

Email Classification and Meeting Scheduling
Using Classifier Algorithm

By

Behroz Newaz Khan – 12101023

Sk Golam Saroar – 13101251
Md. Mosfaiul Alam – 13101047

Sebastian Romy Gomes – 13101058

Supervisor

Dr. Amitabha Chakrabarty

Co-Supervisor
Mr. Moin Mostakim

Department of Computer Science and Engineering

BRAC University

Thesis report submitted to BRAC University in accordance with the requirements for the degree
of Bachelor of Science in Computer Science & Engineering

Submitted in April 2017

i

Declaration

e, hereby declare that this thesis is based on the results found by ourselves. Materials
of work found by other researchers are mentioned by reference. This thesis, neither in
whole or in part, has been previously submitted for any degree.

Signature of the Supervisor Signature of Author

____________________ _____________________
Dr. Amitabha Chakrabarty Sebastian Romy Gomes

Signature of the Co-Supervisor Signature of Author

____________________ ______________________
Mr Moin Mostakim Sk Golam Saroar

 Signature of Author

 Behroz Newaz Khan

 Signature of Author

 Mosfaiul Alam Telot

W

ii

Acknowledgement

ur heartfelt gratitude to our thesis supervisor Dr. Amitabha Chakrabarty and to our co-
supervisor Mr. Moin Mostakim for their generous guidance and continuous support
throughout our work. Without their help and assistance, we wouldn’t be able to finish

our research successfully.

We are extremely thankful to our parents, family members and friends for their support and
encouragement. The journey would be much harder if they weren’t present for us in every moment
whenever we needed them.

We would also like to take this opportunity to thank Mr. Touhid Hossain, Mr. Kazi Rezaul Karim
– our Lab Technical Officers and Mr. Abdul Karim, Office Assistant who made sure we got all
the technical support we needed.

Finally we thank BRAC University for giving us the opportunity to use their resources and
complete our thesis in the university.

iii

Abstract

his research investigates a comparison between two different approaches for classifying
emails based on their categories. Naive Bayes and Hidden Markov Model (HMM), two
different machine learning algorithms, both have been used for detecting whether an

email is important or spam. Naive Bayes Classifier is based on conditional probabilities. It is fast
and works great with small dataset. It considers independent words as a feature. HMM is a
generative, probabilistic model that provides us with distribution over the sequences of
observations. HMMs can handle inputs of variable length and help programs come to the most
likely decision, based on both previous decisions and current data. Various combinations of NLP
techniques- stopwords removing, stemming, lemmatizing have been tried on both the algorithms
to inspect the differences in accuracy as well as to find the best method among them. Along with
classifying emails, this paper also describes the methodologies used for automatic meeting
scheduling by an intelligent email assistant. Users who regularly send or receive messages for
setting up meetings will be greatly benefitted by this system as it will classify their emails and
schedule their meetings automatically.

iv

Table of Contents

List of Tables ... vi
List of Figures ... vii
List of Abbreviations ... ix
1. Introduction ... 1

1.1 Research Goals ... 2
1.2 Motivation .. 3
1.3 Methodology .. 4
1.4 Outline .. 4

2. Literature Review.. 5
3. Terminologies ... 10

3.1 Natural Language Processing Tools:.. 10
3.1.1 NLTK Toolkit: .. 11
3.1.2 Stemming .. 11
3.1.3 Lemmatizing ... 11
3.1.4 Stop Words: .. 12
3.1.5 Chunking and Chinking: ... 12

3.2 Scikit-learn: .. 12
3.3 Classification: ... 13
3.4 Naive Bayes Classification... 13

3.4.1 How Naive Bayes algorithm works? .. 14
3.4.2 Spam filtering.. 16

3.5 Hidden Markov Model (HMM) ... 18
3.6 Dataset .. 21

3.6.1 Pre-classified Data .. 21
3.6.2 Real-time Emails ... 21
3.6.3 Google Calendar API .. 21

3.7 System Setup .. 22

v

3.7.1 Hardware Specification ... 22
3.7.2 Software Specification .. 24

4. System Implementation .. 25
4.1 Email Classification .. 25

4.1.1 Naive Bayes Classifier .. 26
4.1.2 HMM... 29

4.2 Meeting Scheduling.. 32
5. Experiments and Result Analysis ... 36

5.1 Classification .. 36
5.1.1 Classification Analysis ... 37

5.1.1.1 Experiment with Naive Bayes ... 38
5.1.1.2 Experiment with Hidden Markov Model ... 48

5.1.2 Comparison Analysis .. 58
5.2 Scheduler ... 60

6. Conclusion .. 64
6.1 Difficulties .. 64
6.2 Future Plan ... 65
6.3 Conclusion .. 66

Appendix A ... 67
A.1 Machine Learning... 67

A.1.1 Supervised.. 68
A.1.2 Unsupervised ... 68
A.1.3 Semi-Supervised .. 69

A.2 Bayesian Classification .. 69
Bibliography ... 71

vi

List of Tables
Table 3.1: CPU Specification ... 23
Table 3.2: RAM .. 23
Table 3.3: GPU Specification ... 23
Table 3.4: Software Requirements .. 24
Table 3.5: Operating System Details .. 24
Table 4.1: Hidden Markov Model (word_features) .. 29
Table 5.1: Evaluation on Test Set (Naive Bayes in Different Processes) 39
Table 5.2: Precision, Recall and F-Measure of Test Set (Naive Bayes in Different Processes) .. 44
Table 5.3: Evaluation on Test Set (Hidden Markov Model in Different Processes) 49
Table 5.4: Precision, Recall and F-Measure of Test Set (HMM in Different Processes) 54
Table 5.5: Accuracy Comparison between Naive Bayes and HMM Algorithm. 58

vii

List of Figures

Fig 2.1: Implementation Diagram ... 7
Fig 2.2: Workflow of a Supervised Machine Learning ... 7
Fig 2.3: Workflow Model of Spam Detection ... 8
Fig 2.4: Classification of Filters ... 9
Fig 2.5: Transition Probability ... 9
Fig 3.1: Naive Bayes Example .. 15
Fig 3.1: Trellis Diagram .. 19
Fig 4.1: Most informative features (Naive Bayes).. 27
Fig 4.2: Work Flow ... 35
Fig 5.1: Accuracy Comparisons (Naive Bayes) .. 40
Fig 5.2: Results using Basic approach on Naive Bayes .. 41
Fig 5.3: Results using Stop Words on Naive Bayes ... 41
Fig 5.4: Results using Stemming on Naive Bayes .. 42
Fig 5.5: Results using Lemmatizing on Naive Bayes ... 42
Fig 5.6: Results using Stop Words and Stemming on Naive Bayes ... 42
Fig 5.7: Results using Stop Words and Lemmatizing on Naive Bayes .. 42
Fig 5.8: Results using Stop Words and Lemmatizing & Stemming on Naive Bayes 43
Fig 5.9: Results using Stop Words, Lemmatizing & Stemming on Naive Bayes 43
Fig 5.10: Pos-Precision Comparisons (Naive Bayes) ... 45
Fig 5.11: Pos-Recall Comparisons (Naive Bayes) .. 45
Fig 5.12: Pos-F-Measure Comparisons (Naive Bayes)... 46
Fig 5.13: Neg-Precision Comparisons (Naive Bayes) .. 46
Fig 5.14: Neg-Recall Comparisons (Naive Bayes) ... 47
Fig 5.15: Neg-F-Measure Comparisons (Naive Bayes) .. 47

viii

Fig 5.16: Accuracy Comparisons (Hidden Markov Model) ... 51
Fig 5.17: Results using Basic approach on HMM .. 51
Fig 5.18: Results using Stop Words on HMM .. 51
Fig 5.19: Results using Stemming on HMM .. 52
Fig 5.20: Results using Lemmatizing on HMM ... 52
Fig 5.21: Results using Stop Words and Stemming on HMM ... 52
Fig 5.22: Results using Stop Words and Lemmatizing on HMM... 52
Fig 5.23: Results using Stop Words and Lemmatizing & Stemming on HMM 53
Fig 5.24: Results using Stop Words, Lemmatizing & Stemming on HMM 53
Fig 5.25: Pos-Precision Comparisons (HMM) ... 55
Fig 5.26: Pos-Recall Comparisons (HMM) .. 55
Fig 5.27: Pos-F-Measure Comparisons (HMM) ... 56
Fig 5.28: Neg-Precision Comparisons (HMM) .. 56
Fig 5.29: Neg-Recall Comparisons (HMM) ... 57
Fig 5.30: Neg-F-Measure Comparisons (HMM) .. 57
Fig 5.31: Accuracy Comparison between Naive Bayes and HMM Algorithm 59
Fig 5.32: Accuracy Comparison between Naive Bayes and HMM Algorithm 60
Fig 5.33: Step 1a ... 61
Fig 5.34: Step 2a ... 61
Fig 5.34: Step 3a ... 61
Fig 5.34: Step 4a ... 62
Fig 5.35: Step 1b ... 62
Fig 5.36: Step 2b ... 63
Fig 5.37: Step 3b ... 63
Fig 5.38: Step 4b ... 63

ix

List of Abbreviations

HMM – Hidden Markov Model
POS – Parts of Speech
NLP – Natural Language Processing
CRF – Conditional Random Field
NLTK – Natural Language Toolkit
TP – True Positive
FN – False Negative
TN – True Negative
FP -- False Positive
API -- Application Program Interface
SSL – Secure Sockets Layer
IMAP – Internet Message Access Protocol
PEM -- Privacy-enhanced Electronic Mail

1

Introduction

mail is one of the most important means of communication in today’s world. It creates a
fast, reliable form of communication that is free and easily accessible. It is not
characterized by the inconveniences that are generally associated with traditional

communication media, such as telephone or postal mail. For these reasons, email usage has
increased substantially around the world. In 2015, the number of emails sent and received per day
totaled over 205 billion. This figure is expected to grow at an average annual rate of 3% over the
next four years, reaching over 246 billion by the end of 20191. With increasing use of email,
maintaining all these emails has become very essential. A lot of these emails are spam emails. As
of December 2016, spam messages accounted for 61.66 percent of email traffic worldwide2.
Kaspersky Lab figures show that spam email messages containing malicious attachments –
malware, ransom ware, malicious macros, and JavaScript – started to increase in December 2015.
That rise has continued, and in March 2016 malicious spam email volume had risen to four times
the level seen in 2015. In March, 2016, Kaspersky Lab detected 22,890,956 malicious spam
emails. Spam email volume as a whole increased over the quarter, rising to an average of 56.92%

1 http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
2 https://www.statista.com/statistics/420391/spam-email-traffic-share/

2

for the first three months of 20162. Spam emails are commercial in nature but may also contain
disguised links that appear to be for familiar websites but in fact lead to phishing3 web sites or
sites that are hosting malware. Spam email may also include malware as scripts or other executable
file attachments. Therefore, filtering these spam emails has become a crying need for email users
around the globe. Most email service providers like Gmail, Yahoo come with spam filter but there
are many startups who want to have their own mail servers. They are less likely to have spam filter
in those servers. In this report, we have described the methodologies that can be used to classify
emails into different categories like important and spam. Also, email use continues to see strong
use in the business world, as well as among consumers. A lot of appointments are scheduled over
email messages every day. We have to spend our valuable time dealing with the back and forth to
get these meetings scheduled. In this paper, we have also demonstrated how an AI powered email
assistant can be built to automatically schedule our meetings.

1.1 Research Goals

The goal of our research is to classify email messages and detect whether an email is
important or spam using different machine learning4 algorithms and to schedule meetings
automatically if there is a request for meeting in the email. Firstly, our system will categorize the
emails into appropriate classes. Then, it will search among the important emails to check if any of
those emails are meeting requests. If it identifies an email where a meeting is requested, it will
analyze the email to retrieve the date and time for that meeting and will intelligently act to set up
the meeting. Classification will be done by observing texts of the email body. In this research, we
consider relative words or sentences as feature to classify email messages. We will try to find out
the method that gives most accurate classification. There are many machine learning algorithms.
Naive Bayes and HMM are two among them. We will use Naive Bayes as it considers independent
words as a feature. On the other hand, HMM is a probabilistic graphical model. We will use this

3 phishing websites: A website that tries to steal your account password or other confidential information by tricking you into believing you're on
a legitimate website
4 See Appendix A.1

3

model because it denotes the conditional dependency between random variables. The difference
in nature between these algorithms makes it interesting to compare them. In our research, we will
collect dataset, pre-process them, create models, estimate parameters and evaluate accuracy,
precision, recall, f-metrics for both the algorithms. We will use stemming, lemmatizing, removal
of stopwords in various combinations with the algorithms to analyze which algorithm on what
combination gives us the best result. We will use the better algorithm for email classification.

1.2 Motivation

As a research group, we wanted to do our undergraduate thesis on a research that will assist
a large section of people on a daily basis. Email classification and automatic meeting scheduling
is a necessity that can save a significant amount of our time every day so that we can focus on
more important tasks. All free email services that we use today offer various types of classification.
Various algorithms also vary in performance. The approach that we chose deals with Naive Bayes
and HMM. Naive Bayes Classifier is based on conditional probabilities. It is fast and works great
with small dataset. Bayesian methods can do inference5 in all kinds of cases where no other method
can help. When creating an engineered system, you build a model of the world and then find a
good controller in that model. Bayesian methods interpolate to this extreme. The reasons behind
choosing HMM is it is a generative, probabilistic model that can handle inputs of variable length.
It provides us with distribution over the sequences of observations. HMMs are probability models
that help programs come to the most likely decision, based on both previous decisions (like
previously recognized words in a sentence) and current data. When we compared these two
algorithms- HMM outperformed Naive Bayes and thus encouraged us to choose this algorithm for
classifying. We also thought email clients who get huge number of emails containing meeting
request need an intelligent email agent who will not only classify their emails accurately but also
find the emails with meeting request, extract relevant information and set up the meeting or
continue conversation if client’s current schedule clashes with meeting time. This is why we
worked on the meeting scheduling algorithm as an extension of classifying emails.

5 Inference: A conclusion reached on the basis of evidence and reasoning

4

1.3 Methodology

Whenever our email assistant receives a new email, our classifier algorithm is run on that
email. For classifying an email into categories like spam and important, we used machine learning
algorithm. We conducted a comparison between Naive Bayes and HMM and found out that HMM
gives better result. We later experimented with eight different variants of text processing to
increase accuracy where stemming [13] words proved to be the best method. After text processing,
only the essential words from that email are left to be compared with our pre-classified knowledge
set. HMM algorithm is run and the email is classified into appropriate category. If the category is
‘important’, then it is a potential candidate for being a meeting related email. Each word of the
email is then carefully tagged with proper pos-tag and regular expression is used to pick the
sentences that contains relevant information about a meeting scheduling [14]. We have removed
stopwords and used chunking to analyze regexp syntax and pull out information like time and
location of the meeting. The system fetches user’s calendar events using Google calendar API and
checks if he has any free slot available on that particular time. [15] After setting the event, the
system sends a confirmation email to the user.

1.4 Outline

Chapter 2, describes the background research and basic review about the topic.
Chapter 3, describes the terminology about what classification is. It also describes the NLTK
toolkit, stemming, lemmatizing, stopwords and chunking. Sheds light on the algorithms, dataset,
and system setup used in this research.
Chapter 4, describes the methodologies.
Chapter 5, demonstrates the analysis and result.
Chapter 6, describes limitations and future scope of the research along with conclusion.

5

Literature Review

mail classification can be applied to several different applications, including filtering
messages based on priority, assigning messages to user-created folders, or identifying
spam. We will focus on distinguishing important emails from spam emails. One major

consideration in the categorization is that of how to represent the messages. Specifically, one must
decide which features to use, and how to apply those features to the categorization. M. Aery et al.
[1] gave an approach which is based on the premise that patterns can be extracted from a pre-
classified email folder and the same can be used effectively for classifying incoming emails. Since
emails exhibit a structure in the form of headers and the message body, the relationships between
various terms (e.g., the occurrence of a term in the subject or body of the message) can be
represented in the form of a graph. They have chosen graph mining as a viable technique for pattern
extraction and classification. R. Islam et al. [2] gave an approach which proposed a multi-stage
classification technique using different popular learning algorithms with an analyzer which
reduces the FP6 problems substantially and increases classification accuracy compared to similar
existing techniques. X. Wang et al. gave an approach [3] which reviews recent approaches to filter

6 FP (False Positive) is the proportion of negative cases that were incorrectly classified as positive, as calculated using the equation: FP =
b/(a+b).

6

out spam email, to categorize email into a hierarchy of folders, and to automatically determine the
tasks required in response to an email. B. Klimt et al [4] gave an approach that introduced Enron
corpus as a new dataset for this domain. V. Bhat et al. [5] gave an approach which derives spam
filter called Beaks. They classify emails into spam and non-spam. Their pre-processing technique
is designed to identify tag-of-spam words relevant to the dataset.
There are two main methods for detecting spam email that are widely used. One is sender based
spam detection and the other method is content based spam detection which will consider only the
content of an email. The distinction between sender based spam detection and content based spam
detection is the options that are used for classification. In sender based detection, the email sender
information such as the writing style and the email sender user name is used as the major features
E.Yitagesu1 et al [6]. In content based detection, terms extracted from the emails are the major
features. The research paper written by S.Teli [7] showed us a 3 phased system that they engineered
for their way of spam detection. In the first phase the user creates the rule for classification. Rules
are nothing, but the keywords/phrases that occur in mails for respective legitimate or spam mails.
The second phase can be called as training phase. Here the classifier will be trained using a spam
and legitimate emails manually by the user. Then with the help of algorithm the keywords are
extracted from classified mails. When the first and second phases are completed, classifying the
emails by given algorithm starts, using this knowledge of tokens, the filter classifies every new
incoming email. Here the probability of maximum keyword match is calculated and the status of
a new email is confirmed as spam or important email (Figure 2.1).

When we researched about choosing a supervised machine learning algorithm we also encountered
some issues that comes with supervised learning. The figure 2.2 explains about how a traditional
supervised model works.

The first step is collecting the dataset. If a requisite expert is available, then s/he could suggest
which fields (attributes, features) are the most informative. If not, then the simplest method is that
of “brute-force,” which means measuring everything available in the hope that the right
(informative, relevant) features can be isolated. However, a dataset collected by the “brute-force”
method is not directly suitable for induction. It contains in most cases noise and missing feature

7

Fig 2.1: Implementation Diagram [7]

Fig 2.2: Workflow of a Supervised Machine Learning [8]

8

values, and therefore requires significant pre-processing S. B. Kotsiantis [8]

Jaswal, V. et al [9] worked on a spam detection system that uses detect spam words. They rely on
filtering methods to detect stemming words of spam images and then use HMM of spam filters to
detect all the spam images. They showed a methodology of spam detection in 4 steps,
Step 1 - to design a spam detection system.
Step 2 - to select a spam file either it is text file or it is excel file.
Step 3 - to select the file on the basis of spam detection.
Step 4 - filter stemming words only from spam detection

Fig 2.3: Workflow Model of Spam Detection [9]

Another work by Carpinter, J. et al [10] showed an approach in which their primarily focuses were
on automated, non-interactive filters, with a broad review ranging from commercial
implementations to ideas confined to current research papers. Both machine learning and non-
machine learning based filters are reviewed as potential solutions and a taxonomy7 of known

7 taxonomy: a scheme of classification

9

approaches presented. They showed various approaches to spam filtering,

Fig 2.4: Classification of Filters [10]

Another study has been done by Kidmose, E. [11] where HMM was used to combined to estimate
the life-cycle state of hosts, only relying on data observable in the network. We got some idea of
transition probability from this paper. It shows for any state at any time the probability of arriving
there only depends on the state distribution probability for the previous observation and the static
transition probabilities.

Fig 2.5: Transition Probability [11]

10

Terminologies

o accomplish our desired result we had to use various kinds of algorithms, toolkits,
libraries, datasets and classification methods. We have explained about all of these things
under this chapter. Several NLTK toolkits were used for tokenizing and string

manipulation. Powerful libraries such as stop words, lemmatization, stemming, POS tagging,
chunking and chinking were used for fine tuning our working data. Vast online resources of NLTK
toolkits made NLP very comfortable to us. Scikit-learn package for python is also described. This
open source package with efficient tools- machine learning and data analysis helped us to
implement HMM. The two algorithms that we used for our classification are discussed. The last
segment of this chapter is dataset. As we used supervised learning method in our research we had
to look for pre classified email dataset and we also analyzed real time email data for scheduling.

3.1 Natural Language Processing Tools

These tools below were mainly used for working with text type data. Most of these toolkits

or libraries were used within python environment as they provide powerful online resources.

11

3.1.1 NLTK Toolkit

 NLTK is one of the dominant platforms for creating Python programs that deals with word
processing, tagging and string manipulations. It gives access to more than 50 corpora and lexical
resources. There are also various text processing libraries for classification, tokenization,
stemming, tagging, parsing, semantic reasoning and wrappers for industrial-strength NLP libraries.
NLTK is intended to support research and teaching in Natural Language or closely related areas.

3.1.2 Stemming

 Stemming is the technique of decreasing deviating or derived words to their base form. For
grammatical reasons, documents are going to use different forms of a word, such as meet, meets,
and meeting. In many situations, it is useful for a search for one of these words to return documents
that contain another word in the set. Using stemming on the above strings, we will get meet as the
base form. Stemming chops off the ends of words. Algorithms for stemming have been studied in
computer science since the 1960s. The most common and effective algorithm for stemming
English is Porter's algorithm. We have imported Porter Stemmer [12] from NLTK for stemming
purpose.

3.1.3 Lemmatizing

 Lemmatization is the process of converting the words of a sentence to its dictionary form.
For example, given the words amusement, amusing, and amused, the lemma for each and all would
be amuse. This aims to remove inflectional endings and to return base or dictionary form of a
word. This process involves linguistic approach, such as morphological analysis through regular
relations compiled in finite-state transducers. Importance of lemmatization is very high in this
project. As to find out the exact meaning of a mail depends on the words. Those words are checked
with some previous stored words to find whether it matches to a certain label. In this project the
word “meeting” was one of those most checked words. Now this “Meeting” can come up with the
same meaning by different form like “meet”, “met”, “meets”. But if we directly check all these

12

word with one word “meeting” it will not get matched. So, to make a list of multiple words for
only one meaning doesn’t come up with efficiency. Thus the necessity of the lemmatization comes
in.

3.1.4 Stop Words

 Stop words is a set of commonly used words in any language which are excluded out before
or after processing of natural language data which, in our case, is text. The main reason why stop
words are essential to any program is that, when we remove the words that are very commonly
used in a given language, we can focus on the important words instead. For removing stop words
from a document of our program we searched them in NLTK toolkit’s given list and the result we
got was very accurate.

3.1.5 Chunking and Chinking

Chunking is an analysis of a sentence or phrase which first identifies constituent parts of
sentences and then links them to higher order units that have discrete grammatical meanings (noun
groups or phrases, verb groups, etc.). Some fundamental chunking algorithms simply join
constituent unit on the basis of search patterns. On the other hand approaches that use machine
learning techniques (classifiers, topic modeling, etc.) can analyze contextual information and thus
create chunks in a way that they show the semantic relations between the basic constituents.
A Chunk Rule specifies what to include in a chunk, while a Chink Rule specifies what to exclude
from a chunk. In other words, chunking creates chunks, while chinking breaks up those chunks. In
our Scheduling algorithm we used elementary or fundamental chunking method.

3.2 Scikit-learn

 Scikit-learn is an open source package of efficient tools for data mining, machine learning
and data analysis. It’s a Python module that integrates a wide range of state-of-the-art machine

13

learning algorithms for medium-scale supervised and unsupervised problems. The Scikit-learn
package emphasizes to bring machine learning to non-experts by using a general-purpose high-
level language. Focuses on putting on ease of use, performance, documentation, and API
consistency [19]. It is built on NumPy, SciPy and matplotlib. The Scikit-learn python module made
it comfortable to implement the machine learning techniques and evaluate the findings and results
of our experiments that was coded in Python programming language. We used Scikit-learn version
0.16.1 [21] to implement the HMM algorithm to fulfill our requirements and run the program
successfully.

 3.3 Classification

 Text Classification issues single or multiple classes to a document according to their
content and context. Classes are chosen from a previously fixed taxonomy (a hierarchy of
categories or classes). Generally a text Classification algorithm requires some tasks (extracting
text, tokenization, stop words removal and lemmatization). Our version of the algorithm combines
statistical document classification with rule-based filtering, which allows to obtain a high degree
of precision in a wide range of environments. Statistical classifiers provide a means to use example
documents to define each category. In turn, rule base classifiers may help to fine-tune the
classification and correct the output of statistical classifiers.

3.4 Naive Bayes Classification

Naive Bayes classifier is a machine learning algorithm. This Bayesian Classification8 is
used as a probabilistic learning method. It is not a single algorithm but a family of algorithms that
all share a common principle, that every feature being classified is independent of the value of any
other feature.

8 See Appendix A.2

14

In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class
is unrelated to the presence of any other feature. For example, a fruit may be considered to be an
apple if it is red, round, and about three inches in diameter. Even if these features depend on each
other or upon the existence of the other features, all of these properties independently contribute
to the probability that this fruit is an apple and that is why it is known as ‘Naive’.

Naive Bayes model is easy to build and particularly useful for very large data sets. Along with
simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods.

Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x) and
P(x|c). [16] Let’s look at the equation below:

(ݔ|ܿ)ܲ = (ܿ)ܲ(ܿ|ݔ)ܲ
(ݔ)ܲ … … … (3.1)

Above,

● P(c|x) is the posterior probability of class (c, target) given predictor (x, attributes).
● P(c) is the prior probability of class.
● P(x|c) is the likelihood which is the probability of predictor given class.
● P(x) is the prior probability of predictor.

3.4.1 How Naive Bayes algorithm works?

Let’s understand it using an example. Below we have a training data set of weather and
corresponding target variable ‘Play’ (suggesting possibilities of playing). Now, we need to classify
whether players will play or not based on weather condition. Let’s follow the below steps to
perform it.

Step 1: Convert the data set into a frequency table

15

Step 2: Create Likelihood table by finding the probabilities like Overcast probability = 0.29 and
probability of playing is 0.64.

Fig 3.1: Naive Bayes Example

Step 3: Now, use Naive Bayesian equation to calculate the posterior probability for each class. The
class with the highest posterior probability is the outcome of prediction. So, if there goes a problem
like Players will play if weather is sunny. Is this statement is correct?

We can solve it using above discussed method of posterior probability.

P(Yes | Sunny) = P(Sunny | Yes) * P(Yes) / P (Sunny) … … … (3.2)

P (Sunny |Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P(Yes)= 9/14 = 0.64
Now, P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60, which has higher probability. Naive Bayes
uses a similar method to predict the probability of different class based on various attributes.
This algorithm is mostly used in text classification and with problems having multiple classes.

Naive Bayes classifiers are among the most successful known algorithms for learning to classify
text documents. That is why we chose to work with this.

16

3.4.2 Spam filtering

An advantage of naive Bayes is that it only requires a small number of training data to
estimate the parameters necessary for classification. We have used 5500 emails from Enron email
dataset. These emails have been stored separately according to their category. We have filtered the
words (ݓଵ, … , ,௡) by removing stopwords and lemmatizing the words. For naive bayes classifierݓ
we take the words (ݓଵ, … , ,ଵݓ)ܲ ௡) of an email and calculate the value ofݓ … , (௡ݓ

,ଵݓ)ܲ … , (௡ݓ = ෑ (௜ݓ)ܲ
௡

௜ୀଵ
 … … … (3.3)

Now, let’s denote an email as a capital letter E, two classes of emails as Important (I) and spam
(S). What we need to know next are the two probabilities P(E|I) and P(E|S) and we have to make
an assumption of conditional independence. The assumption here is that the appearance of a
particular token w is statically independent of the appearance of any other tokens ݓ௝ , ݆ ≠ ݅
given that we have either an important or a spam email. Then we can express P(E|I) and P(E|S)
as:

(ܫ|ܧ)ܲ = ,ଵݓ)ܲ … , (ܫ|௡ݓ
 = ෑ … (ܫ|௜ݓ)ܲ … … (3.4)

௡

௜ୀଵ

And
(ܵ|ܧ)ܲ = ,ଵݓ)ܲ … , (ܵ|௡ݓ

 = ෑ (ܵ|௜ݓ)ܲ
௡

௜ୀଵ
 … … … (3.5)

The reason that we set up a training dataset is to estimate the nature of each word, where
probabilities ܲ(ݓ௜|ܫ) and ܲ(ݓ௜|ܵ) are needed.
They denote the conditional probability that a given email contains the word ݓ௜ under the
assumption that this email is spam or important respectively. We estimate these probabilities by
calculating the frequencies of the words appear in either groups of emails from the training dataset.
In the following formula, ܲ(ݓ௜ ⋂ ܵ) is the probability that a given email is an important email

17

and contains the word ݓ௜ . Thus, by Bayes theorem:

(ܵ|௜ݓ)ܲ = ௜ݓ)ܲ ⋂ ܵ)
ܲ(ܵ) … … … (3.6)

And
(ܫ|௜ݓ)ܲ = ⋂ ௜ݓ)ܲ (ܫ

(ܫ)ܲ … … … (3.7)

The following step is to compute the posterior probability of important email given the overall
probability of the sampling email by Bayes’ rule, this is the crucial part of the entire classification.

(ܧ|ܫ)ܲ = (ܫ)ܲ(ܫ|ܧ)ܲ
(ܧ)ܲ … … … … (3.8)

 = (ܫ)ܲ ∏௡௜ୀଵ (ܫ|௜ݓ)ܲ

(ܧ)ܲ … … … (3.9)

And similarly

(ܧ|ܵ)ܲ = (ܵ)ܲ(ܵ|ܧ)ܲ
(ܧ)ܲ … … … … … … (3.10)

 = ܲ(ܵ) ∏௡௜ୀଵ (ܵ|௜ݓ)ܲ

(ܧ)ܲ … … … (3.11)

Therefore we can classify the email by comparing the probabilities of P(I|E) and P(S|E). Firstly,
we find the ratio of these two probabilities. In the equations below, the denominators P(E) from
(3.8) and (3.10) cancel out each other.

(ܧ/ܵ)ܲ
(ܧ/ܫ)ܲ = (ܵ)ܲ(ܵ|ܧ)ܲ

(ܫ)ܲ(ܫ|ܧ)ܲ … … … (3.12)

= ܲ(ܵ) ∏௡௜ୀଵ (ܵ|௜ݓ)ܲ
(ܫ)ܲ ∏௡௜ୀଵ (ܫ|௜ݓ)ܲ … … … (3.13)

18

= ܲ(ܵ)
ෑ (ܫ)ܲ

௡

௜ୀଵ
(ܵ|௜ݓ)ܲ

(ܫ|௜ݓ)ܲ … … … (3.14)

But there is a problem here, the products in the above equations can be extremely small values if
we have a big amount of words ݓ௜ . To overcome this issue, we apply log to the probability ratio.

݃݋݈ (ܧ|ܵ)ܲ
= (ܧ|ܫ)ܲ log ൭ ܲ(ܵ)

ෑ (ܫ)ܲ
௡

௜ୀଵ
(ܵ|௜ݓ)ܲ

… ൱(ܫ|௜ݓ)ܲ … . … (3.15)

 = ݃݋݈ ܲ(ܵ)
+ (ܫ)ܲ ෍

௡

௜ୀଵ
݃݋݈ (ܵ|௜ݓ)ܲ

(ܫ|௜ݓ)ܲ … … … (3.16)

At this point, we can use equation (3.16) to calculate the log posterior probability when we receive
a new email. If the result is greater than zero (which means P(S|E) > P(I|E)), we classify email E
as spam. Similarly, we classify the email as important if it is less than zero (which means P(S|E)
< P(I|E)).

3.5 Hidden Markov Model (HMM)

HMM is a tool for representing probability distributions over sequence of observations.
The HMM assumes that the observation at time t was generated by some process whose state St is
hidden from the observer. It also assumes that the state of this hidden process satisfies the markov
property, which is, given the value of St-1, the current state St is independent of all the states prior
to t-1. [17] Graphically we can explain it as shown in figure 3.1.

The graph shows the dependencies between the variable of the model. S = {S1, S2, S3,....St} is a
sequence of states, we do not observe S. Y = {Y1,Y2,Y3,...Yt} is a sequence of emissions, we

19

Fig 3.1: Trellis Diagram

observe Y. Y2 is conditionally independent of everything else given S2. S4 is conditionally
independent of everything else given S3. Probability of being in a particular state at step i is known
once we know what state we were in at step i-1. Probability of seeing a particular emission at step
i is known once we know what state we were in at step i. The joint distribution of a sequence of
states and observations can be factored in the following way: [20]

ܲ(ଵܵ:் , ଵܻ:்) = ܲ(ܵଵ)ܲ(ଵܻ|ܵଵ) ෑ
்

௧ୀଶ
ܲ(ܵ௧|ܵ௧ିଵ)ܲ(௧ܻ|ܵ௧) … … … (3.17)

To describe HMM even further, we will use an example that is easy to understand. Let’s say father
brings 3 types of snacks at home: hotchpotch, noodles, and ice-cream. And let us suppose that each
day of the week may be classified as either of the following: rainy, cold, or hot. But we have no
way of ascertaining what sort of day it is.

We want to develop a model that predicts which snacks father is going to bring home on a
particular day, if we know the sequence of snacks that he has been bringing home for the past
month. The observations (father’s snacks) are dependent on some process which is hidden from
our view (the weather).

We assume that each day's weather is dependent on and only on the previous day's weather. This
way the sequence of weather description turns out to be a Markov chain. The probability of today’s
weather, given that we know yesterday's weather forms the 'transition probability' of the Markov
Chain. For example, if yesterday was rainy, the probabilities of today's weather may be 0.5 for

20

rainy, 0.3 for cold and 0.2 for hot. The matrix formed by taking all such probabilities is called the
‘Transition probability matrix’.

Now, we know that father's snacks depends on each day's weather. Like, if it is rainy, father is
more likely to bring home some hotchpotch. Hence the probabilities may be 0.7 for hotchpotch,
0.2 for noodles and 0.1 for ice-cream. We construct a matrix containing all such probabilities for
all weather conditions. This matrix is called the 'Emission probability matrix'.

To fully populate the HMM, we need:
1. Start probabilities – What are the chances of starting in a state? Or in other words – what weather
is it more likely to be today?
In equation (3.17),

ܲ(ܵଵ)ܲ(ଵܻ|ܵଵ) ݅ݐ ݏℎ݁ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌_ݐݎܽݐݏ.

2. Emission probabilities – What are the chances of each observation occurring in a state? What
are the chances of father bringing hotchpotch, noodles or ice-cream on a rainy day?

In equation (3.17),

ܲ(௧ܻ|ܵ௧) ݅ݐ ݏℎ݁ ݁݉݅ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌_݊݋݅ݏݏ
3. State Transition probabilities – How frequently do the states change? What are the chances of
today being rainy, cold or hot given yesterday was rainy?
In equation (3.17),

ܲ(ܵ௧|ܵ௧ିଵ) ݅ݐ ݏℎ݁ ݋݅ݐ݅ݏ݊ܽݎݐ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌_

21

3.6 Dataset

Our dataset contains three types of data they are pre classified (already sorted each

document under their designated title), Real time emails and data from Google calendar entries.
Pre classified data is used in our system to train our learning algorithm and we tested them with
real time incoming emails. This emails were further analyzed with scheduling algorithm matching
them with data from Google calendar event which were fetched by Google calendar API.

3.6.1 Pre-classified Data

We have looked into many online resource for pre-classified email dataset. Then we have
used 5500 emails from Enron Email Dataset. [22] 1500 of them are important emails and we have
stored them in a folder titled “important”. The other 4000 emails are spam emails which we have
stored in a “spam” folder. Spam emails are greater in number because we have noticed that
negative recall increases substantially when we use more spam emails in our dataset.

3.6.2 Real-time Emails

We have used python’s IMAP and http library to log into a gmail account and we fetched
unseen emails for processing. Each email is striped off HTML and words are tokenized and then
pos tagged. Then we have eliminated unwanted words and analyzed for any meeting related info.
For this purpose we prepared some regular expression rules and applied chunking and chinking
techniques to identify if the document is meeting related. After identifying a meeting email we
extracted time and date related information in the basis of pos tagging.

3.6.3 Google Calendar API

Another sort of data we have used in our project is Calendar events and we have used

22

Google Calendar API for this. From Google calendar we have extracted events of a user showing
all of their meetings, schedules and events. This extracted information is used to identify free slots
and occupied slots. After extracting times and dates from emails (which we talked in 4.2) we then
compare those with Google calendar events. If that time is already booked or excluded for any
purpose by the user, no meeting gets fixed. Otherwise a meeting is automatically scheduled.

3.7 System Setup

Hardware and software used in this research played a big role in terms of results. Both
hardware and software specifications have been mentioned here.

3.7.1 Hardware Specification

CPU:
Name AMD FX(tm)-8300
Cores 8
Clock speed (mhz) 3300
Typical TDP 95W
Socket Socket AM3+
Microarchitecture Piledriver
Platform Volan
Processor core Vishera
Core stepping OR-C0
CPUID 600F20

23

Manufacturing process 0.032 micron
Data width 64 bit
Level 1 cache size ? 4 x 64 KB 2-way set associative shared

instruction caches
8 x 16 KB 4-way set associative data caches

Level 2 cache size ? 4 x 2 MB 16-way set associative shared
exclusive caches

Level 3 cache size 8 MB 64-way set associative shared cache
Table 3.1: CPU Specification

Memory:
Physical memory 16GB

Table 3.2: RAM

GPU:
GPU NVIDIA GeForce GT 620

Table 3.3: GPU Specification

24

3.7.2 Software Specification

Name Type Version Architecture
Anaconda Python distributer Anaconda2 4.2.0

Python 2.7.12
32 bit (x86)

Pycharm Text Editor 2016.2.3
Build #PC
162.1967.10.

32 bit (x86)

SciKit Learn Python package 0.16.1 32 bit (x86)
NLTK Natural Language

Toolkit
3.2.1 32 bit (x86)

Table 3.4: Software Requirements

OS:
Name Microsoft Windows 10 Pro
Version 10.0.10586
Build Number 10586
System type 64 bit

Table 3.5: Operating System Details

25

System Implementation

n the previous chapter, even though we have discussed most of the terminologies as well as
the algorithms- Naïve Bayes and HMM, we made a lot of changes to both the algorithms for
them to work accordingly in our system setup. In this chapter, we have talked about those

changes, our own algorithms and demonstrated our working procedure. First, we have described
how we used Naïve Bayes and HMM for email classification. Then, we have mentioned the details
of our meeting scheduling algorithm.

4.1 Email Classification

We stored 1500 important emails and 4000 spam emails into a python dictionary and
named it ‘documents’. Some pre-processing needed to be done before we ran classifier algorithms
on these emails. For every email, we ran some methods on that email until we reached the end of
the dictionary. At first, we imported message_from_string from email module and then we called
get_payload method on it to get rid of the email multipart problem. This method returns the current
payload, which will be a list of Message objects when is_multipart() is True, or a string when

26

is_multipart() is False. We also imported BeautifulSoup from bs4 module and used it to strip
HTML off the email. Then, we got the email texts only. We imported split from re module and
applied the method on email text, which left us with the tokenized words from these 5500 emails.
At this point, we have tried various combinations of NLP techniques- stemming, lemmatizing and
stopwords removing. We looked for a single technique or a combination of these technique that
would give us the best result. We used frequency distributor to order the words based on the
number of times they appear in the pre-classified emails. Two different lists were used to store the
most frequent words from important emails and spam emails. Then we took 2650 words from each
of these lists (to limit the number of features that the classifier needs to process) and shuffled them
into a list called word_features.

4.1.1 Naive Bayes Classifier

The goal is to build a classifier that will automatically tag new emails with appropriate

category labels. We have a list of documents at hand- emails labeled with the appropriate
categories. The first step in creating a classifier is deciding what features of the input are relevant,
and how to encode those features. [18] So, we define a feature extractor for documents so that the
classifier knows which aspects of the data it should pay attention to. We took into account each
email from ‘documents’ and used the set method to remove the duplicate words from those emails.
This makes the checking faster. Now for every word in word_features, if that word existed in a
given email, we associated the word with the category (important or spam) of that email. Thus, we
found words that were labeled as ‘important’ and words labeled as ‘spam’. And these words:label
pairs were used as featureset9 for Naive Bayes Classifier. We realize that there are words in
featureset that are labeled as both important and spam. Now that we've defined our feature
extractor, we can use it to train a classifier to label new emails. We used ninety percent of the
featureset as train_set while the remaining ten percent was used as test_set. To check how reliable
the resulting classifier is, we compute its accuracy on the test_set. And we can use

9 featureset: A dictionary, maps from feature names to their values

27

show_most_informative_features() to find out which features the classifier found to be most
informative.

Apparently in this email dataset, an email that mentions "investment”10 is almost 19.1 times more
likely to be spam than important, while an email that mentions "appointment" is about 6 times
more likely to be important.

Fig 4.1: Most informative features (Naive Bayes)

Therefore, even though most words could be labeled as both important and spam in the early stage,
show_most_informative_features() method gives us a ratio which helps to determine the ultimate
label of any such word. If the ratio is 1, only in that case a word is considered to be both important
and spam.

We also tweaked show_most_informative_features_in_list(classifier, n) method to get a
word:label pair where the most informative features were labeled as important or spam. We
extracted the spam words and stored them in a list called spamwords, similarly we stored the
important words in a list called importantwords.

10 See figure 4.1

28

Then we took into consideration the 200 pre-classified emails we used for testing- 100 important
emails and 100 spam emails. We split the emails into words and checked how many of those words
existed in importantwords and how many of them existed in spamwords. If there were more
importantwords, the email was classified as an important email. If importantwords and
spamwords were equal, we could not determine the email category. Otherwise, the email was
classified as a spam email. Finally, we calculated the accuracy based on the number of important
emails and spam emails that were classified correctly by our algorithm. Then we tried various
combinations of NLP techniques- stopwords removing, stemming, lemmatizing on Naïve Bayes
Classifier to inspect the differences in accuracy as well as to find the best method among them.
The variants were: 1. Basic Naive Bayes, 2. Removing Stopwords, 3.Stemming, 4. Lemmatizing,
5. ‘Removing Stopwords’ and Stemming, 6. ‘Removing Stopwords’ and Lemmatizing, 7.
Lemmatizing and Stemming, 8. ‘Removing Stopwords’, Lemmatizing and Stemming. Among all
these combinations, ‘removing stopwords’ and lemmatizing gave the most accuracy.

29

4.1.2 HMM

The goal is same here- to build a classifier that will automatically tag new emails with
appropriate category labels. We used two states- important and spam. Word_features were used
as observations. We used start_probability {‘important’: 0.5, ‘spam’: 0.5}. Then we created a
matrix and named it y which looks like the following:

word_features spam important
 Meeting 4 20
Discount 18 3
Assignment 2 12
Office 6 23
Coupon 11 0
Offer 13 6
Valid 10 8

Table 4.1: Hidden Markov Model (word_features)

For each word in word features (observations), it counts the number of times that word appears in
important emails and spam emails. We used the following algorithm to populate this matrix:
for each word in observations:

for each email in documents:
 for each word in email:

if the word matches with an observation:
 if the email is spam:
 increment y[word][spam]
 else:
 increment y[word][important]

30

The emission_probability represents how likely a word is to be an important word or a spam word
for each state. For instance, the word ‘discount’ has a 10% chance to appear in an important email
while the same word has a 60% chance to appear in a spam email. We have used the following
algorithm to get the emission matrix:

for each pair in y:

for each element in the pair:
append the first element to emission_probability[spam]
increment spamcount
append the second element to emission_probability[important]
increment importantcount

for each state in emission_probability:

for each observation in the state:
if state is spam:

emission_probability[spam][observation] =
emission_probability[spam][observation]/ spamcount

else:
emission_probability[important][observation] =
emission_probability[important][observation]/ importantcount

The transition_probability represents the change of the state in the underlying Markov chain. For
instance, if a word is spam, transition_probability dictates how likely the next word is going to be
spam as well. We have used the following algorithm:

for each pair in y:
 if y[word][spam] is greater than y[word][important]:
 //first word is spam
 //check for next word
 if y[next word][spam] is higher than y[next word][important]:

31

 //immediate word after spam is also a spam
 increment transition_probability [spam][spam]
 else if y[next word][spam] equals y[next word][important]:

//immediate word after spam has equal chance of being a spam or important word
increment transition_probability[spam][spam]
increment transition_probability[spam][important]

 else:
//immediate word after spam is an important word
increment transition_probability[spam][important]

 else if y[word][spam] is less than y[word][important]:
 //first word is important
 //check for next word
 if y[next word][spam] is greater than y[next word][important]:
 //immediate word after important is a spam

increment transition_probability [important][spam]
 else if y[next word][spam] equals y[next word][important]:
 //immediate word after important has equal chance of being a spam or important word

increment transition_probability[important][spam]
increment transition_probability[important][important]

 else:
 //immediate word after important is an important word

increment transition_probability[important][important]
//check next word

Total Words After Spam is the summation of transition_probability[spam][spam] and
transition_probability[spam][important]. We get the new transition_probability[spam][spam] by
dividing the old transition_probability[spam][spam] by Total Words After Spam. Similarly we get
transition_probability[important][important]

32

We used hmm from sklearn module and set the start_probability, transition_probability and
emission_probability. Then, like in naive Bayes classifier, we took 200 pre-classified emails for
testing- 100 important emails and 100 spam emails. We split the email into words and added those
words as observations and named the list observe. If there were more importantwords, the email
was classified as an important email. If importantwords and spamwords were equal, we could not
determine the email category. Otherwise, the email was classified as a spam email. HMM
algorithm was also run with eight different combinations of NLP techniques like Naive Bayes
algorithm. This time we got a different result. HMM with stemming outperformed all the other
seven variants. After that we compared the best result of Naive Bayes algorithm with the best result
of HMM. Overall HMM was more successful in identifying spam and important emails from the
test dataset. We later chose HMM to be our primary classifier for the system.

 4.2 Meeting Scheduling

After getting a new mail, our meeting scheduling works in 3 basic process.
Step 1: Fetch unseen mail from server
Step 2: Determine whether the mail is important or spam
Step 3: Check if email contains meeting request

if (important)

check if asks for meeting
if (true)

check time and date with calendar
If clashes

no meeting fixed
Else

Meeting fixed

33

Step 1. Fetching Mails from Server

First, our application gets connected over an SSL encrypted socket (to use this it needs a socket
module that was compiled with SSL support). If host is not specified, '' (the local host) is used.
If port is omitted, the standard IMAP4-over-SSL port (993) is used. keyfile and certfile are also
optional - they can contain a PEM formatted private key and certificate chain file for the SSL
connection. It needs imaplib library to get all these things done successfully. [23]

After getting connected successfully our application logs in to the user's account by another library
called getpass. With the name it may seem that it only prompt the user for a password but this
module comes up with two functions, getpass.getpassand getpass.getuser. The user is prompted
using the string prompt with the first one which defaults to 'Password: ' and the second checks the
environment variables LOGNAME, USER, LNAME and USERNAME, in order, and returns the
value of the first one which is set to a non-empty string. If none are set, the login name from the
password database is returned on systems which support the pwd module, otherwise, an exception
is raised.

When gets logged in, it specifically goes to inbox. Then it searches for “unseen” message. If any
new message arrives to inbox it gets automatically set to unseen. We then fetched the email and
save it to a variable named “raw_email”. You can simply guess with the name of the variable that
it stores the raw email in the variable. Therefore we need to exclude those unnecessary information
(widely known as multipart problem) to get the actual data of the email which will be used to
determine whether it is an important or spam.

Therefore we used payload11 to extract the original message. This process gives us only
information of sender, recipient, subject and body. Then it Step 2 is executed.

11 The term 'payload' is used to distinguish between the 'interesting' information in a chunk of data or similar, and
the overhead to support it. This being carried within a packet or other transmission unit. The payload does not
include the "overhead" data required to get the packet to its destination. To a communications layer that needs some

34

Step 2. Determine whether the mail is important or spam
The extracted body then passes through our spam detection algorithm (HMM) to find out if the
mail was spam or important. After detecting the email with respective category, this email is saved
to a folder with same category.

Step 3. Check if email contains a meeting request
For this project we took “meet” as the base word. Therefore, a list is taken to store all the synset12 of
the word “meet”. There are two more lists named dayNN and monthNN storing the names of all
days and months respectively. We then created a regular expression which detects if that email
falls under the meeting category. This expression is

PRP+VB || [meet] + CD

Any word could be chosen other than “meet” based on one’s preference and their needs and that’s
what makes our approach versatile. In our project we have shown one example of classifying
meeting related important emails. Same process can also be applied to determine if the email is
about “Birthday” wishes or “Press Conference”.

of the overhead data to do its job, the payload is sometimes considered to include the part of the overhead data that
this layer handles.

12 A set of one or more synonyms that are interchangeable in some context without changing the truth value of the
proposition in which they are embedded.

35

 .
Fig 4.2: Work Flow

36

Experiments and Result Analysis

n the previous chapter we have discussed about the system implementation of our research.
We have demonstrated how we built our algorithms. Now we are going to talk about the results
we obtained from our experiments upon the implementation of this system. This chapter

describes the experiments in two parts. In the first part, we discuss about the classification results
and analysis. Later we show the output generated by our intelligent email assistant.

5.1 Classification

The Results were found by experimenting on two machine learning algorithms with various
combinations of different approaches and the result analysis are based on their accuracy, precision,
recall and F-measure. [24]

Accuracy is the representation of how many true values are found comparing to all data. But it is
not the only metric for evaluating the effectiveness of a classifier. Two other useful metrics
are precision and recall.
Precision measures the exactness of a classifier. A higher precision means less false positives,
while a lower precision means more false positives. This is often at odds with recall, as an easy
way to improve precision is to decrease recall.

I

37

Recall measures the completeness, or sensitivity, of a classifier. Higher recall means less false
negatives, while lower recall means more false negatives. Improving recall can often decrease
precision because it gets increasingly harder to be precise as the sample space increases.

Accuracy is calculated using the formula, ்௉ା்ே
்௉ା்ேାி௉ାி - - - - - - - - - - - - - (5.1)

Positive Precision is calculated using the formula, ்௉

்௉ାி௉ - - - - - - - - - - - - -(5.2)
Negative Precision is calculated using the formula, ிே

ிேା்ே - - - - - - - - - - - -(5.3)

Positive Recall is calculated using the formula, ்௉

்௉ାிே - - - - - - - - - - - ----(5.4)
Negative Recall is calculated using the formula, ிே

ிேା்௉ - - - - - - - - - - - ----(5.5)

Where TP stands for true positive (actual and test data is accurately classified), TN stands for true
negative (actual and predicted test data both are inaccurately classified), FP stands for false
positive (actual data is inaccurate but predicted test data as accurate) and FN stands for false
negative (actual data is accurate but predicted test data as inaccurate).
F-measure is used to measure an experiment’s accuracy. F-measure can be interpreted as a
weighted average of the precision and recall. F-score reaches best at 1 and worst at 0.

Positive F-measure formula, 2· ୮୭ୱ୧୲୧୴ୣ ௣௥௘௖௜௦௜௢௡ ∗୮୭ୱ୧୲୧୴ୣ ௥௘௖௔௟௟
୮୭ୱ୧୲୧୴ୣ ௣௥௘௖௜௦௜௢௡ା୮୭ୱ୧୲୧୴ୣ ௥௘௖௔௟௟- - - - - - - - - - - ------(5.6)

Negative F-measure formula, 2· ୬ୣ୥ୟ୲୧୴ୣ ௣௥௘௖௜௦௜௢௡ ∗୬ୣ୥ୟ୲୧୴ୣ ௥௘௖௔௟௟
୬ୣ୥ୟ୲୧୴ୣ ௣௥௘௖௜௦௜௢௡ା୬ୣ୥ୟ୲୧୴ୣ ௥௘௖௔௟௟- - - - - - - - - ------(5.7)

5.1.1 Classification Analysis

In total, there are 5500 email samples containing 1500 important mails and 4000 spam
mails for training set and 200 emails containing 100 important mails and 500 spams for test set
were taken for classification analysis.

38

5.1.1.1 Experiment with Naive Bayes

As stated earlier classifying with Naive Bayes algorithm using basic approach along with
various combinations of 3 different processes; Stop Words, Stemming and Lemmatization were
used in this experiment. Table 5.1 describes evaluation on test set using basic approach along with
various combinations of 3 different processes in Naive Bayes algorithm. Figure 5.1 shows the
comparison among different approaches used to classify emails based on Naive Bayes Algorithm.
Figure 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 were taken from output window of PyCharm which
we used to run our code written in python.
In table 5.1, in total 200 emails were experimented as test set where 100 was important email and
100 was spam email. Some instances were classified correctly, some were classified incorrectly
and very few emails remained indeterminate as the possibility of being both important and spam
were 50% in these emails. The indeterminate instances were ignored in this case as they could be
either important or spam. Using basic Naive Bayes approach out of 100 important emails 68
instances were classified correctly, 23 instances were classified incorrectly and 9 instances could
not be determined. And out of 100 spams 69 instances were classified correctly, 15 instances were
classified incorrectly and 16 instances could not be determined. The total accuracy achieved was
78.28%.
Then again using only stop words, out of 100 important emails 83 instances were classified
correctly, 13 instances were classified incorrectly and 4 instances could not be determined. And
out of 100 spams 57 instances were classified correctly, 25 instances were classified incorrectly
and 18 instances could not be determined. The total accuracy achieved was 78.65%.
Using only stemming out of 100 important emails 85 instances were classified correctly, 7
instances were classified incorrectly and 8 instances could not be determined. And out of 100
spams 52 instances were classified correctly, 40 instances were classified incorrectly and 8
instances could not be determined. The total accuracy achieved was 74.46%.
Using Lemmatizing out of 100 important emails 72 instances were classified correctly, 16
instances were classified incorrectly and 12 instances could not and out of 100 spams 58 instances
were classified correctly, 29 instances were classified incorrectly and 13 instances could not be
determined. The total accuracy achieved was 74.29%.

39

Process Trained
data

Test
data

Correctly
Classified
instances

Incorrectly
Classified
instances

Indeter-
-minate
instances

Accuracy*13
(Mail
Classifi--
cation)

Impor-
-tant

Spam Impor-
-tant

Spam Impor-
-tant

Spam

Basic 5500 200 68 69 23 15 9 16 78.28

Stop
Words

5500 200 83 57 13 25 4 18 78.65

Stemming 5500 200 85 52 7 40 8 8 74.46

Lemmatizing 5500 200 72 58 16 29 12 13 74.29

Stop Words
+
Stemming

5500 200 74 58 14 30 12 12 75.00

Stop Words
+
Lemmatizing

5500 200 70 67 16 20 14 13 79.19

Lemmatizing
+
Stemming

5500 200 85 52 6 41 9 7 74.46

Stop Words
+
Lemmatizing
+
Stemming

5500 200 72 59 15 29 13 12 74.86

Table 5.1: Evaluation on Test Set (Naive Bayes in Different Processes)

13 The accuracy was calculated considering only the instances that could be determined.

40

Fig 5.1: Accuracy Comparisons (Naive Bayes)

Using both stop words and stemming out of 100 important emails 74 instances were classified
correctly, 14 instances were classified incorrectly and 12 instances could not be determined. And
out of 100 spams 58 instances were classified correctly, 30 instances were classified incorrectly
and 12 instances could not be determined. The total accuracy achieved was 75%.

Using both stop words and lemmatizing out of 100 important emails 70 instances were classified
correctly, 16 instances were classified incorrectly and 14 instances could not be determined. And
out of 100 spams 67 instances were classified correctly, 20 instances were classified incorrectly
and 13 instances could not be determined. The total accuracy achieved was 79.19%.

Using first lemmatizing then stemming out of 100 important emails 85 instances were classified
correctly, 6 instances were classified incorrectly and 9 instances could not be determined. And out
of 100 spams 52 instances were classified correctly, 41 instances were classified incorrectly and 7
instances could not be determined. The total accuracy achieved was 74.46%.

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Accuracy 78.28 78.65 74.46 74.29 75 79.19 74.46 74.86

71
72
73
74
75
76
77
78
79
80

Acc
ura

cy (
%)

Accuracy Comparison between different combinations in Naive Bayes

41

Lastly using stop words, lemmatizing and stemming out of 100 important emails 72 instances were
classified correctly, 15 instances were classified incorrectly and 13 instances could not be
determined. And out of 100 spams 59 instances were classified correctly, 29 instances were
classified incorrectly and 12 instances could not be determined. The total accuracy achieved was
74.86%.

Figure 7.1 shows accuracy comparison among 8 different combinational approach to Naive Bayes
and it shows that using stop words and lemmatizing together gives the best accuracy result which
is 79.19%.

Detailed results found from different approaches using NLTK in python are shown below-

Fig 5.2: Results using Basic approach on Fig 5.3: Results using Stop Words on
 Naive Bayes Naive Bayes

42

Fig 5.4: Results using Stemming on Fig 5.5: Results using Lemmatizing on
 Naive Bayes Naive Bayes

Fig 5.6: Results using Stop Words & Stemming Fig 5.7: Results using Stop Words & Lemmat-
 on Naive Bayes -izing on Naive Bayes

43

Fig 5.8: Results using Lemmatizing & Stemm- Fig 5.9: Results using Stop Words, Lemmatizi-
 -ing on Naive Bayes -ng & Stemming on Naive Bayes

Table 5.2 describes the detail result of precision, recall and F-measure of the test set using 8
combinations of different approach to Naive Bayes Classification. The results are measured for
both positive and negative perspective. Figure 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15 shows the
comparison among different approaches to calculate precision, recall and F-measure for both
positive and negative. Figure 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 were taken from output window
of PyCharm which we used to run our code written in python. They show all of the results in detail.
In table 5.2, we can see that among all 8 approaches, basic naive bayes gives highest positive
precision 0.82 and Lemmatizing+Stemming gives lowest positive precision 0.67. Then
Lemmatizing+Stemming gives the highest positive recall 0.93 and basic naive bayes gives the
lowest positive recall 0.75. Stop Words gives the highest positive F-measure 0.81 and
Lemmatizing gives the lowest positive F-measure 0.76. We also see that, Lemmatizing+ Stemming
gives the highest negative precision 0.90 and basic naive bayes gives the lowest negative precision
0.75. Then basic naive bayes gives highest negative recall 0.82 and Lemmatizing+Stemming gives
lowest negative recall 0.56. Lastly, StopWords+Lemmatizing gives the highest negative F-
measure 0.79 and both Stemming and Lemmatizing+Stemming gives the lowest negative F-
measure 0.69.

44

Process Accuracy Precision Recall F-Measure

Positive Negative Positive Negative Positive Negative

Basic 78.28 0.82 0.75 0.75 0.82 0.78 0.78

Stop
Words

78.65 0.77 0.81 0.86 0.7 0.81 0.75

Stemming 74.46 0.68 0.88 0.92 0.57 0.78 0.69

Lemmatizing 74.29 0.71 0.78 0.82 0.67 0.76 0.72

Stop Words
+
Stemming

75.00 0.71 0.81 0.84 0.66 0.77 0.73

Stop Words
+
Lemmatizing

79.19 0.78 0.81 0.81 0.77 0.8 0.79

Lemmatizing
+
Stemming

74.46 0.67 0.9 0.93 0.56 0.78 0.69

Stop Words
+
Lemmatizing
+
Stemming

74.86 0.71 0.8 0.83 0.67 0.77 0.73

Table 5.2: Precision, Recall and F-Measure of Test Set (Naive Bayes in Different Processes)

45

Fig 5.10: Pos-Precision Comparisons (Naive Bayes)

Fig 5.11: Pos-Recall Comparisons (Naive Bayes)

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Pos- Precision 0.82 0.77 0.68 0.71 0.71 0.78 0.67 0.71

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pos
itive

 Pre
cisi

on
Pos-Precision Comparison in Naive Bayes

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Pos-Recall 0.75 0.86 0.92 0.82 0.84 0.81 0.93 0.83

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pos
itive

 Re
call

Pos-Recall Comparison in Naive Bayes

46

Fig 5.12: Pos-F-Measure Comparisons (Naive Bayes)

Fig 5.13: Neg-Precision Comparisons (Naive Bayes)

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Pos-F-Measure 0.78 0.81 0.78 0.76 0.77 0.8 0.78 0.77

0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82

Pos
itive

 F-M
eas

ure
Pos-F-Measure Comparison in Naive Bayes

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Neg- Precision 0.75 0.81 0.88 0.78 0.81 0.81 0.9 0.8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Neg
ativ

e P
rec

isio
n

Neg-Precision Comparison in Naive Bayes

47

Fig 5.14: Neg-Recall Comparisons (Naive Bayes)

Fig 5.15: Neg-F-Measure Comparisons (Naive Bayes)

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Neg-Recall 0.82 0.7 0.57 0.67 0.66 0.77 0.56 0.67

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Neg
ativ

e R
eca

ll
Neg-Recall Comparison in Naive Bayes

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Neg-F-Measure 0.78 0.75 0.69 0.72 0.73 0.79 0.69 0.73

0.64
0.66
0.68

0.7
0.72
0.74
0.76
0.78

0.8

Neg
ativ

e F-
Me

asu
re

Axis Title

Neg-F-Measure Comparison in Naive Bayes

48

5.1.1.2 Experiment with Hidden Markov Model

As stated earlier classifying with HMM algorithm using basic approach along with various
combinations of 3 different processes; Stop Words, Stemming and Lemmatization were used in
this experiment. Table 5.3 describes evaluation on test set using basic approach along with various
combinations of 3 different processes in HMM algorithm. Figure 5.16 shows the comparison
among different approaches used to classify emails based on HMM Algorithm. Figure 5.17, 5.18,
5.19, 5.20, 5.21, 5.22, 5.23 and 5.24 were taken from output window of PyCharm which we used
to run our code written in python.

In table 5.3, in total 200 emails were experimented as test set where 100 was important email and
100 was spam email. Some instances were classified correctly, some were classified incorrectly
and very few emails remained indeterminate as the possibility of being both important and spam
were 50% in these emails. The indeterminate instances were ignored in this case as they could be
either important or spam. Using basic HMM approach out of 100 important emails 80 instances
were classified correctly, 17 instances were classified incorrectly and 3 instances could not be
determined. And out of 100 spams 81 instances were classified correctly, 11 instances were
classified incorrectly and 8 instances could not be determined. The total accuracy achieved was
85.19%.

Then again using only stop words, out of 100 important emails 87 instances were classified
correctly, 11 instances were classified incorrectly and 2 instances could not be determined. And
out of 100 spams 71 instances were classified correctly, 19 instances were classified incorrectly
and 10 instances could not be determined. The total accuracy achieved was 84.04%.

Using only stemming out of 100 important emails 87 instances were classified correctly, 10
instances were classified incorrectly and 3 instances could not be determined. And out of 100
spams 91 instances were classified correctly, 7 instances were classified incorrectly and 2 instances
could not be determined. The total accuracy achieved was 91.28%.

49

Process Trained
Data

Test
data

Correctly
Classified
instances

Incorrectly
Classified
instances

Indeter-
-minate
instances

Accuracy
(Mail
Classifi--
cation)

Impor-
-tant

Spam Impor-
-tant

Spam Impor-
-tant

Spam

Basic 5500 200 80 81 17 11 3 8 85.19

Stop
Words

5500 200 87 71 11 19 2 10 84.04

Stemming 5500 200 87 91 10 7 3 2 91.28

Lemmatizing 5500 200 83 77 15 17 2 6 83.33

Stop Words
+
Stemming

5500 200 91 74 7 22 2 4 85.05

Stop Words
+
Lemmatizing

5500 200 86 68 13 23 1 9 81.05

Lemmatizing
+
Stemming

5500 200 86 89 10 7 4 4 91.15

Stop Words
+
Lemmatizing
+
Stemming

5500 200 91 72 7 23 2 5 84.46

Table 5.3: Evaluation on Test Set (Hidden Markov Model in Different Processes)

50

Using Lemmatizing out of 100 important emails 83 instances were classified correctly, 15
instances were classified incorrectly and 2 instances could not be determined. And out of 100
spams 77 instances were classified correctly, 17 instances were classified incorrectly and 6
instances could not be determined. The total accuracy achieved was 83.33%.
Using both stop words and stemming out of 100 important emails 91 instances were classified
correctly, 7 instances were classified incorrectly and 2 instances could not be determined. And out
of 100 spams 74 instances were classified correctly, 22 instances were classified incorrectly and 4
instances could not be determined. The total accuracy achieved was 85.05%.
Using both stop words and lemmatizing out of 100 important emails 86 instances were classified
correctly, 13 instances were classified incorrectly and 1 instances could not be determined. And
out of 100 spams 68 instances were classified correctly, 23 instances were classified incorrectly
and 9 instances could not be determined. The total accuracy achieved was 81.05 %.
Using first lemmatizing then stemming out of 100 important emails 86 instances were classified
correctly, 10 instances were classified incorrectly and 4 instances could not be determined. And
out of 100 spams 89 instances were classified correctly, 7 instances were classified incorrectly and
4 instances could not be determined. The total accuracy achieved was 91.15%.
Lastly using stop words, lemmatizing and stemming out of 100 important emails 91 instances were
classified correctly, 7 instances were classified incorrectly and 2 instances could not be
determined. And out of 100 spams 72 instances were classified correctly, 23 instances were
classified incorrectly and 5 instances could not be determined. The total accuracy achieved was
84.46 %.
Figure 5.16 shows accuracy comparison among 8 different combinational approach to Hidden
Markov Model and it shows that using only stemming gives the best accuracy result which is
91.28%.

51

Fig 5.16: Accuracy Comparisons (Hidden Markov Model)

Detailed results of Hidden Markov Model found from different approaches using NLTK in python
are shown below-

Fig 5.17: Results using Basic approach on Fig 5.18: Results using Stop Words on
 HMM HMM

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Accuracy 85.19 84.04 91.28 83.33 85.05 81.05 91.15 84.46

74
76
78
80
82
84
86
88
90
92
94

Acc
ura

cy C
om

par
ison

(%)

Axis Title

Accuracy Comparison in HMM

52

Fig 5.19: Results using Stemming on Fig 5.20: Results using Lemmatizing on
 HMM HMM

Fig 5.21: Results using Stop Words & Stemm- Fig 5.22: Results using Stop Words & Lemmati-
 -ing on HMM -zing on HMM

53

Fig 5.23: Results using Lemmatizing & Stemm- Fig 5.24: Results using Stop Words, Lemmat-
 -ing on HMM -izing & Stemming on HMM

Table 5.4 describes the detail result of precision, recall and F-measure of the test set using 8
combinations of different approach to HMM based Classification. The results are measured for
both positive and negative perspective. Figure 5.33, 5.34, 5.35, 5.36, 5.37 and 5.38 shows the
comparison among different approaches to calculate precision, recall and F-measure for both
positive and negative. Figure 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23 and 5.24 were taken from
output window of PyCharm which we used to run our code written in python. They show all of
the results in detail.
In table 5.4, we can see that among all 8 approaches, stemming gives highest positive precision
0.93 and StopWords+Lemmatizing gives lowest positive precision 0.79. Then Stop
Words+Stemming and StopWords+Lemmatizing+Stemming gives the highest positive recall 0.93
and basic naive bayes gives the lowest positive recall 0.82. Stemming and Lemmatizing+
Stemming gives the highest positive F-measure 0.91 and StopWords+ Lemmatizing gives the
lowest positive F-measure 0.83. We also see that, StopWords+Stemming and
StopWords+Lemmatizing+Stemming give the highest negative precision 0.91 and basic HMM
gives the lowest negative precision 0.83. Then Stemming and Lemmatizing+Stemming give
highest negative recall 0.93 and StopWords+Lemmatizing gives lowest negative recall 0.75.

54

Lastly, Stemming and Lemmatizing+Stemming give the highest negative F-measure 0.91 and
StopWords+ Lemmatizing gives the lowest negative F-measure 0.79.

Process Accuracy Precision Recall F-Measure

Positive Negative Positive Negative Positive Negative

Basic
85.19

0.88 0.83 0.82 0.88 0.85 0.85

Stop
Words 84.04

0.82 0.87 0.89 0.79 0.85 0.83

Stemming
91.28

0.93 0.90 0.90 0.93 0.91 0.91

Lemmatizing
83.33

0.83 0.84 0.85 0.82 0.84 0.83

Stop Words
+
Stemming 85.05

0.81 0.91 0.93 0.77 0.86 0.84

Stop Words
+
Lemmatizing 81.05

0.79 0.84 0.87 0.75 0.83 0.79

Lemmatizing
+
Stemming 91.15

0.92 0.90 0.9 0.93 0.91 0.91

Stop Words
+
Lemmatizing
+
Stemming 84.46

0.80 0.91 0.93 0.76 0.86 0.83

Table 5.4: Precision, Recall and F-Measure of Test Set (HMM in Different Processes)

55

Fig 5.25: Pos-Precision Comparisons (HMM)

Fig 5.26: Pos-Recall Comparisons (HMM)

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Pos- Precision 0.88 0.82 0.93 0.83 0.81 0.79 0.92 0.8

0.7
0.75

0.8
0.85

0.9
0.95

Pos
itive

 Pre
cisi

on
Pos- Precision Comparison in HMM

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Pos-Recall 0.82 0.89 0.9 0.85 0.93 0.87 0.9 0.93

0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94

Pos
itive

 Re
call

Pos- Recall Comparison in HMM

56

Fig 5.27: Pos-F-Measure Comparisons (HMM)

Fig 5.28: Neg-Precision Comparisons (HMM)

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Pos-F-Measure 0.85 0.85 0.91 0.84 0.86 0.83 0.91 0.86

0.78
0.8

0.82
0.84
0.86
0.88

0.9
0.92

Pos
itive

 F-M
eas

ure
Pos- F-Measure Comparison in HMM

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Neg- Precision 0.83 0.87 0.9 0.84 0.91 0.84 0.9 0.91

0.78
0.8

0.82
0.84
0.86
0.88

0.9
0.92

Neg
ativ

e P
rec

ison

Axis Title

Neg-Prcision Comparison in HMM

57

Fig 5.29: Neg-Recall Comparisons (HMM)

Fig 5.30: Neg-F-Measure Comparisons (HMM)

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Neg-Recall 0.88 0.79 0.93 0.82 0.77 0.75 0.93 0.76

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Neg

ativ
e R

eca
ll

Axis Title

Neg-Recall Comparison in HMM

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Neg-F-Measure 0.85 0.83 0.91 0.83 0.84 0.79 0.91 0.83

0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92

Neg
ativ

e F-
Me

asu
re

Neg-F-Measure Comparison in HMM

58

5.1.2 Comparison Analysis

After running both Naive Bayes and HMM algorithm in 8 combinations of 3 different
processes along with basic approach we find different classification accuracy for different

Process Accuracy

(Mail Classification)
Naive Bayes Algorithm HMM Algorithm

Basic 78.28 85.19

Stop
Words

78.65 84.04

Stemming 74.46 91.28
Lemmatizing 74.29 83.33
Stop Words
+
Stemming

75.00 85.05

Stop Words
+
Lemmatizing

79.19 81.05

Lemmatizing
+
Stemming

74.46 91.15

Stop Words
+
Lemmatizing
+
Stemming

74.86 84.46

Table 5.5: Accuracy Comparison between Naive Bayes and HMM Algorithm.

59

processes. Table 5.5 describes comparison among different accuracies found in different processes
of Naive Bayes and HMM algorithm.

Figure 5.31 clearly shows that in every process HMM algorithm gives better accuracy than Naive
Bayes algorithm. Though both algorithms get pretty closer when we use Stop Words and
Lemmatizing (79.19 & 81.05) but even here HMM algorithm is giving better accuracy than Naive
Bayes algorithm. Figure 5.32 represents the graphical representation of Naive Bayes vs HMM
algorithm. The dotted points represent the respective accuracies for different approach to both
algorithms and the curve of HMM is always higher than the curve of Naive Bayes algorithm. And
it is the highest when we use only stemming. So, we can come to the conclusion that to classify
emails HMM is always better than Naive Bayes algorithm and using only stemming provides the
highest accuracy.

Fig 5.31: Accuracy Comparison between Naive Bayes and HMM Algorithm

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+Stemming
Naive Bayes 78.28 78.65 74.46 74.29 75 79.19 74.46 74.86
HMM 85.19 84.04 91.28 83.33 85.05 81.05 91.15 84.46

0
10
20
30
40
50
60
70
80
90

100

Acc
ura

cy(%
)

Accuracy Comparison between Naive Bayes and HMM

60

Fig 5.32: Accuracy Comparison between Naive Bayes and HMM Algorithm

5.2 Scheduler

Even though the underlying algorithm is not that simple, automatic meeting scheduling
looks like a piece of cake in plain eyes. If there is no clash, meaning the recipient does not already
have a calendar event at that time, our email assistant fixes a meeting at the requested time in the
following steps (From here on, we will refer to our email assistant as Emma) :

Step 1a: Sender must Cc Emma, our intelligent email assistant
Step 2a: Emma will know if the email contains a meeting request
Step 3a: Emma will send the sender a confirmation of the appointment.
Step 4a: Appointment will be added on both users’ Google calendar.

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+Stemming
Naive Bayes 78.28 78.65 74.46 74.29 75 79.19 74.46 74.86
HMM 85.19 84.04 91.28 83.33 85.05 81.05 91.15 84.46

0
10
20
30
40
50
60
70
80
90

100

Acc
ura

cy
Accuracy Comparison between Naive Bayes and HMM

61

Fig 5.33: Step 1a

Fig 5.34: Step 2a

Fig 5.34: Step 3a

62

Fig 5.34: Step 4a

On the other hand, if the recipient already has a calendar event at that time, Emma will notify the
sender that the meeting cannot be fixed at the requested time. Sender can reschedule. This happens
in the following way:
Step 1b: Another person asks for a meeting at the same time and Cc Emma.
Step 2b: Emma analyzes the email and extracts the date and time of meeting request.
Step 3b: Emma checks the recipient’s Google calendar and finds out s/he already has a meeting on
that time.
Step 4b: Emma notifies the sender that the meeting cannot be fixed at that time. But s/he can
reschedule if s/he wants.

Fig 5.35: Step 1b

63

Fig 5.36: Step 2b

Fig 5.37: Step 3b

Fig 5.38: Step 4b

64

Conclusion

e have come a long way from where we started our research a year ago. We like to
think we have accomplished a great deal of things, but also acknowledge that we
still have many areas to improve. We faced many difficulties over the course of the

research, most of which we have successfully overcome. There remains a few with which we did
not find a way to work around. Such limitations forced us to adapt to them and re-evaluate our
methodologies. We are confident that we have done it well. We have also discovered the scope for
further improvement and extension of our work. In this final chapter, we have talked about the
difficulties and future plan before we drew a conclusion to this report.

6.1 Difficulties
 Email classification constitutes the most part of our work. Our classifier algorithms, both
Naive Bayes and HMM, work in a way that can categorize emails in any number of classes like
important, urgent, work, social, promotions, forums, spam and a hundred more. Yet we have
worked on binary classification - important and spam. It is entirely because of the scarcity of
dataset. Our algorithms largely depend on pre-classified dataset. Among all the resources we could

65

get our hands on, we only found email dataset for important and spam emails. We could not train
our algorithms on more data also because our working computers did not have the configuration
to work with more than 5500 emails. If we could increase our trainset, we believe we would
achieve better accuracy. For HMM, we had to use an older version of sklearn because the newest
version did not support the hmm python module we have used. For a very few emails, our
algorithms could not categorize them into any class due to the nature of those emails - we found
equal number of important and spam words in those emails. Another difficulty that we faced while
implementing HMM is precisely calculating emission probability and transmission probability of
5300 words. As we used Google’s calendar API to work with user’s daily events, our scheduler
algorithm is not compatible with any other event manager service.

6.2 Future Plan

For any research, there is always room for improvement. Ours is not an exception of that.
While we have marked the end of our research for the time being, we have also pointed out some
areas where this research can be stretched:

1. Other Algorithms: Other probabilistic graphical model like conditional random field
(CRF), maximum entropy etc. can be used to try to achieve better accuracy than HMM.

2. More Analysis Means Better Accuracy : System will not only analyze text but also
contents of attached files such as pdf, txt, ppt. Computers with better configuration should
be used in order to be able to work with more data.

3. No Limit on Categories: Currently we are categorizing an email based on two categories-

spam and important. In future we want to incorporate more categories such as social,
family, educational, research, technology etc. as well as make it possible for users to create
their own categories. We will depend on email dataset for the former but the latter can be

66

achieved rather easily. A user will define the domain for his customized category. For
instance, a university professor can categorize the emails he receives from the university
in a different section while he categorizes the emails from different conferences in another
section.

4. Smarter Email Assistant: The system will use past email interactions to recover relevant
information for the user to assist in writing their reply. It will also try to understand user’s
state of mind to generate reply. The system won’t be confined in scheduling meetings, it
will act as humanly as possible to carry out a general conversation via email.

6.3 Conclusion

In summary, we propose a comparative approach to email classification using Naive Bayes
Classifier and HMM. We categorize emails by considering only text part from body of the
message. Because we consider relative words and sentences as feature. After running the same
variants on both the algorithms, we compared the results and used HMM for classification because
it gave better accuracy. Along with email classification, we have also showed how an AI based
meeting scheduler can appoint meetings automatically through emails without harming our privacy
and serve as our convenience by saving our valuable time. The structure of our research has been
built in such a way that with proper dataset and minor altercation it can work to classify texts in
any number of categories.

67

Appendix A
A.1 Machine Learning

Machine learning is a type of artificial intelligence (AI) that provides computers with the
ability to learn without being explicitly programmed [6]. When exposed to new data, computer
programs are enabled to learn, grow, change, and develop by themselves. We are already seeing
Machine Learning embedded in many services like Gmail, Search, Maps. In Gmail, Priority Inbox
automatically identifies our important incoming messages and separates them out from everything
else. It learns over time what is important to us, and what isn’t. Smart Reply is another Inbox
feature that suggests up to three responses based on the emails one gets. For those emails that only
need a quick response, it can take care of the thinking and save time spent typing. The responses
get better over time as the system learns.

There are three types of machine learning: [6]

Supervised: Datasets are provided which are used to train the machine and get the desired outputs.
Unsupervised: No datasets are provided, instead the data is clustered into different classes.
Semi-supervised: Some data is labeled but most of it is unlabeled and a mixture of supervised and
unsupervised techniques can be used.

68

A.1.1 Supervised

The majority of practical machine learning uses supervised learning. A supervised learning

algorithm analyzes the training data and produces an inferred function, which can be used for
mapping new examples. In other words, supervised learning is where there is a set of input (x) and
output variables (y) and an algorithm is used to learn the mapping function from the input to the
output:

y = f(x) … … … (A1)
Main objective of supervised learning is to approximate the mapping function so well that when
there is new input data (x), we can predict the output variables (y) for that data. It is called
supervised learning because the process of an algorithm learning from the training dataset can be
thought of as a teacher supervising the learning process.
Classification is one type of Supervised Machine Learning. Inputs are divided into two or more
classes, and the learner must produce a model that assigns unseen inputs to one or more of these
classes. Spam filtering is an example of classification, where the inputs are email messages and
the classes are “important” and "spam".

A.1.2 Unsupervised

Sometimes there is no corresponding output variables for input data. It is called
unsupervised learning. Unsupervised learning can be seen as a type of machine learning algorithm
used to draw deduction from datasets consisting of input data with unlabeled responses.

The goal for unsupervised learning is to model the underlying structure or distribution in the data
in order to learn more about the data. These are called unsupervised learning because unlike
supervised learning, there is no correct answers and there is no teacher. Algorithms are left to their

69

own devises to discover and present the structure in the data.

The most common unsupervised learning method is cluster analysis, which is used for exploratory
data analysis to find hidden patterns or grouping in data.

A.1.3 Semi-Supervised

When there is a large amount of input data (x) but only some of the data is labeled (y), it is
called semi-supervised machine learning.

Many real world machine learning problems fall into this area. This is because it can be expensive as
well as time-consuming to label very large amount of data. Often it may require access to domain
experts whereas unlabeled data is cheap and easy to collect and store.

Semi-supervised learning techniques are used with a view to discovering and learning the structure in
the input variables.

Naive Bayes Classifier is a supervised machine learning algorithm. HMM can be both supervised
and unsupervised. In our research, we have implemented HMM using hidden and observed state
sequences which is supervised learning. But other techniques of HMM that use Viterbi algorithm
and Baum-Welch algorithm fall into unsupervised learning category.

A.2 Bayesian Classification

The Bayesian Classification represents a supervised learning method as well as a statistical
method for classification. It assumes an underlying probabilistic model and it allows us to capture
uncertainty about the model in a principled way by determining probabilities of the outcomes. It
can solve diagnostic and predictive problems.

70

Bayesian classification provides practical learning algorithms where prior knowledge and
observed data can be combined. Bayesian Classification provides a useful perspective for
understanding and evaluating many learning algorithms. It calculates explicit probabilities for
hypothesis and it is robust to noise in input data.

71

Bibliography

[1] Aery, M., & Chakravarthy, S. (2005). eMailSift: eMail classification based on structure

and content. Data Mining, Fifth IEEE Int., 2005. IEEE. doi:10.1109/ICDM.2005.58

[2] Islam, R., & Zhou, W. (2007). Email Categorization Using Multi-stage Classification

Technique. Parallel and Distributed Computing, Applications and Technologies, 2007.
PDCAT '07. Eighth International Conference on, 2007. IEEE.
doi:10.1109/PDCAT.2007.71

[3] Wang, X., & Cloete, I.A.N. (2005). Learning to classify email: a survey. Proceedings of

the international conference on machine learning and, cybernetics, 2005, 9, 18-21.

[4] Klimt, B., & Yang, Y. (2004). The Enron Corpus: A New Dataset for Email

Classification Research. Boulicaut JF., Esposito F., Giannotti F., Pedreschi D. (eds)
Machine Learning: ECML 2004. ECML 2004. Springer, Berlin, Heidelberg. Lecture
Notes in Computer Science, 3201.

[5] Bhat, V. H., Malkani, V. R., Shenoy, P. D., Venugopal, K. R., & Patnaik, L. M. (2011).

Classification of email using BeaKS: Behavior and keyword stemming. TENCON 2011
- 2011 IEEE Region 10 Conference, Bali, 2011. IEEE. 1139-1143. doi:
10.1109/TENCON.2011.6129290

72

[6] Teli, S. P., & Biradar, S. (2014). Effective Email Classification for Spam and Non-Spam.

International Journal of Advanced Research in Computer Science and Software
Engineering, 4(6).

[7] Yitagesu1, M. E., & Tijare, M. (2016). Email Classification using Classification Method.

International Journal of Engineering Trends and Technology (IJETT), 32(3), 142.

[8] Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification

Techniques. Proceedings of the 2007 conference on Emerging Artificial Intelligence
Applications in Computer Engineering: Real Word AI Systems with Applications in
eHealth, HCI, Information Retrieval and Pervasive Technologies. 3-24

[9] Jaswal, V., & Sood, N. (2013). Spam Detection System Using HMM. International Journal

of Advanced Research in Computer Science and Software Engineering. 3(6)

[10] Carpinter, J., & Hunt, R. (2006). Tightening the net: a review of current and next generation

spam filtering tools. Computers and Security. 25(8), 566-578.
doi:10.1016/j.cose.2006.06.001,

[11] Kidmose, E. (2014). Botnet detection using HMMs Master Thesis Networks and

Distributed System. Aalborg University Journal.88

[12] Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python.

O'Reilly Media.

[13] Jivani, A. G. (2011). A Comparative Study of Stemming Algorithms. International Journal

of Computer Technology and Applications. 2(6), 1930-1938.

73

[14] BenHassine, A., & TB, H. (2007). An agent-based approach to solve dynamic meeting
scheduling problems with preferences. Eng Appl Artif Intell. 20, 857–873.

[15] Modi, PJ., Veloso M., Smith SF., & Oh, J. (2004). CMRadar: a personal assistant agent for

calendar management. Proceedings of the 19th national conference on artificial
intelligence, San Jose, California, 1020–1021.

[16] Jackson, P., & Moulinier, I. (2002). Natural Language Processing for Online Applications:

Text Retrieval, Extraction and Categorization. Amsterdam/Philadelphia: John Benjamins
Publishing Company.

[17] Gharamani, Z. (2001). An Introduction to Hidden Markov Models and Bayesian Networks.

Journal of Pattern Recognition and Artificial Intelligence. 15(1), 9-42.

[18] Saraiya, S. U., & Desai, N. (2015). Content Based Categorization of E-Mail using Hidden

Markov Model Approach. IEEE International Conference on Advances in Engineering and
Technology-ICAET 2014, Tamil-Nadu, Chennai. IEEE. doi: 10.13140/RG.2.1.3070.9602

[19] Pedregosa, F., Varoquaux, G. et al. (2011). Scikit-learn: Machine learning in python.

Journal of Machine Learning Research. 12, 2825-2830.

[20] Naive-Bayes Classification Algorithm [Online]. Accessed September 2016. Retrieved

from http://software.ucv.ro/~cmihaescu/ro/teaching/AIR/docs/Lab4-NaiveBayes.pdf

[21] Python Package Index [Online]. Accessed January 2017.

Retrieved from https://pypi.python.org/pypi/scikit-learn/0.16.1

[22] Enron Email Dataset [Online]. Accessed June 2016.
Retrieved from https://www.cs.cmu.edu/~./enron/

74

 [23] IMAP4 protocol client. Accessed March 2017.
 Retrieved from https://docs.python.org/2/library/imaplib.html

 [24] Classification: Naïve Bayes Classifier Evaluation. Accessed April 2017.

Retrieved from http://wwwis.win.tue.nl/~tcalders/teaching/datamining09/slides/DM09-02-
Classification.pdf

