless particle states. In case of massive particles, we will always be able to find a
reference frame in which the the momentum four vector takes the form:

pµ = (m, 0, 0, 0)

Then we can define something called the little group which leaves the momentum vector, pµ

invariant, in particular SO(3) for this. In the case of massless particles, it is not possible to
boost to a reference frame where all the spatial components is zero. However, we can boost
to a frame where the momentum four vector takes the form:

pµ = (E, 0, 0, E)

If we generalize the argument to d 6= 4 spacetime dimensions, then for a massive particle
we can boost to the rest-frame and hence the little group is SO(d − 1) while for massless
particles the little group turns out to be SO(d− 2) instead of SO(d− 1).

7.5 Ward identities

In quantum field theory the presence of symmetries lead to the relations between the
correlation function. These relations are known as the Ward identities. A generating
functional Z[J ] under the change of variables φ(x)→ φ̃(x) = φ(x) + δφ(x) remains invariant,
i.e. Dφ = Dφ̃ and thus we obtain:

0 = δZ[J ] = i

∫
Dφei(S+

∫
ddxJ(x)φ(x))

∫
ddx

(
δS

δφ(x)
+ J(x)

)
δφ(x) (7.9)

Taking functional derivatives with respect to J(xi) and subsequently setting J to zero, we
obtain the Schwinger- Dyson equation:

0 = i

〈
δS

δφ(x)
φ(x1)....φ(xn)

〉
+

n∑
j=1

〈φ(x1)...φ(xf − 1)δ(x− xf )φ(xf + 1)...φ(xn)〉 (7.10)

43



CHAPTER 7. CONFORMAL FIELD AND CORRELATION FUNCTION

If we now apply the Schwinger-Dyson equations to continuos symmetry transformations
φ(x)→ φ(x) + δφ(x), the variation of the Lagrangian gives us:

δL =
∂L

∂φ(x)
δφ(x) +

∂L

∂(∂µφ(x))
∂µδφ(x)

= ∂µ

(
∂L

∂(∂µφ(x))
δφ(x)

)
+

δS

δφ(x)
δφ(x)

If δφ corresponds to the symmetry that leaves the Lagrangian invariant, then the Noether’s
current is given by:

∂µJ µ(x) =
δS

δφ(x)
δφ(x)

Now using the equation 7.10, we obtain the Ward identities of the form:

∂µ〈J µ(x)(x1)....φ(xn)〉 − i
n∑
j=1

〈φ(x1)...δ(xj)δ(x− xj)...φ(xn)〉 = 0 (7.11)

If we know that δφ does not involve time derivatives and if we know that the Noether’s
charge, Q =

∫
dd−1x−→x J then we can represent δφ using the following commutation relation:

[Q̂, ˆφ(x) = iδ ˆφ(x)]

In general if we now consider a quantum field φ(x) which is not necessarily a scalar field,
then the change of the field φ(x) is given by:

δφ(x) = φ̃(x)− φ(x) = eiωµνJ
µν

φ(Λ−1x)− φ(x) (7.12)

Hence the corresponding infinitesimal transformation at x = 0 is

δφ(0) =
i

2
ωµνJ µνφ(0)

Because the field that we are considering is a quantum field we do the following change

Jµν → Ĵµν

and then the infinitesimal change δφ(x) takes the following form:

δφ(0) = − i
2
ωµν [Ĵ

µν , φ(0)]

Hence we can conclude that
[Ĵµν , φ(0)] = −J µνφ(0)

The generator Jµν acts on the spacetime coordinates and the corresponding operator J
acts on the Hilbert space of the quantum field. Similarly, for translations the infinitesimal
transformation φ(x) we get the commutation relation

[P̂µ, φ(x)] = −i∂µφ(x)

and similarly we define Pµ = −i∂µ to be acting on the Hilbert space. Now, using the δφ
on the Ward identity 7.11, we see that the n-point correlation functions depends on the
differences (xi − xf )

2. To be precise, the one-point function has to be a constant and the
two-point function takes the form

〈φ(x1)φ(x2)〉 = f
(
(x1 − x2)2

)
(7.13)

where for any function f the equation 7.13 is satisfied.
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7.6 Conformal group and its algebra

A conformal transformation is one in which there exists an angle preserving transformation.
In Minkowskian space, a conformal transformation is one in which the causality is preserved,
i.e. the spacelike components are mapped into another spacelike components, the timelike
components are mapped into another timelike components and the lightlike seperated points
will remain lightlike seperated points in the space. A conformal transformation leave the
metric g[µν] invariant up to an arbitrary positive spacetime dependent scale factor, i.e.
conformal transformation are those transformation for which the following relationship is
satisfied:

gµν 7→ Ω(x)−2gµν(x) ≡ e2σ(x)gµν(x)

and hence the distance function transforms as ds′2 = e2σ(x)ds2 . Although the distance function
is changed but the transformation leaves the angles invariant locally and preserve the causal
structure of the spacetime. For a flat spacetime metric where gµν = ηµν an infinitesimal
conformal transformation has to satisfy:

∂µεν + ∂νεµ = 2σ(x)ηµν

where Ω(x) = 1−σ(x)+O(σ)2 and now if we contract both sides of the equation given above
using the invariant tensor we get:

∂.ε = σ(x).d

in d-dimension, therefore the infinitesimal transformation is conformal only if it satisfies

(ηµν∂ρ∂
ρ + (d− 2)∂µ∂ν)∂.ε = 0 (7.14)

Equation 7.14 simplfies for d = 2, hence we divide conformal transformation into two
categories, for d > 2 and for d = 2.

7.6.1 Conformal transformation for d > 2

Equation 7.14, when solved for values of d > 2 gives us ε(x) (upto second order terms)

εµ(x) = aµ + ωµνx
ν + λxµ + bµxµµ − 2(bµx

µ)xµ (7.15)

The parameters aµ, ωµν , λandbµ have finite number of components, therefore, the conformal
algebra associated with the symmetry group is finite dimensional. The geometric
interpretation of the transformation of the conforaml group is listed below:

Name εµ(x) σ(x) Operator
Translation aµ 0 Pµ
Lorentz transformation ωµν , ωµν = −ωµν 0 Jµν
Dilatation λxµ λ D
Special conformal transformation bµxµxµ − 2(bµx

µ)xµ −2(bµµ) Kµ

The conformal algebra consisting of all these generators is given by the commutation relations
of the Poincaré algebra as well as the following commutation relation:

[Jµν , Kρ] = i(ηµρKν − ηνρKµ) [D,Pµ] = iPµ

[D,Kµ] = iKµ [D, Jµν ] = 0

[Kµ, Kρ] = 0 [Kµ, Pν ] = −2i(ηµνD − Jµν)
(7.16)
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7.6.2 Conformal transformation for d = 2

For the case where d = 2, the condition in equation 7.14 gives the form of conformal
transformation as:

∂0ε1 = −∂1ε0 ∂0ε0 = ∂1ε1 (7.17)

Now using complex coordinates z = x0 + iX1 and z̄ = x0 − ix1 we can write ε as a function
of z as ε = ε0 + iε1. Now if we expand ε(z) and ε̄(z̄) as:

ε(z) = −
∑
n∈Z

εnz
n+1

ε̄(z̄) = −
∑
n∈Z

ε̄nz̄
n+1

Hence we can say that the infinitesimal transformation given by z 7→ z′ = z + ε(z) and
z̄ 7→ z̄′ = z̄ + ε̄(z̄) is conformal and the generators are given by:

ln = −zn+1∂z l̄n = −z̄n+1∂z̄

The counterpart of these commutators, takes the following form in Hilbert spaces:

[Ln, Lm] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (7.18)

The commutation relation in equation 7.18 is known as the Virasoro algebra, where c is the
central charge.

7.7 Correlation function from conformal

transformation

The path integral formalism of quantum mechanics states that we need to sum up all possible
paths of propagation. In particular, the path integral sums over all the possible paths which
start at some position qi at a time ti and end at a position qf at time tf . The extension of this
idea is seen in quantum field theory. In quantum field theory this procedure gets translated
to summing over all field configurations φ in the configuration space. Mathematically,

Dφ ∝
∏

ti≤t≤tf

∏
~x7→Rd−1

dφ(t, ~x)

The transition from initial state |φi, ti〉 to final state |φf , tf〉 where φ̂(ti, ~x)|φi, ti〉 = φi(~x)|φi, ti〉
and φ̂(tf , ~x)|φf , tf〉 = φf (~x)|φf , tf〉 is then given by:

〈φf , tf |φi, ti〉 = N

∫
Dφ exp

[
i

∫ tf

ti

dt

∫
Rd−1

dd−1~xLfree(φ, ∂φ)

]
where N is a normalization factor. In strict mathematical sense, this integral might not exist
hence a common trick to improve the convergence of the path integral is used. The mass m2

in the Lagrangian is replaced by m2− iε and then at the end of the calculation, ε is taken to
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be zero, i.e. we take the limit ti 7→ −∞ and tf 7→ +∞ and we consider φi(~x) = φf (~x) = 0
which is called the vacuum transition amplitude and is written as:

〈0|0〉 = N

∫
Dφ exp

[
i

∫
ddxLfree(φ, ∂φ)

]
where N is chosen such that 〈0|0〉 = 1. Similar to this we are particularly interested in a
correlation function14 of the form:

〈0|T φ̂(x1)φ̂(x2)...φ̂(xn)|0〉 ≡ 〈φ̂(x1)φ̂(x2)...φ̂(xn)〉 ≡ G(n)(x1, ...xn) (7.19)

where T denotes the time ordering prescription which states that a product of operators
φ̂(x1)φ̂(x2)...φ̂(xn) to the right of T has to be ordered such that fields at later times stand
to the left of those at earlier times14. In particular, for two operators φ̂(x)φ̂(y) the time
ordering is given by:

T φ̂(x)φ̂(y) ≡ Θ(x0 − y0)φ̂(x)φ̂(y) + Θ(y0 − x0)φ̂(y)φ̂(x)

where Θ is the step function. The conformal symmetries of a field as introduced in the
previous section imposes restrictions on the correlation functions of the form as introduced
in equation 7.19. Particularly it determines the form of the two and three point correlation
which applies to both forms of conformal symmetries, i.e. when d > 2 and d = 2. The
invariance under dilatation, two-point function of two scalar conformal primary operators φ1

and φ2 with scaling dimensions ∆1 and ∆2 transforms as:

〈φ1(x1)φ2(x2)〉 =
Cφ1φ2

(x1 − x2)∆1+∆2

The denominator of the equation given above can be written as ((x1 − x2)2)(∆1+∆2)/2 then
the equation takes the form:

〈φ1(x1)φ2(x2)〉 =
Cφ1φ2

((x1 − x2)2)(∆1+∆2)/2

We can constrain the correlation function by applying an inversion which states that the two
point function is zero unless both fields have the same scaling dimensions ∆. In addition,
since the function is real and symmetric under the exchange of the φ′s we can diagonalize
the constant C in the space of scalar primary operators O such that C is only non-zero for
conjugated operators O and Ō and then by setting C = 1 we get the the correlation two
point function for a scalar conformal primary operator O of scaling dimension ∆:

〈O(x1)Ô(x2)〉 =
1

(x1 − x2)2∆

Similarly, we can get the three-point correlation function for the scalar conformal primary
operators Oi, (i = 1, 2, 3) with scaling dimension ∆i which is:

〈O1(x1)O2(x2)O3(x3) =
CO1O2O3

(x1 − x2)∆1+∆2+∆3(x2 − x3)−∆1+∆2+∆3(x1 − x3)∆1−∆2+∆3
(7.20)

with CO1O2O3 determined by the field content. A general conformal primary operator
transforms as:

Oi(x) 7→ Ox′ = Ω(x)∆D(R(x))ijOj(x)
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where Ω(x) is the scale factor, ∆ is the conformal dimensions and D(R(x)) is the local
Lorentz transformation. Now we can construct a conformally covariant expression for the
two point function of the conformal primary operators. In irreducible representations of the
conformal primary operator takes the following form:

〈Oi(x)Ōj(y)〉 =
CO

(x− y)2∆
D(I(x− y))i j (7.21)

where CO is an overall constant scale factor which can be modified by redefining the set.

7.8 Correlation function using gravity

Let us assume a scalar operator O having conformal dimension ∆ on the field theory side
which is dual to a scalar field φ on the d+1 dimensional gravity side. In Eucledian signature,
the action of the gravity side S[φ] is given by:

S[φ] =
C

2

∫
dzd4x

√
g
(
gmn∂mφ∂nφ+m2 + φ2

)
(7.22)

in which the mass of the scalar is such that m2L2 = ∆(∆−d) and we consider the Eucleidian
AdS metric in d+ 1 dimension which is given y

ds2 =
L2

z2

(
dz2 + δµνdx

µdxν
)

(7.23)

The equation of motion can be deduced by taking the extremum of the action in equation
7.22 which is:

(�g −m2)φ = 0, �gφ =
1
√
g
∂m(
√
ggmn∂nφ)

The solution φ satisfies the equation of motion, therefore, we can say that the action is just
a boundary term which can be written as:

S[φ] = −C
2

∫
ddx
√
ggzzφ(z, x)∂zφ(z, x)|z = ε (7.24)

Assuming that the interior is regular it can be ensured that the integrand above vanishes
for z 7→ ∞. When z = 0, the expression in the integrand

√
ggzz = (L/z)d−1 is divergent

and hence we are required to regularize the action, S[φ]. This can be done by excluding the
region 0 < x < ε and imposing all the boundary conditions at z = ε. Since we are restricting
z to z ≥ ε, therefore the isometries of the AdS spacetime cannot be used in order to find the
solution of the φ. However, we can do a Fourier transformation along the boundary while
keeping the radial direction z in the configuration space. The Fourier transformation is given
by:

φ(z, x) =

∫
ddp

(2π)d
eipxφ(z, p)

where p is the momentum along the direction of the field and obeys the relation p.x =
δµνp

µxnu. The function φ(z, p) satisfies:

z2∂2
zφp(z)− (d− 1)z∂zφp(z)− (m2L2 + p2z2)φp(z) = 0
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with p2 = δµνp
µpν where |p| =

√
p2. Considering the necessary boundary conditions, as in14,

the normalized solution for φ is given as:

φ(z, p) =
zd/2Kν(z|p|)
εd/2Kν(ε|p|)

φ(0)(p)ε
d−∆ (7.25)

where Kν(z) ∼ z−ν and φ(0) is the zeroth component of the Fourier transformation. Then
we determine the on-shell action by inserting the equation given above in equation 7.24 and
then we get:

S[φ] = −CL
d−1

2εd−1

∫
ddp

(2π)d
ddq

(2π)d
(2π)dδd(p+ q)φ(z, p)∂z(z, q)|z=ε (7.26)

We can see that φ(z, p) can be expressed in terms of the zeroth component and hence it can
be said that the action depends only on this. In addition, by using the AdS/CFT conjecture
that classical supergravity action is the generating functional for a connected Green’s function
of composite gauge invariant operators14. By introducing all composite operators Oi on the
field theory side the corresponding sources φt(0), we can write down the correlation function

from the generating functional W [φt(0)] by taking the derivatives with respect to the sources

φt(0), we get:

〈O1(x1)O2(x2)...On(xn)〉CFT,c = − δnW

δφ1
(0)(x1)δφ2

(0)(x2)...δφn(0)(xn)
|φt

(0)
=0 (7.27)

Now by using the equation given above and equation 7.26 we can write down the two-point
correlation functions for the dual CFT operators as:

〈O(p)O(q)〉ε = (2π)2d δ2S[φ0]

δφ0(−p)δφ0(−q)

= −(2π)dδd(p+ q)CLd−1

ε2∆−d−1

d

dz
ln
(
zd/2Kν(z|p|)

)
|z=ε

= −(2π)dδd(p+ q)CLd−1

ε2∆−d

(
d

2
+
ε|p|K ′ν(ε|p|)
Kν(ε|p|)

) (7.28)

In this equation, when we take the limit ε 7→ 0, we obtain the two point function. Then using
the Bessel expansion as in14, we realize that the conformal dimension associated with the
CFT operator O has the conformal dimension of ∆ = ν + d

2
. Additionally, using the result

of the expansion of the Bessel modes14, we obtain:

〈O(p)O(q)〉ε = (2π)dδd(p+ q)CLd−1

(
β0 + β1ε

2|p|2 + ...+ βν(ε|p|)2(ν−1)

ε2∆−d

− 2νbo
ao
|p|2ν ln(ε|p|)(1 +O(ε2))

)
where βl are ratios of the ak and bk which are the coefficient of the Bessel expansion and thus
is a function of ν. Now, when we take the limit ε 7→ 0, only the term involving the logarith
of the momentum remains. Thus, we obtain the non-local result for the correlator

〈O(p)O(q)〉 = −(2π)dδd(p+ q)CLd−1 (−1)ν+1

22(ν−1Γ(ν)2
|p|2ν ln(ε|p|) (7.29)
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Finally by transforming the non-local contribution proportional to |p|2ν ln |p| back to the
position space we the result that is independent of the ε which is

O(x)†〉 = CLd−1 Γ(∆)

Γ(∆− d/2)

2∆− d
πd/2|x− y|2∆

(7.30)

The equation that was derived in the last section, equation 7.21 agrees with the equation
derived above 7.30. Hence, we can find the correlation between the gravity side of a theory
to its corresponding field theory by calculating the the values of C in the equation 7.30. One
such example of such AdS/CFT correspondence if the N = 4 Super Yang-Mills theory.
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Chapter 8

Entanglement Entropy and
Holography

8.1 Introduction

Entanglement entropy is a measure of how the quantum information of a system in encoded
in a quantum state. For a holographic system this means that the entanglement entropy is
stored in the geometric features of the bulk geometry. Although entanglement entropy can
be defined in quantum field theory and can be used to get an insight about the nature of the
renormalization group. Mathematically, entanglement entropy is the von Neumann entropy
of the reduced density matrix, i.e.

SA ≡ −tr ρA log ρA

where the reduced density matrix of a subsystem is defined as:

ρA = trB ρ

where A and B is used to denote a bipartite system with Hilbert space equal to the direct
product of the two such that:

HAB = HA ⊗HB

and the state (pure or mixed) of the full system is given bu ρ. The system of two states
is said to be maximally entangeled if the reduced density matrix ρ is proportional to the
identity matrix, i.e. the the resulting density matrix is a diagonal matrix.
The idea of holography has played a major role in the recent developments of String theory.
Since we know that the entropy of a black hole is not proportional to its volume but its area
(Hawking Radiation) of the event horizon given by:

SBH =
Area(γ)

4GN

(8.1)

where γ denotes the area of the horizon, GN denotes the Newton constant and SBH is known
as the Bekenstein-Hawkig Entropy. In addition, we know that the AdS/CFT correspondence
claims that quantum gravity on (d+ 2) dimensional anti-deSitter spacetime is equivalent to
a certain conformal field theory in d+1 dimensional CFT. Hence we can say that holography
is manifestly realized in AdS/CFT correspondence13. However, most of the recent work in
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the correspondence is done, i.e. the theories are formulated using specific operator and for
this reason it was unable to answer which region of the AdS is responsible to particular
information in the dual CFT. This problem can only be solved if we formulate holography in
terms of a universal observable and for this and this is one of the prime reason for studying
the entanglement entropy 17. The entanglement entropy in quantum field theories or many
body quantum system is a non-local quantity as opposed to correlation functions.

8.1.1 Properties of entanglement entropy

1. For two system ρ and σ we can define relative entropy as S(ρ||σ) ≡ tr ρ log ρ− trρ log σ
which obey the inequality S(ρ||σ) ≥ 0.

2. Entanglement entropy of two system obey the general triangular inequality law,
|SA − SB| ≤ SAB .

3. If we define something called mutual information as I(A,B) ≡ SA + SB − SAB then it
obeys the relationship I(A,B) = S(ρAB||ρA ⊗ ρB) ≥ 0.

4. In a pure state of A and B, the correlation of A and B comes from entanglement of
the system and in a mixed state the classical contributions of information from the
system also plays a role.

5. For a system with three or more subsystem, the strong subadditivity inequality is
maintained which states that for a tripartite system, HABC = HA ⊗ HB ⊗ HC the
entropy follows SABC + SB ≤ SAB + SBC

8.1.2 Schmidt decomposition

Suppose |ψ〉 is a pure state of a composite system, AB. Then there exist orthonormal states
|iA〉 for system A and orthonormal states |iB〉 of system B such that:

|ψ〉 =
∑
i

λi|iA〉|iB〉 (8.2)

where λi re non-negative real numbers satisfying
∑

i λ
2
i = 1 known as the Schmidt coefficients

and this decompostion of states are known as the Schmidt decomposition1.

8.2 Calculation of entanglement entropy

As discussed earlier, we say that two quantum mechanically described are in an entangled
states if the description of one of the state is incomplete without the description of the other
one. Bell- spin state, is one of many such examples which is given by:

|Φ+ =
1√
2

(| ↓A ⊗ ↓B〉+ | ↑A ⊗ ↑B〉) (8.3)
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Although the system described in 8.3 are independent of each other yet a measurement on the
system A will allow us to predict the state of system B without any calculations on B. Hence
a measurement performed, collapsing the wave function of A, will also in turns collapse the
wave function of B. Thus, we can say that the two systems are entangled to each other. This
collapse of the wave function of system B after measuring system A happens instantaneously
which was refereed as spooky action at a distance by famous physicist Albert Einstein.
For a more rigorous description of entanglement, we choose to write the equation 8.3 as
follows:

|Φ+〉 = |φ〉A ⊗ |φ〉B (8.4)

where |φ〉A and |φ〉B are arbitrary states:

|φ〉A = a| ↑〉+ b| ↓〉
|φ〉B = c| ↑〉+ d| ↓〉

where a, b, c and d are some arbitrary constants. However, it turns out that there exist no
such values of these coefficients which satisfy the Bell state equation in 8.3. Hence we can
say that neither the description of system A nor the description of system B will be complete
without their counterparts which implies that the systems are entangled to each other.
It is often useful to define a mathematical quantity if we want to measure something and in
this case, it is the entanglement entropy that helps us to deduce to what extent two states
are entangled.
In general, an entangled state cannot be described by a single state, rather the system is
described using a density matrix, usually denoted by ρ11. The density matrix gives us a
probabilistic description of the entangled system which can be represented as:

ρ =


ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρN


where ρi’s are the probabilities of the system being in the state |i〉 or the eigenvalues of the
diagonal density matrix.
The density matrix can be used to express the system in terms of a single state vector and
the density matrix is calculated as follows:

ρ = |ψ〉〈ψ|

and then it can be generalized to write the generalized description of a mixed state as:

ρ =
∑
n

pn|ψn〉〈ψn|

where pn are the probabilities for the states ψn. The density matrix can be used to calculate
the expectation value 〈O〉 of any operator O using 〈O〉 = Tr(ρO).
A density can be simplified further in order to describe parts of the composite or mixed
system which is done using the reduced density matrix formalism. Let us define a system
consisting of two subsystems and define the reduced density matrix as:

ρ1 ≡ Tr2(ρ)

ρ2 ≡ Tr1(ρ)
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Figure 8.1: Boundary of an Anti-deSitter Spacetime11

The reduced density matrix contains all the information about only one subsystem which
can be shown by calculating the expectation value of an operator acting on the composite
state. For example, if operator O works on system 1 alone we get,

〈O〉ρ = Tr[ρ(O ⊗ I)]

= 〈O〉ρ1 = Tr(Oρ1)

As we are using tensor product it implies that the operator O is acting on the first subsystem
while the identity operator I is acting on the second thus keeping it invariant. Reduced
density matrices give us an insight about the correlation between the variables of the
subsystem 1 and 2 used in the example. If we define ρ12 ≡ ρ1⊗ ρ2 and see that ρ = ρ12 then
we can conclude that the systems are not correlated. Otherwise, the systems are entangled
and ρ contains certain amount of information of the correlation between the two system, thus
the systems are entangled.

8.3 Holographic entanglement entropy

For a system, if we assume that the CFT has a large number of degrees of freedom and
is in a state with a geometric dual of itself then the entanglement entropy is given by the
holographic entanglement entropy which is:

SA =
Area(γA)

4GN

which is the same as the equation 8.1. The area is a spacelike extremal surface in the dual
geometry attached to the AdS boundary, as shown in figure 8.1. The boundary must satisfy
two conditions11. Firstly, the extremal surfaces γA must be homologous, i.e. these surfaces
must be continuously deformable to region A, as in figure 8.1. Secondly, if there are multiple
extremal surfaces satisfying the first condition then we need to look for the one that has the
minimal area.
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8.4 Calculating the entanglement entropy of

1d-coupled harmonic oscillators

As in our calculation of entanglement entropy for two harmonic oscillators, the Hamiltonian
of the system is given as:

H =
1

2
[p2

1 + p2
2 + k0(x2

1 + x2
2) + k1(x1 − x2)2] (8.5)

As we want to diagonalize the system, we need to introduce a variable substitution. Let us
assume the following:

x+ =
x1 + x2√

2

x− =
x1 − x2√

2

ω+ =
√
k0

ω− =
√
k0 + 2k1

(8.6)

Using the substitution 8.6 we can introduce the following momenta operators:

p+ = i
d

dx+

=
dx1

dx+

p1 +
dx2

dx+

p2

p− = i
d

dx−
=
dx1

dx−
p1 +

dx2

dx−
p2

(8.7)

and then we can write the usual momenta operators as:

p1 = i
d

dx1

=
dx+

dx1

p+ +
dx−
dx1

p−

=
1√
2

(p+ + p−)
(8.8)

p2 = i
d

dx2

=
dx+

dx2

p+ +
dx−
dx2

p−

=
1√
2

(p+ + p−)
(8.9)

Finally we get:
p2

1 + p2
2 = p2

+ + p2
−

Moreover, using 8.6 and 8.7 we can write down the Hamiltonian as:

H =
1

2
(p2

+ + p2
− + ω2

+x
2
+ + ω2

−x
2
−) (8.10)

Now using the derivation from10 we can write down the associated ground state wave
functions of the two independent wave functions as:

ψ+
0 =

(ω+

π

) 1
4
e−

1
2ω+x2

+

ψ+
0 =

(ω−
π

) 1
4
e−

1
2ω−x2

+

(8.11)
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ψ0 = π−1/2(ω+ω−)(1/4)e−
1
2

(ω+x2++ω−x2−) (8.12)

writing ψ0 as a state vector in the position basis, we now have:

|ψ0〉 =

∫ +∞

−∞
dx1dx2ψ0(x1x2)|x1〉|x2〉 (8.13)

The density formalism is used now and the density matrix is written as:

ρ = |ψ0〉〈ψ0|

=

∫ +∞

−∞
dx1 dx2 dx

′
1 dx

′
2ψ0(x1x2)ψ∗0(x′1x

′
2)|x1〉|x2〉〈x′1|〈x′2|

(8.14)

Next, we calculate the reduced density matrix for one oscillator, ρred = Tr(ρ) where:

ρred =

∫ +∞

−∞
dx 〈x|ρ|x〉

=

∫ +∞

−∞
dx dx1 dx2 dx

′
1 dx

′
2 ψ0(x1, x2) ψ∗0(x′1, x

′
2) 〈x|x1〉|x2〉〈x′1|〈x′2|x〉

=

∫ +∞

−∞
dx dx1 dx2 dx

′
1 dx

′
2 ψ0(x1, x2) ψ∗0(x′1, x

′
2) 〈x|x1〉|x2〉〈x′2|〈x′1|x〉

=

∫ +∞

−∞
dx dx1 dx2 dx

′
1 dx

′
2 ψ0(x1, x2) ψ∗0(x′1, x

′
2) δ(x− x1) δ(x− x′1)|x2〉〈x′2|

=

∫ +∞

−∞
dx2 dx

′
2 ψ0(x1, x2) ψ∗0(x′2, x

′
2) |x2〉〈x′2|

(8.15)

Now we can calculate the diagonal matrix element of the reduced density matrix as:

ρred(x2, x
′
2) = 〈x2|ρred|x′2〉 =

∫ +∞

−∞
dx1 ψ0(x1, x2) ψ∗0(x1, x

′
2) (8.16)

Now, we solve the following equation:

√
ω+ω−

π

∫ +∞

−∞
dx1 exp

[
− 1

2
ω+x

2
1 −

1

4
ω+(x2

2 + x′2
2)2 − 1

2
ω+x1(x2 + x′2)

− 1

2
ω−x

2
1 −

1

4
ω−(x2

2 + x′2
2)2 +

1

2
ω−x1(x2 + x′2)

] (8.17)

to get this:
ρred(x2, x

′
2) = π−1/2(γ − β) e−

γ
2

(x22+x′2
2)+βx2x′2 (8.18)

where the symbols β and γ are used to denote the following functions of the varibales of the

coupled oscillator system, β =
1
4

(ω+−ω−)2

ω++ω−
and γ − β = 2ω+ω−

ω++ω−
The eigenvalues of this density

matrix are the solutions to: ∫ +∞

−∞
dx′ρred(x, x

′)fn(x′) = pnfn(x) (8.19)
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where pn and fn are guessed as in16 as:

pn = (1 + ξ)ξn

fn(x) = Hn

(
α1/2x

)
e
αx2

2

(8.20)

Lastly we compute the entropy of the subsytem using:

S = −
∞∑
n=1

ρn log ρn

= −
∞∑
n=1

(1− ξ)ξn log[(1− ξ)ξn]

= −(1− ξ)
∞∑
n=1

ξn[log(1− ξ) + n log ξ]

= −(1− ξ)

[
log(1− ξ)

∞∑
n=1

ξn + log ξ
∞∑
n=1

nξn

]

= −(1− ξ)
[
log(1− ξ) 1

1− ξ
+ log ξ

ξ

(1− ξ)2

]
= − log(1− ξ)− ξ

1− ξ
log ξ

(8.21)

8.5 Calculating entanglement entropy of N-coupled

harmonic oscillators

The Hamiltonian for N coupled harmonic oscillator is given by:

H =
1

2

N∑
i=1

p2
i +

1

2

N∑
i,j=1

xiKijxj

where K is a real symmetric matrix, representing a eigenvector, with positive eigenvalues
representing all spring constants that are included in the system. The matrix K can be
written in the form K = UTKDU , hence we can say that K is diagonizable matrix when U
is an orthogonal matrix. Therefore, we can say that the Hamiltonian of the system can be
diagonalized using the following transformations:

x 7→ x̃ = Ux

xT 7→ x̃T = UTxT
(8.22)

Using equation 8.22 the Hamiltonian of the system takes the form:

H =
1

2

N∑
i=1

p2
i +

1

2

N∑
i,j=1

xiKijxj

=
1

2

N∑
i=1

p2
i +

1

2

N∑
i,j=1

UTxiKijUxj

=
1

2

N∑
i=1

p2
i +

1

2

N∑
i,j=1

xiK
ij
Dxj
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Again using the idea from10 and the diagonalized Hamiltonian, the full ground state
wavefunction can be written as:

ψ0 =
∏
i

ψio

=
∏
i

(√
Kii
D

π

)1/4

exp

[
−1

2
xi

√
Kii
Dxi

]

=
∏
i

(
Ωii
D

π

)1/4

exp

[
−1

2
xiΩ

ii
D

]
= π−

N
4 (detΩ)1/4 exp

[
−1

2
~xΩ̇D~̇x

]
(8.23)

where Ω = UT
√
KDU and ~x is an N-vector. For the purpose of calculating the reduced

density matrix we trace over the system consisting of n ≤ N oscillators, which gives us:

red =

∫ +∞

−∞

n∏
j=1

d~xj〈xj|ρ|xj〉

=

∫ +∞

−∞

n∏
j=1

dxiψ0(x1, ..., xn, xn+1..., xN)ψ∗0(x1, ..., xn, x
′
n+1, ..., x

′
N)

(8.24)

To compute equation 8.24 we need to introduce a series of vectors as below. At first we
construct the vector:

~x =



x1
...
xn
xn+1

...
xN


=

(
~y
~z

)

then we construct the vector:

~x′ =



x1
...
xn
x′n+1

...
x′N


=

(
~y′

~z′

)

and finally we construct a vector:

Ω =

(
A B
BT C

)
where A is a n×n, C is a N ×N and both B and BT are (N −n)× (N −n) matrices. Then,
the reduced density matrix can then be written using these matrices as:

ρred(~z, ~z′) =

∫ +∞

−∞
d~y exp

[
−1

2
(~x.Ω.~x+ ~x′.Ω.~x′)

]
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where the pre-factors have been ignored and then we calculated the following:

~x.Ω.~x = ~y.A.~y + ~y.B.~z + ~z.BT .~y + ~z.C.~z

~x′.Ω.~x′ = ~y.A.~y + ~y.B.~z′ + ~z′.BT .~y + ~z′.C.~z′
(8.25)

and then we can write reduced density matrix as:

ρ ∼
∫ +∞

−∞
d~y exp

[
−~y.A.~y − ~y.B.~z − ~y.B.~z′ − 1

2
(~z.C.~z + ~z′.C.~z′)

]
= exp

[
1

4

(
z.BTA−1B.z + z′.BTA−1B.z′ + z.BTA−1B.z′ + z′.BTA−1B.z − 2z.C.z − 2z′.C.z′

)]
= exp

[
−1

2
z.γ.z − 1

2
z′.γ.z′ + z.β.z′

]
= exp

[
−1

2
(x.γ.x+ x′.γ.x′)

]
∼ ρred(x, x′)

(8.26)

where in the last we exchanged the dummy variable z and renamed it x and also we have
omitted the arrow over the vectors. In addition, we introduced (similar to coupled oscillator)
the coefficients γ = C − β and β = 1

2
BTA−1B. Finally we assumed, like we did for the

coupled oscillator, the eigenvector equation as:∫ +∞

−∞
d~xρred(~x, ~x′)fn(~x′) = pnfn(~x)

Now using the transformations below where γD is an orthogonal matrix

γ = V TγDV

x = V Tγ
−1/2
D y

β′ = γ
−1/2
D V βV Tγ

−1/2
D

we can rewrite the reducced density matrix as:

ρred ∼ exp

[
−1

2
(x.γ.x+ x′.γ.x′) + x.β.x′

]
= exp

[
−1

2

(
V γ
−1/2
D yV TγDV V

Tγ
−1/2
D y + V γ

−1/2
D y′V TγDV V

Tγ
−1/2
D y′

)
+ V γ

−1/2
D yβV Tγ

−1/2
D y′

]
= exp

[
−1

2
(y.y.+ y′y.y) + y.

(
γ
−1/2
D V βV Tγ

−1/2
D

)
.y′
]

= exp

[
−1

2
(y.y + y′.y′) + y.β′.y′

]
(8.27)
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Now by setting y = Wz, where W is orthogonal and W tβW is diagonal we get:

ρ ∼ exp

[
−1

2

(
W T z.Wz +W T z′.Wz′

)
+W T z.β′.Wz′

]
= exp

[
−1

2
(z.z + z′.z′) + z.W Tβ′W.z′

]
=

N∏
i=n+1

exp

[
−1

2

(
z2
i + z2

i

)
+ β′ziz

′
i

] (8.28)

Now comparing equation 8.28 with equation 8.17 we can see that for every value of i when
= 1 and β = β′ we get the entropy for a coupled oscillator. Hence we can conclude that if
we now the index i from 1 to N and then if we sum over all the entropy, using the equation
S =

∑
i S(ξi), we will get the entropy for N- coupled oscillator as:

ξi =
β′i

1 +
√

1− β′i2

For instance, for i = 3 we will have:

S = ξ1 + ξ2 + ξ3 =
β′1

1 +
√

1− β′12
+

β′2
1 +

√
1− β′22

+
β′3

1 +
√

1− β′32
(8.29)
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Chapter 9

Conclusion

The information loss problem as predicted by Hawking is based on the fact that the black hole
taken into account was formed from a collapse which eventually evaporates.However, in anti
deSitter space this is only true for small black holes which are not in thermal equilibrium and
is therefore very difficulty to address properly using the gauge/gravity duality. The conformal
field theory is unitary, hence if we are to construct a duality, assuming their is a correlation,
then the evaporation process should also be unitary. Unitarity should be preserved and
locality or some other tenet of effective field theory should be violated. This suggests that
that local effective field theory is not quite right in non-perturbative quantum gravity and
this problem is not really understood and we are yet to figure out the exact method of
characterizing the breakdown. This characterization can be understood to a greater extent
if further research is being carried out.
In chapter 8, we talked about Entanglement entropy and its application in Holographic
description of AdS space. We introduced the concept of density matrix formalism of the
quantum theory and used this formalism to calculate entropy of ’toy system’ such as the
coupled harmonic oscillator. The purpose of this exercise was to show the scope of the idea
of entanglement entropy and its possible extent. If nurtured properly, this can be used to
describe the physical phenomena inside a black hole such as the black hole entropy and might
someday us to solve the mystery of the information with holographic entanglement entropy.
Further research will help us to predict the functions (as we have done in the chapter) more
precisely and will bring new insight in mathematical physics.
In the concluding part of the thesis, we talked about the entanglement entropy which is a
measure of how quantum information is spatially organized in quantum state. For quantum
field theory, in general, it is extremely complicated to calculate the entanglement entropy.
However, in holographic entanglement entropy becomes a topological problem and can easily
be coupled with CFTs. This implies, for a strong coupling, the organization of quantum
information approaches a simplified and universal form via the emergent geometry. Although
much of the information about how the coupling is related to the emergent geometry is
still unknown. Hence this opens door to several other theoretical researches that could be
undertaken to unravel the mysterious relations
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Appendix A

Symbolic calculation using
Mathematica : Schwarzschild metric
satisfies Einstein equation

The following page is a notebook file created using Mathematica 11. For the purpose of
symbolic calculation, xAct and xCoba packages has been used. The notebook file is given
to shown how the calculations has been performed. At the end of the calculation, we see
that the Einstein tensor vanishes, thus ensuring the fact that the Schwarzschild metric is a
solution to the Einstein’s field equation.
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<< xAct`xTensor` (*Adding the package*)

------------------------------------------------------------

Package xAct`xPerm` version 1.2.3, {2015, 8, 23}

CopyRight (C) 2003-2015, Jose M. Martin-Garcia, under the General Public License.

Connecting to external MinGW executable...

Connection established.

------------------------------------------------------------

Package xAct`xTensor` version 1.1.2, {2015, 8, 23}

CopyRight (C) 2002-2015, Jose M. Martin-Garcia, under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type

Disclaimer[]. This is free software, and you are welcome to redistribute

it under certain conditions. See the General Public License for details.

------------------------------------------------------------

DefManifold[M4, 4, {α, β, γ, μ, ν, λ, σ, η}] (*Defining the Four Dimension Manifold*)

** DefManifold: Defining manifold M4.

** DefVBundle: Defining vbundle TangentM4.

DefMetric[-1, metric[-α, -β], CD, {";", "∇"}, PrintAs → "g"]

(*Defining the metric with the abstract properties of the metric,

individual component is not yet assigned*)



** DefTensor: Defining symmetric metric tensor metric[-α, -β].

** DefTensor: Defining antisymmetric tensor epsilonmetric[-α, -β, -γ, -η].

** DefTensor: Defining tetrametric Tetrametric[-α, -β, -γ, -η].

** DefTensor: Defining tetrametric Tetrametric†[-α, -β, -γ, -η].

** DefCovD: Defining covariant derivative CD[-α].

** DefTensor: Defining vanishing torsion tensor TorsionCD[α, -β, -γ].

** DefTensor: Defining symmetric Christoffel tensor ChristoffelCD[α, -β, -γ].

** DefTensor: Defining Riemann tensor RiemannCD[-α, -β, -γ, -η].

** DefTensor: Defining symmetric Ricci tensor RicciCD[-α, -β].

** DefCovD: Contractions of Riemann automatically replaced by Ricci.

** DefTensor: Defining Ricci scalar RicciScalarCD[].

** DefCovD: Contractions of Ricci automatically replaced by RicciScalar.

** DefTensor: Defining symmetric Einstein tensor EinsteinCD[-α, -β].

** DefTensor: Defining Weyl tensor WeylCD[-α, -β, -γ, -η].

** DefTensor: Defining symmetric TFRicci tensor TFRicciCD[-α, -β].

** DefTensor: Defining Kretschmann scalar KretschmannCD[].

** DefCovD: Computing RiemannToWeylRules for dim 4

** DefCovD: Computing RicciToTFRicci for dim 4

** DefCovD: Computing RicciToEinsteinRules for dim 4

** DefTensor: Defining weight +2 density Detmetric[]. Determinant.

<< xAct`xCoba`(*Including the package xCoba*)

------------------------------------------------------------

Package xAct`xCoba` version 0.8.3, {2015, 8, 23}

CopyRight (C) 2005-2014, David Yllanes

and Jose M. Martin-Garcia, under the General Public License.

------------------------------------------------------------

These packages come with ABSOLUTELY NO WARRANTY; for details type

Disclaimer[]. This is free software, and you are welcome to redistribute

it under certain conditions. See the General Public License for details.

------------------------------------------------------------

$DefInfoQ = False;

$PrePrint = ScreenDollarIndices;

$CVSimplify = Simplify;

DefChart[cb, M4, {0, 1, 2, 3}, {t[], r[], θ[], ϕ[]}]

(*Assigning the symbols of the coordinate system*)

cb /: CIndexForm[0, cb] := "t";
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cb /: CIndexForm[1, cb] := "r";

cb /: CIndexForm[2, cb] := "θ";

cb /: CIndexForm[3, cb] := "ϕ";

DefConstantSymbol[G](*Defining the Constant in the Schwarzschild Metric*)

DefConstantSymbol[M]

MatrixFormmet = DiagonalMatrix1 -
2 M

r[]
, 1 -

2 M

r[]

-1

, r[]2, r[]2 Sin[θ[]]2

(*Assigning the components of the metric using the symbols in the defined chart*)

1 -
2 M

r
0 0 0

0 1

1-
2 M

r

0 0

0 0 r2 0

0 0 0 r2 Sin[θ]2

MetricInBasis[metric, -cb, met] // TableForm

(*Using the diagonal matrix defined above defining the metric in a specific way*)
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Added independent rule gtt → 1 -
2 M

r
for tensor metric

Added independent rule gtr → 0 for tensor metric

Added independent rule gtθ → 0 for tensor metric

Added independent rule gtϕ → 0 for tensor metric

Added dependent rule grt → gtr for tensor metric

Added independent rule grr →
1

1 -
2 M

r

for tensor metric

Added independent rule grθ → 0 for tensor metric

Added independent rule grϕ → 0 for tensor metric

Added dependent rule gθt → gtθ for tensor metric

Added dependent rule gθr → grθ for tensor metric

Added independent rule gθθ → r2 for tensor metric

Added independent rule gθϕ → 0 for tensor metric

Added dependent rule gϕt → gtϕ for tensor metric

Added dependent rule gϕr → grϕ for tensor metric

Added dependent rule gϕθ → gθϕ for tensor metric

Added independent rule gϕϕ → r2 Sin[θ]2 for tensor metric

gtt → 1 - 2 M

r
gtr → 0 gtθ → 0 gtϕ → 0

grt → 0 grr →
1

1-
2 M

r

grθ → 0 grϕ → 0

gθt → 0 gθr → 0 gθθ → r2 gθϕ → 0

gϕt → 0 gϕr → 0 gϕθ → 0 gϕϕ → r2 Sin[θ]2

TensorValues@metric

FoldedRule grt → gtr , gθt → gtθ , gθr → grθ , gϕt → gtϕ , gϕr → grϕ , gϕθ → gθϕ ,

 gtt → 1 -
2 M

r
, gtr → 0, gtθ → 0, gtϕ → 0, grr →

1

1 -
2 M

r

,

grθ → 0, grϕ → 0, gθθ → r2, gθϕ → 0, gϕϕ → r2 Sin[θ]2

MetricCompute[metric, cb, "Weyl"[-1, -1, -1, -1]]

g = CTensor[met, {-cb, -cb}];

(*Defining a tensor that will be used later to compute the covariant derivatie*)

SetCMetric[g, -cb];

MetricCompute[metric, cb, "Weyl"[-1, -1, -1, -1]]
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cd = CovDOfMetric[g](*Defining the Covariant Derivative*)

CCovDPDcb, CTensor0, -
M

2 M r - r2
, 0, 0, -

M

2 M r - r2
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},


M 2 M - r

r3
, 0, 0, 0, 0,

M

2 M r - r2
, 0, 0, {0, 0, 2 M - r, 0}, 0, 0, 0, 2 M - r Sin[θ]2,

{0, 0, 0, 0}, 0, 0,
1

r
, 0, 0,

1

r
, 0, 0, {0, 0, 0, -Cos[θ] Sin[θ]},

{0, 0, 0, 0}, 0, 0, 0,
1

r
, {0, 0, 0, Cot[θ]}, 0,

1

r
, Cot[θ], 0, {cb, -cb, -cb}, 0,

CTensor1 -
2 M

r
, 0, 0, 0, 0,

1

1 -
2 M

r

, 0, 0, 0, 0, r2, 0, 0, 0, 0, r2 Sin[θ]2,

{-cb, -cb}, 0

Christoffel[CD, PDcb][α, -β, -γ]

(*Defining the Chritoffel Symbols using the Covariant Derivative*)

Γ[∇,]α
βγ
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Part[TensorValues@ChristoffelCDPDcb, 2] // TableForm

Γ[∇,]t
tt → 0

Γ[∇,]t
tr → -

M

2 M r-r2

Γ[∇,]t
tθ → 0

Γ[∇,]t
tϕ → 0

Γ[∇,]t
rr → 0

Γ[∇,]t
rθ → 0

Γ[∇,]t
rϕ → 0

Γ[∇,]t
θθ → 0

Γ[∇,]t
θϕ → 0

Γ[∇,]t
ϕϕ → 0

Γ[∇,]r
tt →

M (2 M-r)

r3

Γ[∇,]r
tr → 0

Γ[∇,]r
tθ → 0

Γ[∇,]r
tϕ → 0

Γ[∇,]r
rr →

M

2 M r-r2

Γ[∇,]r
rθ → 0

Γ[∇,]r
rϕ → 0

Γ[∇,]r
θθ → 2 M - r

Γ[∇,]r
θϕ → 0

Γ[∇,]r
ϕϕ → 2 M - r Sin[θ]2

Γ[∇,]θ
tt → 0

Γ[∇,]θ
tr → 0

Γ[∇,]θ
tθ → 0

Γ[∇,]θ
tϕ → 0

Γ[∇,]θ
rr → 0

Γ[∇,]θ
rθ →

1

r

Γ[∇,]θ
rϕ → 0

Γ[∇,]θ
θθ → 0

Γ[∇,]θ
θϕ → 0

Γ[∇,]θ
ϕϕ → -Cos[θ] Sin[θ]

Γ[∇,]ϕ
tt → 0

Γ[∇,]ϕ
tr → 0

Γ[∇,]ϕ
tθ → 0

Γ[∇,]ϕ
tϕ → 0

Γ[∇,]ϕ
rr → 0

Γ[∇,]ϕ
rθ → 0

Γ[∇,]ϕ
rϕ →

1

r

Γ[∇,]ϕ
θθ → 0

Γ[∇,]ϕ
θϕ → Cot[θ]

Γ[∇,]ϕ
ϕϕ → 0
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riemann = Riemann[cd] (*Defining the Riemann Curvature Tensor*)

CTensor{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

0,
2 M -2 M + r

r4
, 0, 0, 

2 M

2 M - r r2
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},

0, 0,
M 2 M - r

r4
, 0, {0, 0, 0, 0}, 

M

r
, 0, 0, 0, {0, 0, 0, 0},

0, 0, 0,
M 2 M - r

r4
, {0, 0, 0, 0}, {0, 0, 0, 0}, 

M Sin[θ]2

r
, 0, 0, 0,

0,
2 M 2 M - r

r4
, 0, 0, -

2 M

2 M - r r2
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

{0, 0, 0, 0}, 0, 0,
M

2 M - r r2
, 0, 0,

M

r
, 0, 0, {0, 0, 0, 0},

{0, 0, 0, 0}, 0, 0, 0,
M

2 M - r r2
, {0, 0, 0, 0}, 0,

M Sin[θ]2

r
, 0, 0,

0, 0,
M -2 M + r

r4
, 0, {0, 0, 0, 0}, -

M

r
, 0, 0, 0, {0, 0, 0, 0},

{0, 0, 0, 0}, 0, 0, -
M

2 M - r r2
, 0, 0, -

M

r
, 0, 0, {0, 0, 0, 0},

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

{0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, 0,
2 M

r
, 0, 0, -

2 M Sin[θ]2

r
, 0,

0, 0, 0,
M -2 M + r

r4
, {0, 0, 0, 0}, {0, 0, 0, 0}, -

M Sin[θ]2

r
, 0, 0, 0,

{0, 0, 0, 0}, 0, 0, 0, -
M

2 M - r r2
, {0, 0, 0, 0}, 0, -

M Sin[θ]2

r
, 0, 0,

{0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, 0, -
2 M

r
, 0, 0,

2 M Sin[θ]2

r
, 0,

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}, {-cb, -cb, -cb, cb}, 0

Ricci [cd] [-α, -β] (*Defining the Ricci Tensor which is zero*)

0

rs = RicciScalar[cd][[1]] (*Defining the Ricci Scalar*)

Part : Part specification Zero〚1〛 is longer than depth of object.

Part : Part specification Zero〚1〛 is longer than depth of object.

Zero〚1〛

Einstein[cd][-α, -β] (*Defining the Einstein Tensor*)

0
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eineq[a_, b_] := Einstein[cd][{a, -cb}, {b, -cb}] // FullSimplify

(*Defining a general function to figure out the different component of the Einstein*)

eineq[0, 0] (*Specific values to show that it vanished*)

0

eineq[1, 1]

0
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