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Abstract 
 

his research investigates a comparison between two different approaches for classifying 
emails based on their categories. Naive Bayes and Hidden Markov Model (HMM), two 
different machine learning algorithms, both have been used for detecting whether an 

email is important or spam. Naive Bayes Classifier is based on conditional probabilities. It is fast 
and works great with small dataset. It considers independent words as a feature. HMM is a 
generative, probabilistic model that provides us with distribution over the sequences of 
observations. HMMs can handle inputs of variable length and help programs come to the most 
likely decision, based on both previous decisions and current data. Various combinations of NLP 
techniques- stopwords removing, stemming, lemmatizing have been tried on both the algorithms 
to inspect the differences in accuracy as well as to find the best method among them. Along with 
classifying emails, this paper also describes the methodologies used for automatic meeting 
scheduling by an intelligent email assistant. Users who regularly send or receive messages for 
setting up meetings will be greatly benefitted by this system as it will classify their emails and 
schedule their meetings automatically. 
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Introduction 

 
mail is one of the most important means of communication in today’s world. It creates a 
fast, reliable form of communication that is free and easily accessible. It is not 
characterized by the inconveniences that are generally associated with traditional 

communication media, such as telephone or postal mail. For these reasons, email usage has 
increased substantially around the world. In 2015, the number of emails sent and received per day 
totaled over 205 billion. This figure is expected to grow at an average annual rate of 3% over the 
next four years, reaching over 246 billion by the end of 20191. With increasing use of email, 
maintaining all these emails has become very essential. A lot of these emails are spam emails. As 
of December 2016, spam messages accounted for 61.66 percent of email traffic worldwide2. 
Kaspersky Lab figures show that spam email messages containing malicious attachments – 
malware, ransom ware, malicious macros, and JavaScript – started to increase in December 2015. 
That rise has continued, and in March 2016 malicious spam email volume had risen to four times 
the level seen in 2015. In March, 2016, Kaspersky Lab detected 22,890,956 malicious spam 
emails. Spam email volume as a whole increased over the quarter, rising to an average of 56.92% 
                                                
1 http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf 
2 https://www.statista.com/statistics/420391/spam-email-traffic-share/ 
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for the first three months of 20162. Spam emails are commercial in nature but may also contain 
disguised links that appear to be for familiar websites but in fact lead to phishing3 web sites or 
sites that are hosting malware. Spam email may also include malware as scripts or other executable 
file attachments. Therefore, filtering these spam emails has become a crying need for email users 
around the globe. Most email service providers like Gmail, Yahoo come with spam filter but there 
are many startups who want to have their own mail servers. They are less likely to have spam filter 
in those servers. In this report, we have described the methodologies that can be used to classify 
emails into different categories like important and spam. Also, email use continues to see strong 
use in the business world, as well as among consumers. A lot of appointments are scheduled over 
email messages every day. We have to spend our valuable time dealing with the back and forth to 
get these meetings scheduled. In this paper, we have also demonstrated how an AI powered email 
assistant can be built to automatically schedule our meetings.  

 
1.1 Research Goals 
 

The goal of our research is to classify email messages and detect whether an email is 
important or spam using different machine learning4 algorithms and to schedule meetings 
automatically if there is a request for meeting in the email. Firstly, our system will categorize the 
emails into appropriate classes. Then, it will search among the important emails to check if any of 
those emails are meeting requests. If it identifies an email where a meeting is requested, it will 
analyze the email to retrieve the date and time for that meeting and will intelligently act to set up 
the meeting. Classification will be done by observing texts of the email body.  In this research, we 
consider relative words or sentences as feature to classify email messages. We will try to find out 
the method that gives most accurate classification. There are many machine learning algorithms. 
Naive Bayes and HMM are two among them. We will use Naive Bayes as it considers independent 
words as a feature. On the other hand, HMM is a probabilistic graphical model. We will use this 
                                                
3 phishing websites: A website that tries to steal your account password or other confidential information by tricking you into believing you're on 
a legitimate website 
4 See Appendix A.1 
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model because it denotes the conditional dependency between random variables. The difference 
in nature between these algorithms makes it interesting to compare them. In our research, we will 
collect dataset, pre-process them, create models, estimate parameters and evaluate accuracy, 
precision, recall, f-metrics for both the algorithms. We will use stemming, lemmatizing, removal 
of stopwords in various combinations with the algorithms to analyze which algorithm on what 
combination gives us the best result. We will use the better algorithm for email classification. 

1.2 Motivation 
 

As a research group, we wanted to do our undergraduate thesis on a research that will assist 
a large section of people on a daily basis. Email classification and automatic meeting scheduling 
is a necessity that can save a significant amount of our time every day so that we can focus on 
more important tasks. All free email services that we use today offer various types of classification. 
Various algorithms also vary in performance. The approach that we chose deals with Naive Bayes 
and HMM. Naive Bayes Classifier is based on conditional probabilities. It is fast and works great 
with small dataset. Bayesian methods can do inference5 in all kinds of cases where no other method 
can help. When creating an engineered system, you build a model of the world and then find a 
good controller in that model. Bayesian methods interpolate to this extreme. The reasons behind 
choosing HMM is it is a generative, probabilistic model that can handle inputs of variable length. 
It provides us with distribution over the sequences of observations. HMMs are probability models 
that help programs come to the most likely decision, based on both previous decisions (like 
previously recognized words in a sentence) and current data. When we compared these two 
algorithms- HMM outperformed Naive Bayes and thus encouraged us to choose this algorithm for 
classifying. We also thought email clients who get huge number of emails containing meeting 
request need an intelligent email agent who will not only classify their emails accurately but also 
find the emails with meeting request, extract relevant information and set up the meeting or 
continue conversation if client’s current schedule clashes with meeting time. This is why we 
worked on the meeting scheduling algorithm as an extension of classifying emails. 

                                                
5 Inference: A conclusion reached on the basis of evidence and reasoning 
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1.3 Methodology 
 

Whenever our email assistant receives a new email, our classifier algorithm is run on that 
email. For classifying an email into categories like spam and important, we used machine learning 
algorithm. We conducted a comparison between Naive Bayes and HMM and found out that HMM 
gives better result. We later experimented with eight different variants of text processing to 
increase accuracy where stemming [13] words proved to be the best method. After text processing, 
only the essential words from that email are left to be compared with our pre-classified knowledge 
set. HMM algorithm is run and the email is classified into appropriate category. If the category is 
‘important’, then it is a potential candidate for being a meeting related email. Each word of the 
email is then carefully tagged with proper pos-tag and regular expression is used to pick the 
sentences that contains relevant information about a meeting scheduling [14]. We have removed 
stopwords and used chunking to analyze regexp syntax and pull out information like time and 
location of the meeting. The system fetches user’s calendar events using Google calendar API and 
checks if he has any free slot available on that particular time. [15] After setting the event, the 
system sends a confirmation email to the user. 

 
1.4 Outline 
 
Chapter 2, describes the background research and basic review about the topic. 
Chapter 3, describes the terminology about what classification is. It also describes the NLTK 
toolkit, stemming, lemmatizing, stopwords and chunking. Sheds light on the algorithms, dataset, 
and system setup used in this research.  
Chapter 4, describes the methodologies. 
Chapter 5, demonstrates the analysis and result. 
Chapter 6, describes limitations and future scope of the research along with conclusion. 
 
 



 

5 
 

 
 

 
Literature Review 

 
 

mail classification can be applied to several different applications, including filtering 
messages based on priority, assigning messages to user-created folders, or identifying 
spam. We will focus on distinguishing important emails from spam emails. One major 

consideration in the categorization is that of how to represent the messages. Specifically, one must 
decide which features to use, and how to apply those features to the categorization. M. Aery et al. 
[1] gave an approach which is based on the premise that patterns can be extracted from a pre-
classified email folder and the same can be used effectively for classifying incoming emails. Since 
emails exhibit a structure in the form of headers and the message body, the relationships between 
various terms (e.g., the occurrence of a term in the subject or body of the message) can be 
represented in the form of a graph. They have chosen graph mining as a viable technique for pattern 
extraction and classification. R. Islam et al. [2] gave an approach which proposed a multi-stage 
classification technique using different popular learning algorithms with an analyzer which 
reduces the FP6  problems substantially and increases classification accuracy compared to similar 
existing techniques. X. Wang et al. gave an approach [3] which reviews recent approaches to filter 

                                                
6 FP (False Positive) is the proportion of negative cases that were incorrectly classified as positive, as calculated using the equation: FP = 
b/(a+b).  
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out spam email, to categorize email into a hierarchy of folders, and to automatically determine the 
tasks required in response to an email. B. Klimt et al [4] gave an approach that introduced Enron 
corpus as a new dataset for this domain. V. Bhat et al. [5] gave an approach which derives spam 
filter called Beaks. They classify emails into spam and non-spam. Their pre-processing technique 
is designed to identify tag-of-spam words relevant to the dataset. 
There are two main methods for detecting spam email that are widely used. One is sender based 
spam detection and the other method is content based spam detection which will consider only the 
content of an email. The distinction between sender based spam detection and content based spam 
detection is the options that are used for classification. In sender based detection, the email sender 
information such as the writing style and the email sender user name is used as the major features 
E.Yitagesu1 et al [6]. In content based detection, terms extracted from the emails are the major 
features. The research paper written by S.Teli [7] showed us a 3 phased system that they engineered 
for their way of spam detection. In the first phase the user creates the rule for classification. Rules 
are nothing, but the keywords/phrases that occur in mails for respective legitimate or spam mails. 
The second phase can be called as training phase. Here the classifier will be trained using a spam 
and legitimate emails manually by the user. Then with the help of algorithm the keywords are 
extracted from classified mails. When the first and second phases are completed, classifying the 
emails by given algorithm starts, using this knowledge of tokens, the filter classifies every new 
incoming email. Here the probability of maximum keyword match is calculated and the status of 
a new email is confirmed as spam or important email (Figure 2.1). 
 
When we researched about choosing a supervised machine learning algorithm we also encountered 
some issues that comes with supervised learning. The figure 2.2 explains about how a traditional 
supervised model works. 
 
The first step is collecting the dataset. If a requisite expert is available, then s/he could suggest 
which fields (attributes, features) are the most informative. If not, then the simplest method is that 
of “brute-force,” which means measuring everything available in the hope that the right 
(informative, relevant) features can be isolated. However, a dataset collected by the “brute-force” 
method is not directly suitable for induction. It contains in most cases noise and missing feature  
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Fig 2.1:  Implementation Diagram [7] 

 

 
Fig 2.2: Workflow of a Supervised Machine Learning [8] 
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values, and therefore requires significant pre-processing S. B. Kotsiantis [8] 
 
Jaswal, V. et al [9] worked on a spam detection system that uses detect spam words. They rely on 
filtering methods to detect stemming words of spam images and then use HMM of spam filters to 
detect all the spam images. They showed a methodology of spam detection in 4 steps, 
Step 1 - to design a spam detection system.  
Step 2 - to select a spam file either it is text file or it is excel file.  
Step 3 - to select the file on the basis of spam detection.  
Step 4 - filter stemming words only from spam detection 
 

 
Fig 2.3: Workflow Model of Spam Detection [9] 

 
Another work by Carpinter, J. et al [10] showed an approach in which their primarily focuses were 
on automated, non-interactive filters, with a broad review ranging from commercial 
implementations to ideas confined to current research papers. Both machine learning and non-
machine learning based filters are reviewed as potential solutions and a taxonomy7 of known 
                                                
7 taxonomy: a scheme of classification 
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approaches presented. They showed various approaches to spam filtering, 

 
Fig 2.4: Classification of Filters [10] 

 
Another study has been done by Kidmose, E. [11] where HMM was used to combined to estimate 
the life-cycle state of hosts, only relying on data observable in the network. We got some idea of 
transition probability from this paper. It shows for any state at any time the probability of arriving 
there only depends on the state distribution probability for the previous observation and the static 
transition probabilities.  

 
 

Fig 2.5: Transition Probability [11] 
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Terminologies 

  
o accomplish our desired result we had to use various kinds of algorithms, toolkits, 
libraries, datasets and classification methods. We have explained about all of these things 
under this chapter. Several NLTK toolkits were used for tokenizing and string 

manipulation. Powerful libraries such as stop words, lemmatization, stemming, POS tagging, 
chunking and chinking were used for fine tuning our working data. Vast online resources of NLTK 
toolkits made NLP very comfortable to us. Scikit-learn package for python is also described. This 
open source package with efficient tools- machine learning and data analysis helped us to 
implement HMM. The two algorithms that we used for our classification are discussed. The last 
segment of this chapter is dataset. As we used supervised learning method in our research we had 
to look for pre classified email dataset and we also analyzed real time email data for scheduling. 
 

3.1 Natural Language Processing Tools 
 
These tools below were mainly used for working with text type data. Most of these toolkits 

or libraries were used within python environment as they provide powerful online resources. 
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3.1.1 NLTK Toolkit 
 
 NLTK is one of the dominant platforms for creating Python programs that deals with word 
processing, tagging and string manipulations. It gives access to more than 50 corpora and lexical 
resources. There are also various text processing libraries for classification, tokenization, 
stemming, tagging, parsing, semantic reasoning and wrappers for industrial-strength NLP libraries. 
NLTK is intended to support research and teaching in Natural Language or closely related areas.  

3.1.2 Stemming 
 
 Stemming is the technique of decreasing deviating or derived words to their base form. For 
grammatical reasons, documents are going to use different forms of a word, such as meet, meets, 
and meeting. In many situations, it is useful for a search for one of these words to return documents 
that contain another word in the set. Using stemming on the above strings, we will get meet as the 
base form. Stemming chops off the ends of words.  Algorithms for stemming have been studied in 
computer science since the 1960s. The most common and effective algorithm for stemming 
English is Porter's algorithm. We have imported Porter Stemmer [12] from NLTK for stemming 
purpose.   

3.1.3 Lemmatizing  
 
 Lemmatization is the process of converting the words of a sentence to its dictionary form. 
For example, given the words amusement, amusing, and amused, the lemma for each and all would 
be amuse. This aims to remove inflectional endings and to return base or dictionary form of a 
word. This process involves linguistic approach, such as morphological analysis through regular 
relations compiled in finite-state transducers. Importance of lemmatization is very high in this 
project. As to find out the exact meaning of a mail depends on the words. Those words are checked 
with some previous stored words to find whether it matches to a certain label. In this project the 
word “meeting” was one of those most checked words. Now this “Meeting” can come up with the 
same meaning by different form like “meet”, “met”, “meets”. But if we directly check all these 
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word with one word “meeting” it will not get matched. So, to make a list of multiple words for 
only one meaning doesn’t come up with efficiency. Thus the necessity of the lemmatization comes 
in. 

3.1.4 Stop Words 
 
 Stop words is a set of commonly used words in any language which are excluded out before 
or after processing of natural language data which, in our case, is text. The main reason why stop 
words are essential to any program is that, when we remove the words that are very commonly 
used in a given language, we can focus on the important words instead. For removing stop words 
from a document of our program we searched them in NLTK toolkit’s given list and the result we 
got was very accurate.  
  

3.1.5 Chunking and Chinking 
 

Chunking is an analysis of a sentence or phrase which first identifies constituent parts of 
sentences and then links them to higher order units that have discrete grammatical meanings (noun 
groups or phrases, verb groups, etc.). Some fundamental chunking algorithms simply join 
constituent unit on the basis of search patterns. On the other hand approaches that use machine 
learning techniques (classifiers, topic modeling, etc.) can analyze contextual information and thus 
create chunks in a way that they show the semantic relations between the basic constituents. 
A Chunk Rule specifies what to include in a chunk, while a Chink Rule specifies what to exclude 
from a chunk. In other words, chunking creates chunks, while chinking breaks up those chunks. In 
our Scheduling algorithm we used elementary or fundamental chunking method.  

3.2 Scikit-learn 
  
           Scikit-learn is an open source package of efficient tools for data mining, machine learning 
and data analysis. It’s a Python module that integrates a wide range of state-of-the-art machine 
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learning algorithms for medium-scale supervised and unsupervised problems. The Scikit-learn 
package emphasizes to bring machine learning to non-experts by using a general-purpose high-
level language. Focuses on putting on ease of use, performance, documentation, and API 
consistency [19]. It is built on NumPy, SciPy and matplotlib. The Scikit-learn python module made 
it comfortable to implement the machine learning techniques and evaluate the findings and results 
of our experiments that was coded in Python programming language. We used Scikit-learn version 
0.16.1 [21] to implement the HMM algorithm to fulfill our requirements and run the program 
successfully.  
 

 3.3 Classification  
 
 Text Classification issues single or multiple classes to a document according to their 
content and context. Classes are chosen from a previously fixed taxonomy (a hierarchy of 
categories or classes). Generally a text Classification algorithm requires some tasks (extracting 
text, tokenization, stop words removal and lemmatization). Our version of the algorithm combines 
statistical document classification with rule-based filtering, which allows to obtain a high degree 
of precision in a wide range of environments. Statistical classifiers provide a means to use example 
documents to define each category. In turn, rule base classifiers may help to fine-tune the 
classification and correct the output of statistical classifiers. 
 

3.4 Naive Bayes Classification 
 

Naive Bayes classifier is a machine learning algorithm. This Bayesian Classification8 is 
used as a probabilistic learning method. It is not a single algorithm but a family of algorithms that 
all share a common principle, that every feature being classified is independent of the value of any 
other feature. 
                                                
8 See Appendix A.2 
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In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class 
is unrelated to the presence of any other feature. For example, a fruit may be considered to be an 
apple if it is red, round, and about three inches in diameter. Even if these features depend on each 
other or upon the existence of the other features, all of these properties independently contribute 
to the probability that this fruit is an apple and that is why it is known as ‘Naive’.  
 
Naive Bayes model is easy to build and particularly useful for very large data sets. Along with 
simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods. 

Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x) and 
P(x|c). [16] Let’s look at the equation below: 

(ݔ|ܿ)ܲ = (ܿ)ܲ(ܿ|ݔ)ܲ
(ݔ)ܲ … … … (3.1) 

Above, 

● P(c|x) is the posterior probability of class (c, target) given predictor (x, attributes). 
● P(c) is the prior probability of class. 
● P(x|c) is the likelihood which is the probability of predictor given class. 
● P(x) is the prior probability of predictor. 

 

3.4.1 How Naive Bayes algorithm works? 
 

Let’s understand it using an example. Below we have a training data set of weather and 
corresponding target variable ‘Play’ (suggesting possibilities of playing). Now, we need to classify 
whether players will play or not based on weather condition. Let’s follow the below steps to 
perform it. 

Step 1: Convert the data set into a frequency table 
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Step 2: Create Likelihood table by finding the probabilities like Overcast probability = 0.29 and 
probability of playing is 0.64. 

 
Fig 3.1: Naive Bayes Example 

Step 3: Now, use Naive Bayesian equation to calculate the posterior probability for each class. The 
class with the highest posterior probability is the outcome of prediction. So, if there goes a problem 
like Players will play if weather is sunny. Is this statement is correct? 

We can solve it using above discussed method of posterior probability. 

P(Yes | Sunny) = P(Sunny | Yes) * P(Yes) / P (Sunny) … … … (3.2) 

P (Sunny |Yes) = 3/9 = 0.33, P(Sunny) = 5/14 = 0.36, P(Yes)= 9/14 = 0.64 
Now, P (Yes | Sunny) = 0.33 * 0.64 / 0.36 = 0.60, which has higher probability. Naive Bayes 
uses a similar method to predict the probability of different class based on various attributes. 
This algorithm is mostly used in text classification and with problems having multiple classes.  

Naive Bayes classifiers are among the most successful known algorithms for learning to classify 
text documents. That is why we chose to work with this. 
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3.4.2 Spam filtering  
 

An advantage of naive Bayes is that it only requires a small number of training data to 
estimate the parameters necessary for classification. We have used 5500 emails from Enron email 
dataset. These emails have been stored separately according to their category. We have filtered the 
words (ݓଵ, … ,  ,௡) by removing stopwords and lemmatizing the words. For naive bayes classifierݓ
we take the words (ݓଵ, … , ,ଵݓ)ܲ ௡) of an email and calculate the value ofݓ … ,  (௡ݓ

,ଵݓ)ܲ                       … , (௡ݓ = ෑ (௜ݓ)ܲ
௡

௜ୀଵ
     … … … (3.3) 

Now, let’s denote an email as a capital letter E, two classes of emails as Important (I) and spam 
(S). What we need to know next are the two probabilities P(E|I) and P(E|S) and we have to make 
an assumption of conditional independence. The assumption here is that the appearance of a 
particular token w is statically independent of the appearance of any other tokens  ݓ௝ , ݆ ≠ ݅       
given that we have either an important or a spam email. Then we can express P(E|I) and P(E|S) 
as: 

(ܫ|ܧ)ܲ = ,ଵݓ)ܲ … ,  (ܫ|௡ݓ
                                     = ෑ …     (ܫ|௜ݓ)ܲ … … (3.4)

௡

௜ୀଵ
 

And 
(ܵ|ܧ)ܲ = ,ଵݓ)ܲ … ,  (ܵ|௡ݓ

                                     = ෑ (ܵ|௜ݓ)ܲ
௡

௜ୀଵ
   … … … (3.5) 

 
The reason that we set up a training dataset is to estimate the nature of each word, where 
probabilities ܲ(ݓ௜|ܫ) and ܲ(ݓ௜|ܵ) are needed. 
They denote the conditional probability that a given email contains the word ݓ௜ under the 
assumption that this email is spam or important respectively. We estimate these probabilities by 
calculating the frequencies of the words appear in either groups of emails from the training dataset. 
In the following formula,  ܲ(ݓ௜   ⋂ ܵ) is the probability that a given email is an important email 
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and contains the word ݓ௜ . Thus, by Bayes theorem: 
 

(ܵ|௜ݓ)ܲ = ௜ݓ)ܲ   ⋂ ܵ)
ܲ(ܵ)   … … … (3.6) 

And  
(ܫ|௜ݓ)ܲ = ⋂  ௜ݓ)ܲ (ܫ

(ܫ)ܲ    … … … (3.7) 
 
 
The following step is to compute the posterior probability of important email given the overall 
probability of the sampling email by Bayes’ rule, this is the crucial part of the entire classification. 
 

(ܧ|ܫ)ܲ                          = (ܫ)ܲ(ܫ|ܧ)ܲ
(ܧ)ܲ     … … … … (3.8) 

 
                               = (ܫ)ܲ ∏௡௜ୀଵ (ܫ|௜ݓ)ܲ

(ܧ)ܲ    … … … (3.9) 
 
And similarly 
 

(ܧ|ܵ)ܲ                    = (ܵ)ܲ(ܵ|ܧ)ܲ
(ܧ)ܲ     … … … … … … (3.10) 

 
                                = ܲ(ܵ) ∏௡௜ୀଵ (ܵ|௜ݓ)ܲ

(ܧ)ܲ    … … … (3.11) 
 
Therefore we can classify the email by comparing the probabilities of P(I|E) and P(S|E). Firstly, 
we find the ratio of these two probabilities. In the equations below, the denominators P(E) from 
(3.8) and (3.10) cancel out each other. 

(ܧ/ܵ)ܲ
(ܧ/ܫ)ܲ = (ܵ)ܲ(ܵ|ܧ)ܲ

(ܫ)ܲ(ܫ|ܧ)ܲ   … … … (3.12) 

= ܲ(ܵ) ∏௡௜ୀଵ (ܵ|௜ݓ)ܲ
(ܫ)ܲ ∏௡௜ୀଵ (ܫ|௜ݓ)ܲ   … … … (3.13) 
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= ܲ(ܵ)
ෑ  (ܫ)ܲ

௡

௜ୀଵ
(ܵ|௜ݓ)ܲ  

(ܫ|௜ݓ)ܲ   … … … (3.14) 
 
But there is a problem here, the products in the above equations can be extremely small values if 
we have a big amount of words ݓ௜ .  To overcome this issue, we apply log to the probability ratio. 
 

݃݋݈ (ܧ|ܵ)ܲ
= (ܧ|ܫ)ܲ log ൭ ܲ(ܵ)

ෑ  (ܫ)ܲ
௡

௜ୀଵ
(ܵ|௜ݓ)ܲ  

…  ൱(ܫ|௜ݓ)ܲ … . … (3.15) 
      

                  = ݃݋݈ ܲ(ܵ)
+ (ܫ)ܲ ෍

௡

௜ୀଵ
݃݋݈ (ܵ|௜ݓ)ܲ

(ܫ|௜ݓ)ܲ    … … …  (3.16) 
 
At this point, we can use equation (3.16) to calculate the log posterior probability when we receive 
a new email. If the result is greater than zero (which means P(S|E) > P(I|E)), we classify email E 
as spam. Similarly, we classify the email as important if it is less than zero (which means P(S|E) 
< P(I|E)). 

 
3.5 Hidden Markov Model (HMM) 
 

HMM is a tool for representing probability distributions over sequence of observations. 
The HMM assumes that the observation at time t was generated by some process whose state St is 
hidden from the observer. It also assumes that the state of this hidden process satisfies the markov 
property, which is, given the value of St-1, the current state St is independent of all the states prior 
to t-1. [17] Graphically we can explain it as shown in figure 3.1. 
 
The graph shows the dependencies between the variable of the model. S = {S1, S2, S3,....St} is a 
sequence of states, we do not observe S. Y = {Y1,Y2,Y3,...Yt} is a sequence of emissions, we 
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Fig 3.1: Trellis Diagram 

 
observe Y. Y2 is conditionally independent of everything else given S2. S4 is conditionally 
independent of everything else given S3. Probability of being in a particular state at step i is known 
once we know what state we were in at step i-1. Probability of seeing a particular emission at step 
i is known once we know what state we were in at step i. The joint distribution of a sequence of 
states and observations can be factored in the following way: [20]  
 

ܲ( ଵܵ:் , ଵܻ:்) = ܲ(ܵଵ)ܲ( ଵܻ|ܵଵ) ෑ
்

௧ୀଶ
ܲ(ܵ௧|ܵ௧ିଵ)ܲ( ௧ܻ|ܵ௧) … … … (3.17) 

 
To describe HMM even further, we will use an example that is easy to understand. Let’s say father 
brings 3 types of snacks at home: hotchpotch, noodles, and ice-cream. And let us suppose that each 
day of the week may be classified as either of the following: rainy, cold, or hot. But we have no 
way of ascertaining what sort of day it is. 
 
We want to develop a model that predicts which snacks father is going to bring home on a 
particular day, if we know the sequence of snacks that he has been bringing home for the past 
month. The observations (father’s snacks) are dependent on some process which is hidden from 
our view (the weather). 
 
We assume that each day's weather is dependent on and only on the previous day's weather. This 
way the sequence of weather description turns out to be a Markov chain. The probability of today’s 
weather, given that we know yesterday's weather forms the 'transition probability' of the Markov 
Chain. For example, if yesterday was rainy, the probabilities of today's weather may be 0.5 for 
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rainy, 0.3 for cold and 0.2 for hot. The matrix formed by taking all such probabilities is called the 
‘Transition probability matrix’. 
 
Now, we know that father's snacks depends on each day's weather. Like, if it is rainy, father is 
more likely to bring home some hotchpotch. Hence the probabilities may be 0.7 for hotchpotch, 
0.2 for noodles and 0.1 for ice-cream. We construct a matrix containing all such probabilities for 
all weather conditions. This matrix is called the 'Emission probability matrix'. 
 
To fully populate the HMM, we need: 
1. Start probabilities – What are the chances of starting in a state? Or in other words – what weather 
is it more likely to be today? 
In equation (3.17), 

ܲ(ܵଵ)ܲ( ଵܻ|ܵଵ) ݅ݐ ݏℎ݁ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌_ݐݎܽݐݏ. 
 
2. Emission probabilities – What are the chances of each observation occurring in a state? What 
are the chances of father bringing hotchpotch, noodles or ice-cream on a rainy day? 
 
In equation (3.17), 

ܲ( ௧ܻ|ܵ௧) ݅ݐ ݏℎ݁ ݁݉݅ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌_݊݋݅ݏݏ 
3. State Transition probabilities – How frequently do the states change? What are the chances of 
today being rainy, cold or hot given yesterday was rainy? 
In equation (3.17), 

ܲ(ܵ௧|ܵ௧ିଵ) ݅ݐ ݏℎ݁ ݋݅ݐ݅ݏ݊ܽݎݐ  ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌_
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3.6 Dataset 
 
Our dataset contains three types of data they are pre classified (already sorted each 

document under their designated title), Real time emails and data from Google calendar entries. 
Pre classified data is used in our system to train our learning algorithm and we tested them with 
real time incoming emails. This emails were further analyzed with scheduling algorithm matching 
them with data from Google calendar event which were fetched by Google calendar API. 
 

3.6.1 Pre-classified Data 
 

We have looked into many online resource for pre-classified email dataset. Then we have 
used 5500 emails from Enron Email Dataset. [22] 1500 of them are important emails and we have 
stored them in a folder titled “important”. The other 4000 emails are spam emails which we have 
stored in a “spam” folder. Spam emails are greater in number because we have noticed that 
negative recall increases substantially when we use more spam emails in our dataset.     

3.6.2 Real-time Emails 
 

We have used python’s IMAP and http library to log into a gmail account and we fetched 
unseen emails for processing. Each email is striped off HTML and words are tokenized and then 
pos tagged. Then we have eliminated unwanted words and analyzed for any meeting related info. 
For this purpose we prepared some regular expression rules and applied chunking and chinking 
techniques to identify if the document is meeting related. After identifying a meeting email we 
extracted time and date related information in the basis of pos tagging. 
 

3.6.3 Google Calendar API  
 

Another sort of data we have used in our project is Calendar events and we have used 
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Google Calendar API for this. From Google calendar we have extracted events of a user showing 
all of their meetings, schedules and events. This extracted information is used to identify free slots 
and occupied slots. After extracting times and dates from emails (which we talked in 4.2) we then 
compare those with Google calendar events. If that time is already booked or excluded for any 
purpose by the user, no meeting gets fixed. Otherwise a meeting is automatically scheduled. 
 

3.7 System Setup 
 

Hardware and software used in this research played a big role in terms of results. Both 
hardware and software specifications have been mentioned here. 
  

3.7.1 Hardware Specification 
 
CPU: 
Name AMD FX(tm)-8300 
Cores 8 
Clock speed (mhz) 3300 
Typical TDP 95W 
Socket Socket AM3+ 
Microarchitecture Piledriver 
Platform Volan 
Processor core  Vishera 
Core stepping   OR-C0 
CPUID 600F20 
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Manufacturing process 0.032 micron 
Data width 64 bit 
Level 1 cache size  ?  4 x 64 KB 2-way set associative shared 

instruction caches 
8 x 16 KB 4-way set associative data caches 

Level 2 cache size  ?  4 x 2 MB 16-way set associative shared 
exclusive caches 

Level 3 cache size 8 MB 64-way set associative shared cache 
Table 3.1: CPU Specification 

 
 
 
Memory: 
Physical memory 16GB 

Table 3.2: RAM 
 
 
 
GPU: 
GPU NVIDIA GeForce GT 620 

Table 3.3: GPU Specification 
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3.7.2 Software Specification 
 
Name Type Version Architecture 
Anaconda Python distributer Anaconda2 4.2.0 

Python 2.7.12 
32 bit (x86) 

Pycharm Text Editor 2016.2.3 
Build #PC 
162.1967.10. 

32 bit (x86) 

SciKit Learn Python package  0.16.1 32 bit (x86) 
NLTK Natural Language 

Toolkit 
3.2.1 32 bit (x86) 

Table 3.4: Software Requirements 
 
 
OS: 
Name Microsoft Windows 10 Pro 
Version 10.0.10586 
Build Number 10586 
System type 64 bit 

Table 3.5: Operating System Details 
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System Implementation 

 

n the previous chapter, even though we have discussed most of the terminologies as well as 
the algorithms- Naïve Bayes and HMM, we made a lot of changes to both the algorithms for 
them to work accordingly in our system setup. In this chapter, we have talked about those 

changes, our own algorithms and demonstrated our working procedure. First, we have described 
how we used Naïve Bayes and HMM for email classification. Then, we have mentioned the details 
of our meeting scheduling algorithm.  

   
4.1 Email Classification 
 

We stored 1500 important emails and 4000 spam emails into a python dictionary and 
named it ‘documents’. Some pre-processing needed to be done before we ran classifier algorithms 
on these emails. For every email, we ran some methods on that email until we reached the end of 
the dictionary. At first, we imported message_from_string from email module and then we called 
get_payload method on it to get rid of the email multipart problem. This method returns the current 
payload, which will be a list of Message objects when is_multipart() is True, or a string when 
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is_multipart() is False. We also imported BeautifulSoup from bs4 module and used it to strip 
HTML off the email. Then, we got the email texts only. We imported split from re module and 
applied the method on email text, which left us with the tokenized words from these 5500 emails. 
At this point, we have tried various combinations of NLP techniques- stemming, lemmatizing and 
stopwords removing. We looked for a single technique or a combination of these technique that 
would give us the best result. We used frequency distributor to order the words based on the 
number of times they appear in the pre-classified emails. Two different lists were used to store the 
most frequent words from important emails and spam emails. Then we took 2650 words from each 
of these lists (to limit the number of features that the classifier needs to process) and shuffled them 
into a list called word_features. 

  
4.1.1 Naive Bayes Classifier 

 
The goal is to build a classifier that will automatically tag new emails with appropriate 

category labels. We have a list of documents at hand- emails labeled with the appropriate 
categories. The first step in creating a classifier is deciding what features of the input are relevant, 
and how to encode those features. [18] So, we define a feature extractor for documents so that the 
classifier knows which aspects of the data it should pay attention to. We took into account each 
email from ‘documents’ and used the set method to remove the duplicate words from those emails. 
This makes the checking faster. Now for every word in word_features, if that word existed in a 
given email, we associated the word with the category (important or spam) of that email. Thus, we 
found words that were labeled as ‘important’ and words labeled as ‘spam’. And these words:label 
pairs were used as featureset9 for Naive Bayes Classifier. We realize that there are words in 
featureset that are labeled as both important and spam. Now that we've defined our feature 
extractor, we can use it to train a classifier to label new emails. We used ninety percent of the 
featureset as train_set while the remaining ten percent was used as test_set. To check how reliable 
the resulting classifier is, we compute its accuracy on the test_set. And we can use 

                                                
9 featureset: A dictionary, maps from feature names to their values 
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show_most_informative_features() to find out which features the classifier found to be most 
informative. 

 
Apparently in this email dataset, an email that mentions "investment”10 is almost 19.1 times more 
likely to be spam than important, while an email that mentions "appointment" is about 6 times 
more likely to be important.  
 

 
Fig 4.1: Most informative features (Naive Bayes) 

 
Therefore, even though most words could be labeled as both important and spam in the early stage, 
show_most_informative_features() method gives us a ratio which helps to determine the ultimate 
label of any such word. If the ratio is 1, only in that case a word is considered to be both important 
and spam.   

 
We also tweaked show_most_informative_features_in_list(classifier, n) method to get a 
word:label pair where the most informative features were labeled as important or spam. We 
extracted the spam words and stored them in a list called spamwords, similarly we stored the 
important words in a list called importantwords. 

 

                                                
10 See figure 4.1 
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Then we took into consideration the 200 pre-classified emails we used for testing- 100 important 
emails and 100 spam emails. We split the emails into words and checked how many of those words 
existed in importantwords and how many of them existed in spamwords. If there were more 
importantwords, the email was classified as an important email. If importantwords and  
spamwords were equal, we could not determine the email category. Otherwise, the email was 
classified as a spam email. Finally, we calculated the accuracy based on the number of important 
emails and spam emails that were classified correctly by our algorithm. Then we tried various 
combinations of NLP techniques- stopwords removing, stemming, lemmatizing on Naïve Bayes 
Classifier to inspect the differences in accuracy as well as to find the best method among them. 
The variants were: 1. Basic Naive Bayes, 2. Removing Stopwords, 3.Stemming, 4. Lemmatizing, 
5. ‘Removing Stopwords’ and Stemming, 6. ‘Removing Stopwords’ and Lemmatizing, 7. 
Lemmatizing and Stemming, 8. ‘Removing Stopwords’,  Lemmatizing and Stemming. Among all 
these combinations, ‘removing stopwords’ and lemmatizing gave the most accuracy.   
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4.1.2 HMM 
 

The goal is same here- to build a classifier that will automatically tag new emails with 
appropriate category labels. We used two states- important and spam. Word_features were used 
as observations. We used start_probability {‘important’: 0.5, ‘spam’: 0.5}. Then we created a 
matrix and named it y which looks like the following:  

word_features spam                   important 
 Meeting  4  20 
Discount 18 3 
Assignment 2 12 
Office 6 23 
Coupon 11 0 
Offer 13 6 
Valid 10 8 

Table 4.1: Hidden Markov Model (word_features) 
 

For each word in word features (observations), it counts the number of times that word appears in 
important emails and spam emails. We used the following algorithm to populate this matrix: 
for each word in observations: 

for each email in documents: 
 for each word in email: 

if the word matches with an observation: 
   if the email is spam: 
    increment y[word][spam] 
   else: 
    increment y[word][important] 
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The emission_probability represents how likely a word is to be an important word or a spam word 
for each state. For instance, the word ‘discount’ has a 10% chance to appear in an important email 
while the same word has a 60% chance to appear in a spam email. We have used the following 
algorithm to get the emission matrix: 
 
for each pair in y: 

for each element in the pair: 
append the first element to emission_probability[spam] 
increment spamcount 
append the second element to emission_probability[important] 
increment importantcount  

  
for each state in emission_probability: 

for each observation in the state: 
if state is spam: 

emission_probability[spam][observation] = 
emission_probability[spam][observation]/ spamcount 

else: 
emission_probability[important][observation] = 
emission_probability[important][observation]/ importantcount 

 
The transition_probability represents the change of the state in the underlying Markov chain. For 
instance, if a word is spam, transition_probability dictates how likely the next word is going to be 
spam as well. We have used the following algorithm: 
 
for each pair in y: 
    if y[word][spam] is greater than y[word][important]: 
    //first word is spam 
    //check for next word  
        if y[next word][spam] is higher than y[next word][important]: 
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 //immediate word after spam is also a spam 
            increment transition_probability [spam][spam] 
        else if y[next word][spam] equals y[next word][important]: 

//immediate word after spam has equal chance of being a spam or important word 
increment transition_probability[spam][spam] 
increment transition_probability[spam][important] 

        else: 
//immediate word after spam is an important word 
increment transition_probability[spam][important] 

    else if y[word][spam] is less than y[word][important]: 
        //first word is important 
        //check for next word 
        if y[next word][spam] is greater than y[next word][important]: 
            //immediate word after important is a spam 

increment transition_probability [important][spam] 
        else if y[next word][spam] equals y[next word][important]: 
            //immediate word after important has equal chance of being a spam or important word 

increment transition_probability[important][spam] 
increment transition_probability[important][important] 

        else: 
            //immediate word after important is an important word 

increment transition_probability[important][important] 
//check next word 

 
Total Words After Spam is the summation of transition_probability[spam][spam] and 
transition_probability[spam][important]. We get the new transition_probability[spam][spam] by 
dividing the old transition_probability[spam][spam] by Total Words After Spam. Similarly we get 
transition_probability[important][important] 
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We used hmm from sklearn module and set the start_probability, transition_probability and 
emission_probability. Then, like in naive Bayes classifier, we took 200 pre-classified emails for 
testing- 100 important emails and 100 spam emails. We split the email into words and added those 
words as observations and named the list observe. If there were more importantwords, the email 
was classified as an important email. If importantwords and  spamwords were equal, we could not 
determine the email category. Otherwise, the email was classified as a spam email. HMM 
algorithm was also run with eight different combinations of NLP techniques like Naive Bayes 
algorithm. This time we got a different result. HMM with stemming outperformed all the other 
seven variants. After that we compared the best result of Naive Bayes algorithm with the best result 
of HMM. Overall HMM was more successful in identifying spam and important emails from the 
test dataset. We later chose HMM to be our primary classifier for the system.  
  

 4.2 Meeting Scheduling 
 
After getting a new mail, our meeting scheduling works in 3 basic process. 
Step 1: Fetch unseen mail from server 
Step 2: Determine whether the mail is important or spam 
Step 3: Check if email contains meeting request 
 
if (important)  

check if asks for meeting 
if (true)  

check time and date with calendar 
If clashes 

no meeting fixed 
Else 

Meeting fixed 
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Step 1. Fetching Mails from Server 
  
First, our application gets connected over an SSL encrypted socket (to use this it needs a socket 
module that was compiled with SSL support). If host is not specified, '' (the local host) is used. 
If port is omitted, the standard IMAP4-over-SSL port (993) is used. keyfile and certfile are also 
optional - they can contain a PEM formatted private key and certificate chain file for the SSL 
connection. It needs imaplib library to get all these things done successfully. [23] 
  
After getting connected successfully our application logs in to the user's account by another library 
called getpass. With the name it may seem that it only prompt the user for a password but this 
module comes up with two functions, getpass.getpassand getpass.getuser. The user is prompted 
using the string prompt with the first one which defaults to 'Password: ' and the second checks the 
environment variables LOGNAME, USER, LNAME and USERNAME, in order, and returns the 
value of the first one which is set to a non-empty string. If none are set, the login name from the 
password database is returned on systems which support the pwd module, otherwise, an exception 
is raised. 
  
When gets logged in, it specifically goes to inbox. Then it searches for “unseen” message. If any 
new message arrives to inbox it gets automatically set to unseen. We then fetched the email and 
save it to a variable named “raw_email”. You can simply guess with the name of the variable that 
it stores the raw email in the variable. Therefore we need to exclude those unnecessary information 
(widely known as multipart problem) to get the actual data of the email which will be used to 
determine whether it is an important or spam. 
  
Therefore we used payload11 to extract the original message. This process gives us only 
information of sender, recipient, subject and body. Then it Step 2 is executed. 
                                                
11 The term 'payload' is used to distinguish between the 'interesting' information in a chunk of data or similar, and 
the overhead to support it. This being carried within a packet or other transmission unit. The payload does not 
include the "overhead" data required to get the packet to its destination. To a communications layer that needs some 
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Step 2. Determine whether the mail is important or spam 
The extracted body then passes through our spam detection algorithm (HMM) to find out if the 
mail was spam or important. After detecting the email with respective category, this email is saved 
to a folder with same category. 
  
Step 3. Check if email contains a meeting request 
For this project we took “meet” as the base word. Therefore, a list is taken to store all the synset12 of 
the word “meet”. There are two more lists named dayNN and monthNN storing the names of all 
days and months respectively. We then created a regular expression which detects if that email 
falls under the meeting category. This expression is 
  

PRP+VB || [meet] + CD  
  
Any word could be chosen other than “meet” based on one’s preference and their needs and that’s 
what makes our approach versatile. In our project we have shown one example of classifying 
meeting related important emails. Same process can also be applied to determine if the email is 
about “Birthday” wishes or “Press Conference”. 

                                                
of the overhead data to do its job, the payload is sometimes considered to include the part of the overhead data that 
this layer handles. 
 
12 A set of one or more synonyms that are interchangeable in some context without changing the truth value of the 
proposition in which they are embedded. 
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 .  
Fig 4.2: Work Flow 
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Experiments and Result Analysis 

 
 

n the previous chapter we have discussed about the system implementation of our research. 
We have demonstrated how we built our algorithms. Now we are going to talk about the results 
we obtained from our experiments upon the implementation of this system. This chapter 

describes the experiments in two parts. In the first part, we discuss about the classification results 
and analysis. Later we show the output generated by our intelligent email assistant. 
 

5.1 Classification 
 

The Results were found by experimenting on two machine learning algorithms with various 
combinations of different approaches and the result analysis are based on their accuracy, precision, 
recall and F-measure. [24] 
 
Accuracy is the representation of how many true values are found comparing to all data. But it is 
not the only metric for evaluating the effectiveness of a classifier. Two other useful metrics 
are precision and recall. 
Precision measures the exactness of a classifier. A higher precision means less false positives, 
while a lower precision means more false positives. This is often at odds with recall, as an easy 
way to improve precision is to decrease recall.  

I
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Recall measures the completeness, or sensitivity, of a classifier. Higher recall means less false 
negatives, while lower recall means more false negatives. Improving recall can often decrease 
precision because it gets increasingly harder to be precise as the sample space increases. 
 

Accuracy is calculated using the formula, ்௉ା்ே
்௉ା்ேାி௉ାி   - - - - - - - - - - - - - (5.1) 

 
Positive Precision is calculated using the formula, ்௉

்௉ାி௉ - - - - - - - - - - - - -(5.2) 
Negative Precision is calculated using the formula, ிே

ிேା்ே - - - - - - - - - - - -(5.3) 
 
Positive Recall is calculated using the formula,   ்௉

்௉ାிே - - - - - - - - - - - ----(5.4) 
Negative Recall is calculated using the formula, ிே

ிேା்௉ - - - - - - - - - - -  ----(5.5) 
 

Where TP stands for true positive (actual and test data is accurately classified), TN stands for true 
negative (actual and predicted test data both are inaccurately classified), FP stands for false 
positive (actual data is inaccurate but predicted test data as accurate) and FN stands for false 
negative (actual data is accurate but predicted test data as inaccurate). 
F-measure is used to measure an experiment’s accuracy. F-measure can be interpreted as a 
weighted average of the precision and recall. F-score reaches best at 1 and worst at 0. 
  

Positive F-measure formula, 2· ୮୭ୱ୧୲୧୴ୣ ௣௥௘௖௜௦௜௢௡ ∗୮୭ୱ୧୲୧୴ୣ ௥௘௖௔௟௟ 
୮୭ୱ୧୲୧୴ୣ ௣௥௘௖௜௦௜௢௡ା୮୭ୱ୧୲୧୴ୣ ௥௘௖௔௟௟- - - - - - - - - - - ------(5.6) 

Negative F-measure formula, 2· ୬ୣ୥ୟ୲୧୴ୣ ௣௥௘௖௜௦௜௢௡ ∗୬ୣ୥ୟ୲୧୴ୣ ௥௘௖௔௟௟ 
୬ୣ୥ୟ୲୧୴ୣ ௣௥௘௖௜௦௜௢௡ା୬ୣ୥ୟ୲୧୴ୣ ௥௘௖௔௟௟- - - - -  - - - - ------(5.7) 

5.1.1 Classification Analysis  
 

In total, there are 5500 email samples containing 1500 important mails and 4000 spam 
mails for training set and 200 emails containing 100 important mails and 500 spams for test set 
were taken for classification analysis. 
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5.1.1.1 Experiment with Naive Bayes 
 

As stated earlier classifying with Naive Bayes algorithm using basic approach along with 
various combinations of 3 different processes; Stop Words, Stemming and Lemmatization were 
used in this experiment. Table 5.1 describes evaluation on test set using basic approach along with 
various combinations of 3 different processes in Naive Bayes algorithm. Figure 5.1 shows the 
comparison among different approaches used to classify emails based on Naive Bayes Algorithm. 
Figure 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 were taken from output window of PyCharm which 
we used to run our code written in python. 
In table 5.1, in total 200 emails were experimented as test set where 100 was important email and 
100 was spam email. Some instances were classified correctly, some were classified incorrectly 
and very few emails remained indeterminate as the possibility of being both important and spam 
were 50% in these emails. The indeterminate instances were ignored in this case as they could be 
either important or spam. Using basic Naive Bayes approach out of 100 important emails 68 
instances were classified correctly, 23 instances were classified incorrectly and 9 instances could 
not be determined. And out of 100 spams 69 instances were classified correctly, 15 instances were 
classified incorrectly and 16 instances could not be determined. The total accuracy achieved was 
78.28%.  
Then again using only stop words, out of 100 important emails 83 instances were classified 
correctly, 13 instances were classified incorrectly and 4 instances could not be determined. And 
out of 100 spams 57 instances were classified correctly, 25 instances were classified incorrectly 
and 18 instances could not be determined. The total accuracy achieved was 78.65%.  
Using only stemming out of 100 important emails 85 instances were classified correctly, 7 
instances were classified incorrectly and 8 instances could not be determined. And out of 100 
spams 52 instances were classified correctly, 40 instances were classified incorrectly and 8 
instances could not be determined. The total accuracy achieved was 74.46%.  
Using Lemmatizing out of 100 important emails 72 instances were classified correctly, 16 
instances were classified incorrectly and 12 instances could not and out of 100 spams 58 instances 
were classified correctly, 29 instances were classified incorrectly and 13 instances could not be 
determined. The total accuracy achieved was 74.29%.     



 

39 
 

Process Trained 
data 

Test 
data 

Correctly 
Classified 
instances 

Incorrectly 
Classified 
instances 

Indeter- 
-minate 
instances 

Accuracy*13 
(Mail 
Classifi--
cation) 

Impor- 
-tant 

Spam Impor- 
-tant 

Spam Impor-
-tant 

Spam  

Basic 5500 200 68 69 23 15 9 16 78.28 

Stop 
Words 

5500 200 83 57 13 25 4 18 78.65 

Stemming 5500 200 85 52 7 40 8 8 74.46 

Lemmatizing 5500 200 72 58 16 29 12 13 74.29 

Stop Words 
+ 
Stemming 

5500 200 74 58 14 30 12 12 75.00 

Stop Words 
+ 
Lemmatizing 

5500 200 70 67 16 20 14 13 79.19 

Lemmatizing 
+ 
Stemming 

5500 200 85 52 6 41 9 7 74.46 

Stop Words 
+ 
Lemmatizing 
+ 
Stemming 

5500 200 72 59 15 29 13 12 74.86 

Table 5.1: Evaluation on Test Set (Naive Bayes in Different Processes) 
                                                
13 The accuracy was calculated considering only the instances that could be determined. 
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Fig 5.1: Accuracy Comparisons (Naive Bayes) 

 
 
Using both stop words and stemming out of 100 important emails 74 instances were classified 
correctly, 14 instances were classified incorrectly and 12 instances could not be determined. And 
out of 100 spams 58 instances were classified correctly, 30 instances were classified incorrectly 
and 12 instances could not be determined. The total accuracy achieved was 75%. 
 
Using both stop words and lemmatizing out of 100 important emails 70 instances were classified 
correctly, 16 instances were classified incorrectly and 14 instances could not be determined. And 
out of 100 spams 67 instances were classified correctly, 20 instances were classified incorrectly 
and 13 instances could not be determined. The total accuracy achieved was 79.19%. 
 
Using first lemmatizing then stemming out of 100 important emails 85 instances were classified 
correctly, 6 instances were classified incorrectly and 9 instances could not be determined. And out 
of 100 spams 52 instances were classified correctly, 41 instances were classified incorrectly and 7 
instances could not be determined. The total accuracy achieved was 74.46%. 

Basic StopWords Stemming Lemmatizing
StopWords+Stemming

StopWords+Lemmatizing
Lemmatizing+Stemming

Stopwords+Lemmatizing+stemming
Accuracy 78.28 78.65 74.46 74.29 75 79.19 74.46 74.86
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Lastly using stop words, lemmatizing and stemming out of 100 important emails 72 instances were 
classified correctly, 15 instances were classified incorrectly and 13 instances could not be 
determined. And out of 100 spams 59 instances were classified correctly, 29 instances were 
classified incorrectly and 12 instances could not be determined. The total accuracy achieved was 
74.86%. 
 
Figure 7.1 shows accuracy comparison among 8 different combinational approach to Naive Bayes 
and it shows that using stop words and lemmatizing together gives the best accuracy result which 
is 79.19%. 
 
Detailed results found from different approaches using NLTK in python are shown below- 
 

     
Fig 5.2: Results using Basic approach on                Fig 5.3: Results using Stop Words on  
              Naive Bayes                                                                         Naive Bayes 
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Fig 5.4: Results using Stemming on                      Fig 5.5: Results using Lemmatizing on  
               Naive Bayes                                                                       Naive Bayes 
 

     
Fig 5.6: Results using Stop Words & Stemming    Fig 5.7: Results using Stop Words & Lemmat- 
             on Naive Bayes                                                       -izing on Naive Bayes 
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Fig 5.8: Results using Lemmatizing & Stemm-    Fig 5.9: Results using Stop Words, Lemmatizi-       
             -ing on Naive Bayes                                              -ng & Stemming on Naive Bayes 
 
Table 5.2 describes the detail result of precision, recall and F-measure of the test set using 8 
combinations of different approach to Naive Bayes Classification. The results are measured for 
both positive and negative perspective. Figure 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15 shows the 
comparison among different approaches to calculate precision, recall and F-measure for both 
positive and negative. Figure 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 were taken from output window 
of PyCharm which we used to run our code written in python. They show all of the results in detail. 
In table 5.2, we can see that among all 8 approaches, basic naive bayes gives highest positive 
precision 0.82 and Lemmatizing+Stemming gives lowest positive precision 0.67. Then 
Lemmatizing+Stemming gives the highest positive recall 0.93 and basic naive bayes gives the 
lowest positive recall 0.75. Stop Words gives the highest positive F-measure 0.81 and 
Lemmatizing gives the lowest positive F-measure 0.76. We also see that, Lemmatizing+ Stemming 
gives the highest negative precision 0.90 and basic naive bayes gives the lowest negative precision 
0.75. Then basic naive bayes gives highest negative recall 0.82 and Lemmatizing+Stemming gives 
lowest negative recall 0.56. Lastly, StopWords+Lemmatizing gives the highest negative F-
measure 0.79 and both Stemming and Lemmatizing+Stemming gives the lowest negative F-
measure 0.69. 
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Process Accuracy Precision Recall F-Measure 

Positive Negative Positive Negative Positive Negative 

Basic 78.28 0.82 0.75 0.75 0.82 0.78 0.78 

Stop 
Words 

78.65 0.77 0.81 0.86 0.7 0.81 0.75 

Stemming 74.46 0.68 0.88 0.92 0.57 0.78 0.69 

Lemmatizing 74.29 0.71 0.78 0.82 0.67 0.76 0.72 

Stop Words 
+ 
Stemming 

75.00 0.71 0.81 0.84 0.66 0.77 0.73 

Stop Words 
+ 
Lemmatizing 

79.19 0.78 0.81 0.81 0.77 0.8 0.79 

Lemmatizing 
+ 
Stemming 

74.46 0.67 0.9 0.93 0.56 0.78 0.69 

Stop Words 
+ 
Lemmatizing 
+ 
Stemming 

74.86 0.71 0.8 0.83 0.67 0.77 0.73 

Table 5.2: Precision, Recall and F-Measure of Test Set (Naive Bayes in Different Processes) 
 
 



 

45 
 

 
Fig 5.10: Pos-Precision Comparisons (Naive Bayes) 

 
 

 
Fig 5.11: Pos-Recall Comparisons (Naive Bayes) 
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Fig 5.12: Pos-F-Measure Comparisons (Naive Bayes) 

 

 
Fig 5.13: Neg-Precision Comparisons (Naive Bayes) 
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Fig 5.14: Neg-Recall Comparisons (Naive Bayes) 

 

 
Fig 5.15: Neg-F-Measure Comparisons (Naive Bayes) 
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5.1.1.2 Experiment with Hidden Markov Model 
 

As stated earlier classifying with HMM algorithm using basic approach along with various 
combinations of 3 different processes; Stop Words, Stemming and Lemmatization were used in 
this experiment. Table 5.3 describes evaluation on test set using basic approach along with various 
combinations of 3 different processes in HMM algorithm. Figure 5.16 shows the comparison 
among different approaches used to classify emails based on HMM Algorithm. Figure 5.17, 5.18, 
5.19, 5.20, 5.21, 5.22, 5.23 and 5.24 were taken from output window of PyCharm which we used 
to run our code written in python. 
 
In table 5.3, in total 200 emails were experimented as test set where 100 was important email and 
100 was spam email. Some instances were classified correctly, some were classified incorrectly 
and very few emails remained indeterminate as the possibility of being both important and spam 
were 50% in these emails. The indeterminate instances were ignored in this case as they could be 
either important or spam. Using basic HMM approach out of 100 important emails 80 instances 
were classified correctly, 17 instances were classified incorrectly and 3 instances could not be 
determined. And out of 100 spams 81 instances were classified correctly, 11 instances were 
classified incorrectly and 8 instances could not be determined. The total accuracy achieved was 
85.19%.  
 
Then again using only stop words, out of 100 important emails 87 instances were classified 
correctly, 11 instances were classified incorrectly and 2 instances could not be determined. And 
out of 100 spams 71 instances were classified correctly, 19 instances were classified incorrectly 
and 10 instances could not be determined. The total accuracy achieved was 84.04%.  
 
Using only stemming out of 100 important emails 87 instances were classified correctly, 10 
instances were classified incorrectly and 3 instances could not be determined. And out of 100 
spams 91 instances were classified correctly, 7 instances were classified incorrectly and 2 instances 
could not be determined. The total accuracy achieved was 91.28%.  
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Process Trained 
Data 

Test 
data 

Correctly 
Classified 
instances 

Incorrectly 
Classified 
instances 

Indeter- 
-minate 
instances 

Accuracy 
(Mail 
Classifi--
cation) 

Impor- 
-tant 

Spam Impor- 
-tant 

Spam Impor-
-tant 

Spam  

Basic 5500 200 80 81 17 11 3 8 85.19 

Stop 
Words 

5500 200 87 71 11 19 2 10 84.04 

Stemming 5500 200 87 91 10 7 3 2 91.28 

Lemmatizing 5500 200 83 77 15 17 2 6 83.33 

Stop Words 
+ 
Stemming 

5500 200 91 74 7 22 2 4 85.05 

Stop Words 
+ 
Lemmatizing 

5500 200 86 68 13 23 1 9 81.05 

Lemmatizing 
+ 
Stemming 

5500 200 86 89 10 7 4 4 91.15 

Stop Words 
+ 
Lemmatizing 
+ 
Stemming 

5500 200 91 72 7 23 2 5 84.46 

Table 5.3: Evaluation on Test Set (Hidden Markov Model in Different Processes) 
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Using Lemmatizing out of 100 important emails 83 instances were classified correctly, 15 
instances were classified incorrectly and 2 instances could not be determined. And out of 100 
spams 77 instances were classified correctly, 17 instances were classified incorrectly and 6 
instances could not be determined. The total accuracy achieved was 83.33%.     
Using both stop words and stemming out of 100 important emails 91 instances were classified 
correctly, 7 instances were classified incorrectly and 2 instances could not be determined. And out 
of 100 spams 74 instances were classified correctly, 22 instances were classified incorrectly and 4 
instances could not be determined. The total accuracy achieved was 85.05%. 
Using both stop words and lemmatizing out of 100 important emails 86 instances were classified 
correctly, 13 instances were classified incorrectly and 1 instances could not be determined. And 
out of 100 spams 68 instances were classified correctly, 23 instances were classified incorrectly 
and 9 instances could not be determined. The total accuracy achieved was 81.05 %. 
Using first lemmatizing then stemming out of 100 important emails 86 instances were classified 
correctly, 10 instances were classified incorrectly and 4 instances could not be determined. And 
out of 100 spams 89 instances were classified correctly, 7 instances were classified incorrectly and 
4 instances could not be determined. The total accuracy achieved was 91.15%. 
Lastly using stop words, lemmatizing and stemming out of 100 important emails 91 instances were 
classified correctly, 7 instances were classified incorrectly and 2 instances could not be 
determined. And out of 100 spams 72 instances were classified correctly, 23 instances were 
classified incorrectly and 5 instances could not be determined. The total accuracy achieved was 
84.46 %. 
Figure 5.16 shows accuracy comparison among 8 different combinational approach to Hidden 
Markov Model and it shows that using only stemming gives the best accuracy result which is 
91.28%. 
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Fig 5.16: Accuracy Comparisons (Hidden Markov Model) 

 
Detailed results of Hidden Markov Model found from different approaches using NLTK in python 
are shown below- 
 

     
Fig 5.17: Results using Basic approach on         Fig 5.18: Results using Stop Words on  
                 HMM                                                                               HMM 
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Fig 5.19: Results using Stemming on                      Fig 5.20: Results using Lemmatizing on  
                HMM                                                                                HMM 

     
Fig 5.21: Results using Stop Words & Stemm-   Fig 5.22: Results using Stop Words & Lemmati- 
               -ing on HMM                                                       -zing on HMM 
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Fig 5.23: Results using Lemmatizing & Stemm-   Fig 5.24: Results using Stop Words, Lemmat-       
               -ing on HMM                                                          -izing & Stemming on HMM 
 
Table 5.4 describes the detail result of precision, recall and F-measure of the test set using 8 
combinations of different approach to HMM based Classification. The results are measured for 
both positive and negative perspective. Figure 5.33, 5.34, 5.35, 5.36, 5.37 and 5.38 shows the 
comparison among different approaches to calculate precision, recall and F-measure for both 
positive and negative. Figure 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23 and 5.24 were taken from 
output window of PyCharm which we used to run our code written in python. They show all of 
the results in detail. 
In table 5.4, we can see that among all 8 approaches, stemming gives highest positive precision 
0.93 and StopWords+Lemmatizing gives lowest positive precision 0.79. Then Stop 
Words+Stemming and StopWords+Lemmatizing+Stemming gives the highest positive recall 0.93 
and basic naive bayes gives the lowest positive recall 0.82. Stemming and Lemmatizing+ 
Stemming gives the highest positive F-measure 0.91 and StopWords+ Lemmatizing gives the 
lowest positive F-measure 0.83. We also see that, StopWords+Stemming and 
StopWords+Lemmatizing+Stemming give the highest negative precision 0.91 and basic HMM 
gives the lowest negative precision 0.83. Then Stemming and Lemmatizing+Stemming give 
highest negative recall 0.93 and StopWords+Lemmatizing gives lowest negative recall 0.75. 
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Lastly, Stemming and Lemmatizing+Stemming give the highest negative F-measure 0.91 and 
StopWords+ Lemmatizing gives the lowest negative F-measure 0.79. 
 
Process Accuracy Precision Recall F-Measure 

Positive Negative Positive Negative Positive Negative 

Basic 
85.19 

0.88 0.83 0.82 0.88 0.85 0.85 

Stop 
Words 84.04 

0.82 0.87 0.89 0.79 0.85 0.83 

Stemming 
91.28 

0.93 0.90 0.90 0.93 0.91 0.91 

Lemmatizing 
83.33 

0.83 0.84 0.85 0.82 0.84 0.83 

Stop Words 
+ 
Stemming 85.05 

0.81 0.91 0.93 0.77 0.86 0.84 

Stop Words 
+ 
Lemmatizing 81.05 

0.79 0.84 0.87 0.75 0.83 0.79 

Lemmatizing 
+ 
Stemming 91.15 

0.92 0.90 0.9 0.93 0.91 0.91 

Stop Words 
+ 
Lemmatizing 
+ 
Stemming 84.46 

0.80 0.91 0.93 0.76 0.86 0.83 

Table 5.4: Precision, Recall and F-Measure of Test Set (HMM in Different Processes) 
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Fig 5.25: Pos-Precision Comparisons (HMM) 

 

 
Fig 5.26: Pos-Recall Comparisons (HMM) 
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Fig 5.27: Pos-F-Measure Comparisons (HMM) 

 

 
Fig 5.28: Neg-Precision Comparisons (HMM) 
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Fig 5.29: Neg-Recall Comparisons (HMM) 

 

 
Fig 5.30: Neg-F-Measure Comparisons (HMM) 
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5.1.2 Comparison Analysis 
 

After running both Naive Bayes and HMM algorithm in 8 combinations of 3 different 
processes along with basic approach we find different classification accuracy for different  

 
Process Accuracy 

(Mail Classification) 
Naive Bayes Algorithm HMM Algorithm 

Basic 78.28 85.19 

Stop 
Words 

78.65 84.04 

Stemming 74.46 91.28 
Lemmatizing 74.29 83.33 
Stop Words 
+ 
Stemming 

75.00 85.05 

Stop Words 
+ 
Lemmatizing 

79.19 81.05 

Lemmatizing 
+ 
Stemming 

74.46 91.15 

Stop Words 
+ 
Lemmatizing 
+ 
Stemming 

74.86 84.46 

Table 5.5: Accuracy Comparison between Naive Bayes and HMM Algorithm. 



 

59 
 

processes. Table 5.5 describes comparison among different accuracies found in different processes 
of Naive Bayes and HMM algorithm.  
 
Figure 5.31 clearly shows that in every process HMM algorithm gives better accuracy than Naive 
Bayes algorithm. Though both algorithms get pretty closer when we use Stop Words and 
Lemmatizing (79.19 & 81.05) but even here HMM algorithm is giving better accuracy than Naive 
Bayes algorithm. Figure 5.32 represents the graphical representation of Naive Bayes vs HMM 
algorithm. The dotted points represent the respective accuracies for different approach to both 
algorithms and the curve of HMM is always higher than the curve of Naive Bayes algorithm. And 
it is the highest when we use only stemming. So, we can come to the conclusion that to classify 
emails HMM is always better than Naive Bayes algorithm and using only stemming provides the 
highest accuracy.   
 

 
Fig 5.31: Accuracy Comparison between Naive Bayes and HMM Algorithm 
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Fig 5.32: Accuracy Comparison between Naive Bayes and HMM Algorithm 

 
 

5.2 Scheduler 
 

Even though the underlying algorithm is not that simple, automatic meeting scheduling 
looks like a piece of cake in plain eyes. If there is no clash, meaning the recipient does not already 
have a calendar event at that time, our email assistant fixes a meeting at the requested time in the 
following steps (From here on, we will refer to our email assistant as Emma) : 

 
Step 1a: Sender must Cc Emma, our intelligent email assistant 
Step 2a: Emma will know if the email contains a meeting request 
Step 3a: Emma will send the sender a confirmation of the appointment. 
Step 4a: Appointment will be added on both users’ Google calendar. 
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Fig 5.33: Step 1a 

 
 

 
Fig 5.34: Step 2a 

 
 

 
Fig 5.34: Step 3a 
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Fig 5.34: Step 4a 

 
On the other hand, if the recipient already has a calendar event at that time, Emma will notify the 
sender that the meeting cannot be fixed at the requested time. Sender can reschedule. This happens 
in the following way:  
Step 1b: Another person asks for a meeting at the same time and Cc Emma. 
Step 2b: Emma analyzes the email and extracts the date and time of meeting request. 
Step 3b: Emma checks the recipient’s Google calendar and finds out s/he already has a meeting on 
that time. 
Step 4b: Emma notifies the sender that the meeting cannot be fixed at that time. But s/he can 
reschedule if s/he wants. 
 

 
Fig 5.35: Step 1b
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Fig 5.36: Step 2b 

 

 
Fig 5.37: Step 3b 

 
Fig 5.38: Step 4b 
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Conclusion 

 
 

e have come a long way from where we started our research a year ago. We like to 
think we have accomplished a great deal of things, but also acknowledge that we 
still have many areas to improve. We faced many difficulties over the course of the 

research, most of which we have successfully overcome. There remains a few with which we did 
not find a way to work around. Such limitations forced us to adapt to them and re-evaluate our 
methodologies. We are confident that we have done it well. We have also discovered the scope for 
further improvement and extension of our work. In this final chapter, we have talked about the 
difficulties and future plan before we drew a conclusion to this report.   
 

6.1 Difficulties 
 Email classification constitutes the most part of our work. Our classifier algorithms, both 
Naive Bayes and HMM, work in a way that can categorize emails in any number of classes like 
important, urgent, work, social, promotions, forums, spam and a hundred more. Yet we have 
worked on binary classification - important and spam. It is entirely because of the scarcity of 
dataset. Our algorithms largely depend on pre-classified dataset. Among all the resources we could 
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get our hands on, we only found email dataset for important and spam emails. We could not train 
our algorithms on more data also because our working computers did not have the configuration 
to work with more than 5500 emails. If we could increase our trainset, we believe we would 
achieve better accuracy. For HMM, we had to use an older version of sklearn because the newest 
version did not support the hmm python module we have used. For a very few emails, our 
algorithms could not categorize them into any class due to the nature of those emails - we found 
equal number of important and spam words in those emails. Another difficulty that we faced while 
implementing HMM is precisely calculating emission probability and transmission probability of 
5300 words. As we used Google’s calendar API to work with user’s daily events, our scheduler 
algorithm is not compatible with any other event manager service.  
 
 
6.2 Future Plan 
 

For any research, there is always room for improvement. Ours is not an exception of that. 
While we have marked the end of our research for the time being, we have also pointed out some 
areas where this research can be stretched:  
     

1. Other Algorithms: Other probabilistic graphical model like conditional random field 
(CRF), maximum entropy etc. can be used to try to achieve better accuracy than HMM.  
 

2. More Analysis Means Better Accuracy : System will not only analyze text but also 
contents of attached files such as pdf, txt, ppt. Computers with better configuration should 
be used in order to be able to work with more data.  

 
3. No Limit on Categories: Currently we are categorizing an email based on two categories- 

spam and important. In future we want to incorporate more categories such as social, 
family, educational, research, technology etc. as well as make it possible for users to create 
their own categories. We will depend on email dataset for the former but the latter can be 
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achieved rather easily. A user will define the domain for his customized category. For 
instance, a university professor can categorize the emails he receives from the university 
in a different section while he categorizes the emails from different conferences in another 
section. 
 

4. Smarter Email Assistant: The system will use past email interactions to recover relevant 
information for the user to assist in writing their reply. It will also try to understand user’s 
state of mind to generate reply. The system won’t be confined in scheduling meetings, it 
will act as humanly as possible to carry out a general conversation via email. 

 

6.3 Conclusion  
 

In summary, we propose a comparative approach to email classification using Naive Bayes 
Classifier and HMM. We categorize emails by considering only text part from body of the 
message. Because we consider relative words and sentences as feature. After running the same 
variants on both the algorithms, we compared the results and used HMM for classification because 
it gave better accuracy. Along with email classification, we have also showed how an AI based 
meeting scheduler can appoint meetings automatically through emails without harming our privacy 
and serve as our convenience by saving our valuable time. The structure of our research has been 
built in such a way that with proper dataset and minor altercation it can work to classify texts in 
any number of categories. 
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Appendix A 
A.1 Machine Learning 
 

Machine learning is a type of artificial intelligence (AI) that provides computers with the 
ability to learn without being explicitly programmed [6]. When exposed to new data, computer 
programs are enabled to learn, grow, change, and develop by themselves. We are already seeing 
Machine Learning embedded in many services like Gmail, Search, Maps. In Gmail, Priority Inbox 
automatically identifies our important incoming messages and separates them out from everything 
else. It learns over time what is important to us, and what isn’t. Smart Reply is another Inbox 
feature that suggests up to three responses based on the emails one gets. For those emails that only 
need a quick response, it can take care of the thinking and save time spent typing. The responses 
get better over time as the system learns.  
 
There are three types of machine learning: [6] 
 
Supervised: Datasets are provided which are used to train the machine and get the desired outputs. 
Unsupervised: No datasets are provided, instead the data is clustered into different classes. 
Semi-supervised: Some data is labeled but most of it is unlabeled and a mixture of supervised and 
unsupervised techniques can be used. 



 

68 
 

A.1.1 Supervised 
 
The majority of practical machine learning uses supervised learning. A supervised learning 

algorithm analyzes the training data and produces an inferred function, which can be used for 
mapping new examples. In other words, supervised learning is where there is a set of input (x) and 
output variables (y) and an algorithm is used to learn the mapping function from the input to the 
output: 

y = f(x) … … … (A1) 
Main objective of supervised learning is to approximate the mapping function so well that when 
there is new input data (x), we can predict the output variables (y) for that data. It is called 
supervised learning because the process of an algorithm learning from the training dataset can be 
thought of as a teacher supervising the learning process.  
Classification is one type of Supervised Machine Learning.  Inputs are divided into two or more 
classes, and the learner must produce a model that assigns unseen inputs to one or more of these 
classes. Spam filtering is an example of classification, where the inputs are email messages and 
the classes are “important” and "spam".  

 
A.1.2 Unsupervised 
 

Sometimes there is no corresponding output variables for input data. It is called 
unsupervised learning. Unsupervised learning can be seen as a type of machine learning algorithm 
used to draw deduction from datasets consisting of input data with unlabeled responses.  
 
The goal for unsupervised learning is to model the underlying structure or distribution in the data 
in order to learn more about the data. These are called unsupervised learning because unlike 
supervised learning, there is no correct answers and there is no teacher. Algorithms are left to their 
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own devises to discover and present the structure in the data. 
 
The most common unsupervised learning method is cluster analysis, which is used for exploratory 
data analysis to find hidden patterns or grouping in data.  
 

A.1.3 Semi-Supervised 
 

When there is a large amount of input data (x) but only some of the data is labeled (y), it is 
called semi-supervised machine learning. 

Many real world machine learning problems fall into this area. This is because it can be expensive as 
well as time-consuming to label very large amount of data. Often it may require access to domain 
experts whereas unlabeled data is cheap and easy to collect and store. 

Semi-supervised learning techniques are used with a view to discovering and learning the structure in 
the input variables. 

Naive Bayes Classifier is a supervised machine learning algorithm. HMM can be both supervised 
and unsupervised. In our research, we have implemented HMM using hidden and observed state 
sequences which is supervised learning. But other techniques of HMM that use Viterbi algorithm 
and Baum-Welch algorithm fall into unsupervised learning category.    
 

A.2 Bayesian Classification 
 

The Bayesian Classification represents a supervised learning method as well as a statistical 
method for classification. It assumes an underlying probabilistic model and it allows us to capture 
uncertainty about the model in a principled way by determining probabilities of the outcomes. It 
can solve diagnostic and predictive problems.  
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Bayesian classification provides practical learning algorithms where prior knowledge and 
observed data can be combined. Bayesian Classification provides a useful perspective for 
understanding and evaluating many learning algorithms. It calculates explicit probabilities for 
hypothesis and it is robust to noise in input data. 
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