
1

Visual Object Recognition Using Deep

Convolutional Neural Network
by

Sabbir Ahmed

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE INCOMPUTER SCIENCE

BRAC UNIVERSITY, DHAKA

SPRING, 2017

2

Declaration

This is to certify that the research work titled as “Visual Object Recognition Using Deep Convolutional Neural

Network” is submitted by Sabbir Ahmed to the Department of Computer Science and Engineering, BRAC

University in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science. I

hereby declare that this thesis is based upon results obtained from my own work. The materials of work found by

other researchers and sources are properly acknowledged and mentioned by reference. This thesis, neither in whole

nor in part, has been previously submitted to any other University or Institute for the award of any degree or

diploma.

Supervisor Author

Moin Mostakim Sabbir Ahmed
Lecturer 17141013
Department of Computer Science and Engineering trickster0179@gmail.com
BRAC University

3

“If we knew what it was we were doing, it would not be called research, would it?”

— Albert Einstein

4

Acknowledgements

I would like to express my deepest gratitude to my supervisor Mr. Moin Mostakim (Lecturer,

Department of Computer Science and Engineering, BRAC University) for the useful comments,

remarks and engagement through the learning process of this work. Furthermore, I would like

to thank Dr. Muhammad Abul Hasan (Former Assistant Professor, Department of Computer

Science and Engineering, BRAC University) for introducing me to the topic, as well for the

guidance on the way. Also, I would like to thank the participants, who have willingly shared

their precious time and supported me throughout the entire process, both by keeping me

harmonious and helping me to put pieces together. I will be forever grateful to all of your

contributions.

5

Abstract

isual object recognition has been lying at the convergence point between machine

learning, computer vision and AI since the very beginning. From robotics to

information retrieval, many desired applications demand the ability to identify and

localize objects into different categories. Despite a number of object recognition algorithms and

systems being proposed for a long time in order to address this problem, there still lacks a

general and comprehensive solution for the modern challenges. Most prominently, new

approaches and computational models of vision to analyzing data, such as the convolutional

neural networks (CNNs), have enabled a much more nuanced understanding of visual

representation. In this paper, I have proposed a deep CNN model to solve the aforementioned

problem of object recognition and reported a promising performance on a benchmark

classification dataset called CIFAR10.

Keywords: Deep Learning, Convolutional Neural Network, Object Recognition, Data

Augmentation.

V

6

Table of Contents

DECLARATION …………………………………………………………………………….. 2

ACKNOWLEDGEMENTS ………………………………………………………………….. 4

ABSTRACT ………………………………………………………………………………….. 5

LIST OF TABLES …………………………………………………………………………….. 7

LIST OF FIGURES …………………………………………………………………………… 8

CHAPTERS

1 INTRODUCTION
1.1 Convolutional Neural Networks ……………………………………. 9
1.2 Research Objective …………………………………………………. 10
1.3 Thesis Organization ………………………………………………… 11

2 LITERATURE REVIEW ……………………………………………………. 12

3 PROPOSED FRAMEWORK
3.1 Preprocessing ………………………………………………………… 15
3.2 Learning ……………………………………………………………… 16

3.3 Prediction ……………………………………………………………. 18

4 EXPERIMENTS
4.1 Dataset …………………………………………………………….... 19
4.2 Architecture Selection ………………………………………………. 20

4.3 Training ………………………………………………………………. 22

5 RESULTS
5.1 Testing ……………………………………………………………….. 24
5.2 Analysis ………………………………………………………………. 24

6 CONCLUSION
6.1 Future Work ……………………………………………………..... 28

BIBLIOGRAPHY ………………………………………………………………………........ 30

7

List of Tables

4.2 Summary of proposed CNN architecture of the model trained on 32x32 colored

 images ………………………………………………………………………………… 21

5.2 Details of classification performance on CIFAR-10 by state of the art methods …… 26

8

List of Figures

3.1 Example of distorted images by applying random rotation, shift and flip methods to the

training data …………………………………………………………………………. 16

3.2 Proposed CNN architecture for the VOR task ……………………………………... 18

4.1 Sample images (scaled for improving viewers’ experience) taken from the CIFAR-10

dataset ………………………………………………………………………………… 20

5.2 Classification accuracy obtained using original and augmented datasets …………… 25

9

1
Introduction

bject recognition [1] is referred as a technology in the field of computer vision for

finding and identifying objects in an image or video sequence. Humans recognize a

multitude of objects in images with little effort, despite the fact that the image of

the objects may vary somewhat from different viewpoints, due to various sizes and scales, or due

to translation and rotation. We can even recognize objects when they are partially obstructed

from view. But this task is still a challenge for computer vision systems, demanding efficient

techniques to the ever growing problems.

1.1 CONVOLUTIONAL NEURAL NETWORKS

Not too long ago, deep neural networks were observed to be the most influential among all

innovations in the field of computer vision, generating remarkable performance on image

classification. CNNs [2] are particularly intriguing as a tool for studying biological vision since

this class of artificial vision systems exhibits visual recognition capabilities that are comparable

to those of human observers. As these models improve in their recognition performance, it

appears that they also become more effective in predicting, hence accounting for neural

responses in human ventral cortex. Recent benchmarks have shown that deep CNNs are

excellent approaches for object recognition. Technological developments have even allowed the

O

10

use of high-end general purpose Graphic Processor Units (GPUs) [4] for accelerating numerical

problem solving using this approach. They resort not only to lower computational time, but also

allow considering much larger networks. Hence, computers are now able to drive deeper, wider

and more powerful models. State of the art CNNs have achieved human-like performance in

several recognition tasks, such as handwritten character recognition, face recognition, scene

labelling, image search, image auto-annotation and much more. Thus applying this technique to

empirical data bears the potential to demonstrate great promise for enabling future progress in

fulfilling the demand of latest visual recognition challenges.

1.2 RESEARCH OBJECTIVE

Many approaches to object recognition task have been proposed as well as implemented over

the past few decades. Yet, there still lacks a general and comprehensive solution to the modern

recognition challenges, such as the security surveillance domain where number of CCTV

cameras is growing exponentially, digital devices that require efficient detection techniques and

so on. Google and Microsoft are among the top research companies working in the area.

Google’s driverless car and Microsoft’s Kinect system [3] both use object recognition; yet they

are striving for even better and effective techniques. Meanwhile, mobile devices [4] have become

powerful enough to handle the computations required for deploying CNN models in near real-

time. Keeping that in mind, this research is developed upon proposing as well as implementing a

simple yet efficient and powerful approach through using a lightweight CNN scheme for

domain specific objection recognition tasks, utilizing minimal hardware resources ideal for low-

end devices.

11

1.3 THESIS ORGANIZATION

This thesis is organized as follows. Chapter 2 presents a description of the related object

recognition works. Chapter 3 describes the proposed CNN design for the given problem. Details

of the experimental setup are discussed in Chapter 4. The results and its analysis are reported in

Chapter 5. Finally, Section 6 summarizes the conclusion of this thesis.

12

2
Literature Review

here is a broad agreement in the computer vision community about the valuable role

that visual objection recognition (VOR) plays in any image understanding task.

Numerous research based studies have highlighted unique approaches

demonstrating favorable recognition performance under the context of the aforementioned

problem. With the discovery of the Scale Invariant Feature Transform (SIFT) [5], multiple

opportunities for vocabulary learning techniques have been successfully developed, including

Bag of Features (BoF) [6] and Improved Fisher Vector Encoding (IFV) [8] for instances. These

techniques are simple yet effective and can be summarized in well defined steps [9]: dense

sampling of local descriptors, encoding into a high-dimensional representation and finally

pooling to create a single descriptor per image. Despite their simplicity, such methods are hand-

crafted and require a certain amount of engineering behind them. These techniques are known

as shallow, where the learning is done only at mid-level by training classifiers [4] such as

Support Vector Machines (SVM), Random Forest or Naive Bayes classifier.

Deep learning models, such as the CNNs, have become the state of the art for a variety of

large-scale pattern recognition problems in the last few years. CNNs are regarded as deep

architectures since they involve a hierarchy of layers, such that the outputs of a layer are

connected to the next layer’s inputs. The exploitation of a large number of layers, up to 22 in

T

13

case of GoogleNet model [10] for example, has led to very significant gain in VOR tasks

compared to shallow strategies. GoogLeNet, an incarnation of the Inception architecture used

for winning the ILSVRC 2014 with a top-5 error rate of 6.7%, was one of the first CNNs that

strayed from the general approach of simply stacking convolutional and pooling layers on top of

each other in a sequential structure [11]. The main hallmark of this architecture was improved

utilization on memory and power usage. To optimize quality, the architectural decisions were

based on Hebbian principle and intuition of multi-scale processing. The network comprised of 9

Inception modules in the whole architecture, with over 100 layers in total. There was zero

presence of fully connected layers. To go from a 7x7x1024 volume to a 1x1x1024 volume, an

average pool was used instead; this saved a huge number of parameters. The network was

trained on a few high-end GPUs within a week. During testing, multiple crops of the same

image were created, fed into the network and softmax probabilities were averaged to generate

the final solution.

In [7], it was proven how a large, deep CNN model called AlexNet is capable of scoring

record-breaking results through achieving a winning top-5 test error rate of 15.3% on a highly

challenging dataset like ImageNet in the ILSVRC-2012 competition, using purely supervised

learning. The network, which had 60 million parameters and 650,000 neurons, consisted of five

convolutional layers, some of which were followed by max-pooling layers, and three fully-

connected layers with a final 1000-way softmax. ReLU was used for the nonlinearity functions

whereas data augmentation techniques were followed via image translations, horizontal

reflections and patch extractions. Through implementing dropout layers, in order to combat the

problem of overfitting to the training data, and using batch stochastic gradient descent with

specific values for momentum and weight decay, the model was trained on two GTX 580 GPUs

14

for five to six days. This designed network was used for classification up to 1000 possible

categories.

The use of such models for domain-specific and small-scale VOR challenges is an active

topic, as deep architectures typically require large-scale datasets and tremendous computational

power for their learning.

15

3
Proposed Framework

n order to tackle an indispensable task as difficult as recognizing real-life objects, I have

proposed a simple, yet powerful deep version of CNN which is capable of offering

excellent performance while requiring minimal hardware resources and computational

costs. The following sections would provide further details for each part of the proposed

framework.

3.1 Preprocessing

The input dataset used in this research included common objects such as airplanes, automobiles,

birds, cats and so on. The photos were in color with red, green and blue components, measuring

32x32 pixel squares. Regardless of being small, the original aspect ratio was maintained in order

to avoid image distortion initially. The pixel values were in the range of 0 to 255 for each of the

red, green and blue channels. Because the input values were well understood, I normalized to the

range 0 to 1 by dividing each value by the maximum observation, which was 255. The initial data

was loaded as integers, so I had to cast it into floating point values in order to perform the

division. The output variables were defined as a vector of integers from 0 to 1 for each class. I

used one hot encoding [12] to transform them into a binary matrix in order to best model the

I

16

classification problem. It was previously known that there were 10 classes for this problem, so I

expected the binary matrix to have a width of 10.

To improve the regular performance of my model, image data augmentation was applied.

Since the object in the images may vary in their respective positions, a boost in the model

performance was likely to be achieved by using some data augmentation. Methods such as

random height shifts, random width shifts, horizontal image flips, vertical image flips and small

rotations turned out to be quite beneficial in the process.

Figure 3.1: Example of distorted images by applying random rotation, shift and flip methods to the

training data.

3.2 LEARNING

The worked model bears a deep, albeit light network topology. After seeing that a simple CNN

performs poorly on the concerned problem, the consideration for scaling up the size and

complexity of the model became a prime necessity. The following part would provide short

insights on the core building blocks of my proposed CNN architecture.

 Compared to original neural networks, deep CNNs involve a large number of layers. Let

us briefly review the different layers involved in my CNN model. Each layer of the CNN is

17

composed of neurons connected to nodes of previous layers, such that the output at a given node

for layer L is a function of outputs of nodes in layer L-1. There are five main types of layers

involved in the architecture [4]:

I Convolution layers: Convolution layers are characterized by weights (filter values).

There exist multiple convolutions per layer with a fixed size, and each kernel is applied over the

entire image with a fixed step (stride). The first convolution layers learn the low-level features

such as edges, lines and corners. Next layers learn more complex representations (e.g., parts and

models). The deeper the network is, the higher-level the learnt features.

II Pooling layers: Pooling layers perform a nonlinear downsampling. In this category, there

are also several layer options, with maxpooling being the most popular. This basically takes a

filter (normally of size 2x2) and a stride of the same length; then applies it to the input volume

and outputs the maximum number in every subregion that the filter convolves around. Thus

amount of parameters or weights is reduced and overfitting is controlled.

III Activation layers: Activation functions mimic the behavior of the neuron’s axon that

fires a signal when a specific stimulus is presented. Some of the most common activations

functions are the Hyperbolic Tangent, Sigmoid and the Rectified Linear Units (ReLU) among

others. ReLU has emerged as a key feature of CNN. It is defined as f(x)=max(0, x).

IV Dropout layers: Dropout layers [11] “drop out” a random set of activations by setting

them to zero in the forward pass. This forces the network to be redundant; meaning, the

network should be able to provide the right classification or output for a specific example even if

some of the activations are dropped out, which makes sure that the network is not getting too

fitted to the training data and thus helps alleviate the overfitting problem.

18

V Fully-connected layers: A fully-connected layer (FC) differs from the above mentioned

layers by the fact that all outputs of the previous layer are connected to all inputs of the FC

layer. These layers can be mathematically represented by inner products.

Figure 3.2: Proposed CNN architecture for the VOR task.

3.3 PREDICTION

In an attempt to better translate the large number of feature maps to class values, additional and

larger dense layers had to be used at the output end in case of my proposed network

architecture. Rectified linear unit (ReLU) activation functions were used for the neurons in

such layers. A softmax activation function was used on the output layer to turn the outputs into

probability-like values and allow one class of the 10 to be selected as the model’s output

prediction. Efficient Stochastic Gradient Descent (SGD) optimizer was used to learn the

weights and logarithmic loss (cross-entropy error function) was used as the loss function, given

by:

L(X,Y)=−(1/n)∑(i=1,n)y^(i)lna(x^(i))+(1−y^(i))ln(1−a(x^(i)))

Here, X={x(1),…,x(n)} is the set of input examples in the training dataset, and Y={y(1),…,y(n)}

is the corresponding set of labels for those input examples. The a(x) represents the output of the

neural network given input x.

19

4
Experiments

or experimenting with the proposed VOR framework, it was important to choose a

well adjusted dataset, a feasible architectural design built upon suitable

hyperparameters and required hardware resources to fit the training process. The

detailed experimental procedure, which was followed based on these factors, is provided in the

sections below.

4.1 DATASET

The Canadian Institute for Advanced Research’s CIFAR-10 [13], an established computer-vision

dataset used for object recognition, was used for experimenting in this research. It is a subset of

the 80 million tiny images dataset and consists of 60,000 32x32 color images containing one of 10

object classes, with 6000 images per class. It was collected by Alex Krizhevsky, Vinod Nair and

Geoffrey Hinton. The dataset is divided into five training batches and one test batch, each with

10000 images. The test batch contains exactly 1000 randomly-selected images from each class.

The training batches contain the remaining images in random order, but some training batches

may contain more images from one class than another. Between them, the training batches

contain exactly 5000 images from each class. The classes are completely mutually exclusive.

F

20

Figure 4.1: Sample images (scaled for improving viewers’ experience) taken from the CIFAR-10 dataset.

4.2 ARCHITECTURE SELECTION

Choosing the correct architecture can be a challenging issue for a proposed framework built

upon CNN, since the process requires a great deal of tinkering for fine-tuning the

hyperparameters. It can be quite difficult to know how many layers to use, what should be filter

sizes, correct values for stride, etc. These are not trivial questions and there is no fixed standard

set by researchers. This is because, a network will largely depend on the type of data that may in

turn vary by size of the image, complexity of given data, available hardware resources and much

more. Through looking at the above-mentioned dataset and experimenting between several

21

hyperparameters, I have chosen the best performing model using right combination that created

abstractions of image at a proper scale and exhibited promising outcomes.

The CNN architecture, as proposed for the VOR problem in this research, was

comprised of a pattern, in which Convolutional, Dropout, Convolutional and Max Pooling layers

were placed sequentially. This pattern was repeated three times with 32, 64, and 128 feature

maps. The effect of that was having an increasing number of feature maps with smaller and

smaller sizes, given the max pooling layers. Zero padding approach was applied in the

Convolutional layers, since it tries to pad evenly left and right when needed; if the amount of

columns to be added is odd, it will add extra column to the right, and the same logic applies

vertically where there may be an extra row of zeros at the bottom. Finally, additional and large

Dense layers were planted at the output end of the network in an attempt to better translate the

Layer

type/number

Kernel/Neurons Activation

function

Channels Output size Parameters

Convolution 1 3x3 ReLU 32 32x32 896

Dropout 1 (20%) 32 32x32 0

Convolution 2 3x3 ReLU 32 32x32 9248

Max-pooling 1 2x2 32 16x16 0

Convolution 3 3x3 ReLU 64 16x16 18496

Dropout 2 (20%) 64 16x16 0

Convolution 4 3x3 ReLU 64 16x16 36928

Max-pooling 2 2x2 64 8x8 0

Convolution 5 3x3 ReLU 128 8x8 73856

Dropout 3 (20%) 128 8x8 0

Convolution 6 3x3 ReLU 128 8x8 147584

Max-pooling 3 2x2 128 4x4 0

Flatten 2048 0

Dropout 4 (20%) 2048 0

Fully-connected 1 1024 ReLU 2098176

Dropout 5 (20%) 1024 0

Fully-connected 2 512 ReLU 524800

Dropout 6 (20%) 512 0

Fully-connected 3 10 softmax 5130

Table 4.2: Summary of proposed CNN architecture of the model trained on 32x32 colored images.

22

large number of feature maps to class values. A summary of the established deep network

architecture is shown in Table 4.2.

4.3 TRAINING

The discussed model was trained using a logarithmic loss function with stochastic gradient

descent optimization algorithm configured with a large momentum and weight decay that

started with a learning rate of 0.01. It was fitted with 50 epochs and a large batch size of 64,

found through some minor experimentation. Normally, the number of epochs would be one or

two orders of magnitude larger for this problem. Each epoch took an average computational

time of 145 seconds, causing the entire training phase to finish in approximately 2 hours. These

epochs acted like smaller training sessions that ran over all of the data given in training set.

During that run, filter values (or weights) were adjusted through a process called

backpropagation. It was the part where weights of the layers were correctly tuned with respect

to the loss function while carrying out forward and backward passes. The ultimate goal was to

achieve a set of parameters which have a certain ability to generalize toward new data. And that

ability was reflected by the validation accuracy, which we shall find out in Chapter 5.

Running my proposed model delivered classification accuracy and loss function values

on the training dataset through each epoch, where the best achieved classification accuracy

without image data augmentation was 95.87% along with a loss function value of 0.1146.

However, a light augmentation resulted into having classification accuracy up to 75.13%

followed by a loss function value of 0.7016. This training process was performed on a personal

computer featuring a dual-core Intel Core i3-5010U CPU at 2.1 GHz, 4GB system memory,

powered by a NVIDIA GeForce 920M GPU at 954 MHz. The learning model was developed in

23

Keras, a Python library for deep learning, using Theano backend and trained over GPU, utilizing

cuDNN library and keeping CNMeM enabled with initial size - 60% of memory.

24

5
Results

his section reports the best accuracy achieved by the proposed model for the VOR

task and provides an analysis as well as highlights a list of top recognition rates

achieved by professional researchers, followed by a discussion showing some scope

for improvement.

5.1 TESTING

The trained model built in accordance to specified configuration, as described in previous

section, was tested on the validation dataset to estimate its ability to generalize toward new

data, because the validation set contains only data that the model has never seen before and

therefore cannot just memorize. Although the model initially achieved a classification accuracy

of 81.46% along with a loss function value of 0.7199, data augmentation pushed the classification

to reach a baseline accuracy of 77.56% followed by a loss function value of 0.6297. That means,

the estimate of classification accuracy for the latter model is slightly below 4 points worse than

the previous model.

5.2 ANALYSIS

Taking a closer look at the difference between the classification accuracy and loss function

values obtained from training and validation datasets before and after performing image data

T

25

augmentation, would tell us that there was bit of an overfitting situation at the former stage.

Even though the training data accuracy before augmentation kept improving up to 95.87% while

maintaining a loss function value as low as 0.1166, validation data accuracy had gotten lot worse

and fell down to 81.46% while loss function reached a surprisingly high value of 0.7099, i.e. the

model started to basically just memorize the data. But the second approach, one performed with

augmentation of data, controlled overfitting. Training data accuracy after augmentation turned

out to be 75.13% while maintaining a loss function value of 0.7016, but validation data accuracy

reached 77.56% while loss function value went lower to 0.6297. Even though the accuracy

obtained from original dataset came out to be slightly higher than that from augmented dataset,

the latter possessed a greater potential of achieving even higher classification accuracy given a

few more rounds of training, while keeping overfitting to a minimum at the same time.

Figure 5.2: Classification accuracy obtained using original and augmented datasets.

26

 Despite achieving good results on this very difficult problem, I am still a few miles away

from beating the world’s top-notch records. Details [14] of classification performance achieved

by some state of the art methods on the CIFAR-10 dataset, is given in Table 5.2.

Test

accuracy

Method Venue Used data

augmentation?

96.53% Fractional Max-Pooling arXiv 2015 Yes

95.59% Striving for Simplicity: The All Convolutional Net ICLR 2015 Yes

94.16% All you need is a good init ICLR 2016 Yes

93.45% Fast and Accurate Deep Network Learning by

Exponential Linear Units

arXiv 2015 No

92.40% Training Very Deep Networks NIPS 2015 No

91.73% BinaryConnect: Training Deep Neural Networks

with binary weights during propagations

NIPS 2015 No

90.50% Practical Bayesian Optimization of Machine

Learning Algorithms

NIPS 2012 Yes

86.70%

An Analysis of Unsupervised Pre-training in

Light of Recent Advances

ICLR 2015 Yes

82.18% Convolutional Kernel Networks arXiv 2014 No

78.67% PCANet: A Simple Deep Learning Baseline for

Image Classification?

arXiv 2014 No

Table 5.2: Details of classification performance on CIFAR-10 by state of the art methods.

There are a lot of decisions to make when designing and configuring a deep learning

model such as the one which I have proposed. Most of these decisions must be resolved

empirically through trial and error, and evaluating the model on problem data. As such, it is

critically important to have a robust way to evaluate the performance of the deep neural

networks. Below are a few ways [12] that could have been followed to elevate the proposed

model’s performance:

I Train for more epochs: Current model was trained for a very small number of epochs,

100 to be exact. It is common to train large convolutional neural networks for few hundreds or

27

thousands of epochs to obtain desired results. State of the art performance can be achieved by

significantly raising the number of training epochs.

II Further data augmentation: Although augmentation strategies like random shifts, flips

and small rotations in training image data were implemented, methods such as feature

standardization, ZCA whitening and higher random rotations are yet to be tried out.

III Deeper network topology: The network presented in this research was large and deep,

but even larger and deeper networks could have been designed for the problem. This may

involve more feature maps closer to the input and perhaps less aggressive pooling. Additionally,

standard convolutional network topologies that have been shown useful in world class

implementations, might have been adopted and evaluated on the problem.

28

6
Conclusion

ecognition of visual objects is an important, yet challenging vision task. However,

it is still an open problem due to the complexity of object classes as well as

limitation of computational resources. Using the concept of deep learning, I have

demonstrated how a highly accurate VOR pipeline, built upon a deep CNN module, can be

expected to be used in near real-time for commercial deployment with minimal hardware

requirements. The results yield a solid evidence that the proposed model bears strong potential

to be superior in terms of minimal memory storage, computational complexity and recognition

performance compared to the existing CNN models for low-end devices. Through applying fine-

tuning and data augmentation strategies, a variant of the initially proposed model achieved an

error rate that came out to be as low as 18.54%.

6.1 FUTURE WORK

Future work will further investigate optimization for some of the current implementation

issues, which would require tweaking with the network hyperparameters with a goal to achieve

an even higher accuracy for object classification while maintaining a decent level of

computational complexity and recognition performance at the same time. Despite the current

work using a GPU implementation and offering favorable outcomes using minimal resources on

a personal computer, computational time and memory requirement are yet to be checked

R

29

through a mobile GPU implementation. Ongoing research also includes the extension of the

proposed model for VOR on mobile devices from RGB-D images, as depth sensors will be

embedded in the next generation of mobile devices.

30

Bibliography

[1] Foundation, W. (2016, November 12). Outline of object recognition. Retrieved March 31, 2017,

from Wikipedia: https://en.wikipedia.org/wiki/Outline_of_object_recognition

[2] Gauthier, I., & Tarr, M. J. (2016). Visual Object Recognition: Do We (Finally) Know More

Now Than We Did?. Annual Review of Vision Science, 2, 377-396.

[3] Rouse, M. (2015, February 28). What is object recognition?. Retrieved March 31, 2017, from Wha-

tIs.com: http://whatis.techtarget.com/definition/object-recognition

[4] Tobias, L., Ducournau, A., Rosseau, F., Fablet, R., & Mercier, G. (2016). Convolutional Neur-

al Networks for Object Recognition on Mobile Devices: a Case Study. International Conference

on Pattern Recognition (pp. 2-7). Cancun: ResearchGate.

[5] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International j-

ournal of computer vision, 60(2), 91-110.

[6] Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004, May). Visual categorizati-

on with bags of keypoints. In Workshop on statistical learning in computer vision, ECCV (Vol. 1, No.

1-22, pp. 1-2).

[7] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep con-

volutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).

[8] Perronnin, F., Sánchez, J., & Mensink, T. (2010). Improving the fisher kernel for large-scale

image classification. Computer Vision–ECCV 2010, 143-156.

[9] Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the d-

etails: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531.

31

[10] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015).

Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pa-

ttern Recognition (pp. 1-9).

[11] Deshpande, A. (2016, July 20). A Beginner's Guide To Understanding Convolutional Neural Networks.

Retrieved March 31, 2017, from adeshpande3.github.io: https://adeshpande3.github.io/ades-

hpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networ-

ks

[12] Brownlee, J. (2016, July 1). Object Recognition with Convolutional Neural Networks in the Keras Deep

Learning Library. Retrieved March 31, 2017, from Machine Learning Mastery: http://machinel-

earn-ingmastery.com/object-recognition-convolutional-neural-networks-keras-deep-

learning-library

[13] Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.

[14] Benenson, R. (2016, February 22). Classification datasets results. Retrieved March 31, 2017, from

rodrigob.github.io: http://rodrigob.github.io/are_we_there_yet/build/classification_datasets-

_results.html

