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Abstract: 
 

 

To be considered as an efficient assistant, power semiconductor devices are being used in many 

power converter applications and technologies, particularly with high variable loads. In this 

regard, monitoring temperature of the device junction is indispensable. In this literature review, 

the characteristics of Non Punch Through (NTP) Insulated Gate Bipolar Transistor (IGBT) 

during the turn off state has been analyzed with the change in temperature in different carrier 

lifetimes. Moreover, the anode voltage, anode current, carrier charge and power loss 

characteristics of IGBT is shown by comparing the ideal linear model and parabolic model with 

temperature variance. 
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Chapter 1 

Introduction 

 

An Insulated-Gate Bipolar Transistor (IGBT) is a three-terminal power semiconductor device 

which is a combination of the characteristics of power MOSFET Input and bipolar transistor. 

AsIGBT is a minority carrier device with high input impedance and large bipolar current 

carrying capability, it was initially used as an electronic switch with efficiency and fast 

switching. The internal voltage drop of a bipolar transistor in its turn on state is less than that in a 

power MOSFET with comparable current and blocking voltage. On the other hand, a MOSFET 

can be turned on at the gate with less energy than a bipolar transistor, which requires a relatively 

high current that has to be maintained throughout the on period. That’s why IGBT is a functional 

integration of Power MOSFET and BJT devices in monolithic form. The IGBT is also a three 

terminal (gate, collector, and emitter) full-controlled switch. Its gate/control signal takes place 

between the gate and emitter, and its switch terminals are the drain and emitter. It is a 

combination of the low on state resistance of power bipolar transistor and the high input 

impedance of power MOSFET gave a major advantage where the high impedance allows 

controlled turn-on and gate controlled turn off.[3] 

 

However, IGBT is preferable in many applications in power electronics area, specifically in 

Pulse Width Modulated (PMW) servo and the three-phase drives requiring high dynamic range 

control and low noise. Furthermore, it switches electric power in many modern appliances: 

variable frequency drives (VFDs), electric cars, trains, variable speed refrigerators, 

Uninterruptible Power Supplies (UPS), lamp ballasts, air-conditioners and even stereo systems 

with switching amplifiers. Since it is designed to turn on and off rapidly, amplifiers that use it 

often synthesize complex waveforms with pulse-width modulation and low-pass filters. In 

switching applications, modern devices feature pulse repetition rates well into the ultrasonic 

range-frequencies which are at least ten times the highest audio frequency handled by the device 

when used as an analog audio amplifier. 

 

However, a MOSFET can be turned on at the gate with less energy than a bipolar transistor, 

which requires a relatively high current that has to be maintained throughout the on period. 
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That’s why IGBT is a functional integration of Power MOSFET and BJT devices in monolithic 

form. The IGBT is also a three terminal (gate, collector, and emitter) full-controlled switch. Its 

gate/control signal takes place between the gate and emitter, and its switch terminals are the 

drain and emitter. 

 

The main advantages of IGBT over a Power MOSFET and a BJT are [4] 

 Due to havingconductivity modulation and superior on-state current density, it has a very 

low on-state voltage drop. So smaller chip size is possible and the cost can be reduced. 

 It has lower on-state and switching losses and also lowers thermal impedance. 

 Low driving power and a simple drive circuit due to the input MOS gate structure. It can 

be easily controlled as compared to current controlled devices (thyristor, BJT) in high 

voltage and high current applications. 

 Wide SOA: It has superior current conduction capability compared with the bipolar 

transistor. It also has excellent forward and reverse blocking capabilities. 

 

The major limitations are: 

 A reduction in on-state voltage can cost the IGBT to experience slower switching speed 

at turn-off. The reason is that while electron flow can be abruptly halted simply by 

reducing the gate-emitter voltage below the gate threshold voltage (as is the case with 

the MOSFET), there’s still the matter of the holes that are left in the drift and body 

regions (there’s no terminal connection to remove them). The only way to get them out 

of there is by sweep-out, which is dependent upon voltage across the device and internal 

recombination. As a result, the device displays a tail current at turn-off until the 

recombination is complete. This has always been a big drawback for the IGBT. 

 Switching speed is inferior to that of a Power MOSFET and superior to that of a BJT. 

The collector current tailing due to the minority carrier causes the turn-off 

speed to be slow. 

 There is the possibility of latch-up due to the internal PNPN thyristor structure. 

 

 

Several models have been Parabolic in the literature to describe both the DC and the transient 
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behaviors of the IGBT. These models can be classified into two categories: physics-based and 

behavioral (compact) models. 

 

The model outlined in this thesis dissertation belongs to the category of physics based models in 

that the basic semiconductor physics of the IGBT device is used to develop relations between the 

excess minority carrier’s distribution, the anode current( IT ), the base current and the output 

voltage of the device ( V=VCE=VBC). There are no exact solutions when considering physics 

based modeling approach. Appropriate mathematical representations should be found to roughly 

approximate the solution. It is possible to reach an exact solution if certain assumptions are met 

when considering the imposed boundary conditions. The analytical modeling approach uses 

parameters, which have physical meanings and are related to each other based on the device 

physics. However, advancinging a physical model is time consuming. Since there are some 

simplifying approximations made when developing a physics-based model, accuracy may not be 

100%. Additionally, new device or different structural IGBT needs some new model or 

modifications. 

 

The analytical model developed by Hefner et al. [1-4] is the most complete in the section of 

physics-based IGBT model. The general ambipolar transport electron is 𝐼𝑛 (𝑡) which was used to 

find an expression for the voltage, 𝑑𝑉 (𝑡)/𝑑𝑡. Hefner used the expression of displacement current 

𝐼𝑛 𝑊(𝑡) to obtain V(t) for the transient operation of IGBT. Hefner implemented the concept of 

moving the redistribution current. In transient approach Hefner neither used the steady state 

expression for p(x) nor did linearize the steady state expression for 

p(x). Moreover Hefner assumed Cbcj(t) to be constant with time, which is not so in reality. 

 

Trivedi et al. [5] provided a numerical solution to obtain voltage, (𝑑𝑉 (𝑡)/𝑑𝑡) in terms of the total 

current IT during the turn-off for hard and soft switching IGBT application. The sweeping out 

action of the excess carriers in the drift region due to the widening of the collector-base depletion 

was used to obtain 𝑑𝑉 (𝑡)/𝑑𝑡 expression. Since W(t) shrinks due to the widening of the depletion 

region in the collector-base, the charges are forced to be taken away and Ih= qp(X)v(X) = 

qp(X)dW(t)/dt . 
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Ramamurthy et al. [6] provided an analytical expression for the voltage variation with time 𝑑𝑉 

(𝑡)/𝑑𝑡 for the turn-off of the IGBT. The simple expression for the variation of the internal 

charges and the boundary conditions with voltages is a non-linear one. For the turn- off analysis, 

Ramamurthy linearized the steady state carrier concentration expression p(x). 

Ramamurthy used a positive value for 𝑑(𝑡)/𝑑𝑡 instead of a negative sign, which contradicts the 

equality W(t)= WB-Wbcj(t) . 

 

Fatemizadeh et al. [7] developed a semi-empirical model for IGBT in which the DC and the 

transient current transport mechanisms of the device were approximated by simple analytical 

equations. The model equations of the IGBT were installed on the PSPICE simulator using 

analog behavioral modeling tools. However, the accuracy of the model is limited by the fact that 

the analytical semi-empirical model is over simplified. 

 

Yue et al. [8] presented an analytical IGBT model for the steady state and transient applications 

including all levels of free carrier injection in the base region of the IGBT. The authors have 

shown that the low and high injection models significantly overestimate the IGBT current at 

large and small bias conditions respectively. 

 

Kraus et al. [9] considered an NPT IGBT with a higher charge carrier lifetime and lower emitter 

efficiency. The injection of electrons into the emitter of the IGBT instead of carrier 

recombination in the base determined the I-V characteristics. The anode hole currents and the 

emitter hole currents are assumed constant. Due to his neglecting of the recombination in the 

base, a linear charge distribution instead of the hyperbolic function was derived. 

 

Kuo et al. [10] derived an analytical expression for the forward conduction voltage (VF) for 

NPT and PT IGBTs taking into account the conductivity modulation in the base of the IGBT. 

The MOSFET section has not been included in the analysis. Since IMOS controls the turn-off 

process of the IGBT, the MOSFET section should have been included. 
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Sheng et al. [11] solved the two dimensional (2-D) carrier distribution equations to model the 

forward conduction voltages, which can be used in circuit simulation and device analysis for 

(DMOS IGBT). The drawback of this modeling approach is that it contains complex terms that 

would impose some requirements on the simulator. 

 

Sheng et al. [12] reviewed IGBT models published in the literature; he then analyzed, compared 

and classified models into different categories based on mathematical type, objectives, 

complexity and accuracy. Although [14] claimed that many mathematical models are accurate 

and able to predict electrical behavior in different circuit conditions compared to the behavioral 

models, it failed to provide a comprehensive physical model for understanding the device 

mechanisms. 

 

Leturcq [13] showed a simplified approach to the analysis of the switching condition in IGBT. 

The approach was based on a new method for solving the ambipolar diffusion equation taking 

the moving depletion boundary in the base into consideration. This paper helped in 

understanding the switching process in IGBT. 

 

The above literature survey dealt mainly with IGBT having planar structures, namely the Non-

Panch Through (NPT) and the Punched Through (PT) IGBT, although other structures were 

parabolic in the literature to improve the I-V characteristics of IGBTs, temperature operation or 

develop better physics-based models. 

 

Chapter 2 describes the basic structure of an IGBT and provides a description of the IGBT 

operation. In addition, the chapter introduces the ambipolar transport analysis, which is the key 

feature in modeling the IGBT device. The conclusion of the chapter highlights the basic tools for 

the analysis: the steady state and the transient operation of an IGBT. Chapter 3 covers the 

literature review analysis of the most important transient modeling of IGBT. Chapter 4 

introduces the parabolic physics-based model for NPT IGBT wherein the steady state part of the 

model is derived by solving the ambipolar diffusion equation in the base. The turn-off transient 

part of the model is based on the availability of a new expression for excess carrier charge 

distribution in the base. The transient voltage is obtained numerically from this model. In chapter 
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5, we have showed the changes in characteristics of anode voltage, current and power dissipation 

with respect to temparature with figures. Chapter 6 covered our limitations and future work of 

this analysis. 
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Chapter 2 

About IGBT  

IGBT is a switching device combine with BJT and MOSFET, so in struscture as well as 

operation, the combination of BJT and MOSFET can be seen. This chapter will cover IGBT’s 

basic structure and operation. 

 

2.1   Standard Structure 

 

2.1.1   Cross sectional structure 

A structured IGBT has main three parts, Gate, Emmiter and Collector. In the cross section of 

IGBT, different layers are present which are shown in the below figure. It can be compared with 

the vertical double diffused MOSFET. The difference between them is that in IGBT, a heavily 

doped p-type substrate is placed in lieu of a highly doped n-type drain contact in the 

VDMOSFET. In reverse bias mode, a high blocking voltage used to create. To support that, a 

lightly doped but thick n-type epitaxial layer (𝑁𝐵 = 1014𝑐𝑚−3 ) is placed up of the p-type 

substrate. A highly doped p-type region (𝑁𝐴 = 1019𝑐𝑚−3)   is also present in the structure to 

prevent the activation of the PNPN thyristor when the device operates. The gate of IGBT is very 

simple circuit which has beenn taken from power MOSFET. As power MOSFET is a voltage 

controlled device, so little input gate current can operate the device. In IGBT, small gate input 

current operates the device and it is easy to use for simple design. 
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        Figure 2.5: A cross sectional structure of the IGBT half-cell [14] 

 

 

2.1.2   NPT and PT IGBT 

Based on the presense of an extra highly doped n+ buffer layer, there are two kinds of IGBT, one 

is PT (Punch Through) and other one is NPT (Non-Punch Through). The PT IGBT is with the 

extra n+ buffer layer and without this layer, that called NPT IGBT. The difference between them 

is showed in Figure 2.2. 

The PT IGBT has an extra n+ buffer layer than the other kind. This layer is placed on P+ 

Substrate layer. Because of the presense of this layer, the J1 junction gets gets a punch through 

from the J2 junction. This layer also acts as a shield to the J1 junction. But during the on state 

(turn-on) operation, total charges did not get enough space because of an extra n+ buffer layer. 

So, in the time of switching, the n+ layer removes charges more quickly. This layer acts as a 

recombination hub where holes and electrons get recombined before the holes get the time to 

reach the base region. For this, some lower efficiency holes will be injected into  the base region. 

Because of this, carrier lifetime of the holes are reduced and switching frequency is increased. 

The amount of injected holes in the base region is less than the NPT IGBT, so the on-state 
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voltage is increased in PT IGBT but the conductivity modulation(higher base resistance) is 

reduced. But the increased on-state voltage acts negetively to the reduced turn-off time.   

 

 

       FIGURE 6.2: Cross section structure of (a) NPT IGBT and (b) PT IGBT [15] 

 

In this thesis, NPT IGBT is studied. NPT IGBT has no n+ buffer layer, so the n- layer of base 

region is more thick than the PT IGBT. For the thickness, NPT IGBT has high resistance and 

when the J2 junction is reverse biased, higher reversed voltage can be uninterrupted. As a result, 

J2 junction does not punched through to J1 junction, means a non-punch through situation 

created. If the punch through happened, the device will more likely to break down as the 

breakdown voltage of IGBT is depraved. When J1 junction is forward biased and gate voltage 

exceeds the threshold voltage, p+ substrate will inject more holes. These injected holes density 

arises slowly and when it crosses the background doping(NB) density, the resistance of n-layer is 

shortened. In NPT IGBT, the turn-off time is more long than PT IGBT as the removal of so 

many stored charges in the base region is slow because of less recombination centers. As carriers 

are not used to recombine fastly, the carrier lifetime increases. In NPT IGBT, the amount of 

injected charges from p+ layer to n- is larger than PT IGBT and the injected holes do not 

recombine very fast as PT IGBT. The NPT IGBT has equal forward and reverse breakdown 

voltage, so it is totally fit for AC applications. PT IGBT’s has greater forward breakdown 

voltage than reverse breakdown voltage, for this it fits to DC circuits where devices do not need 
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support voltage in reverse direction. Fig.2.3 shows Doping Concentration and Electric Field 

distribution between NPT and PT IGBT. 

 

 

               

 

 

                             

                   FIGURE 2.3: Doping Concentration & Electric Field Distribution (a) NPT IGBT 

                                          & (b) PT IGBT [15] 
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Table 2.1: Comparison of NPT and PT IGBT characteristics 

      Parameter     NPT PT 

Switching loss Medium Low 

Conduction loss Medium  Low 

Paralleling Easy Difficult 

Short circuit test Yes  Limited; high gain 

 

 

 

 

2.2   Principles of operation of IGBT 

2.2.1   Equivalent circuit of IGBT 

An equivalent circuit has been figured on the basis of the standard structure which has been 

shown in Fig. 2.4.  
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FIGURE 2.4: The equivalent circuit model of IGBT [14] 

 

The structure has two parts, one is PNP transistor (BJT) and a n channel MOSFET. The PNP 

transistor consists of p+ substrate, n-epilayer and p+ base. In the IGBT, the p+ substrate acts as 

an emitter of BJT and also the anode terminal of the device. When the p+ substrate is forward 

biased (VEB> 0), the transistor current, IT produced by the minority carrier injection and it flows 

from anode region. This transistor current has two parts at the base. Those are- 

o Electron Current- In(W) 

o Hole Current- Ip(W) 

The Cathode voltage, VAC is- 

                  VAC = VEB + VBC 

Where,                 

VEB=Bipolar Emitter to Base voltage. 

VBC=Base to Cathode voltage. 
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Basically VDS of MOSFET & VBC are same. Since VEB is very small, we can consider 

                    VAC= VBC 

From the design of the equivalent circuit of IGBT, a circuit symbol can also be created which is 

shown in Fig. 2.5.  

 

 

FIGURE 2.5: Circuit symbol of IGBT [14] 

 

The circuit symbol of IGBT has three parts. These are- 

Collector (C) - Anode terminal of IGBT. 

Gate (G) - Gate terminal of MOSFET. 

Emitter (E) - Cathode terminal of IGBT. 

 

 

2.2.2  IGBT Operation 

In the Gate terminal of IGBT, a positive voltage is applied. When the gate voltage is greater than 

threshold voltage(VT), electrons flows to the surface under the gate and these electrons changed 
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the p+ body region into an n channel. This channel is created between n+ source and n- drift 

region.  

In the anode terminal of the IGBT, when a positive voltage applied, the collector of the IGBT is 

lower voltage than emitter. In the emitter section (p+ region), the holes (minority carriers) are 

injected and the holes flows to the base region (n- drift region). Through the injected holes, the 

positive bias of emitter terminal is increased as well as the concentration of holes. As time passes 

by, the concentration of holes goes beyond the background doping level of the n-drift region. 

These carriers degrades the resistance of the n- drift region, so the holes recombined with 

electrons respectively and produces anode current (on state). 

On the other hand, if a negetive voltage is applied in the anode terminal, the emitter-base 

junction will become reverse biased and current will be near zero. The depletion region will 

widen into the n-drift region and as a result a large voltage drop will occur. 

In IGBT, switching operation is done by MOSFET gate voltage. When the gate voltage becomes 

less than threshold voltage, the turn-off occurs. In this time, the channel that created to pass the 

charges will be off and no electron current will be present in the MOSFET channel. In the mean 

time, the holes those were stocked during the on state situation, removes by the time being. 

Based on the time that charges which were stored during the turn-on state of IGBT, needs to be 

removed from the n-drift region, the switching speed of IGBT is measured.  

 

2.3  Basic Tools for Operation 

To describe the operation of IGBT, one Physics-based modeling approach is considered. The 

points considered for the operation are as below-  

 In the IGBT n-drift region, the carrier distribution is described by the ambipolar diffusion 

equation because of the high level injection of holes in this region (𝑝(𝑥) >> 𝑁𝐵). 

𝜕2𝑝(𝑥)

𝜕𝑥2
=

𝑝(𝑥)

𝐿2
+

1

𝐷

𝜕p(x)

∂x
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Here, 

𝑁𝐵 = Base background doping concentration 

𝑝(𝑥) = Hole concentration                                                                                                             

𝐿 = √𝐷𝜏𝐻𝐿, 𝜏𝐻𝐿 = 5 × 10−7(
𝑇

300
)1.5 

 

 Transport of the bipolar charge is assumed to be one-dimensional (1-D) for the ease of 

analysis. 

 The emitter region of the BJT part of the IGBT which acts like the recombination centers 

for minority carriers (electrons)from the lightly doped areas, has a very high doping 

concentration level (𝑝+ >> 1018𝑐𝑚−3) 

 The depletion region of minority carriers’ space charge region, supports the entire voltage 

drop across the collector-base terminals based on Poisson’s equation. But the effect of 

mobile carriers in the depletion region is not clarified in this thesis dissertation. 

 The 𝜏𝐻𝐿 is being changed with temparature, so related parameters like anode voltage and 

current characteristics will also change. 

 

 

2.3.1 The Steady State Operation 

For the steady state operation of the NPT IGBT, the equivalent circuit model and the 1-D 

coordinate system is used. The 1-D coordinate system is showed in Fig. 2.6. In this figure, IGBT 

total current is IT, hole current is Ip of the BJT and base or MOS electron current is In. 

 

 IT can be expressed in other ways: 

𝐼𝑇= 𝐼𝑝(𝑥 = 0) +𝐼𝑛(𝑥 = 0)                                                         (2.1) 

𝐼𝑇=𝐼𝑝(𝑥 = 𝑊)  + 𝐼𝑝(𝑥 = 𝑊)                                                     (2.2) 
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𝐼𝑇= 𝐼𝑝(x)+ = 𝐼𝑛(x)                                                                     (2.3) 

                                                                                      
FIGURE 2.6: 1-D coordinate system used in the modeling of the NPT IGBT [14] 

  

The IGBT operation is done under low gain and high level injection case. The current equations 

are- 

                                 𝐽𝑛 = 𝑛𝑞𝜇𝑛 + 𝑞𝐷𝑛
𝜕𝑛(𝑥)

𝜕𝑥
       (2.4)   

            𝐽𝑛 = 𝑝𝑞𝜇𝑝 − 𝑞𝐷𝑝
𝜕𝑝(𝑥)

𝜕𝑥
                        (2.5) 

Here, 𝐽𝑛  is the electron current & 𝐽𝑝 is the hole current. 

Here, whole Jn and Jp is affected by temparature by a simple equation. The below table will show 

the changes in various terms of IGBT operation regarding temparature. 
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Table 2.3.1: Equations describing temparature dependence of various semiconductor properties 

in Silicon.[16] 

 

The first terms of the equations indicates the drift component and the second terms are indicates 

the diffusion component. 

If the excess carrier concentration is greater than the background concentration, the transferring 

of electrons and holes are coupled by the electric field in the drift region in terms of the transport 

equations. The minority carrier current density Jn cannot be neglected and ends up affecting the 

majority carrier current density Jp. Hence equations 2.4 & 2.5 cannot be separated. 

So Jp and Jn created the total current density. It can be written as, 

                                        𝐽𝑇= 𝐽𝑛 + 𝐽𝑝  

                                       = (𝑛𝑞𝜇𝑛 + 𝑝𝑞𝜇𝑝)𝐸 + 𝑞 (𝐷𝑛
𝜕𝑛(𝑥)

𝜕𝑥
− 𝐷𝑝

𝜕𝑝(𝑥)

𝜕𝑥
)  

Substituting the electric field from the above equation and put into equation (2.4) gives 

                                   Jn=[
𝑛𝑞µ𝑛

𝑛𝑞µ𝑛+𝑝𝑞µ𝑝
]JT + q

𝜕𝑛

𝜕𝑥
[

𝑛𝑞µ𝑛𝐷𝑃+𝑝𝑞µ𝑝 𝐷𝑃

𝑛𝑞µ𝑛+𝑝𝑞µ𝑝
] 

An ambipolar diffusion coefficient D is specified as 

                                                   D =[
𝑛𝑞µ𝑛𝐷𝑃+𝑝𝑞µ𝑝 𝐷𝑃

𝑛𝑞µ𝑛+𝑝𝑞µ𝑝
] 

So Jn can be written as 
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Jn =[
𝑏

1+𝑏
]Jn+qD

𝜕𝑛

𝜕𝑥
                       (2.6) 

Here, b =
µ𝑛

µ𝑝
 

Repeating the same procedure in the equation (2.6) and Jp is as followed, 

 

Jp=[
𝑏

1+𝑏
]JT−qD

𝜕𝑝

𝜕𝑥
                                 (2.7) 

Here, JT is the total current density 

JT = Jn+Jp     [assuming n=p] 

By solving the steady state hole continuity equation, the equation for Excess Hole Carrier 

Distribution, p(x) can be get, 

𝜕2𝑝(𝑥)

𝜕𝑥2 =
𝑝(𝑥)

𝐿2                             (2.8) 

From the coordinate system mentioned in Fig. 2.1, the boundary conditions for the excess hole 

carrier distribution can get. These are, 

𝑝(x=0)=𝑃0                                                   (2.9) 

𝑝(𝑥=W)=0                                         (2.10) 

Equation (2.10) indicates that for forward condition, the collector-base junction being reversed 

biased and equation (2.10) also indicates that emitter-base junction is forward biased. 

 

Here,  

P0  is the excess carrier concentration at x=0,  

W(t) is the quasi-neutral base width which is 

W=WB−Wbcj                              (2.11) 

Here, WB is the metallurgical base width and Wbcj is the collector-base depletion width. Poisson’s 

equation is 
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𝑑2𝑉

𝑑𝑥2
=

𝑞𝑁𝐵

∈𝑆𝑖
                                (2.12) 

From Poisson’s equations, one expression for the collector-base junction depletion width can be ,    

Wbcj =√
2∈𝑆𝑖𝑉𝑏𝑐

𝑞𝑁𝐵
 

Here, 

NB = Doping concentration of the lightly doped region of the IGBT 

∈𝑆𝑖 = Dielectric constant of silicon.  

Vbcj = Junction Voltage(V) 

     =Vbc+Vbi  

The junction voltage is the collector-base junction voltage drop of the BJT part of the IGBT and 

Vbi is the built in potential. Now, from figure 2.6  

                                                      W= WB−√
2∈𝑆𝑖𝑉

𝑞𝑁𝐵
 

Here, 

 V=Vbc=VBE=VA = collector-base voltage appears across the drift region. 

 

2.3.2 Transient Operation of IGBT 

The IGBT switching is fast because of the quick turn-on time. But the turn-off time is slow due 

to the open base of PNP transistor on turn-off time. In Fig. 2.7, the turn-off transient 

characteristics of IGBT is showed where IT (0+) is the current after the initial rapid fall. The 

initial drop in the anode current caused by the sudden removal of the MOS channel. As the 

lightly doped n- layer stored the carriers, a slower decay can be seen. When the gate voltage goes 

under the threshold voltage, turn-off process started. At this time, the channel for passing the 

electron is closed, so the MOS current IMOS becomes zero. 
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IMOS= In(W )=0 

As a result, the depletion region at the n- (base-collector side or source of MOSFET) is widened 

with respect to the increasement of collector-base voltage, Vbc..  

Current IT(0− ) and IT(0+) is related by βtr. This βtr is the ratio of the current immediately after the 

initial rapid fall to the magnitude of the fall and is shown along with the ratio of W(t) to L 

(W(t)/L) in the appendices. 

 

  FIGURE 2.7: Typical IGBT turn-off transient showing turn-off phases (1 & 2) [14] 

In the second period of the turn-off period transient, some losses occurs. These losses are the 

main element of switching loss of IGBT. The second phase is slower than other phases because 

of the higher time required removing or extracting the injected carriers. This high switching 

losses is considered as one of the supreme drawback of IGBT. The consecuences of this 

drawback can be solved by lowering the lifetime of the carriers in the base through 

recombination of extraction processes as fastly as possible before the device reaches its blocking 

voltage state.                                 

IN the period of turn-off, the collector-base junction is reversed biased and its depletion region 

widens. At the period of on-state of IGBT, the base-collector junction is reverse biased that 

showed in Fig. 2.4. When the IGBT is off, the base-collector junction is remains reversed biased 
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and Vbc is increased and also helps the depletion region to increase since the current decreases. 

This increased depletion region supports the entire voltage drop across the device as mentioned 

earlier on the basis of Poisson's equation. As the quasi-neutral base width(W(t)) of the IGBT 

changes with time and decreases with the increase of Vbc., an expression for the rate of rise of the 

voltage across the device
𝑑𝑉(𝑡)

𝑑𝑡
(varying ofthe output voltage) during the switching-OFF of the 

IGBT from the collector-base junction depletion width Wbcj can be derived. If equation 2.11 and 

2.13 is marzed, a time derivative of Wbcj(t) can get. 

 
𝑑𝑊𝑏𝑐𝑗(𝑡)

𝑑𝑡
= √

∈𝑆𝑖

2𝑞𝑁𝐵𝑉(𝑡)

𝑑𝑉(𝑡)

𝑑𝑡
 

The above equation shows the time rate of the change of the quasi-neutral base width (W(t)) that 

covers almost all the length across the drift region during the turn-off since the collector-base 

junction is reversed biased. 
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Chapter 3 

Literature review of some transient modeling of IGBT: 

Several models have been Parabolic in the literature to describe both the DC and the transient 

behaviors of the IGBT. In this section, we have reviewed the most popular Parabolic model by 

Allen R. Linear. 

 

3.1 Approach Taken By Allen R. Hefner 

 

3.1.1 Expression for transient voltage & stored charge decay 

In Linear's [1] [2] transient modeling approach, the general ambipolar trans-port electron current 

expression 

In(W(t))=  
𝐼𝑇(𝑡)

1+
1

𝑏

+ qAD
𝜕𝑛(𝑥,𝑡)

𝜕𝑥
 

This expression was used to find an expression for the voltage rise (dV(t)/dt). In(W (t))=IMOS as 

shown in Fig. 2.6 and it is important since it controls the operation of IGBT. 

 

Since the reverse bias on junction J2 in Fig. 1 does not increase rapidly and the depletion 

capacitance of junction J2is partially charged in a short period of time, IMOS current is 

instantaneous. An expression for IMOS can be obtained if we consider the collection-base junction 

depletion capacitance as in Fig. 3.1. 
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FIGURE 3.1: The collector-base depletion capacitance formation [14] 

For the voltage V(t) between the plates, the charge per unit area q =
∈𝑆𝑖𝑉(𝑡)

𝑑
 ,where d is the 

distance between the plates and the rate of q change is  ,                                                                      

𝑑𝑞

𝑑𝑡
= 𝐼(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

As we know q(t) = Cbcj(t)V (t), so 

𝑑𝑞

𝑑𝑡
=

𝑑

𝑑𝑡
[𝐶𝑏𝑐𝑗(𝑡)𝑉(𝑡)] 

                                                            =V(t)
𝑑𝑏𝑐𝑗(𝑡)

𝑑𝑡
+Cbcj(t)

𝑑𝑉(𝑡)

𝑑𝑡
 

and in terms of the junction capacitance of the reverse biased junction, the displacement current 

In(W(t)) is 

                                                     In(W) = V(t)
𝑑𝑏𝑐𝑗(𝑡)

𝑑𝑡
+Cbcj(t)

𝑑𝑉(𝑡)

𝑑𝑡
               (3.1) 

The first term on the right hand side of the equation (3.1) was ignored by Linear. The rate of 

change of Cbcj(t) should be included in calculating the displacement current since the capacitance 

varies with time as the depletion width changes with voltage. From equation (2.6) and the fact 

that J = I/A, where A is the device active area, 

                                                    In(W(t)) =
𝐼𝑇(𝑡)

1+
1

𝑏

+ 𝑞𝐴𝐷
𝜕𝑝(𝑥,𝑡)

𝜕𝑥
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And from Linear's approach 

                                               In(W(t)) = Cbcj(t)
𝑑𝑉(𝑡)

𝑑𝑡
=

2𝑞𝐴𝐷𝑝

1+
1

𝑏

𝜕𝑝(𝑥,𝑡)

𝜕𝑥
 

                               Or,(1 +
1

𝑏
) 𝐶𝑏𝑐𝑗

𝑑𝑉(𝑡)

𝑑𝑡
= 𝐼𝑇 + 2𝑞𝐴𝐷𝑝

𝜕𝑝(𝑥,𝑡)

𝜕𝑥
                                              (3.2) 

 

Linear used equation (3.2) to obtain V(t) for the transient operation of IGBT. He implemented 

the concept of moving the redistribution current. In his transient approach, he neither used the 

steady state expression for p(x) nor did he linearize the steady state expression for p(x). 

Moreover he assumed Cbcj(t) to be constant with time, which is not so in reality. 

 

His p(x) expression consists of two parts, 

                              p(x)= 𝑃0 [1 −
𝑥

𝑊(𝑡)
] −

𝑃0

𝑊(𝑡)𝐷
[

𝑥2

2
−

𝑊(𝑡)𝑥

6
−

𝑥3

3𝑊(𝑡)
]

𝑑𝑊(𝑡)

𝑑𝑡
               (3.3) 

 

From equation (2.6) & (3.3) 

                                              In(W(t)) = 
𝑏𝐼𝑇(𝑡)

1+𝑏
+ qAD

𝜕𝑝(𝑥)

𝜕𝑥
 

                                                   Or, In(W(t))=
𝐼𝑇(𝑡)

1+
1

𝑏

 +
2𝑞𝐴𝐷𝑃

1+
1

𝑏

𝜕𝑝(𝑥)

𝜕𝑥
              (3.4) 

Instead of equation (3.1), Linear applied In(W(t)) = Cbcj(t) 
𝑑𝑉

𝑑𝑡
 in his approach. Integrating  

 

equation (3.3) in the base and multiplying by qA, the total charge Q, 

                                               Q = qA∫ 𝑝(𝑥)𝑑𝑥
𝑊

0
 

                                                 =qA[𝑥 −
𝑥2

2𝑊(𝑡)
] −

𝑃0

𝑊(𝑡)𝐷
[

𝑥3

6
−

𝑊(𝑡)𝑥2

12
−

𝑥4

12𝑊(𝑡)
]

𝑑𝑊(𝑡)

𝑑𝑡
 

                                             =qA[𝑃0(𝑊(𝑡) −
𝑊(𝑡)

2
) −

𝑥2

2𝑊(𝑡)
] −

𝑃0

𝑊(𝑡)𝐷
[

𝑥3

6
−

𝑊(𝑡)𝑥2

12
−

𝑥4

12𝑊(𝑡)
]

𝑑𝑊(𝑡)

𝑑𝑡
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                                             = 
𝑞𝐴𝑃0𝑊(𝑡)

2
−

𝑞𝐴

𝑃0𝑊𝐷
× 0 

                                              =
𝑞𝐴𝑃0𝑊(𝑡)

2
                            (3.5) 

as can be seen 
𝑑𝑊(𝑡)

𝑑𝑡
 has no effect on Q calculation. 

 

We can find 
𝜕𝑝(𝑥)

𝜕𝑥  
 from equation (3.3) as when x=W(t) 

 

𝜕𝑝(𝑥)

𝜕𝑥  
=

𝑃0

𝑊(𝑡)
−

𝑃0

𝑊(𝑡)𝐷
[

2𝑥

2
−

𝑊(𝑡)

6
−

3𝑥2

𝑊(𝑡)
] 𝑑𝑊(𝑡)

𝑑𝑡
 

 

 

 

When x=W(t) 

 

𝜕𝑝(𝑥)

𝜕𝑥  
=

−𝑃0

𝑊(𝑡)
−

𝑃0

𝑊(𝑡)𝐷
[𝑊(𝑡) −

𝑊(𝑡)

6
− 𝑊(𝑡)]

𝑑𝑊(𝑡)

𝑑𝑡
 

 

𝜕𝑝(𝑥)

𝜕𝑥  
=

−𝑃0

𝑊(𝑡)
−

𝑃0

6𝐷

𝑑𝑊(𝑡)

𝑑𝑡
 

 

The hole current is -qA
𝜕𝑝(𝑥)

𝜕𝑥
 and from the above equation 

 

− q𝐴𝐷
𝜕𝑝(𝑥)

𝜕𝑥  
=

𝑞𝐴𝐷𝑃0

𝑊(𝑡)
−

𝑞𝐴𝑃0𝐷

6𝐷

𝑑𝑊(𝑡)

𝑑𝑡
 

                                                       

As Q= 
𝑞𝐴𝑃0𝑊(𝑡)

2
, from above equation 

− q𝐴𝐷
𝜕𝑝(𝑥)

𝜕𝑥  
= 

2𝑄𝐷

𝑊2(𝑡)
−

𝑄

3𝑊(𝑡)

𝑑𝑊(𝑡)

𝑑𝑡
                               (3.6) 

The first term on the right hand side of equation (3.6) is categorized by Linear asthe charge 

control component and the second term is categorized as the moving boundary redistribution 

component of the hole current. 
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From equation (3.4) and (3.6) 

 

                                      In(W(t))= C
𝑑𝑉(𝑡)

𝑑𝑡
=

𝐼𝑇(𝑡)

1+
1

𝑏

−
4𝑄𝐷𝑃

(1+
1

𝑏
)𝑊2(𝑡)

+
𝑄

3𝑊(𝑡)

𝑑𝑊(𝑡)

𝑑𝑡
 

This equation can be expressed in a different way if in −𝑞𝐴
𝜕𝑃(𝑥)

𝜕𝑥
 equation (3.6) is modified as 

 

− q𝐴𝐷
𝜕𝑝(𝑥)

𝜕𝑥  
=

−2𝑞𝐴𝐷𝑝

1+
1

𝑏

𝜕𝑝(𝑥)

𝜕𝑥  

2𝑄𝐷

𝑊2(𝑡)
−

𝑄

3𝑊(𝑡)

𝑑𝑊(𝑡)

𝑑𝑡
 

−2q𝐴𝐷𝑝
𝜕𝑝(𝑥)

𝜕𝑥  
=

2𝑄𝐷

𝑊2(𝑡)
(1 +

1

𝑏
) −

𝑄

3𝑊(𝑡)
(1 +

1

𝑏
)

𝑑𝑊(𝑡)

𝑑𝑡
 

 −2q𝐴𝐷𝑝
𝜕𝑝(𝑥)

𝜕𝑥  
=

4𝐷𝑝𝐷𝑛𝑄

𝑊2(𝑡)(𝐷𝑝+𝐷𝑛)
(1 +

1

𝑏
) −

𝑄

3𝑊(𝑡)
(1 +

1

𝑏
)

𝑑𝑊(𝑡)

𝑑𝑡
 

                       −2q𝐴𝐷𝑝
𝜕𝑝(𝑥)

𝜕𝑥  
=

4𝐷𝑝𝑄

𝑊2(𝑡)
−

𝑄

3𝑊(𝑡)
(1 +

1

𝑏
)

𝑑𝑊(𝑡)

𝑑𝑡
                                                            (3.7) 

From equation (3.4), we have 

                               In(W(t))=𝐶
𝑑𝑉

𝑑𝑡
=

𝐼𝑇(𝑡)

1+
1

𝑏

 +
2𝑞𝐴𝐷𝑃

1+
1

𝑏

𝜕𝑝(𝑥)

𝜕𝑥
 

That can be rearranged as, 

(1 +
1

𝑏
) 𝐶(𝑡)

𝑑𝑉

𝑑𝑡
= 𝐼𝑇(𝑡) +

2𝑞𝐴𝐷𝑃

1+
1

𝑏

𝜕𝑝(𝑥)

𝜕𝑥
 

Now using equation (3.7), and the fact that C(t)= Cbcj(t)=
𝐴 𝑆𝑖

𝑊𝑏𝑐𝑗(𝑡)
= 𝐴√

2 𝑆𝑖𝑁𝐵

2𝑉(𝑡)
 and

 𝑑𝑊(𝑡)

𝑑𝑡
=

−𝐶

𝑞𝐴𝑁𝐵

𝑑𝑉(𝑡)

𝑑𝑡
 

the above equation yields 

(1 +
1

𝑏
) 𝐶𝑏𝑐𝑗(𝑡)

𝑑𝑉(𝑡)

𝑑𝑡
= 𝐼𝑇(𝑡) −  

4𝐷𝑝𝑄

𝑊2(𝑡)
−

𝑄

3𝑊(𝑡)
(1 +

1

𝑏
)

𝑑𝑊(𝑡)

𝑑𝑡
 

                                         Or,𝐶𝑏𝑐𝑗(𝑡)
𝑑𝑉(𝑡)

𝑑𝑡
[1 +

𝑄

3𝑞𝐴𝑊(𝑡)𝑁𝐵
] =  

𝐼𝑇(𝑡)−
4𝐷𝑝𝑄

𝑊2(𝑡)

(1+
1

𝑏
)

       

                                             
 𝑑𝑉(𝑡)

𝑑𝑡
=  

𝐼𝑇(𝑡)−
4𝐷𝑝𝑄

𝑊2(𝑡)

𝐶𝑏𝑐𝑗(𝑡)(1+
1

𝑏
)[1+

𝑄

3𝑞𝐴𝑊(𝑡)𝑁𝐵
]
                               (3.8)    
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Where IT(t)=IT (0−) for large inductive loads and 𝐼𝑇(𝑡) = 
4𝐷𝑝𝑄(𝑡)

𝑊2(𝑡)
[Appendix A] forthe constant 

anode voltage in which
𝑑𝑉(𝑡)

𝑑𝑡
= 0 indicating that the voltage W(t) are constants. 

 

FIGURE 7.2: A comparison of the theoretical and measured 10A infinite inductive load 

switching voltage waveforms for devices with different base lifetimes [2] 

 

 

 

Equation (3.8) is according to linear model transient 
𝑑𝑉(𝑡)

𝑑𝑡
 for IGBT and Q(t)is expressed by 

solving the following non-linear differential equation Parabolic by Linear 

 

                                             
 𝑑𝑄(𝑡)

𝑑𝑡
=

−𝑄(𝑡)

𝜏𝐻𝐿
−

4𝑄2(𝑡)𝐼𝑠𝑛𝑒

𝑊2(𝑡)𝐴2𝑞2𝑛𝑖
2                   (3.9) 

 

Where Isne is emitter electron saturation current (A) and 𝑛𝑖  is the intrinsic carrier concentration 

(𝑐𝑚−3) 

 

In the linear [2] approach, the negative of the collected hole current 𝐼𝑝(W(t)) consists of a 

charged control current (𝐼𝑐𝑐) and redistribution current (𝐼𝑝), which make this model more 
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complex. The expression (3.9) is not simple and 𝑄0cannot be easily determined since there is no 

expression for 𝑃0 which can be substituted for in 𝑄0 equation to evaluate 𝑄0 for magnitude. Also, 

this model did not considerthe rate of change of C(t) in the calculation of the displacement 

current 𝐼𝑛(W(t)). 

 

3.1.2 Redistribution of time and Charge Control Current 

Representative excess carrier distributions in the wide-base bipolar transient at various moments 

during a constant anode voltage turn-off transient are showing Fig. 3.3 

 

When the base current is removed (constant anode voltage case) or the anode clamp voltage is 

reached (inductive load case), the carrier distribution in the base changes rapidly to one for 

which the total current at the emitter is equal to the hole current at the collector (from 

distribution (a) to (b) in Fig. 3.3), so that quasi-neutrality is maintained in the bipolar base. This 

reduction in the total device current is responsible for the initial rapid fall in current observed in 

the switching transient current waveform. The initial rapid fall consists principally of the steady-

state net electron current at the collector (base current for the constant anode voltage case) and 

the component of hole drift current associated with the net electron current there. The remaining 

slowly decaying excess majority carrier store is responsible for the slowly decaying portion of 

the switching transient current wave form. 

 

The boundary conditions on the electron and hole currents are different between the steady-state 

condition and the slowly decaying current phase. As a result, the electrons & holes that 

recombine can no longer be supplied be the divergence of their current densities as they are in 

steady-state, but are only supplied by (and thus reduce)the local excess carrier concentration. The 

curvature in the carrier distributions and the corresponding divergence of the current densities 

that remains after the initial rapid fall in emitter current acts to redistribute the excess carriers in 

the base from distribution (b) & (c) in Fig. 3.3.After the redistribution is complete, the excess 

carrier distribution and the terminal current are given in terms of the total excess carrier charge in 

the base, so the remainder of the waveform can be described using a charge control model. The 

redistribution time and the relation between the charge and current after the redistribution is 

complete are found from the time-dependent ambipolar diffusion equation with  
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Figure 3.3: The Excess carrier distribution in the base before (a), during (b), and after (c) the 

redistribution phase of a constant anode voltage switching transient, for W/L=2.5 and for 𝐼𝑛( x= 

0) <<𝐼𝑝(x= 0). The effect of the decay of the total excess carrier has been left out to illustrate the 

redistribution process. [2] 

 

𝐼𝑛(W)=0 and the total current equal to emitter edge of the base for negligible electron current at 

the injected into the emitter to the collector current gives: 

 

𝜕𝑃(𝑥,𝑡)

𝜕𝑡
=

𝜕𝑃(𝑥,𝑡)

𝜕𝑡
                                       (3.10) 

The general solution to equation,
𝜕2𝛿𝑝

𝜕𝑥2
=

𝜕𝑝

𝐿2
+

1

𝐷

𝜕𝛿𝑝

𝜕𝑡
 

 

With the conditions of: 

  𝛿𝑝(𝑥 = 0, 𝑡 = 0) = 𝑃0                     (3.11) 

  𝛿𝑝(𝑊, 𝑡) = 0                                   (3.12) 
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Figure 3.4: The carrier distribution in the base indicating the charge in excess carrier 

concentration with time due to the moving collector-base depletion edge boundary [2] 

 

and equation (3.10) foe W independent of time is 

  𝛿𝑝(𝑥, 𝑡) = 𝑃0,0 (1 −
𝑥

𝑊
) 𝑒

(
−𝑡

𝜏𝐻𝐿
)

+ ∑ 𝐴𝑚 sin(2𝜋𝑚𝑡)𝑒(
−𝑡

𝜏𝑚
)∞

𝑚=1                (3.13) 

Where  

1

𝜏𝑚
=

1

𝜏𝐻𝐿
+

(2𝑚𝜋)2𝐷𝑝

𝑊2                                                                                  (3.14) 

The first term of equation (3.13) is the linear charge control component of the distribution and 

the sine terms are the redistribution components which decay in time𝜏𝑚. For the base width 𝑊𝐵= 

93× 10−6𝑚 and other parameters, 𝜏𝑚= 0.1/𝑚2𝑢𝑠.For times much larger than this, the 

redistribution terms become negligible and the current is determined by linear charge control 

component of the distribution. 

 

The redistribution terms are independent of the total base charge and the integrated charge of the 

charge control term is equal to the total excess base charge: 

 𝑄(𝑡) =
𝑞𝐴𝑃0,0𝑊

2
𝑒

(−
𝑡

𝜏𝐻𝐿
)
                                                                             (3.16) 
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Therefore, the current can only be described by a charge control model after their distribution is 

complete. Using equations (3.13) & (3.15) for 𝐼𝑛(W) = 0, the chargecontrol current is [Appendix 

A] 

 

𝐼𝑇(𝑡) =
4𝐷𝑝

𝑊2 𝑄(𝑡)                                              (3.17) 

 

Because the integrated charge of each of the redistribution terms is zero, the value of current 

obtained by extrapolating the current decay waveforms back to the time of the initial rapid fall in 

current corresponds to the value of current obtained from equation (3.16) evaluated for the initial 

charge. 

 

In linear model it was assumed that the depletion capacitance (Cbcj(t)) to be constant throughout 

the whole process. But in reality, the depletion capacitance (Cbcj(t)) is a function of base 

depletion width (𝑊𝑏𝑐𝑗(t)) as because 

 

                                         Cbcj(t)=
𝐴 𝑆𝑖

𝑊𝑏𝑐𝑗 (t)
 

The depletion capacitance is inversely proportional to the depletion width. So when the depletion 

width increases, capacitance decreases as well as effective base width (W(t)). This was not 

included in linear approach which is the main limitation of the model. 
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Chapter 4 

Transient Analysis through Parabolic Approximation 

 

The main foundation of the Parabolic model by Linear was based on the assumption that 

effective base width must be much less than the carrier diffusion length (W << L). But in case of 

base width greater than or equal to the diffusion length, the Parabolic models would give much 

variation than the experimental result. We have taken this limitation into account and have tried 

to propose a model that would give consistent result in all cases (W > L and W < L). 

 

 

4.1    Approximation of  Minority Carrier Concentration 

 

 

In case of linear approximation, assuming, 

 

W< 𝐿 

So, 

p(x,t)=𝑃0

sin ℎ(
𝑊−𝑥

𝐿
)

sin ℎ(
𝑊

𝐿
)

 

turns to 

p(x,t)=𝑃0 (1 −
𝑥

𝐿
)( 4.1) 

But when 

W> 𝐿 

 

is assumed, the two curves show large deviation. 

 

According to parabolic approximation, 

 

 

sin ℎ (
𝑊 − 𝑥

𝐿
) =

𝑊 − 𝑥

𝐿
+

1

6
(

𝑊 − 𝑥

𝐿
)

3
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sin ℎ (
𝑊

𝐿
) =

𝑊

𝐿
+

1

6
(

𝑊

𝐿
)

3

 

 

 

 

 For carrier concentration 

 

                                                                  p(x.t) = 𝑃0

𝑊(𝑡)−𝑥

𝐿
+

1

6
(

𝑊(𝑡)−𝑥

𝐿
)

3

𝑊(𝑡)

𝐿
+

1

6
(

𝑊(𝑡)

𝐿
)

3                                     (4.2) 

 

Figure 8.1: The carrier distribution in the base indicating the change in excess carrier   

concentration with distance in base for (W > L) (MATLAB) 

 

 

which closely corresponds to the sinh curve for all values of W, unlike the linear approximation. 
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Figure 4.2: The carrier distribution in the base indicating the change in excess carrier 

concentration with distance in base for (W < L) (MATLAB). 

 

 

                                                             p(x) = 𝑃0

𝑊−𝑥

𝐿
+

1

6
(

𝑊−𝑥

𝐿
)

3

𝑊

𝐿
+

1

6
(

𝑊

𝐿
)

3  

                                                                      =𝑃0

6(𝑊−𝑥)𝐿2+(𝑊−𝑥)3

𝐿3

6𝑊𝐿2+𝑊3

𝐿3

 

                                                                       =𝑃0
(𝑊−𝑥)[6𝐿2+(𝑊−𝑥)2]

𝑊(6𝐿2+𝑊2)
 

                                                                       =𝑃0 (1 −
𝑥

𝑊
)

[6𝐿2+(𝑊−𝑥)2]

6𝐿2+𝑊2  

                                                                       =𝑃0 [
1+

1

6
(

𝑊−𝑥

𝐿
)

2

1+
1

6
(

𝑊

𝐿
)

2 ] 

So we have, 

                                                             p(x,t)  =𝑃0 [
1+

1

6
(𝑊(𝑡)−𝑥)2

1+
1

6
(

𝑊(𝑡)

𝐿
)

2 ]                                       (4.3) 
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In linear approximation, the charge was found to be  

𝑄0 = 𝑞𝐴𝑃𝑜
𝑊

2
                                                       (4.4) 

 

and the actual value was  

𝑄0 = 𝑞𝐴𝑃𝑜𝐿 tan ℎ (
𝑊

2𝐿
)                                        (4.5) 

 

Taking the parabolic approximation, 

tan ℎ (
𝑊

2𝐿
) =

𝑊

2𝐿
−

1

3
(

𝑊

2𝐿
)

3

 

 

So, we take steady state excess base charge as 

𝑄0 = 𝑞𝐴𝑃𝑜𝐿 [
𝑊

2𝐿
−

1

3
(

𝑊

2𝐿
)

3

] 

                                                         = 𝑞𝐴𝑃𝑜𝐿 [
𝑊

2𝐿
−

𝑊3

24𝐿3] 

                                                         = 𝑞𝐴𝑃𝑜 [
𝑊

2
−

𝑊3

24𝐿2] 

                                         So,     𝑃0 =
𝑄0

𝑞𝐴[
𝑊

2
−

𝑊3

24𝐿2]
                                                        (4.6) 

 

Now, 

𝜕𝑃0

𝜕𝑡
=

𝑄0

𝑞𝐴
(−1) [

1

2

𝜕𝑊

𝜕𝑡
−

1

24𝐿2
3𝑊2

𝜕𝑊

𝜕𝑡
] 

                                                      =  −
𝑃0

[
𝑊

2
−

𝑊3

24𝐿2]
[

1

2
−

1

8𝐿2 𝑊2]
𝜕𝑊

𝜕𝑡
 

                                                      = −
𝑃0

𝑊

24𝐿2

(12𝐿2−𝑊2)
[

1

2
−

𝑊2

8𝐿2]
𝜕𝑊

𝜕𝑡
                                  (4.7) 

Now if we assume   

                                                     W<< 𝐿 

𝜕𝑃0

𝜕𝑡
 = −

𝑃0

𝑊

24𝐿2

12𝐿2

1

2

𝜕𝑊

𝜕𝑡
 

𝜕𝑃0

𝜕𝑡
 = −

𝑃0

𝑊

𝜕𝑊

𝜕𝑡
                                                              (4.8) 

This is the deduced expression by Linear. 
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4.1.1 Ambipolar Diffusion Equations 

 

 

𝜕2𝑝(𝑥,𝑡)

𝜕𝑥2 =
𝑝(𝑥,𝑡)

𝐿2 +
1

𝐷

𝜕𝑝(𝑥,𝑡)

𝜕𝑡
                                                (4.9) 

Integrating once, 

𝜕𝑝(𝑥,𝑡)

𝜕𝑥
=

1

𝐿2 ∫ 𝑝(𝑥, 𝑡)𝜕𝑥 +
1

𝐷
∫

𝜕𝑝(𝑥,𝑡)

𝜕𝑡
𝜕𝑥                        (4.10) 

 

Again, integrating equation (4.10), we get   

 

 

                                                𝑝(𝑥, 𝑡) = −
𝑃0

4𝑊𝐿2(6𝐿2+𝑊2)
[12𝐿2 (𝑊−𝑥)3

−3
+

(𝑊−𝑥)5

−5
] 

         +
1

𝐷

𝑃0

𝑊

𝜕𝑊

𝜕𝑡

1

4𝑊(6𝐿2 + 𝑊2)

(12𝐿2 − 3𝑊2)

(12𝐿2 − 𝑊2)
[12𝐿2

(𝑊 − 𝑥)3

−3
+

(𝑊 − 𝑥)5

−5
] 

                         +
1

𝐷
𝑃0

1

𝑊2(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[
𝑥3

6
(6𝐿2 + 𝑊2) − 2𝑊

𝑥4

12
+

𝑥5

20
] 

                      +
1

𝐷

2𝑃0

𝑊(6𝐿2+𝑊2)

𝜕𝑊

𝜕𝑡
[𝑊(𝑊2 − 6𝐿2)

𝑥3

6
− (2𝑊2 − 6𝐿2)

𝑥4

12
+ 𝑊

𝑥5

20
] +𝐶1𝑥 + 𝐶2    (4.11) 

 

This is the expression for excess carrier concentration which is a function of x and t. 

 

Boundary conditions: 

𝑥 = 0, 𝑝 = 𝑝0                          (4.12) 

𝑥 = 𝑊, 𝑝 = 0                          (4.13)  
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Now putting the boundary values from equation (4.12) and (4.13) in equation (4.11), we get 

          𝑝(𝑥, 𝑡) =
𝑃0

4𝑊𝐿2(6𝐿2 + 𝑊2)
[4𝐿2(𝑊 − 𝑥)3 +

(𝑊 − 𝑥)5

5
] 

−
1

𝐷

𝑃0

𝑊

𝜕𝑊

𝜕𝑡

1

4𝑊(6𝐿2 + 𝑊2)

(12𝐿2 − 3𝑊2)

(12𝐿2 − 𝑊2)
[4𝐿2(𝑊 − 𝑥)3 +

(𝑊 − 𝑥)5

5
] 

                       +
1

𝐷
𝑃0

1

𝑊2(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[
𝑥3

6
(6𝐿2 + 𝑊2) − 𝑊

𝑥4

6
+

𝑥5

20
] 

                     +
1

𝐷

2𝑃0

𝑊(6𝐿2+𝑊2)

𝜕𝑊

𝜕𝑡
[𝑊(𝑊2 − 6𝐿2)

𝑥3

6
− (2𝑊2 − 6𝐿2)

𝑥4

12
+ 𝑊

𝑥5

20
] 

                       −
1

𝐷

𝑃0𝑥

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
] −

1

𝐷

𝑃0𝑥𝑊2

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊2 − 10𝐿2

10
] 

  −
𝑝0𝑥

𝑊
+

𝑃0𝑥(20𝐿2+𝑊2)

20(6𝐿2+𝑊2)

𝑊

𝐿2 + 𝑝0 −
𝑃0(20𝐿2+𝑊2)

20(6𝐿2+𝑊2)
[

𝑊2

𝐿2 −
1

𝐷

𝜕𝑊

𝜕𝑡

(12𝐿2−3𝑊2)

(12𝐿2−𝑊2)
. 𝑊]              (4.13) 

 

This is actual the excess carrier concentration 𝑝(𝑥, 𝑡)for base n-drift region. 

 

Now we know, the excess base charge can be calculated by the following equation 

𝑄(𝑡) = 𝑞𝐴 ∫ 𝑝(𝑥)𝑑𝑥
𝑊

0
                                                               (4.14) 

 

Integrating the excess carrier concentration, we get 

 

∫ 𝑝(𝑥, 𝑡)𝑑𝑥 =
𝑃0

20𝑊𝐿2(6𝐿2 + 𝑊2)
[
20𝐿2(𝑊 − 𝑥)4

−4
−

(𝑊 − 𝑥)6

6
] 

−
1

𝐷

𝑃0

20𝑊2

𝜕𝑊

𝜕𝑡

1

(6𝐿2 + 𝑊2)

(12𝐿2 − 3𝑊2)

(12𝐿2 − 𝑊2)
[
20𝐿2(𝑊 − 𝑥)4

−4
−

(𝑊 − 𝑥)6

6
] 

                                         +
1

𝐷
𝑃0

1

𝑊2(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[
𝑥4

24
(6𝐿2 + 𝑊2) − 𝑊

𝑥5

30
+

𝑥6

120
] 

                                   +
1

𝐷

2𝑃0

𝑊(6𝐿2+𝑊2)

𝜕𝑊

𝜕𝑡
[𝑊(𝑊2 − 6𝐿2)

𝑥4

24
− (𝑊2 − 3𝐿2)

𝑥5

30
+ 𝑊

𝑥6

120
] 

                                     −
1

𝐷

𝑃0

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
]

𝑥2

2

−
1

𝐷

𝑃0𝑊2

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊2 − 10𝐿2

10
]

𝑥2

2
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 −
𝑝0

𝑊

𝑥2

2
+

𝑃0(20𝐿2+𝑊2)

20(6𝐿2+𝑊2)

𝑊

𝐿2

𝑥2

2
+ 𝑝0𝑥 −

𝑃0(20𝐿2+𝑊2)

20(6𝐿2+𝑊2)
[

𝑊2

𝐿2 −
1

𝐷

𝜕𝑊

𝜕𝑡

(12𝐿2−3𝑊2)

(12𝐿2−𝑊2)
. 𝑊] 𝑥      (4.15) 

 

Now we putting 𝑥 = 𝑊 (upper limit) and 𝑥 = 0 (lower limit) in ∫ 𝑝(𝑥, 𝑡)𝑑𝑥 and if we assume W 

is much much smaller than L (W << L)   

 

∫ 𝑃𝑑𝑥 =
𝑊

0

1

𝐷

𝑃0𝑊2

24

𝜕𝑊

𝜕𝑡
 

−
1

𝐷

𝑃0𝑊4

120𝐿2

𝜕𝑊

𝜕𝑡
−

1

𝐷

𝑃0𝑊2

6

𝜕𝑊

𝜕𝑡
+

1

𝐷

𝑃0𝑊4

72𝐿2

𝜕𝑊

𝜕𝑡
+ 𝑃0

𝑊

2
+

𝑃0𝑊3

12𝐿2
 

                     −
𝑃0𝑊3

6𝐿2
+

1

𝐷

𝑃0𝑊2

6𝐿2

𝜕𝑊

𝜕𝑡
+

𝑃0𝑊3

24𝐿2
−

1

𝐷

𝑃0𝑊2

4

𝜕𝑊

𝜕𝑡
 

 

∫ 𝑃𝑑𝑥 =
𝑊

0
𝑃0

𝑊

2
−

𝑃0𝑊3

24𝐿2 −
3

8

1

𝐷
𝑃0𝑊2 𝜕𝑊

𝜕𝑡
                                    (4.16) 

 

Now the excess base charge will be 

 

𝑄(𝑡) = 𝑞𝐴 ∫ 𝑃𝑑𝑥
𝑊

0

 

                                                          = 𝑞𝐴𝑃0
𝑊

2
− 𝑞𝐴

𝑃0𝑊3

24𝐿2 − 𝑞𝐴
3𝑃0𝑊2

8𝐷

𝜕𝑊

𝜕𝑡
 

                                                           = 𝑞𝐴 [𝑃0
𝑊

2
−

𝑃0𝑊3

24𝐿2 ] − 𝑞𝐴
3𝑃0𝑊2

8𝐷

𝜕𝑊

𝜕𝑡
                         (4.17) 

 

As we know, 

                        L= √𝐷𝜏𝐻𝐿 

          So,   𝐿2 = 𝐷𝜏𝐻𝐿 , 𝜏𝐻𝐿 = 5 × 10−7(
𝑇

300
)1.5 

              So, 𝐷 =
  𝐿2

𝜏𝐻𝐿
 

 

𝑞𝐴
3𝑃0𝑊2

8𝐷

𝜕𝑊

𝜕𝑡
= 𝑞𝐴

3

8

  𝐿2

𝑊2
𝑃0

𝜕𝑊

𝜕𝑡
𝜏𝐻𝐿 ≈ 0 
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As, 
𝑊

𝐿
<< 1 

𝑄(𝑡) = 𝑞𝐴 [𝑃0
𝑊

2
−

𝑃0𝑊3

24𝐿2
]                                             (4.18) 

 

Assuming  
𝑊

𝐿
<< 1,

𝑊3

𝐿2 ≈ 0 

𝑄(𝑡) = 𝑞𝐴
𝑃0𝑊(𝑡)

2
                                                         (4.19)  

 

 

 

 

 

4.2 Expression for Transient Anode Voltage                                    

 

       According to Allen R.Linear: 

𝑝(𝑥, 𝑡) = 𝑃0 [1 −
𝑥

𝑊(𝑡)
] −

1

𝑊(𝑡)

𝜕𝑊

𝜕𝑡

𝑃0

𝐷
[

𝑥2

2
−

𝑊(𝑡)𝑥

6
−

𝑥3

3𝑊(𝑡)
]                    (4.20) 

In Parabolic model, 

𝑝(𝑥, 𝑡) =
𝑃0

4𝑊𝐿2(6𝐿2 + 𝑊2)
[4𝐿2(𝑊 − 𝑥)3 +

(𝑊 − 𝑥)5

5
] 

−
1

𝐷

𝑃0

𝑊

𝜕𝑊

𝜕𝑡

1

4𝑊(6𝐿2 + 𝑊2)

(12𝐿2 − 3𝑊2)

(12𝐿2 − 𝑊2)
[4𝐿2(𝑊 − 𝑥)3 +

(𝑊 − 𝑥)5

5
] 

                     +
1

𝐷
𝑃0

1

𝑊2(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[
𝑥3

6
(6𝐿2 + 𝑊2) − 𝑊

𝑥4

6
+

𝑥5

20
] 

                   +
1

𝐷

2𝑃0

𝑊(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[𝑊(𝑊2 − 6𝐿2)

𝑥3

6
− (2𝑊2 − 6𝐿2)

𝑥4

12
+ 𝑊

𝑥5

20
] 

                      −
1

𝐷

𝑃0𝑥

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
] −

1

𝐷

𝑃0𝑥𝑊2

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊2 − 10𝐿2

10
] 

  −
𝑝0𝑥

𝑊
+

𝑃0𝑥(20𝐿2+𝑊2)

20(6𝐿2+𝑊2)

𝑊

𝐿2 + 𝑝0 −
𝑃0(20𝐿2+𝑊2)

20(6𝐿2+𝑊2)
[

𝑊2

𝐿2 −
1

𝐷

𝜕𝑊

𝜕𝑡

(12𝐿2−3𝑊2)

(12𝐿2−𝑊2)
. 𝑊]                (4.21) 
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𝐼𝑛(𝑊) = Displacement current 

 It is created from discharge of Reverse Biased Collector Base Depletion Junction 

 Capacitance 𝐶𝑏𝑐𝑗(𝑡) 

 

In his journal, Linear assumed 𝐶𝑏𝑐𝑗(𝑡)  to be constant all through time which is not correct. 

𝐶𝑏𝑐𝑗(𝑡)  Varies with depletion width 𝑊𝑏𝑐𝑗(𝑡), which is a function of time. 

 

 

𝐼𝑛(𝑊) =
𝑑

𝑑𝑡
(𝐶𝑏𝑐𝑗𝑉𝐶𝐸) 

𝐼𝑛(𝑊) = 𝑉𝐶𝐸

𝑑𝐶𝑏𝑐𝑗

𝑑𝑡
+ 𝐶𝑏𝑐𝑗

𝑑𝑉𝐶𝐸

𝑑𝑡
 

Now,         

𝐶𝑏𝑐𝑗 =
𝐴 ∈𝑠𝑖

𝑊𝑏𝑐𝑗
 

Here, 

𝑊𝑏𝑐𝑗 = √
∈𝑆𝑖 𝑉𝐶𝐸

𝑞𝑁𝐵
 

So,                                                                                                                                                              

           𝐶𝑏𝑐𝑗 = 𝐴 ∈𝑠𝑖 √
𝑞𝑁𝐵

2∈𝑠𝑖𝑉𝐶𝐸
 

As we know 

𝑊 = 𝑊𝐵 −  𝑊𝑏𝑐𝑗 

                                                                       
𝑑𝑊

𝑑𝑡
= −

𝑑𝐶𝑏𝑐𝑗

𝑑𝑡
                                                           (4.22) 

where, 

𝑊𝐵 =Total Base Width 

𝑊 = Effective Base Width 
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𝑊𝑏𝑐𝑗= Depletion Region Width 

So we get 

𝑑𝑊𝑏𝑐𝑗

𝑑𝑡
=

1

2
√

𝑞𝑁𝐵

2 ∈𝑠𝑖 𝑉𝐶𝐸

2 ∈𝑠𝑖

𝑞𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
 

                                                    =   √
𝑞∈𝑠𝑖𝑁𝐵

2𝑉𝐶𝐸

1

𝑞𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
 

                                                     =
𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
 

𝑑𝑊

𝑑𝑡
= −

𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
                                             (4.23) 

 

𝑑𝐶𝑏𝑐𝑗

𝑑𝑡
= 𝐴

𝑑

𝑑𝑡
√

𝑞 ∈𝑠𝑖 𝑁𝐵

2𝑉𝐶𝐸
 

                                                            = −𝐴
1

2

1

√
𝑞∈𝑠𝑖𝑁𝐵

2𝑉𝐶𝐸

𝑞∈𝑠𝑖𝑁𝐵

2

1

𝑉𝐶𝐸
2

𝑑𝑉𝐶𝐸

𝑑𝑡
 

                                                            = −
1

2

𝐴2

𝐶𝑏𝑐𝑗

𝑞∈𝑠𝑖𝑁𝐵

2

1

𝑉𝐶𝐸
2

𝑑𝑉𝐶𝐸

𝑑𝑡
 

𝑉𝐶𝐸
𝑑𝐶𝑏𝑐𝑗

𝑑𝑡
 = −

1

4

𝐴2

𝐶𝑏𝑐𝑗

𝑞∈𝑠𝑖𝑁𝐵

𝑉𝐶𝐸

𝑑𝑉𝐶𝐸

𝑑𝑡
 

So the displacement current is 

𝐼𝑛(𝑊) = −
1

4

𝐴2

𝐶𝑏𝑐𝑗

𝑞 ∈𝑠𝑖 𝑁𝐵

𝑉𝐶𝐸

𝑑𝑉𝐶𝐸

𝑑𝑡
+ 𝐶𝑏𝑐𝑗

𝑑𝑉𝐶𝐸

𝑑𝑡
 

                                                       =𝐶𝑏𝑐𝑗
𝑑𝑉𝐶𝐸

𝑑𝑡
[−

1

4

𝐴2

𝐶𝑏𝑐𝑗
2

𝑞∈𝑠𝑖𝑁𝐵

𝑉𝐶𝐸
+ 1] 

                                                  = 𝐶𝑏𝑐𝑗
𝑑𝑉𝐶𝐸

𝑑𝑡
[−

1

4

2𝑉𝐶𝐸

𝑞∈𝑠𝑖𝑁𝐵

𝑞∈𝑠𝑖𝑁𝐵

𝑉𝐶𝐸
+ 1] 
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                                                  = 𝐶𝑏𝑐𝑗
𝑑𝑉𝐶𝐸

𝑑𝑡
[1 −

1

2
] 

                                                  = 
1

2
𝐶𝑏𝑐𝑗

𝑑𝑉𝐶𝐸

𝑑𝑡
                                                          (4.24) 

Now, Displacement Current Equation with Transistor Current & Diffusion Current 

𝐼𝑛(𝑊) =  
𝐼𝑇

1 +
1

𝑏

+ 𝑞𝐴𝐷
𝜕𝑝(𝑥, 𝑡)

𝜕𝑥 [𝑥=𝑊(𝑡)]
 

Now, 

From Our equation of 𝑝(𝑥, 𝑡),we get 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
=

𝑃0

20𝑊𝐿2(6𝐿2 + 𝑊2)
[20𝐿23(𝑊 − 𝑥)2(−1) + 5(𝑊 − 𝑥)4(−1)] 

                −
1

𝐷

𝑃0

20𝑊2

𝜕𝑊

𝜕𝑡

1

(6𝐿2 + 𝑊2)

(12𝐿2 − 3𝑊2)

(12𝐿2 − 𝑊2)
[20𝐿23(𝑊 − 𝑥)2(−1) + 5(𝑊 − 𝑥)4(−1)] 

                                       +
1

𝐷
𝑃0

1

𝑊2(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[
3𝑥2

6
(6𝐿2 + 𝑊2) − 𝑊

4𝑥3

6
+

5𝑥4

20
] 

                                  +
1

𝐷

2𝑃0

𝑊(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[𝑊(𝑊2 − 6𝐿2)

3𝑥2

6
− (𝑊2 − 3𝐿2)

4𝑥3

6
+ 𝑊

5𝑥4

20
] 

                                    −
1

𝐷

𝑃0

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
]

−
1

𝐷

𝑃0𝑊2

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊2 − 10𝐿2

10
] 

              −
𝑝0

𝑊
+

𝑃0(20𝐿2 + 𝑊2)

20(6𝐿2 + 𝑊2)

𝑊

𝐿2
 

 

 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
=

𝑃0

20𝑊𝐿2(6𝐿2 + 𝑊2)
[20𝐿23(𝑊 − 𝑥)2(−1) + 5(𝑊 − 𝑥)4(−1)] 

                 −
1

𝐷

𝑃0

20𝑊2

𝜕𝑊

𝜕𝑡

1

(6𝐿2 + 𝑊2)

(12𝐿2 − 3𝑊2)

(12𝐿2 − 𝑊2)
[20𝐿23(𝑊 − 𝑥)2(−1) + 5(𝑊 − 𝑥)4(−1)] 
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                                       +
1

𝐷
𝑃0

1

𝑊2(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[
3𝑥2

6
(6𝐿2 + 𝑊2) − 𝑊

4𝑥3

6
+

5𝑥4

20
] 

                                  +
1

𝐷

2𝑃0

𝑊(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[𝑊(𝑊2 − 6𝐿2)

3𝑥2

6
− (𝑊2 − 3𝐿2)

4𝑥3

6
+ 𝑊

5𝑥4

20
] 

                                      −
1

𝐷

𝑃0

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
]

−
1

𝐷

𝑃0𝑊2

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊2 − 10𝐿2

10
] 

                −
𝑝0

𝑊
+

𝑃0(20𝐿2 + 𝑊2)

20(6𝐿2 + 𝑊2)

𝑊

𝐿2
 

 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡 𝑥=𝑊
=

1

𝐷

𝑃0

𝑊2(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[
𝑊2

2
(6𝐿2 + 𝑊2) −

2𝑊4

3
+

𝑊4

4
] 

                         +
1

𝐷

2𝑃0

𝑊(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[𝑊(𝑊2 − 6𝐿2)

𝑤2

2
− (𝑊2 − 3𝐿2)

2𝑤3

3
+

𝑤5

4
] 

                                      −
1

𝐷

𝑃0

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
]

−
1

𝐷

𝑃0𝑊2

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊2 − 10𝐿2

10
] 

                −
𝑝0

𝑊
+

𝑃0(20𝐿2 + 𝑊2)

20(6𝐿2 + 𝑊2)

𝑊

𝐿2
 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡 𝑥=𝑊
=

1

𝐷

𝑃0

(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[3𝐿2 +

𝑊2

2
−

5𝑊2

12
] 

                      +
1

𝐷

𝑃0

(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[𝑊4 − 6𝐿2𝑊2 −

4

3
(𝑊2 − 3𝐿2)𝑊2 +

𝑊4

2
] 

                       −
1

𝐷

𝑃0

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
] −

1

𝐷

𝑃0

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊4 − 10𝐿2𝑊2

10
] 

   −
𝑝0

𝑊
+

𝑃0(20𝐿2 + 𝑊2)

20(6𝐿2 + 𝑊2)

𝑊

𝐿2
 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡 𝑥=𝑊
=

1

𝐷

𝑃0

(6𝐿2 + 𝑊2)

𝜕𝑊

𝜕𝑡
[3𝐿2 +

𝑊2

12
] 

                      +
1

𝐷

𝑃0

(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[𝑊4 − 6𝐿2𝑊2 −

4

3
𝑊4 + 4𝐿2𝑊2 +

𝑊4

2
]  
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                       −
1

𝐷

𝑃0

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
] −

1

𝐷

𝑃0

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊4 − 10𝐿2𝑊2

10
] 

   −
𝑝0

𝑊
+

𝑃0(20𝐿2 + 𝑊2)

20(6𝐿2 + 𝑊2)

𝑊

𝐿2
 

 

𝜕𝑝(𝑥,𝑡)

𝜕𝑡 𝑥=𝑊
=

1

𝐷

𝑃0

(6𝐿2+𝑊2)

𝜕𝑊

𝜕𝑡
[3𝐿2 +

𝑊2

12
]  +

1

𝐷

𝑃0

(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[

1

6
𝑊4 − 2𝐿2𝑊2]  

                       −
1

𝐷

𝑃0

5

𝜕𝑊

𝜕𝑡

(20𝐿2 + 𝑊2)

(6𝐿2 + 𝑊2)
[

(6𝐿2 − 𝑊2)

(12𝐿2 − 𝑊2)
] −

1

𝐷

𝑃0

(6𝐿2 + 𝑊2)2

𝜕𝑊

𝜕𝑡
[
𝑊4 − 10𝐿2𝑊2

10
] 

   −
𝑝0

𝑊
+

𝑃0(20𝐿2 + 𝑊2)

20(6𝐿2 + 𝑊2)

𝑊

𝐿2
 

 

We know from parabolic approximation, the excess carrier concentration at 𝑥 = 0 would be 

 

𝑃0 =
𝑄

𝑞𝐴 [
𝑊

2
−

𝑊3

24𝐿2]
 

 

 

 

 

So, 

         𝑞𝐴𝐷
𝜕𝑝(𝑥,𝑡)

𝜕𝑡 𝑥=𝑊
= 𝑞𝐴 

𝑃0

(6𝐿2+𝑊2)

𝜕𝑊

𝜕𝑡
[3𝐿2 +

𝑊2

12
]  +𝑞𝐴

𝑃0

(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[

1

6
𝑊4 − 2𝐿2𝑊2]  

                                        − qA 
𝑃0

5

𝜕𝑊

𝜕𝑡

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
[

(6𝐿2−𝑊2)

(12𝐿2−𝑊2)
] −𝑞𝐴

𝑃0

(6𝐿2+𝑊2)2

𝜕𝑊

𝜕𝑡
[

𝑊4−10𝐿2𝑊2

10
] 

                                      −𝑞𝐴𝐷𝑝0 [
1

𝑊
−

1

20

𝑊

𝐿2

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
] 
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𝑞𝐴𝐷
𝜕𝑝(𝑥,𝑡)

𝜕𝑡 𝑥=𝑊
= 𝑞𝐴 

𝑄

𝑞𝐴[
𝑊

2
−

𝑊3

24𝐿2]
(−

𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
) [

3𝐿2+
𝑊2

12

(6𝐿2+𝑊2)
]       

                                  +𝑞𝐴
𝑄

𝑞𝐴[
𝑊

2
−

𝑊3

24𝐿2]
(−

𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
) [

1

6
𝑊4−2𝐿2𝑊2

(6𝐿2+𝑊2)2 ]  

                                 − qA 
𝑄

𝑞𝐴[
𝑊

2
−

𝑊3

24𝐿2]
(−

𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
)

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
[

(6𝐿2−𝑊2)

(12𝐿2−𝑊2)
] 

                                  −𝑞𝐴 
𝑄

𝑞𝐴[
𝑊

2
−

𝑊3

24𝐿2]
(−

𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
)

1

(6𝐿2+𝑊2)2 [
𝑊4−10𝐿2𝑊2

10
] 

                                −𝑞𝐴𝐷
𝑄

𝑞𝐴[
𝑊

2
−

𝑊3

24𝐿2]
[

1

𝑊
−

1

20

𝑊

𝐿2

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
] 

 

𝑞𝐴𝐷
𝜕𝑝(𝑥,𝑡)

𝜕𝑡 𝑥=𝑊
= 

𝑄

[
𝑊

2
−

𝑊3

24𝐿2]
(−

𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
) [

3𝐿2+
𝑊2

12

(6𝐿2+𝑊2)
−

1

5

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)

(6𝐿2−𝑊2)

(12𝐿2−𝑊2)
]                                     

                                  −
𝑄

[
𝑊

2
−

𝑊3

24𝐿2]
(−

𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
)

1

(6𝐿2+𝑊2)2 [
1

6
𝑊4 − 2𝐿2𝑊2 𝑊4−10𝐿2𝑊2

10
] 

                                −𝐷
𝑄

[
𝑊

2
−

𝑊3

24𝐿2]
[

1

𝑊
−

1

20

𝑊

𝐿2

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
] 

As we know, the displacement current 

 

                                    𝐼𝑛(𝑊) =  
𝐼𝑇

1+
1

𝑏

+ 𝑞𝐴𝐷
𝜕𝑝(𝑥,𝑡)

𝜕𝑥 [𝑥=𝑊(𝑡)]
   

                               
1

 2
𝐶𝑏𝑐𝑗

𝑑𝑉𝐶𝐸

𝑑𝑡
=

𝐼𝑇

1+
1

𝑏

+ 
𝑄

[
𝑊

2
−

𝑊3

24𝐿2]
(−

𝐶𝑏𝑐𝑗

𝑞𝐴𝑁𝐵

𝑑𝑉𝐶𝐸

𝑑𝑡
) 

                                                [
3𝐿2+

𝑊2

12

(6𝐿2+𝑊2)
−

1

5

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)

(6𝐿2−𝑊2)

(12𝐿2−𝑊2)
+

1

6
𝑊4−2𝐿2𝑊2

(6𝐿2+𝑊2)2
−

𝑊4−10𝐿2𝑊2

10

(6𝐿2+𝑊2)2
]       

                                                        −𝐷
𝑄

[
𝑊

2
−

𝑊3

24𝐿2]
[

1

𝑊
−

1

20

𝑊

𝐿2

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
] 
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1

 2
𝐶𝑏𝑐𝑗

𝑑𝑉𝐶𝐸

𝑑𝑡
[1 +

2𝑄

𝑞𝐴𝑁𝐵[
𝑊

2
−

𝑊3

24𝐿2]
(

3𝐿2+
𝑊2

12

(6𝐿2+𝑊2)
−

1

5

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)

(6𝐿2−𝑊2)

(12𝐿2−𝑊2)
+

1

15
𝑊4−𝐿2𝑊2

(6𝐿2+𝑊2)2 )]  

                                        = 
1

1+
1

𝑏

[𝐼𝑇(0) − 𝐷
𝑄(1+

1

𝑏
)

[
𝑊

2
−

𝑊3

24𝐿2]
[

1

𝑊
−

1

20

𝑊

𝐿2

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
]] 

 

         

               
𝑑𝑉𝐶𝐸

𝑑𝑡
=  

𝐼𝑇(𝑡)−
2𝐷𝑃𝑄(𝑡)

[
𝑊
2

−
𝑊3

24𝐿2]

 [
1

𝑊
−

1

20

𝑊

𝐿2
(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
]

 
1

 2
𝐶𝑏𝑐𝑗(1+

1

𝑏
)[1+

2𝑄(𝑡)

𝑞𝐴𝑁𝐵[
𝑊
2

−
𝑊3

24𝐿2]

(
3𝐿2+

𝑊2

12
(6𝐿2+𝑊2)

−
1

5

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)

(6𝐿2−𝑊2)

(12𝐿2−𝑊2)
+

1
15

𝑊4−𝐿2𝑊2

(6𝐿2+𝑊2)
2 )]

            (4.25) 

 

 

This is the analytical expression for transient voltage of Non Punch IGBT. 

 

Now if we assume, 

𝑊 << 𝐿 

𝑊

𝐿
<< 1 

 

Then,  

             20𝐿2 + 𝑊2 = 20𝐿2 

6𝐿2 + 𝑊2 = 6𝐿2 

3𝐿2 +
𝑊2

12
= 3𝐿2 

 

Now,                
𝑑𝑉𝐶𝐸

𝑑𝑡
=  

𝐼𝑇(𝑡)−
2𝐷𝑃𝑄(𝑡)

[
𝑊
2

−
𝑊3

24𝐿2]

[
1

𝑊
−

1

20

𝑊

𝐿2
(20𝐿2+𝑊2)

(6𝐿2+𝑊2)
]

1

 2
𝐶𝑏𝑐𝑗(1+

1

𝑏
)[1+

2𝑄(𝑡)

𝑞𝐴𝑁𝐵[
𝑊
2

−
𝑊3

24𝐿2]

(
3𝐿2+

𝑊2

12
(6𝐿2+𝑊2)

−
1

5

(20𝐿2+𝑊2)

(6𝐿2+𝑊2)

(6𝐿2−𝑊2)

(12𝐿2−𝑊2)
+

1
15

𝑊4−𝐿2𝑊2

(6𝐿2+𝑊2)
2 )]

 

                                 = 

𝐼𝑇(𝑡)−
2𝐷𝑃𝑄(𝑡)

[
𝑊
2

]
[

1

𝑊
−

1

20

𝑊

𝐿2
(20𝐿2)

(6𝐿2)
]

1

 2
𝐶𝑏𝑐𝑗(1+

1

𝑏
)[1+

2𝑄(𝑡)

𝑞𝐴𝑁𝐵[
𝑊
2

]
(

3𝐿2

6𝐿2−
1

5

(20𝐿2)

(6𝐿2)

(6𝐿2)

(12𝐿2)
+

1
15

𝑊4−𝐿2𝑊2

36𝐿4 )]
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                                   = 
𝐼𝑇(𝑡)−4𝐷𝑃[

1

𝑊2−
1

6𝐿2]𝑄(𝑡)

1

 2
𝐶𝑏𝑐𝑗(1+

1

𝑏
)[1+

4𝑄(𝑡)

𝑞𝐴𝑁𝐵𝑊

1

6
]
 

        
𝑑𝑉𝐶𝐸

𝑑𝑡
=

𝐼𝑇(𝑡)−4𝐷𝑃[
1

𝑊2−
1

6𝐿2]𝑄(𝑡)

1

 2
𝐶𝑏𝑐𝑗(1+

1

𝑏
)[1+

2𝑄(𝑡)

3𝑞𝐴𝑁𝐵𝑊
]
                                              (4.26) 

 

Assuming, 

W<< 𝐿 

1

𝑊2
>>

1

6𝐿2
 

So we neglect 
1

6𝐿2 terms find out 

                                                     
𝑑𝑉𝐶𝐸

𝑑𝑡
=

𝐼𝑇(𝑡)− 
4𝐷𝑃𝑄(𝑡)

𝑊(𝑡)2

1

 2
𝐶𝑏𝑐𝑗(1+

1

𝑏
)[1+

2𝑄(𝑡)

3𝑞𝐴𝑁𝐵𝑊
]
                                  (4.27) 

This is the expression for the transient voltage derived by Allen R. Linear Jr & David L. 

Blackburn (1988) in the journal [2]. 

4.3 Expression for stored charge decay: 

 

Here, due to the injection into the emitter, stored charge in the base would decay. The total 

charge decay rate would be 

𝑑𝑄(𝑡)

𝑑𝑡
= −

𝑄(𝑡)

𝜏𝐻𝐿
−𝐼𝑛(0) 

Using the quasi-equilibrium simplification (i,e. the difference between the electron & hole quasi 

fermi potentials is the same on the both sides of the junction) and assuming high-level injection 

of the holes into the base, the electron current at the emitter-base junction 𝐼𝑛(0) is related to 

𝑃𝑛(0)  by : 

 

𝐼𝑛(0)

𝐼𝑠𝑛𝑒
= 𝑒

𝑞

𝑘𝑡
(𝜑𝑝𝑒𝑗−𝜑𝑛𝑒𝑗) =

𝑃0(𝑁𝐵 + 𝑃0)

𝑛𝑖
2 ≈

𝑃0
2

𝑛𝑖
2 

Where, 

𝜑𝑛𝑒𝑗=Electron quasi fermi potential at E-B junction. 

           𝜑𝑝𝑒𝑗=Hole quasi fermi potential at E-B junction. 
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           𝐼𝑠𝑛𝑒=Emitter electron saturation current which accounts or the emitter parameters 

                                   (Similar to the emitter Gummel Number). 

 

The approximate form follows from the assumption that the basic is in high-level injection. 

Now we presume 

𝑃0 =
𝑄

𝑞𝐴 [
𝑊

2
−

𝑊3

24𝐿2]
 

𝐼𝑛(0) =
𝑃0

2

𝑛𝑖
2 𝐼𝑠𝑛𝑒 

𝐼𝑛(0) =
𝑄2

𝑞2𝐴2 [
𝑊

2
−

𝑊3

24𝐿2]
2

𝐼𝑠𝑛𝑒

𝑛𝑖
2  

 

                                                           
𝑑𝑄(𝑡)

𝑑𝑡
= −

𝑄(𝑡)

𝜏𝐻𝐿
−

𝑄2

𝑞2𝐴2[
𝑊

2
−

𝑊3

24𝐿2]
2

𝐼𝑠𝑛𝑒

𝑛𝑖
2                                (4.28) 

 

This is the expression for the stored charge decay rate 

 

If  

                     𝑊 << 𝐿 

Then 

𝑊3

24𝐿2
≈ 0 

So,                

𝑑𝑄(𝑡)

𝑑𝑡
≈ −

𝑄(𝑡)

𝜏𝐻𝐿
−

𝑄(𝑡)2

𝑞2𝐴2 𝑊(𝑡)

4

2

𝐼𝑠𝑛𝑒

𝑛𝑖
2  

≈ −
𝑄(𝑡)

𝜏𝐻𝐿
−

4𝑄(𝑡)2

𝑞2𝐴2𝑊(𝑡)2

𝐼𝑠𝑛𝑒

𝑛𝑖
2  

 

 

                                                    
𝑑𝑄(𝑡)

𝑑𝑡
≈ −

𝑄(𝑡)

𝜏𝐻𝐿
−

4𝑄(𝑡)2𝐼𝑠𝑛𝑒

𝑞2𝐴2[𝑊𝐵−𝑊𝑏𝑐𝑗(𝑡)]
2

𝑛𝑖
2
                                          (4.29) 
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Chapter 5 

Results & Discussion 

The consequence of our work on NPT IGBT will be shown in this chapter. We have focused on 

the change of anode current, anode voltage and power loss due to rise of temparature in IGBT. 

These changes has been comapred with linear model. The simulations of these parameters has 

been done on MATLAB. Details of our work are given below- 

5.1 Changes in Anode Voltage : 

We had experimented the changes in anode voltage for different temparatures with respect to 

time. Mainly, voltage changes in accordance to carrier lifetime. As rising of temparature also 

hampers the carrier lifetime, so it changes the anode voltage. Below, difference between linear 

model and parabolic model is shown for different temparatures. 

5.1.1 Low Carrier Lifetime :  In the state of low carrier lifetime, voltage rises frequently with 

respect to time. In this case, the excess minority carrier removes and arrived at supply bus 

voltage (Vbus=400V) in a short time. So, voltage rise is faster but it changes with temparature 

rise. 

At 27o centigrade, we can see from FIgure 5.1.1 that voltage rises very fastly. In comapre with 

Hefnar’s model, the rising time is almost same but the time to reach the top isdifferent. Our 

parabolic model shows faster rise in output anode current than the linear model. 

 

 

 

(a)                             (b)         
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              (c) 

Figure-5.1.1:A comparison between parabolic model and linear modelfor the anode voltage for low carrier 

lifetime(Initial Carrier Lifetime, τHL= 0.5μs) for different temparature, (a)27oC, (b)77oC, (c)127oC 

 

When temparature rises, voltage rising time also increases. As for rising temparature, carrier 

lifetime also increases a bit. As a result, it takes some more time for the charges to reach 

collector-base region, so transient anode voltage rising time increases. We can see in Figure 

5.1.2, for this temparature, linear model shows a small deviation with parabolic model, that 

means parabolic model’s performance for rising temparature is better than linear model. 

 

5.1.2High Carrier Lifetime:When we consider high carrier lifetime, the affective base width 

becomes high than the diffusion lenght. As a result, the voltage rising time increases compare to 

low carrier lifetime condition. This increament also varies with temparature. 

At 27oC, as for the characteristics of anode voltage, it requires less time for voltage to rise for parabolic 

model compared to linear model. As we can see from the below figure 5.1.4, for temparature rise, the 

anode voltage curve shift to right. In all the situation, linear curves always stays after parabolic one’s. 

That means in parabolic model voltage rise time is bit less than linear model for all the temparature,   
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(a)          (b)         

 

(c) 

 

Figure 5.1.2: Difference between parabolic model and linear model for transient anode voltage for high carrier 

lifetime (Initial Carrier Lifetime, τHL= 7.1 µs) at 27oC, 77oC and 127oC 

From all the above figures and discussions, it is clearly seen that for both low and high carrier 

lifetime, parabolic model shows good agreement for device than linear model. So for anode 

voltage, our hypothesis supports parabolic model on top of linear model. 

 

 

5.2. Changes in Anode Current:Anode current in IGBT is being affected by charge 

destribution in n- drift region and carrier lifetime of the charge. Anode current is directly 

proportional to carrier lifetime. In high carrier lifetime, anode voltage rise time increases than the 

low carrier lifetime, as a result, current decays slowly which indicates high anode current. In this 

situation, the anode current characteristics changes for temparature rise which are discussed 

below with figures. 

 

5.2.1 Low Carrier Lifetime:When the carrier lifetime is low, it takes little time for the charges to be 

extracted. So, the current decay rate is slower than other carrier lifetime. It also changes with 

temparature. In 27oC, the current decay rate is very high for both linear and parabolic model. 

Here, parabolic model tells very few current is flowing in IGBT in contrast to linear model. As 

temparature grows, charge decay rate becomes high, so current decay rate also goes high. In 

77oC and 127oC, the minority carrier failed to reach to collector-base junction, so current decay 

rate rises and more current passes through the IGBT. But in case of linear model, less current in 

contrast to time is flowing through IGBT in parabolic model. In below figure, the changes has 

been showed in different temprature for transient anode current in low carrier lifetime. 
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(a)                             (b)  

 

 
                            (c) 
Figure-5.2.1:A comparison between parabolic model and linear modelfor the anode current for low carrier 

lifetime(Initial Carrier Lifetime, τHL= 0.5μs) for different temparature, (a)27oC, (b)77oC, (c)127oC 
 
 

5.2.2 High Carrier Lifetime:For high carrier lifetime, the removal of minority carrier has increased. 

As the time for removal carrier rises, the anode voltage rise time also increases and as a result, 

high anode current passes through IGBT. From the below figure 5.2.2, we can see that the 

amount of current is became high than the lower carrier lifetime. For this, current decay rate also 

rises drastically. 

As temparature rises, the amount of current changes as minority carrier concentration changes. 

The current increases and current decay rate increases in temparature rising. In 27oC, the 

parabolic model shows less decay in contrast to linear model. Same characteristics we can see in 

other two temparatures. In 77oC and 127oC, between parabolic and linear model, current decay 

rate is faster in linear model. 
 
 



53 
 

 
 

(a)                                (b) 

 
 

                (c) 

 

Figure-5.2.2:A comparison between parabolic model and linear modelfor the anode current for low carrier 

lifetime(Initial Carrier Lifetime, τHL= 7.1 μs) for different temparature, (a)27oC, (b)77oC, (c)127oC 
 

5.3. Changes in Switching Power Loss:Switching power loss in IGBT occurs during switch off 

period. This switch off action is controlled by MOSFET gate voltage of IGBT. When the IGBT is 

switched off, the gate voltage becomes less than threshold voltage, so  electron current on MOSFET will 

stop flowing. In this case, the minority carriers which stored in n-drift region needs some time to be 

eliminated. During this time, IGBT has both anode current and anode voltage within it which produces 

power. This produced power can not be used anywhere rather it’s becoming switching power loss of 

IGBT. We can get the swicthing power loss by multiplying anode voltage and anode current. The amount 

of power changes with change in minority carrier lifetime and temparature. Below, the changes in 

switching power for different carrier lifetime and temparature are showing with figures. 

5.3.2 High Carrier Lifetime: In case of high carrier lifetime, the diffusion length, L is greater than the 

effective base width, W (W<L). For this, it takes more time for the minority carriers to be removed and 

holds greater current and voltage. As for temparature rise, the minority carrier lifetime increases, so the 

time to remove the charges also increases. As a result, power loss will high if the temparature is high. 
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Here, both linear and parabolic model showed much consistancy. The more carrier lifetime will increase, 

the ambipolar diffusion length will grow larger than the base width and parabolic model will be very 

much closer to linear model.  

From the below figure 5.3.1, we can see that for 27oC, the power is high than the other temparatures and 

parabolic curve is very close to linear curve. When temparature rises to 77oC, the diffusion length 

becomes more large and parabolic model gradually forces the excess carrier concentration to the linear 

model and there is slight deviation between the two models. At 127oC, the larger diffusion length,L 

makes the parabolic model to be mostly matches to linear model.  

 

 

 

(a)                                                                          (b) 

 

 

( c ) 

 

 

 

 

Figure 5.3.1 : A comparison between parabolic model and linear model 

for the switching power loss for high carrier lifetime(Initial Carrier Lifetime, τHL= 7.1 μs) for different temparature, 

(a)27oC, (b)77oC, (c)127oC 
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5.3.2 Low Carrier Lifetime:When we consider low carrier lifetime, the effective base width, W is 

greater than ambipolar diffusion length, L (W>L). In this case, the current in parabolic model 

falls but the current decay rate is drastically down. For this, the deviation between parabolic 

model and li8near model is clearly seen. 

From the below figure, we can see for 27oC, the power is very high in contrast to high carrier 

lifetime. When the temparature rises, power for low carrier lifetime falls down. Here, parabolic 

model shows much consistancy than linear model and deviation between them is very high.  

 

   (a)                                                                   (b) 

 

( c ) 

 
Figure 5.3.2 : A comparison between parabolic model and linear model 

for the switching power loss for low carrier lifetime(Initial Carrier Lifetime, τHL= 0.5μs) for different temparature, 

(a)27oC, (b)77oC, (c)127oC 
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Data Table:  

For 0.5 μs –  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature 

(Degree) 

Time(10^-

7) 

(sec) 

Current 

(A) 

(Parabolic) 

Current 

(A) 

(Linear) 

Voltage 

(V) 

(Parabolic) 

Voltage 

(V) 

(Linear) 

Power (W) 

(Parabolic) 

Power 

(W) 

(Linear) 

127 0 6.495 10 0 0 0 0 

 1.436 4.273 6.857 176.55 160.7 754.4 1102 

 2.872 2.614 4.248 479.34 390.1 1253 1657 

 4.923 .813 1.272 678.062 628.5 551.4 799.7 

 6 0 0 766.9 696.5 0 0 

        

77 0 6.02 10 0 0 0 0 

 1.436 4.004 6.682 190.2 184.6 761.6 1234 

 2.872 2.429 4.04 517.4 442.6 1257 1788 

 4.923 .747 1.171 787.3 693.4 588.3 812.1 

 6 0 0 831.4 759.2 0 0 

        

27 0 5.447 10 0 0 0 0 

 1.436 3.501 6.428 222.4 218.5 778.8 1404 

 2.872 2.041 3.747 641.4 524 1309 1964 

 4.923 .5642 1.036 921 809.4 519.7 838.4 

 6 0 0 980 890 0 0 
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For 7.1 μs –  

 

 

 

Temperature 

(Degree) 

Time(10^-

7) 

(sec) 

Current  

(A) 

(Parabolic) 

Current  

(A) 

(Linear) 

Voltage (V) 

(Parabolic) 

Voltage(V) 

(Linear) 

Power (W) 

(Parabolic) 

Power 

(W) 

(Linear) 

127 0 9.638 10 0 0 0 0 

 1.436 7.283 7.557 52.17 46.54 380 351.7 

 2.872 4.959 5.145 145.7 133.2 722.7 685.5 

 4.923 1.791 1.755 271.8 255.5 459.7 448.3 

 6 0 0 320 304 0 0 

        

77 0 9.561 10 0 0 0 0 

 1.436 7.214 7.545 55.27 48.26 398.7 367.2 

 2.872 4.905 5.13 152.7 138.1 749.1 708.6 

 4.923 1.669 1.749 282.2 263.3 471.1 459.6 

 6 0 0 331 313 0 0 

        

27 0 9.453 10 0 0 0 0 

 1.436 7.117 7.529 61.74 53.63 439.4 403.8 

 2.872 4.829 5.108 172.7 154.3 833.9 788.4 

 4.923 1.638 1.733 328.3 303.4 537.9 525.9 

 6 0 0 400 375 0 0 
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Chapter  6 

Future opportunities 

In our research paper, we have investigated the characteristics of NTP IGBT with temperature 

variance and deducted anode voltage, anode current and switching power in different carrier 

lifetime. We compared the extended parabolic model and linear model and analyzed the 

attributes with changing temperature. Although due to unavailability of practical data, we 

couldn’t establish any preference of the compared models, we intend to research further on this 

area. 

 

However, for a further approach, we can develop a PSPICE IGBT sub circuit for the parabolic 

model and examine I-V characteristics and study its switching features. 

 

Moreover, as IGBT is a semiconductor device with integrated characteristics of power MOSFET 

and Bipolar junction transistor (BJT), it faces a notable power loss while switching which often 

results into hardware damage. To prevent the loss while turn-off and increase the efficiency of 

the device, we can determine the power loss approximately and develop the device to tolerate the 

circumstances.   
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Appendix A 

 

Steady state charge control 

 

                   Ambipolar Diffusion equation in Base 

                                                                     
𝜕2𝑝(𝑥)

𝜕𝑥2 −
𝑝(𝑥)

𝐿2 = 0                                               (A.1) 

                                 Boundary conditions: 

                                                                    𝑝(𝑥 = 0) = 𝑃0 

                                                                    𝑝(𝑥 = 𝑊) = 0 

Minority carrier concentration in n base region on IGBT is 

                                                                    𝑝(𝑥) = 𝐴𝑒
𝑥

𝐿 + 𝐵𝑒−
𝑥

𝐿                                           (A.2) 

                                  Now at, 𝑥 = 0 

                                                             𝑝(0) = 𝐴 + 𝐵 

                                                             𝑃0 = 𝐴 + 𝐵                                                                  (A.3) 

                                    Now at, 𝑥 = 𝑤 

                                                            0 = 𝑝(𝑥) = 𝐴𝑒
𝑊

𝐿 + 𝐵𝑒−
𝑊

𝐿                                               (A.4) 

Now multiplying 𝑒−
𝑊

𝐿    to the equation (A.3), we get 

                                                               
                                                                

                                                        𝐴𝑒−
𝑊

𝐿 + 𝐵𝑒−
𝑊

𝐿 = 𝑃0𝑒−
𝑊

𝐿                                                    (A.5) 

Subtracting (A.5) from (A.4), we get A 

                                                        𝐴 (𝑒
𝑊

𝐿 + 𝑒−
𝑊

𝐿 ) = −𝑃0𝑒−
𝑊

𝐿  

                                                                𝐴 =
−𝑃0𝑒

−
𝑊
𝐿

2𝑗 sinh(
𝑊

𝐿
)
                                                            (A.6) 
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Again we multiply equation (A.3) with 𝑒
𝑊

𝐿  

                                                       𝐴𝑒
𝑊

𝐿 + 𝐵𝑒
𝑊

𝐿 = 𝑃0𝑒
𝑊

𝐿                                              (A.7) 

Subtracting (A.7) from (A.4), we find out B 

𝐵 (𝑒
𝑊

𝐿
 −𝑒−

𝑊

𝐿 ) = 𝑃0𝑒
𝑊

𝐿  

                                                                 𝐵 =
𝑃0𝑒

𝑊
𝐿

2𝑗 sinh(
𝑊

𝐿
)
                                               (A.8) 

So, the total solution would be 

                                                            𝑝(𝑥) =
−𝑃0𝑒

−
𝑊
𝐿

2𝑗 sinh(
𝑊

𝐿
)

𝑒
𝑥

𝐿 +
𝑃0𝑒

𝑊
𝐿

2𝑗 sinh(
𝑊

𝐿
)

𝑒−
𝑥

𝐿                            (A.9) 

                                                                      = 𝑃0
𝑒

𝑊−𝑥
𝐿

−
𝑒

−
(𝑊−𝑥)

𝐿

2𝑗 sinh(
𝑊

𝐿
)

 

                                                               𝑝(𝑥) = 𝑃0

sinh(
𝑊−𝑥

𝐿
)

sinh(
𝑊

𝐿
)

                                                 (A.10) 

 

      Now, integrating p(x), we get the total steady state excess base charge       

                                                            𝑄0 = 𝑞𝐴 ∫ 𝑝(𝑥)𝑑𝑥
𝑊

0
   

                                                            𝑄0 = 𝑞𝐴
𝑃0

sinh(
𝑊

𝐿
)

∫ sinh (
𝑊−𝑥

𝐿
) 𝑑𝑥

𝑊

0
                      

Let, 

                                                               
𝑊−𝑥

𝐿
= 𝑧 

Differentiating 

                                                          
−1

𝐿
𝑑𝑥 = 𝑑𝑧 

                                                             𝑑𝑥 = −𝐿𝑑𝑧 
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Boundary Limits: 

                                     x=0                         𝑧 =
𝑊

𝐿
 

                                      x=W                        𝑧 = 0 

so,we get 

                                        𝑄0 = 𝑞𝐴
𝑃0

sinh(
𝑊

𝐿
)

∫ sinh(−𝐿) sinh 𝑧𝑑𝑧
0

𝑊

𝐿

 

                                              = 
𝑞𝐴𝑃0𝐿

sinh(
𝑊

𝐿
)

[cosh 𝑧]
0

𝑊

𝐿  

                                               = 
𝑞𝐴𝑃0𝐿

sinh(
𝑊

𝐿
)

[cosh (
𝑊

𝐿
) − 1] 

We know, 

                                                 cosh(2𝑥) = 1 + 2𝑠𝑖𝑛ℎ2 (𝑥)                                 (A.11) 

                                                  sinh(2𝑥) = 2 sinh(𝑥) cosh(𝑥)                             (A.12) 

The total excess base charge 

                                                 𝑄0 = 𝑞𝐴𝑃0𝐿
2𝑠𝑖𝑛ℎ2(

𝑊

2𝐿
)

2 sinh(
𝑊

2𝐿
) cosh(

𝑊

2𝐿
)
 

                                                  𝑄0 = 𝑞𝐴𝑃0𝐿 tanh (
𝑊

2𝐿
)                                            (A.13) 
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Appendix B 

 

Linear Charge Control 

From the steady state analysis, we have 

                                                 𝑝(𝑥) = 𝑃0

sinh(
𝑊−𝑥

𝐿
)

sinh(
𝑊

𝐿
)

                                         (B.1) 

Since the diffusion length (L) is larger than the drift layer thickness (WB) because of the high 

lifetime of the carriers, one can approximate the carrier profile for the holes p(x) in the drift layer 

by a linear expression as shown previously 

                                           𝑝(𝑥, 𝑡) = 𝑃0 [1 −
𝑥

𝑊(𝑡)
]                                           (B.2) 

 

With the aid of the general ambipolar transport hole current expression 

                                          𝐼𝑝 =
1

1+𝑏
𝐼𝑇(𝑡) − 𝑞𝐴𝐷

𝜕𝑝(𝑥)

𝜕𝑥
                                      (B.3) 

 

We can find an expression for 𝑃0 from equations (B.2) & (B.3) as 

                                          
𝜕𝑝(𝑥)

𝜕𝑥
= −

𝑃0

𝑊(𝑡)
                                                           (B.4) 

As                         

                                            𝐼𝑛(0) = 0 

 

So 

                                           𝐼𝑝(0) = 𝐼𝑇(𝑡) 

And 

                                            𝐼𝑝(0) = 𝐼𝑇(𝑡) =
𝐼𝑇(𝑡)

1+𝑏
+

2𝑞𝐴𝐷𝑃

1+
1

𝑏

𝑃0

𝑊(𝑡)
 

                                             𝐼𝑇(𝑡) [1 −
1

1+𝑏
] =  

2𝑞𝐴𝐷𝑃

1+
1

𝑏

𝑃0

𝑊(𝑡)
 

                                             𝐼𝑇(𝑡)= 𝐼𝑇(𝑡 = 0) =  𝐼𝑇(0−) 



65 
 

                                                                𝑃0 =  
𝑊(𝑡)𝐼𝑇(0−)

2𝑞𝐴𝐷𝑃
                                   (B.5) 

 

Since total anode current is constant𝐼𝑇(𝑡) =  𝐼𝑇(0−), from the above equation we can find 
𝜕𝑃0

𝜕𝑡
 as 

                                                             
𝜕𝑃0

𝜕𝑡
=

𝑊(𝑡)𝐼𝑇(0−)

2𝑞𝐴𝐷𝑃

𝑑

𝑑𝑡
𝑊(𝑡) 

Substituting for 𝐼𝑇(0−) from equation (B.5), the above equation becomes 

                                                              
𝜕𝑃0

𝜕𝑡
= −

𝑃0

𝑊(𝑡)

𝑑

𝑑𝑡
𝑊(𝑡)                              (B.6) 

From Figure (3.3) the slope is negative since the behaviour of 𝑊(𝑡) tends towards the minus x 

direction as the device voltage 𝑉𝐶𝐸(𝑡) varies with time (moving boundary). The total excess 

charge in the base of the IGBT is 

                                                                 𝑄(𝑡) = 𝑞𝐴𝑃0 ∫ [1 −
𝑥

𝑊(𝑡)
] 𝑑𝑥

𝑊

0
 

                                                                           = 𝑞𝐴𝑃0 [𝑥 −
𝑥2

2𝑊(𝑡)
]

0

𝑊

 

                                                                            = 𝑞𝐴𝑃0 [𝑊(𝑡) −
𝑊(𝑡)2

2𝑊(𝑡)
] 

                                                                             = 𝑞𝐴𝑃0 [𝑊(𝑡) −
𝑊(𝑡)

2
] 

                                                                              = 𝑞𝐴𝑃0
𝑊(𝑡)

2
                                 (B.7) 

 

                                                                    𝑄(𝑡) =  𝑞𝐴
𝑊(𝑡)

2

𝑊(𝑡)𝐼𝑇(𝑡)

2𝑞𝐴𝐷𝑃
   

                                                                      𝐼𝑇(𝑡) =
4𝐷𝑃

𝑊(𝑡)2 𝑄(𝑡)                             (B.8) 

Equation (B.8) is the linear charge control current and 𝑊is a constant in this case since 
𝑑𝑉𝐶𝐸

𝑑𝑡
= 0 
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Appendix C 

 
Effective Depletion width from Poisson's Equation 

[27] An electric field is created in the depletion region by the separation of positive and negative 

space charge densities. Fig. C.1 shows the volume charge density distribution in the pn junction 

assuming uniform doping and assuming an abrupt junction approximation. We will assume that 

the space charge region abruptly ends in the n region at 𝑥 = +𝑥𝑛,and abruptly ends in the p 

region at𝑥 = −𝑥𝑝 , (𝑥𝑝 is a positive quantity). 

The electric field is determined from Poisson's equation which, for a one-dimensional analysis, is 

                                         
𝑑2∅(𝑥)

𝑑𝑥2 =
−𝜌

𝜖𝑠
= −

𝑑𝐸(𝑥)

𝑑𝑥
                                       (C.1) 

Where ∅(𝑥)  is the electric potential, 𝐸(𝑥)is the electric field, 𝜌(𝑥)is the volume charge density 

and 𝜖𝑠 is the permittivity of the semiconductor. From Fig. D.1, the charge densities are 

                                          𝜌(𝑥) = −𝑒𝑁𝑎                    −𝑥𝑝 < 𝑥 < 0                        (C.2) 

 

                      

             Figure C.1: The space charge density in a uniformly doped pn junction  

                                   assuming the abrupt junction   approximation 
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and, 

                        𝜌(𝑥) = −𝑒𝑁𝑑                      0 < 𝑥 < 𝑥𝑛                        (C.3)                          

 
The electric field in the p region is found by integrating Equation (C.1), We have that 

 

                                                        𝐸 = ∫
𝜌(𝑥)

𝜖𝑠
𝑑𝑥 = − ∫

𝑒𝑁𝑎

𝜖𝑠
𝑑𝑥 = −

𝑒𝑁𝑎

𝜖𝑠
𝑥 + 𝐶1                 (C.4) 

 

Where 𝐶1 is a constant of integration. The electric field is assumed to be zero in the neutral p 

region for 𝑥 < 𝑥𝑝, since the currents are zero in thermal equilibrium. As there are no surface 

charge densities within the pn junction structure, the electric field is a continuous function. The 

constant of integration is determined by setting 

𝐸 = 0 at 𝑥 = 𝑥𝑝. The electric field in the p region is then given by 

             

                    𝐸 = −
𝑒𝑁𝑎

𝜖𝑠
(𝑥 + 𝑥𝑝)                               −𝑥𝑝 ≤ 𝑥 ≤ 0                        (C.5) 

 

               

                           Figure C.2: Electric field in the space charge region of a uniformly doped   

                                             pn junction 

                                                        

          

Then the n region, the electric field is determined from 

                                                        𝐸 = ∫
𝑒𝑁𝑑

𝜖𝑠
𝑑𝑥 =

𝑒𝑁𝑑

𝜖𝑠
𝑥 + 𝐶2                                             (C.6) 
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Where 𝐶2 is again a constant of integration. The constant 𝐶2is determined by setting 𝐸 = 0 at 

𝑥 = 𝑥𝑛 , since the Electric field is assumed to be zero in the n region and is a continuous 

function. Then 

                                                             𝐸 = −
𝑒𝑁𝑎

𝜖𝑠
(𝑥𝑛 − 𝑥)                    0 ≤ 𝑥 ≤ 𝑥𝑛           (C.7) 

The electric field is also continuous at the metallurgical junction, or at 𝑥 = 0.Setting 

Equations (C.5) and (C.7) equal to each other at 𝑥 = 0  gives             

                                                                     𝑁𝑎𝑥𝑝 = 𝑁𝑑𝑥𝑛                                                  (C.8) 

Equation (C.8) states that the number of negative charges per unit area in the p region is equal to 

the number of positive charges per unit area in the n region. 

Fig. C.2 is a plot of the electric field in the depletion region. The electric field direction is from 

the n to the p region, or in the negative x direction for this geometry. For the uniformly doped pn 

junction, the Electric field is a linear function of distance through the junction, and the maximum 

(magnitude) electric field occurs at the metallurgical junction. An electric field exists in the 

depletion region even when no voltage is applied between the p and n regions. 

The potential in the junction is found by integrating the electric field. In the p region then, we 

have 

                                                 ∅(𝑥) = − ∫ 𝐸𝑑𝑥 = ∫
𝑒𝑁𝑎

𝜖𝑠
(𝑥 + 𝑥𝑝)𝑑𝑥                                       (C.9) 

                                                   ∅(𝑥) =
𝑒𝑁𝑎

𝜖𝑠
(

𝑥2

2
+ 𝑥𝑝) + 𝐶1

′                                                      (C.10) 

where 𝐶1
′ is again a constant of integration. The potential difference through the pn junction is the 

important parameter, rather than the absolute potential, so we may arbitrarily set the potential 

equal to zero at 𝑥 = −𝑥𝑝. The constant of integration is then found as 

                                               𝐶1
′ =

𝑒𝑁𝑎

2𝜖𝑠
𝑥𝑝

2                                                                             (C.11) 

so that the potential in the p region can now be written as 

                                                 ∅(𝑥) =
𝑒𝑁𝑎

2𝜖𝑠
(𝑥 + 𝑥𝑝)

2
                      −𝑥𝑝 ≤ 𝑥 ≤ 0             (C.12) 

The potential in the region is determined by integrating the electric field in the n region, or    
                                                        

                                                             ∅(𝑥) = − ∫ 𝐸𝑑𝑥 = ∫
𝑒𝑁𝑑

𝜖𝑠
(𝑥𝑛 − 𝑥)𝑑𝑥                                       (C.13) 
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Then 

                                                                            ∅(𝑥) =
𝑒𝑁𝑑

𝜖𝑠
(𝑥𝑛𝑥 −

𝑥2

2
) + 𝐶2

′                                       (C.14) 

   

                                  Figure C.3: Electric Potential through the space charge region of a              

                                                                    uniformly doped pn junction 

 

 

where 𝐶2
′  is another constant of integration. The potential is a continuous function, so setting 

Equation (7.21) equal to Equation (C.14) at the metallurgical junction, or at x = 0, gives 

                                                         𝐶2
′ =

𝑒𝑁𝑎

2𝜖𝑠
𝑥𝑝

2                                                          (C.15) 

 

The potential in then region can thus be written as 

                                                      ∅(𝑥) =
𝑒𝑁𝑑

𝜖𝑠
(𝑥𝑛𝑥 −

𝑥2

2
) +

𝑒𝑁𝑎

2𝜖𝑠
𝑥𝑝

2                          0 ≤ 𝑥 ≤ 𝑥𝑛           (C.16) 

 

Fig. C.3 is a plot of the potential through the junction and shows the quadratic dependence on 

distance. The magnitude of the potential at 𝑥 = 𝑥𝑛 is equal to the built-in potential barrier. Then 

from Equation (C.16), we have 

                                            𝑉𝑏𝑖 = [∅(𝑥 = 𝑥𝑛)] =
𝑒

2𝜖𝑠
(𝑁𝑎𝑥

𝑝
2 + 𝑁𝑑𝑥

𝑛
2)                                     (C.17) 

 



70 
 

We can determine the distance that the space charge region extends into the p and n regions from 

the metallurgical junction. This distance is known as the space charge width or Depletion Width. 

From Equation (C.8), we may write;  

 

For example   

                                                 𝑥𝑝 =
𝑁𝑑𝑥𝑛

𝑁𝑎
                                             (C.18) 

 

Then, substituting Equation (C.18) into Equation (C.17) and solving for x, we obtain 

 

                                           𝑥𝑛 = {
2𝜖𝑠𝑉𝑏𝑖

𝑒
(

𝑁𝑎

𝑁𝑑
) (

1

𝑁𝑎+𝑁𝑑
)}

1

2
                        (C.19) 

 

 

Equation (C.19) gives the space charge width or the width of the depletion region, 𝑥𝑛,extending 

into the n-type region for the case of zero applied voltage. 

Similarly, if we solve for 𝑥𝑛 from Equation (C.8) and substitute into Equation (C.17), we find 

                                            𝑥𝑝 = {
2𝜖𝑠𝑉𝑏𝑖

𝑒
(

𝑁𝑑

𝑁𝑎
) (

1

𝑁𝑎+𝑁𝑑
)}

1

2
                      (C.20)      

 

 

Where 𝑥𝑝 is the width of the depletion region extending into the p region for the case of zero 

applied voltage.  

 

 

The total depletion or space charge width W is the sum of the two components, or   

                                         𝑊𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 = 𝑥𝑛 + 𝑥𝑝                                    (C.21) 

                     

 

 Using Equations (C.19) and (C.20), we obtain   

                                             𝑊𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =  {
2𝜖𝑠𝑉𝑏𝑖

𝑒
(

𝑁𝑎+𝑁𝑑

𝑁𝑎𝑁𝑑
)}

1

2
                (C.22)        
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In case of collector-base region of the IGBT, the collector is highly doped 𝑝+ region, whether the 

base is lightly doped 𝑛−. So we can say  𝑁𝑑 << 𝑁𝑎 . From equation (C.8) we see 

                                                   𝑥𝑛 >> 𝑥𝑝                                                 (C.23) 

and 

                                                    𝑥𝑛 ≈  Wbcj                                                (C.24) 

 

 

where 𝑊𝑏𝑐𝑗 = 𝑊𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛. Here 𝑉𝑏𝑖=𝑉𝐶𝐸 (collector-emitter voltage), q=e (electron charge) and  

𝑁𝑑=𝑁𝑏 (base impurity concentration). So the base-collector depletion width reduces to 

 

                                                𝑊𝑏𝑐𝑗 =  {
2𝜖𝑠𝑉𝐶𝐸(𝑡)

𝑞𝑁𝐵
}

1

2
                                       (C.25)    

 

 

 

If the metallurgical base width is 𝑊𝐵, then the effective depletion width can be written as 

 

                                                  𝑊(𝑡) = 𝑊𝐵 − 𝑊𝑏𝑐𝑗(𝑡) 

                                                     𝑊(𝑡) = 𝑊𝐵 − √{
2𝜖𝑠𝑉𝐶𝐸(𝑡)

𝑞𝑁𝐵
}                                    (C.26) 
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Appendix D 

 

Ambipolar Diffusion Coefficient 

At high injection levels, electrons and holes transport cannot be treated separately because the 

electrons move in a cloud of holes and conversely. A convenient approach to handle this 

situation involves combination of continuity equation for electrons with that for holes, and 

introduction of a new parameter, namely, Ambipolar Diffusion Coefficient, which is an algebraic 

function of electron and hole diffusivities and concentrations. The defining equation for the 

ambipolar diffusion coefficient is 

                                                            𝐷 =
𝑛𝑞𝜇𝑛𝐷𝑝+𝑝𝑞𝜇𝑝𝐷𝑛

𝑛𝑞𝜇𝑛+𝑝𝑞𝜇𝑝
 

Where,         

              𝐷𝑛 =Electron Diffusion Coefficient   

              𝐷𝑝 = Hole Diffusion Coefficient   

               𝜇𝑛 = Electron mobility 

                𝜇𝑝 = Hole mobility 

                𝑛 = electron concentration                     

                𝑝 = hole concentration 

                𝑞 = charge  

The advantage gained from this approach is that the resulting single equation allows focusing our 

attention on the minority carrier concentration, while the presence of majority carrier 

concentration is automatically accounted for by the ambipolar diffusion coefficient. 

 

 Now, we know from Eienstein's Equation 

                                                     
𝐷𝑛

𝜇𝑛
=

𝑘𝑇

𝑞
 

                                                     
𝐷𝑝

𝜇𝑝
=

𝑘𝑇

𝑞
 

                                                      
𝐷𝑛

𝐷𝑝
=  

𝜇𝑛

𝜇𝑝
= 𝑏 
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  Assuming 𝑛 = 𝑝   

                                         𝐷 =
𝑛𝑞(𝜇𝑛𝐷𝑝+𝜇𝑝𝐷𝑛)

𝑛𝑞(𝜇𝑛+𝜇𝑝)
 

                                         = 
(𝜇𝑛𝐷𝑝+𝜇𝑝𝐷𝑛)

(𝜇𝑛+𝜇𝑝)
 

                                          =
(

𝜇𝑛
𝜇𝑝

𝐷𝑝+𝐷𝑛)

(
𝜇𝑛
𝜇𝑝

+1)
 

                                          =
𝑏𝐷𝑝+𝐷𝑛

𝑏+1
 

                                           =
𝐷𝑝+

𝐷𝑛
𝑏

1+
1

𝑏

 

                                           =
𝐷𝑝+𝐷𝑛

𝐷𝑝

𝐷𝑛

1+
1

𝑏

 

                                           =
2𝐷𝑝

1+
1

𝑏

       

                     So,             𝐷 (1 +
1

𝑏
) = 2𝐷𝑝                                          (D.1)   
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Appendix E 

 

Fourth order RUNGE-KUTTA 

(RK4) method 

Fourth order Runge-Kutta (RK4) method is a numerical technique used to solve ordinary 

differential equation of the form: 

                                
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(0) = 𝑦0 

So only first order ordinary differential equations can be solved by using the Runge 

- Kutta 4th order method. 

The most commonly used set of values leads to the procedure: 

                                𝑦𝑛+1 = 𝑦𝑛 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

                                     𝑘1 = ℎ𝑓(𝑥𝑛, 𝑦𝑛) 

                            𝑘2 = ℎ𝑓 (𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘1) 

                            𝑘3 = ℎ𝑓 (𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘2)   

                            𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3)   

 

The local error term for the fourth-order Runge-Kutta method is 

                                     (𝑜ℎ4) 

The global error would be 

                               (𝑜ℎ4)        

It is computationally more efficient than the modified Euler method because, although four 

evaluations of the function are required per step rather than two, the steps can be many-fold 

larger for the same accuracy. The Runge-Kutta techniques have been very popular, especially the 

forth order method just presented. Because going from two to fourth order was so beneficial, we 

may wonder whether we should use a still higher order formula. Higher order (fifth, sixth and so 
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on) Runge-Kutta formulas have been developed and can be used to advantage in determining a 

suitable size for h. Still, Runge-Kutta methods of order greater than four have the disadvantage 

that the number of function evaluations that are required is greater than the order than the 

method, while Runge-Kutta method of order 4 require the same number of evaluations as the 

order.  

It is important to keep in mind that there are three possible sources of error in numerical 

calculations, such as solutions to ordinary differential equations. The one we have discussed the 

most is truncation error, the error associated with the number of terms in a series, e.g. Taylor 

series. Other sources of error are round-off errors, which will always be present even if our 

method is exact, and original data errors, associated with not knowing the initial conditions or 

boundary conditions exactly [see Box 3.1]. Errors at each step propagate through the solution, so 

the global error is generally about an order larger than the local error. A method is convergent if 

the approximate solution tends toward the true solution as 

                                                                  ∆𝑥 → 0 

All of the widely used methods for solving ordinary differential equations (in particular the ones 

we have discussed) are convergent. Stability refers to the growth of errors as the solution 

proceeds. A stable method is one in which the global error does not grow in an unbounded 

manner. For many ODE's, the step size required to obtain an accurate solution is much smaller 

than the step size required for stability. As a result, stability is often not a major concern. When a 

solution is unstable, it is usually obvious. A smaller step size will generally rectify the problem, 

although there are cases that are unconditionally unstable for some methods. Changing methods 

is the best approach in such cases. 

 

 

 

 

 


