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Abstract 

 
isual object recognition has been lying at the convergence point between machine 

learning, computer vision and AI since the very beginning. From robotics to 

information retrieval, many desired applications demand the ability to identify and 

localize objects into different categories. Despite a number of object recognition algorithms and 

systems being proposed for a long time in order to address this problem, there still lacks a 

general and comprehensive solution for the modern challenges. Most prominently, new 

approaches and computational models of vision to analyzing data, such as the convolutional 

neural networks (CNNs), have enabled a much more nuanced understanding of visual 

representation. In this paper, I have proposed a deep CNN model to solve the aforementioned 

problem of object recognition and reported a promising performance on a benchmark 

classification dataset called CIFAR10. 

 

Keywords: Deep Learning, Convolutional Neural Network, Object Recognition, Data 

Augmentation. 
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1 
Introduction 

 
bject recognition [1] is referred as a technology in the field of computer vision for 

finding and identifying objects in an image or video sequence. Humans recognize a 

multitude of objects in images with little effort, despite the fact that the image of 

the objects may vary somewhat from different viewpoints, due to various sizes and scales, or due 

to translation and rotation. We can even recognize objects when they are partially obstructed 

from view. But this task is still a challenge for computer vision systems, demanding efficient 

techniques to the ever growing problems. 

 

1.1 CONVOLUTIONAL NEURAL NETWORKS 

Not too long ago, deep neural networks were observed to be the most influential among all 

innovations in the field of computer vision, generating remarkable performance on image 

classification. CNNs [2] are particularly intriguing as a tool for studying biological vision since 

this class of artificial vision systems exhibits visual recognition capabilities that are comparable 

to those of human observers. As these models improve in their recognition performance, it 

appears that they also become more effective in predicting, hence accounting for neural 

responses in human ventral cortex. Recent benchmarks have shown that deep CNNs are 

excellent approaches for object recognition. Technological developments have even allowed the 

O 
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use of high-end general purpose Graphic Processor Units (GPUs) [4] for accelerating numerical 

problem solving using this approach. They resort not only to lower computational time, but also 

allow considering much larger networks. Hence, computers are now able to drive deeper, wider 

and more powerful models. State of the art CNNs have achieved human-like performance in 

several recognition tasks, such as handwritten character recognition, face recognition, scene 

labelling, image search, image auto-annotation and much more. Thus applying this technique to 

empirical data bears the potential to demonstrate great promise for enabling future progress in 

fulfilling the demand of latest visual recognition challenges. 

 

1.2 RESEARCH OBJECTIVE 

Many approaches to object recognition task have been proposed as well as implemented over 

the past few decades. Yet, there still lacks a general and comprehensive solution to the modern 

recognition challenges, such as the security surveillance domain where number of CCTV 

cameras is growing exponentially, digital devices that require efficient detection techniques and 

so on. Google and Microsoft are among the top research companies working in the area. 

Google’s driverless car and Microsoft’s Kinect system [3] both use object recognition; yet they 

are striving for even better and effective techniques. Meanwhile, mobile devices [4] have become 

powerful enough to handle the computations required for deploying CNN models in near real-

time. Keeping that in mind, this research is developed upon proposing as well as implementing a 

simple yet efficient and powerful approach through using a lightweight CNN scheme for 

domain specific objection recognition tasks, utilizing minimal hardware resources ideal for low-

end devices. 
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1.3 THESIS ORGANIZATION 

This thesis is organized as follows. Chapter 2 presents a description of the related object 

recognition works. Chapter 3 describes the proposed CNN design for the given problem. Details 

of the experimental setup are discussed in Chapter 4. The results and its analysis are reported in 

Chapter 5. Finally, Section 6 summarizes the conclusion of this thesis. 
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2 
Literature Review 

 
here is a broad agreement in the computer vision community about the valuable role 

that visual objection recognition (VOR) plays in any image understanding task. 

Numerous research based studies have highlighted unique approaches 

demonstrating favorable recognition performance under the context of the aforementioned 

problem. With the discovery of the Scale Invariant Feature Transform (SIFT) [5], multiple 

opportunities for vocabulary learning techniques have been successfully developed, including 

Bag of Features (BoF) [6] and Improved Fisher Vector Encoding (IFV) [8] for instances. These 

techniques are simple yet effective and can be summarized in well defined steps [9]: dense 

sampling of local descriptors, encoding into a high-dimensional representation and finally 

pooling to create a single descriptor per image. Despite their simplicity, such methods are hand-

crafted and require a certain amount of engineering behind them. These techniques are known 

as shallow, where the learning is done only at mid-level by training classifiers [4] such as 

Support Vector Machines (SVM), Random Forest or Naive Bayes classifier. 

Deep learning models, such as the CNNs, have become the state of the art for a variety of 

large-scale pattern recognition problems in the last few years. CNNs are regarded as deep 

architectures since they involve a hierarchy of layers, such that the outputs of a layer are 

connected to the next layer’s inputs. The exploitation of a large number of layers, up to 22 in 

T 
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case of GoogleNet model [10] for example, has led to very significant gain in VOR tasks 

compared to shallow strategies. GoogLeNet, an incarnation of the Inception architecture used 

for winning the ILSVRC 2014 with a top-5 error rate of 6.7%, was one of the first CNNs that 

strayed from the general approach of simply stacking convolutional and pooling layers on top of 

each other in a sequential structure [11]. The main hallmark of this architecture was improved 

utilization on memory and power usage. To optimize quality, the architectural decisions were 

based on Hebbian principle and intuition of multi-scale processing. The network comprised of 9 

Inception modules in the whole architecture, with over 100 layers in total. There was zero 

presence of fully connected layers. To go from a 7x7x1024 volume to a 1x1x1024 volume, an 

average pool was used instead; this saved a huge number of parameters. The network was 

trained on a few high-end GPUs within a week. During testing, multiple crops of the same 

image were created, fed into the network and softmax probabilities were averaged to generate 

the final solution. 

In [7], it was proven how a large, deep CNN model called AlexNet is capable of scoring 

record-breaking results through achieving a winning top-5 test error rate of 15.3% on a highly 

challenging dataset like ImageNet in the ILSVRC-2012 competition, using purely supervised 

learning. The network, which had 60 million parameters and 650,000 neurons, consisted of five 

convolutional layers, some of which were followed by max-pooling layers, and three fully-

connected layers with a final 1000-way softmax. ReLU was used for the nonlinearity functions 

whereas data augmentation techniques were followed via image translations, horizontal 

reflections and patch extractions. Through implementing dropout layers, in order to combat the 

problem of overfitting to the training data, and using batch stochastic gradient descent with 

specific values for momentum and weight decay, the model was trained on two GTX 580 GPUs 
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for five to six days. This designed network was used for classification up to 1000 possible 

categories. 

The use of such models for domain-specific and small-scale VOR challenges is an active 

topic, as deep architectures typically require large-scale datasets and tremendous computational 

power for their learning. 
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3 
Proposed Framework 

 
n order to tackle an indispensable task as difficult as recognizing real-life objects, I have 

proposed a simple, yet powerful deep version of CNN which is capable of offering 

excellent performance while requiring minimal hardware resources and computational 

costs. The following sections would provide further details for each part of the proposed 

framework. 

 

3.1 Preprocessing 

The input dataset used in this research included common objects such as airplanes, automobiles, 

birds, cats and so on. The photos were in color with red, green and blue components, measuring 

32x32 pixel squares. Regardless of being small, the original aspect ratio was maintained in order 

to avoid image distortion initially. The pixel values were in the range of 0 to 255 for each of the 

red, green and blue channels. Because the input values were well understood, I normalized to the 

range 0 to 1 by dividing each value by the maximum observation, which was 255. The initial data 

was loaded as integers, so I had to cast it into floating point values in order to perform the 

division. The output variables were defined as a vector of integers from 0 to 1 for each class. I 

used one hot encoding [12] to transform them into a binary matrix in order to best model the 

I 
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classification problem. It was previously known that there were 10 classes for this problem, so I 

expected the binary matrix to have a width of 10. 

To improve the regular performance of my model, image data augmentation was applied. 

Since the object in the images may vary in their respective positions, a boost in the model 

performance was likely to be achieved by using some data augmentation. Methods such as 

random height shifts, random width shifts, horizontal image flips, vertical image flips and small 

rotations turned out to be quite beneficial in the process. 

 

Figure 3.1: Example of distorted images by applying random rotation, shift and flip methods to the 

training data. 

 

3.2 LEARNING 

The worked model bears a deep, albeit light network topology. After seeing that a simple CNN 

performs poorly on the concerned problem, the consideration for scaling up the size and 

complexity of the model became a prime necessity. The following part would provide short 

insights on the core building blocks of my proposed CNN architecture. 

 Compared to original neural networks, deep CNNs involve a large number of layers. Let 

us briefly review the different layers involved in my CNN model. Each layer of the CNN is 
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composed of neurons connected to nodes of previous layers, such that the output at a given node 

for layer L is a function of outputs of nodes in layer L-1. There are five main types of layers 

involved in the architecture [4]: 

I Convolution layers: Convolution layers are characterized by weights (filter values). 

There exist multiple convolutions per layer with a fixed size, and each kernel is applied over the 

entire image with a fixed step (stride). The first convolution layers learn the low-level features 

such as edges, lines and corners. Next layers learn more complex representations (e.g., parts and 

models). The deeper the network is, the higher-level the learnt features. 

II Pooling layers: Pooling layers perform a nonlinear downsampling. In this category, there 

are also several layer options, with maxpooling being the most popular. This basically takes a 

filter (normally of size 2x2) and a stride of the same length; then applies it to the input volume 

and outputs the maximum number in every subregion that the filter convolves around. Thus 

amount of parameters or weights is reduced and overfitting is controlled. 

III Activation layers: Activation functions mimic the behavior of the neuron’s axon that 

fires a signal when a specific stimulus is presented. Some of the most common activations 

functions are the Hyperbolic Tangent, Sigmoid and the Rectified Linear Units (ReLU) among 

others. ReLU has emerged as a key feature of CNN. It is defined as f(x)=max(0, x). 

IV Dropout layers: Dropout layers [11] “drop out” a random set of activations by setting 

them to zero in the forward pass. This forces the network to be redundant; meaning, the 

network should be able to provide the right classification or output for a specific example even if 

some of the activations are dropped out, which makes sure that the network is not getting too 

fitted to the training data and thus helps alleviate the overfitting problem. 
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V Fully-connected layers: A fully-connected layer (FC) differs from the above mentioned 

layers by the fact that all outputs of the previous layer are connected to all inputs of the FC 

layer. These layers can be mathematically represented by inner products. 

 

Figure 3.2: Proposed CNN architecture for the VOR task. 

 

3.3 PREDICTION 

In an attempt to better translate the large number of feature maps to class values, additional and 

larger dense layers had to be used at the output end in case of my proposed network 

architecture. Rectified linear unit (ReLU) activation functions were used for the neurons in 

such layers. A softmax activation function was used on the output layer to turn the outputs into 

probability-like values and allow one class of the 10 to be selected as the model’s output 

prediction. Efficient Stochastic Gradient Descent (SGD) optimizer was used to learn the 

weights and logarithmic loss (cross-entropy error function) was used as the loss function, given 

by: 

L(X,Y)=−(1/n)∑(i=1,n)y^(i)lna(x^(i))+(1−y^(i))ln(1−a(x^(i))) 

Here, X={x(1),…,x(n)} is the set of input examples in the training dataset, and Y={y(1),…,y(n)} 

is the corresponding set of labels for those input examples. The a(x) represents the output of the 

neural network given input x. 
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4 
Experiments 

 
or experimenting with the proposed VOR framework, it was important to choose a 

well adjusted dataset, a feasible architectural design built upon suitable 

hyperparameters and required hardware resources to fit the training process. The 

detailed experimental procedure, which was followed based on these factors, is provided in the 

sections below. 

 

4.1 DATASET 

The Canadian Institute for Advanced Research’s CIFAR-10 [13], an established computer-vision 

dataset used for object recognition, was used for experimenting in this research. It is a subset of 

the 80 million tiny images dataset and consists of 60,000 32x32 color images containing one of 10 

object classes, with 6000 images per class. It was collected by Alex Krizhevsky, Vinod Nair and 

Geoffrey Hinton. The dataset is divided into five training batches and one test batch, each with 

10000 images. The test batch contains exactly 1000 randomly-selected images from each class. 

The training batches contain the remaining images in random order, but some training batches 

may contain more images from one class than another. Between them, the training batches 

contain exactly 5000 images from each class. The classes are completely mutually exclusive. 

F 
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Figure 4.1: Sample images (scaled for improving viewers’ experience) taken from the CIFAR-10 dataset. 

 

4.2 ARCHITECTURE SELECTION 

Choosing the correct architecture can be a challenging issue for a proposed framework built 

upon CNN, since the process requires a great deal of tinkering for fine-tuning the 

hyperparameters. It can be quite difficult to know how many layers to use, what should be filter 

sizes, correct values for stride, etc. These are not trivial questions and there is no fixed standard 

set by researchers. This is because, a network will largely depend on the type of data that may in 

turn vary by size of the image, complexity of given data, available hardware resources and much 

more. Through looking at the above-mentioned dataset and experimenting between several 



21 
 

hyperparameters, I have chosen the best performing model using right combination that created 

abstractions of image at a proper scale and exhibited promising outcomes. 

The CNN architecture, as proposed for the VOR problem in this research, was 

comprised of a pattern, in which Convolutional, Dropout, Convolutional and Max Pooling layers 

were placed sequentially. This pattern was repeated three times with 32, 64, and 128 feature 

maps. The effect of that was having an increasing number of feature maps with smaller and 

smaller sizes, given the max pooling layers. Zero padding approach was applied in the 

Convolutional layers, since it tries to pad evenly left and right when needed; if the amount of 

columns to be added is odd, it will add extra column to the right, and the same logic applies 

vertically where there may be an extra row of zeros at the bottom. Finally, additional and large 

Dense layers were planted at the output end of the network in an attempt to better translate the  

 

Layer 

type/number 

Kernel/Neurons Activation 

function 

Channels Output size Parameters 

Convolution 1 3x3 ReLU 32 32x32 896 

Dropout 1 (20%)   32 32x32 0 

Convolution 2 3x3 ReLU 32 32x32 9248 

Max-pooling 1 2x2  32 16x16 0 

Convolution 3 3x3 ReLU 64 16x16 18496 

Dropout 2 (20%)   64 16x16 0 

Convolution 4 3x3 ReLU 64 16x16 36928 

Max-pooling 2 2x2  64 8x8 0 

Convolution 5 3x3 ReLU 128 8x8 73856 

Dropout 3 (20%)   128 8x8 0 

Convolution 6 3x3 ReLU 128 8x8 147584 

Max-pooling 3 2x2  128 4x4 0 

Flatten 2048    0 

Dropout 4 (20%) 2048    0 

Fully-connected 1 1024 ReLU   2098176 

Dropout 5 (20%) 1024    0 

Fully-connected 2 512 ReLU   524800 

Dropout 6 (20%) 512    0 

Fully-connected 3 10 softmax   5130 

 

Table 4.2: Summary of proposed CNN architecture of the model trained on 32x32 colored images. 
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large number of feature maps to class values. A summary of the established deep network 

architecture is shown in Table 4.2. 

 

4.3 TRAINING 

The discussed model was trained using a logarithmic loss function with stochastic gradient 

descent optimization algorithm configured with a large momentum and weight decay that 

started with a learning rate of 0.01. It was fitted with 50 epochs and a large batch size of 64, 

found through some minor experimentation. Normally, the number of epochs would be one or 

two orders of magnitude larger for this problem. Each epoch took an average computational 

time of 145 seconds, causing the entire training phase to finish in approximately 2 hours. These 

epochs acted like smaller training sessions that ran over all of the data given in training set. 

During that run, filter values (or weights) were adjusted through a process called 

backpropagation. It was the part where weights of the layers were correctly tuned with respect 

to the loss function while carrying out forward and backward passes. The ultimate goal was to 

achieve a set of parameters which have a certain ability to generalize toward new data. And that 

ability was reflected by the validation accuracy, which we shall find out in Chapter 5. 

Running my proposed model delivered classification accuracy and loss function values 

on the training dataset through each epoch, where the best achieved classification accuracy 

without image data augmentation was 95.87% along with a loss function value of 0.1146. 

However, a light augmentation resulted into having classification accuracy up to 75.13% 

followed by a loss function value of 0.7016. This training process was performed on a personal 

computer featuring a dual-core Intel Core i3-5010U CPU at 2.1 GHz, 4GB system memory, 

powered by a NVIDIA GeForce 920M GPU at 954 MHz. The learning model was developed in 
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Keras, a Python library for deep learning, using Theano backend and trained over GPU, utilizing 

cuDNN library and keeping CNMeM enabled with initial size - 60% of memory. 
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5 
Results 

 
his section reports the best accuracy achieved by the proposed model for the VOR 

task and provides an analysis as well as highlights a list of top recognition rates 

achieved by professional researchers, followed by a discussion showing some scope 

for improvement. 

 

5.1 TESTING 

The trained model built in accordance to specified configuration, as described in previous 

section, was tested on the validation dataset to estimate its ability to generalize toward new 

data, because the validation set contains only data that the model has never seen before and 

therefore cannot just memorize. Although the model initially achieved a classification accuracy 

of 81.46% along with a loss function value of 0.7199, data augmentation pushed the classification 

to reach a baseline accuracy of 77.56% followed by a loss function value of 0.6297. That means, 

the estimate of classification accuracy for the latter model is slightly below 4 points worse than 

the previous model. 

 

5.2 ANALYSIS 

Taking a closer look at the difference between the classification accuracy and loss function 

values obtained from training and validation datasets before and after performing image data 

T 
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augmentation, would tell us that there was bit of an overfitting situation at the former stage. 

Even though the training data accuracy before augmentation kept improving up to 95.87% while 

maintaining a loss function value as low as 0.1166, validation data accuracy had gotten lot worse 

and fell down to 81.46% while loss function reached a surprisingly high value of 0.7099, i.e. the 

model started to basically just memorize the data. But the second approach, one performed with 

augmentation of data, controlled overfitting. Training data accuracy after augmentation turned 

out to be 75.13% while maintaining a loss function value of 0.7016, but validation data accuracy 

reached 77.56% while loss function value went lower to 0.6297. Even though the accuracy 

obtained from original dataset came out to be slightly higher than that from augmented dataset, 

the latter possessed a greater potential of achieving even higher classification accuracy given a 

few more rounds of training, while keeping overfitting to a minimum at the same time. 

 

Figure 5.2: Classification accuracy obtained using original and augmented datasets. 
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 Despite achieving good results on this very difficult problem, I am still a few miles away 

from beating the world’s top-notch records. Details [14] of classification performance achieved 

by some state of the art methods on the CIFAR-10 dataset, is given in Table 5.2. 

 

Test 

accuracy 

Method Venue Used data 

augmentation? 

96.53% Fractional Max-Pooling arXiv 2015 Yes 

95.59% Striving for Simplicity: The All Convolutional Net ICLR 2015 Yes 

94.16% All you need is a good init ICLR 2016 Yes 

93.45% Fast and Accurate Deep Network Learning by 

Exponential Linear Units 

arXiv 2015 No 

92.40% Training Very Deep Networks NIPS 2015 No 

91.73% BinaryConnect: Training Deep Neural Networks 

with binary weights during propagations 

NIPS 2015 No 

90.50% Practical Bayesian Optimization of Machine 

Learning Algorithms 

NIPS 2012 Yes 

86.70% 

 

An Analysis of Unsupervised Pre-training in 

Light of Recent Advances 
 

ICLR 2015 Yes 

82.18% Convolutional Kernel Networks arXiv 2014 No 

78.67% PCANet: A Simple Deep Learning Baseline for 

Image Classification? 

arXiv 2014 No 

 

Table 5.2: Details of classification performance on CIFAR-10 by state of the art methods. 

 

There are a lot of decisions to make when designing and configuring a deep learning 

model such as the one which I have proposed. Most of these decisions must be resolved 

empirically through trial and error, and evaluating the model on problem data. As such, it is 

critically important to have a robust way to evaluate the performance of the deep neural 

networks. Below are a few ways [12] that could have been followed to elevate the proposed 

model’s performance: 

I Train for more epochs: Current model was trained for a very small number of epochs, 

100 to be exact. It is common to train large convolutional neural networks for few hundreds or 
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thousands of epochs to obtain desired results. State of the art performance can be achieved by 

significantly raising the number of training epochs. 

II Further data augmentation: Although augmentation strategies like random shifts, flips 

and small rotations in training image data were implemented, methods such as feature 

standardization, ZCA whitening and higher random rotations are yet to be tried out. 

III Deeper network topology: The network presented in this research was large and deep, 

but even larger and deeper networks could have been designed for the problem. This may 

involve more feature maps closer to the input and perhaps less aggressive pooling. Additionally, 

standard convolutional network topologies that have been shown useful in world class 

implementations, might have been adopted and evaluated on the problem. 
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6 
Conclusion 

 
ecognition of visual objects is an important, yet challenging vision task. However, 

it is still an open problem due to the complexity of object classes as well as 

limitation of computational resources. Using the concept of deep learning, I have 

demonstrated how a highly accurate VOR pipeline, built upon a deep CNN module, can be 

expected to be used in near real-time for commercial deployment with minimal hardware 

requirements. The results yield a solid evidence that the proposed model bears strong potential 

to be superior in terms of minimal memory storage, computational complexity and recognition 

performance compared to the existing CNN models for low-end devices. Through applying fine-

tuning and data augmentation strategies, a variant of the initially proposed model achieved an 

error rate that came out to be as low as 18.54%. 

 

6.1 FUTURE WORK 

Future work will further investigate optimization for some of the current implementation 

issues, which would require tweaking with the network hyperparameters with a goal to achieve 

an even higher accuracy for object classification while maintaining a decent level of 

computational complexity and recognition performance at the same time. Despite the current 

work using a GPU implementation and offering favorable outcomes using minimal resources on 

a personal computer, computational time and memory requirement are yet to be checked 

R 
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through a mobile GPU implementation. Ongoing research also includes the extension of the 

proposed model for VOR on mobile devices from RGB-D images, as depth sensors will be 

embedded in the next generation of mobile devices. 
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