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Abstract 

 

Due to distinctive electronic properties and potential future application in 

tunable bandgap opening, Graphene Nanoribbon (GNR) has apprehended 

strong attention. Boron Nitride Nanoribbons (BNNR) exhibit analogous 

structure. Thus domains of Graphene embedded in Boron Nitride can be 

synthesized to open a bandgap exposing the semiconductor behavior of 

Graphene more precisely. A numeric investigation of the impact of GNR 

embedded in BNNR explains the bandgap tunability as well as transport 

property of Graphene.  This unique versatility is likely to bring a radical change 

in electrical field not only by encouraging innovation but also by improving the 

mechanism of existing devices. 
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Chapter 1: Introduction 

 

              Graphene, a two-dimensional single-atom thick membrane of carbon atoms 

arranged in a honeycomb crystal, has been the most widespread material due to its excellent 

electrical, magnetic, thermal, optical and mechanical properties. Bilayer graphene is also an 

important material as it has very unique electronic structure as well as transport properties. 

On the other hand, Boron Nitride, a hexagonal lattice consisting of analogous structure as 

graphene has recently attracted much attention due to its superior mechanical and thermal 

conducting properties. Though both were discovered in the same century the difficulties of 

different production techniques and high cost of BN has limited its fabrication practices for 

about hundred years. In contrast to the zero bandgap of graphene, BN Nano Ribbons exhibit 

a wide bandgap suitable for semiconductors, optoelectronics and dielectric substrate for 

high-performance graphene electronics. Graphene sandwiched by monolayer BN is 

predicted to have a tunable bandgap without sacrificing its mobility. 

(a)                                                                                           (b) 

    

Fig. 1: (a) Atomic Structure of Graphene (b) Atomic Structure of Boron Nitride. 
[1] 
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1.1 Lattice Structure and orbital hybridization of Graphene and BN: 

                      Both Graphene and Boron Nitride are defined by     hybridization.      

hybridized orbital is responsible for bonding in           orbital of graphene and remaining 

   orbital is situated perpendicularly to that plane. This perpendicular orbital contributes one 

conducting electron for per carbon atom. Thus among these four valence orbitals 

                 of carbon atom the          orbitals combine to form the in-plane 

occupied orbital     and unoccupied orbital    . These orbitals are even planner symmetry. 

The    orbital which is an odd planner symmetry forms localized   and    orbital. The 

bonding orbitals are strongly covalent bonds determining the energetic stability and the 

elastic properties of Graphene. The remaining   orbital is odd with respect to the planner 

symmetry and decoupled from the bonding states. From the lateral interaction with 

neighboring   orbitals, localized   and      orbitals are formed. Graphite consists of a stack 

of many Graphene layers. The unit cell in Graphene can be primarily defined using two 

graphene layers translated from each other by a C-C distance,           . The three-

dimensional structure of Graphite is maintained by weak interlayer Van Der Waals interaction 

between π bond so adjacent layers, which generate a weak but finite out-of-plane 

delocalization. 

 (a )                                                                          (b) 

 

Fig. 1.1: (a) sp
2
 Hybridization of Graphene, (b) sp

2
 Hybridization of BN. 

[2] 
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                     Boron having electronic structure of          along with nitrogen with an 

electronic structure of          , forms     hybrid bonds in the B-N sheets. In 

   hybridization Boron uses all of the outer electrons to give the configuration 

      
    

    
  when fabricated with Nitrogen. After formation of the    orbital, the 

remaining two   electrons are located in the (filled)    orbital. The   bonding in the BN 

sheets that result is strong and similar to the bonding in the graphite sheets.  However,   

bonding between the full    orbitals of nitrogen and the empty     orbitals of boron is not 

possible. This is because the orbital energies of boron and nitrogen are too dissimilar for a 

large energy gain. Thus no delocalized electron is present in the structure. Because of this the 

boron and nitrogen atoms in alternate layers avoid each other. This allows for the more 

efficient packing of the filled    orbitals, and the layers are closer than they are in graphite. 

Nevertheless, the lack of bonding between the layers still means that BN retains the easy 

cleavage of graphite and still is a good dry lubricant. 

 

1.2 Motivation and Objective of the work: 

                             At present the biggest challenges in fabricating effective nano scale devices 

are speed limitation and excessive power consumption. Using Graphene in such devices high 

mobility can be obtained but due to the high on current and high off current, the on off 

current ratio of Graphene becomes low. Thus the material exhibits no bandgap and tunneling 

effect occurs. On the other hand, BN has efficiently high band gap due to high on-off current 

ratio but has low mobility. When embedded in Nanoribbon forms the off current of 

Graphene can significantly be reduced to make the on-off current ration high enough for 

suitable bandgaps for any ribbon width index and also preserve the high mobility of 

Graphene. Thus, the possibility of opening a tunable bandgap in graphene by confining it 

within BN has been the motivation as well as the objective of the paper. 
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1.3 Framework of Research: 

                           Firstly, the energy dispersion relation has of both Graphene and BN been 

determined using first nearest TB model and evaluated using the General Schrodinger 

equation. Afterwards their bandgaps, hierarchy and DFT evaluated Tight Binding parameters 

have been examined and listed. Afterwards using those parameters the band structure of 

Graphene Nanoribbons as well as Boron Nitride Nanoribbons has been observed. Finally, 

Graphene Nanoribbons embedded in BN Nanoribbons have been fabricated to attain the 

objective of the work. A GUI has also been developed that shows direct comparison between 

GNR and BNNR embedded GNR along with corresponding ribbons. 
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Chapter 2: Energy Dispersion Relation of Graphene and Boron Nitride 

 

                     Graphene, a single atomic sheet of periodically arranged graphite forming an 

infinite honeycomb lattice, is a two-dimensional allotrope having a single layer of     -

bonded carbon atoms that are densely packed. Ever since the first demonstration of its zero 

bandgap, the lattice has attracted much attention not only for its exceptional strength and 

thermal conductivity but also for electrical conductivity. Since Carbon (C), Boron (B) and 

Nitrogen (N) are all in the same period of the periodic table, single layer hexagonal Boron 

Nitride (h-BN) exhibits analogous honeycomb structure as Graphene and also has distinct 

bandgap variation trends. Moreover, the band structure and energy dispersion relation of 

Graphene and BN provides better understanding in analyzing the possibilities of opening a 

tunable bandgap when Graphene Nano  Ribbons (GNR) are embedded in BN Nano Ribbons 

(BNNR). Among all possible band structure calculation methodologies Density Functional 

Theory (DFT) and nearest Tight Binding (TB) method have been employed in this paper in 

order to find appropriate bandgap. [11-14] 

 

2.1 Introduction to DFT (Density Functional Theory): 

 

               Since 1970s Density functional theory (DFT) has been considered the most versatile 

method for quantum mechanical calculation. However it did not get complete recognition 

until the year of 1990s. In the following year the approximations used in theory was redefined 

to such an extent that they satisfactorily agreed with the experimental data, especially the 

ones attained from first principles calculation. Hence, DFT has been defined as the quantum 

mechanical modelling method used to investigate the electronic band structure as well as 

other electronic properties of atoms, molecules and condensed phases. Using this theory, the 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Electronic_structure
https://en.wikipedia.org/wiki/Condensed_phase
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properties of a many-electron system can be evaluated specially the ones dependent on 

electron density. The name Density Functional Theory has been driven from the fact that DFT 

incorporates the use of functionals of the electron density. Compared to costly methods like 

first principles calculation or Hartree-Fock theory DFT is much cost-effective. [24] 

(a)                                                                              (b)    

 

Fig 2.1: (a) Band Structure of Graphene using DFT calculation. (b) Band Structure of BN using DFT calculation. 

 

2.2 Introduction to nearest neighbor TB (Tight Binding) model: 

 

            Tight-binding models are applied to a wide variety of matters and they give good 

qualitative results in many cases. The nearest TB model is defined as an approach that 

calculates electronic band structures using an approximate set of wave functions based on 

superposition of wave functions for isolated atoms located at each atomic site. It is closely 

related to the Linear Combination of Atomic Orbitals method (LCAO).TB overlap as well as 

Hamiltonian matrices directly from first-principles calculations has always been a subject of 

continuous interest. Since, the nearest TB model primarily attempts to represent the 

electronic structure of condensed matter using a minimal atomic-orbital like basis set; it has 

been redefined to fit the resultants of first-principles calculations. 
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               Usually, first-principles calculations are done using a large or long-ranged basis set 

in order to get convergent results, while tight-binding overlap and Hamiltonian matrices are 

based on a short-ranged minimal basis representation. Therefore in this paper, we performed 

a transformation that can carry the electronic Hamiltonian matrix from a large or long-

ranged basis representation onto a short ranged minimal basis representation in order to 

obtain an accurate tight-binding Hamiltonian from first principles calculation. [3] 

 

2.3 Band Structure (E-k relation) calculation: 

 

         Electronic band structure of a matter is described by the ranges of energy that an 

electron within the matter may have and also the ranges of energy that it may not have 

(called band gaps or forbidden bands). By examining the allowed quantum mechanical wave 

functions for an electron in a large, periodic lattice of atoms or molecules, the electronic 

bands and band gaps can effectively be derived. Again by knowing the band structures of 

Graphene and 2D h-BN lattice, their future possibilities in making better Nano-scaled devices 

can easily be comprehended. Since ab-initio DFT method effectively represents first principles 

calculation, the parameters of nearest TB model have been modified to follow the variation 

trends of DFT calculation. Therefore, for electronic band gap calculation DFT and Nearest TB 

model have been employed in this paper. 

           From First principles calculations it has been observed that the electronic bands near 

the Fermi level are contributed from the π orbitals of the atoms. Thus a   -orbital nearest TB 

model has been engaged to investigate quantum confinement as well as edge effects on the 

electronic band structure of both Graphene and BN. Compared to the time consuming First 

principles calculation, this modified nearest TB method can be effectively applied to study 
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more intricate low dimensional Nano structures whose properties are controlled by   

electrons.  

        To attain the   -orbital nearest TB Hamiltonian and derive the electronic spectrum of 

the total Hamiltonian, the corresponding Schrodinger equation has to be solved. According 

to time-independent Schrodinger's equation: [3,  5-7] 

 ( ⃗⃗ ) ( ⃗⃗    )   ̂ ( ⃗⃗    )                                   

Where, 

 ̂=   =Hamiltonian operator 

 = Eigen Energy (expectation value of the orbital energy) 

  = Eigen function (molecular orbital wave function)    

         Because of translational symmetry in a particular lattice the molecular Eigen functions 

can be written as the linear combination of atomic Eigen functions                      

where n is the number of Bloch wave functions) and Bloch orbital (appendix) basis functions 

        

     ∑  

 

   

   

              However, this Linear Combination of Atomic Orbital (LCAO) gives approximate 

solution instead of exact solution of the Schrodinger's equation. Thus we incorporated the 

Variational principal where, for a particular wave function, the expected value of orbital 

energy or Eigen energy is given by:  

    
∫   ̂     

∫      
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          The following principle also states that the value of   obtained by using equation (2.1) 

is always greater than that of the exact solution.  

General form of equation: 

     ∑     

 

                                                

For both 2D and 3D lattice: 

      
 ⃗     ; where     is the position (position vector) of the     atom. 

To calculate      relation for 2D or 3D lattice the following equation is formed: 

    
  ⃗     ∑      

  ⃗     

 

 

     ∑      
  ⃗           

 

 

   ∑      ⃗           

 

 

                                                     ( ⃗ )   ∑       ⃗           
                                          (2.4)  

Here,           is the vector that runs from     atom to     atom. 

Self-integrals can be defined as,   ⟨  | ̂|  ⟩ 

Hopping integrals can be defined as,   ⟨    | ̂|  ⟩    ⟨  | ̂|    ⟩ 
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2.3.1 Energy Dispersion (E-k relation) calculation of Graphene: 

 

             Carbon atoms in a Graphene plane are located at the vertices of a hexagonal lattice 

where each C atom is surrounded by three C atoms. The following Graphene network in 

Fig.2.3.2(a) can be regarded as a triangular Bravais lattice with two atoms (A and B) per unit 

cell along with basis vectors  ̂       ̂    where  

 ̂   
√ 

 
 ̂    

 

 
 ̂  (First primitive vector) 

 ̂  
√ 

 
 ̂    

 

 
 ̂   (Second primitive vector) 

(a)                                                            (b) 

 

Fig. 2.3.1: (a) Real Space Lattice of Graphene, (b) Reciprocal Space Lattice of Graphene. 

 

             Here,  √      ,where            is the carbon-carbon distance in graphene. 

From the figure we can see that each A or B-type atom is surrounded by three opposite type. 

y

x
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a2

m
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n3 n1
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b
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k
y
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By using condition              the reciprocal lattice vectors ( ̂       ̂ ) can be obtained 

where, 

 ̂     
 

 
 ̂   

√ 

 
 ̂     

 ̂     
 

 
 ̂   

√ 

 
 ̂     

             Where,   
 

       
 

 

 √ 
. These vectors are shown in Fig. 2.3.2(b) together with 

the first Brillouin zone. The hexagonal shaped Brillouin zone is built as the Wigner-Seitz cell 

of reciprocal lattice. Out of its six corners, two of them are equivalent (the others can be 

written as one of these two plus a reciprocal lattice vector). These two special points are 

denoted with    and   . Another high symmetry point is the one labeled with M in the Fig. 

2.3.2(b). 

                 When carbon atoms are placed onto the Graphene hexagonal network Fig. 2.3.2 

(a), the electronic wavefunctions from different atoms overlap. However, because of 

symmetry the overlap between the   orbitals and the   or the   and   electrons are strictly 

zero. Therefore, the   electrons which form the π bonds in Graphene can be treated 

independently from other valence electrons. Within this π-band approximation, the A-atom 

or B-atom is uniquely defined by one orbital per atom site            or           . 

                   According to Bloch’s theorem, the Eigen-functions evaluated at two given 

Bravais lattice points  ⃗  and  ⃗   differ from each other in just a phase factor,     ⃗⃗   ⃗    ⃗    .Using 

the orthogonality relation in the Schrodinger equation,      , the energy dispersion 

relation can be easily obtained from the diagonalization of    ⃗⃗  . 

                    For calculating the dispersion relation of Graphene lattice two C-C molecules m 

and n1 (as shown in the Fig.2.3.1a) are considered first.          or E is considered to be the 

energy of the system depending on the k vector. 
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Since from secular equation it has been obtained that   are the Site energies of Carbon, thus 

C-C self-interaction (for A type-A type or B type-B type) =   

And (A type-B type) hopping integral =   

In matrix form the diagonal elements become:  *
  
  

+ 

Similarly, the interactions                form upper diagonal matrix *
  
  

+  and 

              form lower diagonal matrix *
  
  

+ . Therefore taking  ̂       ̂ into 

account the relation is given by: 

 ( ⃗⃗ )  *
  
  

+     ⃗  ̂   *
  
  

+     ⃗  ̂  *
  
  

+   *
  
  

+    ⃗  ̂   *
  
  

+    ⃗  ̂  

*         ⃗  ̂       ⃗  ̂ 

      ⃗  ̂      ⃗  ̂  
+ 

Here, 

   ⃗⃗            where           ⃗  ̂      ⃗  ̂  

          ⃗  ̂     ⃗  ̂   

          ⃗ ( ̂   ̂ )     ⃗ ( ̂   ̂ )  

          ⃗      ⃗       ⃗      ⃗     

          ⃗   (   ⃗        ⃗   )  

           ⃗         ⃗     

       (    ⃗         ⃗   )     ⃗     

            ⃗       ⃗          ⃗       ⃗     
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      √        ⃗       ⃗            ⃗       ⃗     
 

      √(       ⃗       ⃗          ⃗        ⃗   )        ⃗        ⃗    

      √       ⃗       ⃗          ⃗         ⃗         ⃗     

      √       ⃗       ⃗          ⃗    

Now, 

  
 

 
          

√ 

 
   

 ( ⃗ )       √       ⃗  
√ 

 
      ⃗  

 

 
         ⃗  

√ 

 
                   (2.5) 

            Using this equation the hexagonal shaped Brillouin zone of Graphene can 

be obtained. The    ,    and    valley are shown in Fig. 2.3.3. The center is 

denoted as Gamma     valley. 

(a)                                                                    (b) 

 

Fig 2.3.2: (a) First Brillouin zone (BZ) of graphene. (b) Energy dispersion relation of graphene. 
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                    The wave-vectors    (     ) are chosen within the first hexagonal Brillouin 

zone. The zeros of h0 (k) correspond to the crossing of the bands with the + and – signs. One 

can verify that                      and therefore the crossing over occurs at the 

points            Furthermore, with a single    electron per atom in the      model (the 

three other  ,      fill the low-lying   band), the (-) band (negative energy band) is fully 

occupied, while the (+) band (positive energy band) is empty, at least for electrically neutral 

Graphene. Thus, the fermi level    (charge neutrality point) in the zero-energy reference in 

Fig.2.3.3 (b) and fermi surface is composed of the set of           points. Thereby, 

Graphene displays a metallic (zero-bandgap) character. However, as the Fermi surface is of 

zero dimensions (since it is reduced to a discrete and finite set of points), the term semi-

metal or zero-gap semiconductor is usually employed. Expanding for kin the vicinity of 

        ,         or          yields a linear dispersion for the   and  * bands near 

these six corners of 2D hexagonal Brillouin Zone. 

 

2.3.2 Band Structure and Energy Dispersion calculation of BN: 

 

                    B and N atoms in a BN plane are located at the vertices of a hexagonal lattice 

where each B is surrounded by three N atoms and each N is surrounded by three B atoms. 

The following BN network in Fig.2.3.4can be regarded as a triangular Bravais lattice with two 

atoms (one B and one N) per unit cell along with basis vectors  ̂       ̂   where  

 ̂   
√ 

 
 ̂    

 

 
 ̂  (First primitive vector) 

 ̂  
√ 

 
 ̂    

 

 
 ̂   (Second primitive vector) 
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Fig. 2.3.3: Real space lattice of h-BN. 

                   Here,   √     , where             is the Boron-Nitrogen distance in 

BN. 2D h-BN exhibits similar Brillouin zone formation due to its analogous structure as 

Graphene. According to Bloch’s theorem, the Eigen-functions evaluated at two given Bravais 

lattice points  ⃗   and  ⃗   differ from each other in just a phase factor,    ⃗⃗   ⃗    ⃗   .Using the 

orthogonality relation in the Schrodinger equation,      , the energy dispersion relation 

can be easily obtained from the diagonalization of Energy dispersion relation. 

                For calculating the       dispersion relation of 2D h-BN lattice two BN molecules 

m and n1 (as shown in the Fig.2.3.4) are considered first.          or   is considered to be 

the energy of the system depending on the k vector. 

                  Since from secular equation it has been obtained that    and    are the Site 

energies of Boron and Nitrogen respectively, 

B-B self-interaction=      (     )       

N-N self-interaction =     (     )       

 And B-N hopping integral=   

y

x

n3 n1

n4 n2

m

a2

a1

Nitrogen
Boron
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In matrix form the diagonal elements become:  [
     

     
] 

      Similarly, the interactions               form upper diagonal matrix *
  
  

+and 

              form lower diagonal matrix *
  
  

+ . Therefore taking  ̂       ̂ into 

account the relation is given by: 

 ( ⃗⃗ )  *
  
  

+      ̂   *
  
  

+      ̂  [
     

     
]   *

  
  

+     ̂   *
  
  

+     ̂  

*
            ̂        ̂ 

       ̂       ̂     
+ 

         ( determinant of      is zero) gives the equation the following form : 

                         ̂       ̂         ̂      ̂      

                   (       ̂       ̂ )(      ̂      ̂ )               

Considering the part of the equation (1.1): 

(       ̂       ̂ )(      ̂      ̂ ) 

       ̂       ̂      ̂       ̂     ̂            ̂      ̂      ̂      ̂      ̂      ̂  

  (    ̂       ̂ )      ̂       ̂           ̂     ̂      ̂      ̂    

          ̂         ̂         ̂   ̂          ̂   ̂    

          ̂        ̂          ̂   ̂   

         
  ̂   ̂  

 
     

  ̂   ̂  

 
         ̂   ̂   

Substituting the values of the primitive vectors,  ̂   ̂  √   ̂       ̂   ̂    ̂  leads 

the equation to as follows: 
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(       ̂       ̂ )(      ̂      ̂ )           
√ 

 
 ̂     

 

 
 ̂              

 

 
 ̂      

         
√ 

 
 ̂     

 

 
 ̂         

 

 
 ̂   

Therefore equation (1.1) becomes, 

                            
√ 

 
 ̂     

 

 
 ̂         

 

 
 ̂      

                              
√ 

 
 ̂     

 

 
 ̂         

 

 
 ̂       

          
        √                         (           

√ 

 
 ̂     

 

 
 ̂         

 

 
 ̂  ) 

 
 

       

 
 

 

 
√                          (

 

 
        

√ 

 
 ̂     

 

 
 ̂        

 

 
 ̂  )  

       

 
 

 

 
√  

     
                      (

 

 
        

√ 

 
 ̂     

 

 
 ̂        

 

 
 ̂  ) 

       

 
 

 

 
√                (

 

 
        

√ 

 
 ̂     

 

 
 ̂        

 

 
 ̂  ) 

Thus,    

 (     )  
       

 
 √

        

 
      (

 

 
        

√ 

 
 ̂     

 

 
 ̂        

 

 
 ̂  )                       

 

          Using this equation hexagonal shaped Brillouin zone of BN can be obtained, where 

out of six corners two of them are equivalent (the others can be written as one of these two 

plus a reciprocal lattice vector). These two special points are denoted with     and    .  

Another high symmetry point is the one labeled with   in Fig. 2 (a). The center is denoted as 

Gamma     valley. 
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(a)                                                (b) 

 

Fig. 2.3.4: (a) First Brillouin Zone(BZ) of H-BN. (b) Energy dispersion relation of H-BN. 

 

 

2.4 Verification of Nearest TB model Calculated Band Structure with DFT: 

 

                 In order to attain similar results from the nearest TB model as the first principles 

calculation, site energy and hopping integrals must be introduced in the TB model. In the 

absence of any of these two parameters edge effects cannot be obtained. From first 

principles calculation it has been observed that changes on the on-site energies and hopping 

integrals of the edge atoms due to edge charge distribution, are responsible for the distinct 

electronic structures and bandgap evolutions. Therefore, an edge-modified nearest TB 

approximation model has been developed which is not only capable of studying more 

intricate low dimensional Nano structures but also is cost-effective.[3-10] 
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2.4.1 Verifying Nearest TB model Calculated Band Structure of Graphene with 

DFT: 

 

       For Graphene only hopping integral needs to be taken into account as on-site energy is 

     . In this case, the Highest Occupied Molecular Orbital (HOMO) and the Lowest 

Unoccupied Molecular Orbital (LUMO) touch at a certain point. But in the absence of the 

hopping integral the three family hierarchy becomes   
       

       
  

 (  is any integer), 

which contrasts with the resultant of first principles calculation which is   
     

       
    

. 

Since this property is valid when Nano Ribbon is taken into account, it is elaborately 

discussed in chapter 3 of this paper. However, in order to resolve the discrepancy between 

the DFT calculated HOMO and LUMO with that of the nearest TB model the value of 

hopping integral      must be increased to           [where,      ].[3] 

                            (a)                                                           (b) 

 

Fig. 2.4.1: Bandgap of AGNR (a) without edge modification. (b) with only modified hopping integral. 

Therefore adjusted parameters and resultant bandgap are as follows: 
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Lattice parameter,            

Fermi energy level,          

Energy gap,          

 

Fig 2.4.2: Comparison between HOMO and LUMO attained from DTF and stimulation. 

 

2.4.2 Verifying Nearest TB model Calculated Band Structure of BN with DFT: 

 

                When the on-site energies and hopping integrals are not taken into account, 

                , the HOMO and LUMO touch at a certain point (Fig.2.4.3a). 

Moreover at these conditions there is discrepancy in the three family hierarchy. This 

discrepancy is best understood when Nano Ribbons are taken into account. However in 

order to adjust the HOMO and LUMO value of hopping integral must be altered to be, 

                      However only altering the hopping integral does not modify 

the band structure as the HOMO and LUMO still meet at a point (Fig. 2.4.3b). 
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                  From DFT calculation it has been observed that due to edge charge distribution 

of the edge atoms on-site energies change significantly. These on-site energies are mostly 

responsible for bandgap opening. As a result when on-site energies are applied to the 

nearest TB model (Fig. 2.4.3c) HOMO and LUMO do not touch, hence there exists a 

bandgap. These on-site energies can be obtained using the following equations: 

      √  
    

        √  
    

           Where    and    are obtained from DFT calculation. When only on-site energies  

                                           are applied, the discrepancy of 

hierarchy reoccurs. In order to attain a bandgap with unchanged hierarchy, both the edge 

effects are employed together as shown in Fig. 2.4.3.(d). Therefore, using the edge-modified 

nearest TB approximation equivalent bandgap that equals DFT calculation is obtained. [3-8] 

 

 

 

 

 

 

 

 

 



22|P a g e  

(a)                                                         (b) 

 

(c)                                                                      (d) 

 

  Fig. 2.4.3: Bandgap of ABNNR (a) without edge modification (b) with only modified hopping integral (c) with 

only modified on-site energies (d) with the modification of both hopping integrals and on-site energies. 

        The significance of on-site energies and hopping integrals can be further justified by 

adjusting the HOMO and the LUMO of TB Hamiltonian with the HOMO and LUMO of DFT 

calculation. The adjusted parameters and resultant bandgap are as follows: 
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Lattice parameter,             

Fermi energy level,                

Energy gap,               

          (a)                                                                               (b) 

 

 

Fig. 2.4.5:(a) Comparison between HUMO and LUMO ( b) Precise view of the comparison between attained 

from DFT and tight binding. HUMO and LUMO attained from DFT and tight binding. 

 

Density of states (DOS), Local Electron Density and Electrostatic Potential Distribution of 

Graphene and Boron Nitride Unit Cell: 

            The density of states (DOS) of a particular system describes the number of energy 

states per unit energy per unit volume are available to be occupied. Density distributions are 

typically quasi-continuous. A high DOS at a particular energy means that there are many 

states available for occupation. If the DOS at a particular energy is zero then it means that no 

states can be occupied at that energy. Local variations, also known as Local Density of States 
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Potential) of the original system. If the DOS of an undisturbed system is zero then the LDOS 

can locally be non-zero due to the presence of a local potential.[21] 

LDOS of a system can be obtained using the following equation: 

                    

Where, 

 = is an identity matrix 

        , a very small value to make the overall matrix hermitian 

 = Hamiltonian matrix of the system 

                Integrating LDOS over the spatial region we can get DOS of the system. We can 

calculate electron density from DOS figure as only the states below the Fermi level are 

occupied. An unit cell, Density of states, Local electron density and Electrostatic potential 

distribution are shown below for both Graphene and Boron Nitride. 
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           (a)                                                                              (b) 

 

(c)  
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(d) 

 

Fig.2.4.6:(a)unit cell of (b) density of states (c) electrostatic difference potential (d) electron density for Graphene. 

                       (a)                                                                (b) 
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(c) 

 

 

(d) 

 

Fig.2.4.7:(a)unit cell of (b) density of states (c) electrostatic difference potential (d) electron density for BN. 
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2.5 Summary of the following Chapter:  

                 In this chapter the bandgap of Graphene and BN have been examined in order to 

evaluate the metallic behavior of Graphene atoms and semiconductor-like behavior of BN 

atoms. Their Bravais lattice, EK dispersion relation as well as Brillouin zone have been 

evaluated. Moreover, the effect of the on-site energies has been discussed elaborately. In 

addition the DOS representation has been incorporated to understand the electrostatic 

difference potential as well as electron density. 

                   Though on-site energies can be evaluated using a single unit cell, such 

derivation falls to successfully evaluate the three family hierarchy of any Nano Ribbon. Thus 

the effects of fabricating these Nano scale materials into ribbons and the impact of hierarchy 

have been discussed in the next chapter. 
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Chapter 3:  Graphene Nano Ribbons (GNR) and Boron Nitride Nano 

Ribbons (BNNR) 

 

             Nano Ribbon refers to a Nano structure in the form of a ribbon. Materials, when 

striped into a few nanometers width form Nano Ribbons exhibiting novel electronic 

properties. The electronic states of such Ribbons are largely a subject to the edge structures. 

Depending on these edge structures, Nano Ribbons are either Armchair or Zigzag. Suitable 

nano-structures for making a ribbon with different narrow widths can be made 

experimentally either by micromechanical cleavage (cutting mechanically exfoliated Graphene 

or BN) or by patterning epitaxial grown Nano structures. Previously only Graphene was used 

to fabricate such ribbons. Since BN features analogous structure as graphene it has triggered 

new scientific investigation. Among the immense applications of BNNR and GNR, the 

possibility of opening a tunable bandgap when GNR is embedded in BNNR, is the focus of 

this paper. [5] 

 

3.1 Graphene Nano Ribbons (GNR): 

 

            Graphene Nano Ribbons (GNRs), also known as Nano Graphene Ribbons or Nano 

Graphite Ribbons, are defined as strips of Graphene with ultra-thin width (less than 50 nm). 

When a Graphene sheet is cut in such a manner that it forms a narrow strip, then the 

resulting structure is called GNR. 

            Such ribbons are formed by periodic repetition of Graphene junctions and have 

honeycomb arrangements, which lead to edge functionalization and more importantly 

bandgap opening. Depending on the cutting direction, these Graphene junctions or GNRs 

https://en.wikipedia.org/wiki/Graphene


30|P a g e  

are either Armchair-shaped or spin-polarized Zigzag-shaped. Fig. 3.1(a) and Fig. 3.1 (b) show 

the two types of nanoribbons and also define the unit cells of Armchair and Zigzag Graphene 

nanoribbons respectively. In investigations using the nearest TB model it is usually assumed 

that the dangling bonds are passivated by hydrogen atoms and do not contribute to the 

electronic structure near the Fermi level. Moreover, it has been observed that carbon-carbon 

distance has a crucial effect on the   -orbit coupling.  

 

Armchair Graphene Nano Ribbons (AGNR): 

              Armchair Graphene Nano Ribbons (AGNR) do not have localized edge states, but 

their band gap is a function of the width. Therefore, with varying width AGNR is likely to 

encounter bandgap opening. Another reason for the opening of a band gap is edge 

distortion resulting from relaxation. The changes in position due to relaxation are again very 

small. The two edge atoms are shifted towards the nanoribbon and each other by almost 

      . The effect on the inner atoms is almost        or less. However, width has most 

impact on the three family hierarchy of band gap and can be categorized as follows 

  
     

       
    

 (where, p is any integer).                    equal the 

number of dimer lines and characterize the width of the nanoribbon.[5-9] 
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   (a)                                                                           (b) 

                                           

 

Fig. 3.1: Graphene Nano Ribbons (a) Armchair GNR (AGNR). (b) Zigzag GNR (ZGNR). 

 

 

Zigzag Graphene Nano Ribbons (ZGNR): 

           It is well known from theoretical as well as experimental studies that Zigzag 

terminated Graphene Nano Ribbons feature localized edge states. These states decay 

exponentially into the bulk with the penetration length being a function of the k vector along 

the edge. Fig. 3.1(b) shows the unit cell of a ZGNR. Zigzag nanoribbon have two zero energy 

bands. The corresponding states are localized on each edge and only live on the sub-lattice 

which belongs to the outermost atom. [6-7] 

 

 

3.2 Boron Nitride Nano Ribbons (BNNR): 

 

Hexagonal BN (h-BN), also known as “white graphite” due to its similar structure and 

properties as graphite, was discovered in the same century as Graphene. But with credit to its 

lower cost and abundance in nature Graphene grabbed more attention than BN. However, 

BN has superior mechanical and thermal conducting properties. In contrast to zero bandgap 
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of Graphene, BNNRs exhibit wide bandgap suitable for semiconductors, optoelectronics and 

also dielectric substrate for high-performance graphene electronics. Thus, Graphene 

sandwiched by monolayer BN is predicted to have a tunable bandgap without sacrificing its 

mobility.  

              When a BN sheet is cut in such a manner that it forms a narrow strip with width less 

than 50nm, then the resulting structure is called BNNR. Such ribbons are formed by periodic 

repetition of BN junctions and also exhibit honeycomb arrangements as Graphene. These 

ribbons lead to edge functionalization and bandgap opening. Like Graphene Armchair-

shaped or spin-polarized Zigzag-shaped BNNR are defined depending on the cutting 

direction. Fig. 3.2(a) and Fig. 3.2 (b) show the two types of nanoribbons and also define the 

unit cells of Armchair and Zigzag BNNR respectively. The bandgap opening in BNNR with 

respect to width increase has been calculated using the nearest TB model and evaluated 

using the DFT calculation based on first principles calculation. [1-2, 9-14] 

 

Armchair BN Nano Ribbons (ABNNR): 

 

               BNNRs with armchair shaped edges on both sides are classified by the number of 

BN dimer lines across the ribbon width. The atoms at the two edges are saturated by H 

atoms. In analogy to AGNR, ABNNR encounters bandgap opening with varying width. Taking 

on-site energies and hopping integrals into account, successful fabrication of ABNNR also 

leads to a three family hierarchy of band gap:   
       

     
    

 (where, p is any integer). 

Thus for both AGNR and ABNN, bandgap increases for the width index of NB=NN=3p and 

3p+1 and decreases for the width index           . Where,                

and       equals the number of dimer lines and characterize the width of the nanoribbon. 

[3-7] 
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(a)                                                            (b)  

 

Fig.3.2:Boron Nitride Nanoribbon (a) Armchair  BNNR structure (ABNNR). (b) Zigzag BNNR structure (ZBNNR). 

 

Zigzag BN Nano Ribbons (ZBNNR): 

          Fig. 3.2(b) shows the unit cell of a ZBNNR. BNNRs with zigzag shaped edges on both 

sides are classified by the number of BN zigzag chains across the ribbon width. Like ABNNR, 

for ZBNNR the atoms at the two edges are also saturated by H atoms. Similar to the cases of 

ABNNRs, the on-site energies of edge atoms and the hopping integrals between the atoms 

near the edges play significant role in determining the band gap of ZBNNRs. Depending on 

the on-site energies ZBNNR are likely to encounter quantitatively larger band gap. [4-5] 
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3.3 Band structure observation of AGNR and ABNNR: 

 

       Using the DFT evaluated parameters in the nearest TB model the band structure and 

bandgap variation trends of both ABNNR and AGNR have been inspected. Since fabrication 

of Nano Ribbon is said to open a bandgap with changing width index, AGNR encounters 

bandgap opening for certain widths. In three family behavior, bandgap decreases with 

increasing width. However both DFT and nearest TB model calculation of the width index 

     (p is any integer) have zero bandgap (Fig. 3.3 a(iii)).Therefore, it leads to the 

proclaimed hierarchy of   
  

   
    

   
    

, which is in harmony with the first principles 

calculation. The cogency of the statement is further illustrated by the following figures Fig. 3.3 

where width index is p (in this case the value of p is considered to be 2). Thus when 

       obtained bandgap is        (Fig.3.3 a(i)), for          obtained 

bandgap is         (Fig. 3.3a(ii)) and for          bandgap obtained is     (Fig. 3.3 

a(iii)). Therefore when number of carbon atom is 6 the attained bandgap is highest among 

the three families. Bandgap decreased by         as number of carbons in the ribbon was 

increased and finally became zero for the index     . The found parameters and bandgap 

can be summarized in the following table: 

Table .I 

TB parameters and bandgap comparison of AGNR 

 

 

 

 

 

 

TB parameters (eV) 

      

      

AGNR bandgap (eV) 
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(a) 

 

(i) 

  

 

(ii) 

                (b) 

 

(iii) 

 

(iv) 

 

(v) 

 

(vi) 

Fig. 3.3: (a) Band-structure of AGNR for varying ribbon width index, N;(i), N=6, (ii) N=7and (iii) N= 8, (b) Band-

structure of ABNNR for varying ribbon width index, NB=NN; (iv) NB=NN=6, (v) NB=NN=7 and (vi) NB=NN=8. 

                 In analogy with AGNR, ABNNR also encounters bandgap opening for certain 

widths. In ABNNR’s three family behavior, bandgap increases with increase in width. The 

bandgap evolution of ABNNR has also been verified using both DFT and nearest TB model 

calculation. As claimed before ABNNR also exhibits a three family behavior but its three 
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family hierarchy is different from that of AGNR and it is as follows   
    

   
  

   
    

. 

Further illustration is provided in Fig. 3.3(b).Considering width index p to be         

     obtained bandgap is          (Fig. 3.3b(iv)), for               obtained 

bandgap is         (Fig. 3.3 b(v)) and for             obtained bandgap is 

        (Fig. 3.3 b(vi)). Therefore for ABNNR, the index      exhibit lowest bandgap 

evolution. 

Table II  

TB Parameters and bandgap comparison of ABNNR  

ABNNR Parameters (eV) 

          

                   

 

ABNNR bandgap (eV) 

                        

                   

 

 

3.4 Band structure observation of ZGNR and ZBNNR: 

 

          Zigzag Nano Ribbons with controlled edge orientation can be fabricated by Scanning 

Tunneling Microscope (STM) lithography. Zigzag edges for GNR provide edge localized state 

with non-bonding molecular orbitals near the Fermi energy whereas in ZBNNRs π-electrons 

mainly accumulate on N atoms with high electronegativity. For both ZBNNR and ZGNR the 

band lines near the Fermi level are mainly dominated by the on-site energies. In these cases, 

the on-site Coulomb repulsion plays only a minor role in the electronic structures. Therefore, 
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ZGNR exhibits zero bandgap (Fig. 3.4(a)) as its on-site energy is zero and ZBNNR exhibits 

large bandgap, almost 4eV (Fig. 3.4(b)) due to its high on-site energies. Moreover, in contrast 

to ZGNR, the edge states of ZBNNRs are spin-unpolarized. 

Table III 

TB parameters and bandgap of ZGNR and ZBNNR 

                                 

 

                     

 

          

 

           

       

 

 

          

Fig. 3.4:(a) Fermi level and energy gap observation for ZGNR. (b) Fermi level and energy gap observation for 

ZBNNR. 
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3.5 Summary of the following Chapter:  

 

                Therefore, when stripped into a few nanometers width both AGNR and ABNNR 

exhibit semiconductor-like properties except for      width index of AGNR. This leads to 

enormous possibilities of triggering new applications for ABNNR embedded AGNR. Further 

work of the paper is dedicated towards the investigation of the application of opening a 

tunable bandgap for any width index of both ABNNR and AGNR. 
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Chapter 4: Boron Nitride Nano Ribbons (BNNR) Embedded Graphene 

Nano Ribbons (GNR) 

 

           H-terminated GNRs require breaking of bonds whereas BNNRs exhibit quantitatively 

different properties due to large ionicities of B and N atoms. Thus BNNR confined GNRs form 

a continuous 2D atomistic layer that does not require any breaking of bonds and also 

provides a large enough current for transistor application. [17-22] Due to BNNR’s large on-site 

energies, it contributes highly in causing charge redistribution at the edges of BNNR 

embedded GNR. The effect are most prominent for ABNNR embedded AGNR. Through this 

work we claim that AGNR encounters tunable bandgap when embedded in BNNR regardless 

of its ribbon width. [4] 

 

4.1 Band Structure of ABNNR embedded AGNR: 

 

               The zero bandgap of GNR is used as contact in electronic devices but for transistor 

mechanism, semiconductor-like behavior is required. Nano scale semiconductor devices of 

GNRs represent a densely packed parallel array of semiconducting AGNRs. However this 

semiconducting behavior is limited to certain width indexes of the ribbon. But for BNNR, no 

such limitations are encountered due to the charge distribution of the edge atoms leading to 

large on-site energies of the matter. For AGNR there is no on-site energy (or almost close to 

zero on-site energy), as a result when fabricated in ribbons in fails to behave like 

semiconductor for the width index 3p+2 (p is any integer). This deficiency can be overcome 

when AGNR is embedded in ABNNR, as the effective charge distribution of BNNR edge 

atoms causes charge re-distribution in AGNR leading to tunable bandgaps for all width 

indexes. 
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Starting from the time independent Schrodinger’s equation: 

 ( ⃗ )   ⃗            ⃗                         (4.1) 

Where,     is the Hamiltonian operator,  ( ⃗ ) and    ⃗      are the eigen-energies and 

eigen-functions respectively in a ABNNR embedded AGNR and  ⃗  and    represent the 

wavevector and position, respectively. The j-th eigen value    ( ⃗ ) as a function of  ⃗  is given 

by: 

  ( ⃗ )  
〈  |   |  〉

⟨  |  ⟩
 

∫  
        

∫  
     

                 (4.2) 

Because of the translational symmetry of the ABNNR embedded AGNR atoms in a 

ABNNR embedded AGNR lattice, the eigen-functions,      ⃗      (j=1, 2, …, n), where n is the 

number of Bloch wave functions can be written as a linear combination of Bloch orbital basis 

functions          

  ( ⃗    )  ∑     ( ⃗ )     ⃗      
                (4.3) 

Where     ( ⃗ ) gives the coefficients to be determined, and       ⃗      satisfies  

   ( ⃗       ⃗⃗  ⃗)     ( ⃗    )                              (4.4) 

Substituting (4.3) into (4.2) and changing subscripts we obtain 

  ( ⃗ )  
∑    

    
 
    

〈  |   | 
  

〉

⟨  |   ⟩
 

∑  
   

  ⃗   
    

   
  

   

∑       ⃗
   

    
   

     
       (4.5) 

Here the integrals are over the Bloch orbitals, and are called the transfer integral 

matrix and overlap integral matrix, respectively, which are defined as 

    ( ⃗ )   〈  |   |   〉       ( ⃗ )   ⟨  |   ⟩      (4.6) 
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     ( ⃗ )and     ( ⃗ ) have fixed values, for a given value of  ⃗ , and the coefficient 

   
  is optimized so as to minimize   ( ⃗ ). Taking a partial derivative with respect to    

  to 

obtain the local minimum condition gives, 

 

   ( ⃗ )

    
  

∑  
   

  ⃗   
    

 
   

∑       ⃗
   

      
   

     
  

∑  
   

  ⃗   
      

   
  

   

(∑       ⃗
   

      
   

     )
 ∑       ⃗      

 
               (4.7) 

 Multiplying both sides of (3.7) by ∑       ⃗   
         

      and substituting (3.5) into the 

second term 

∑       ⃗      
 
       ( ⃗ )∑     ( ⃗ )    

 
             (4.8) 

Now, 

      ( ⃗ )              (4.9) 

 Where    is a column vector defined by 

                               (4.10) 

(4.9) only has a non-zero solution when 

        ( ⃗ )                (4.11) 

(4.11) is called the secular equation, whose solution gives all eigenvalues   ( ⃗ )           

of for agiven wave vector  ⃗ . 

If ABNNR embedded AGNR channel comprises of     unit cells then both the 

Hamiltonian,   and overlap matrixes,  are             tridiagonal matrix, where each 

element of these matrixes is also        constant matrix. For Hamiltonian matrix lower 

diagonal, diagonal and upper diagonal elements are          respectively. Similarly for 
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overlap matrix lower diagonal, diagonal and upper diagonal elements are          

respectively. 

 

[
 
 
 
 
 
 
    

    

    

      

      

    

      

      

      

      

    ]
 
 
 
 
 
 

{
 
 

 
 

  

 
    

  

    

 
  }

 
 

 
 

 

[
 
 
 
 
 
 
    

    

    

      

      

    

      

      

      

      

    ]
 
 
 
 
 
 

{
 
 

 
 

  

 
    

  

    

 
  }

 
 

 
 

                (4.12) 

 

For i-th unit cell    is the   -dimensional vector representing the wave function at 

thei-thunit cell. The Hamiltonians,                    and overlap matrixes                      

are all       constant matrixes. Due to periodicity of the structure we can write:        , 

         ,             
  and        ,          ,             

  

Taking i-th row of (4.12) we have 

                              (                            )        (4.13) 

Because of the property of Bloch function we have                 where d is 

the distance between two neighboring unit cells. For armchair ABNNR embedded A-GNRs, 

        and in case of Z-GNRs,   √     . Substituting    into (4.13) we have 

   [   
          

    (   
          

  )]              (4.14) 
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Equation (4.14) gives    solutions for      corresponding to   sub-bands of the 

dispersion relation. In the case of first nearest approximation without orbital overlap,   ,    

are empty matrix and    becomes an identity matrix.  

Using the following equation the HA, HB and HC matrixes required for determining the 

bandgap of ABNNR embedded AGNR are formed. With proper on-site energy and hopping 

integrals of both the matters in contact the DFT obtained bandgap is reproduced in the 

approximated nearest TB model. 

The   matrixes are as follows: 

 

(a)                                                             (b) 
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(c) 

 

Fig. 4.1.1: (a) Ha matrix (b) Hb matrix (c) Hc matrix 

 

Where,             ,                  ,               ,                

4.1.1 Band Structure Comparison of AGNNR and ABNNR embedded AGNR for 

semiconducting width index 

 

                    and     width indexes are known as semiconducting width index. For all 

AGNR with these width indexes, there is a bandgap opening. The bandgap attained for 3p is 

always greater than that of     ,. But for ABNNR with a hierarchy of      
 

    
 

 

     
 

the bandgap obtained from     index is greater than that of 3p. When AGNR is 

confined by ABNNR it follows its own hierarchy of    
 

      
 

      
 

  From here on 

,AGNR confined by ABNNR will be denoted by A-CxBNy; where x and y represent width of 

AGNR and ABNNR respectively. 
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                  Comparing AGNR and ABNNR embedded AGNR for the value of width index 

    , the bandgap obtained for AGNNR is          and for A-C9BN20 is         . 

Therefore, there is a bandgap opening of           Again for     , the bandgap obtained 

for AGNNR is           and for A-C10BN20 is          . Therefore, there is a bandgap 

opening of           

 

 

 

 

 

 

(a)                                                  (b) 
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 (c)                                                     (d) 

 

Fig. 4.1.2: Band Structure of (a) C9, (b) A-C9BN20, (c) C10 and (d) A-C10BN20 

 

4.1.2 Band Structure Comparison of AGNNR and ABNNR embedded AGNR for 

metallic width index: 

 

                    3p+2 index in known as the metalic width index of AGNR as it results in zero 

bandgap like metals. For both AGNR and ABNNR embedded AGNR this index exhibits the 

lowest bandgap. For AGNR is has almost zero bandgap, but when embedded in ABNNR 

there is potential bandgap opening. 
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        (a)                                                      (b) 

 

Fig. 4.1.3: Band Structure of (a) C11 and (b) A-C11BN20. 

From the naerest TB model approximation it is evident that where C11 exhibits zero 

bandgap, A-C11BN20 exhibits a bandgap of           Therefore leading to a potential 

bandgap opening of            

 

 

4.2 Band Structure of ABNNR embedded AGNR using DFT: 

 

           In order to evaluate the bandgap obtained from the nearest TB approximation with 

that of the first principles calculation, an evaluation with respect to DFT is performed. Using 

this verification the parameters used in TB model are adjusted for most approximate results. 

The verification is performed for             width indexes. Parameters taken into account 

are ones that give most satisfying results for both the cases. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

E
n
er

g
y
[e

V
]

K
x
/3a

(c-c)

C
11

0 0.1 0.2 0.3 0.4 0.5 0.6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

E
n
er

g
y
[e

V
]

k
x
3a

c-c

C
11

BN
20



48|P a g e  

        

Fig. 4.2.1: Comparison between HOMO and LUMO attained from TB model and DFT calculation for (a) A-

C9BN20 and (b) A-C11BN20. 

                  In research of the verification of semiconducting indexes, HOMO of both 

calculations matches more precisely than LUMO for the parameters stated in Table 4.1. 

However, these parameters were found best adjusted for HOMO and LUMO of both TB 

method and DFT of metallic ABBNR embedded AGNR. 

Table: IV 

BNNR confined GNR Parameters 

                                                    

                                   

 

                    For further justification of the following parameters the bandgaps obtained for 

both A-C9BN20 and A-C11BN20 using DFT and the nearest TB model data comparison and 

graphical representation are taken into account.  

      





















E

n
er

g
y

[e
V

]

k
x
3a

c-c

.. TB

.. DFToo

      






















E
n

er
g

y
[e

V
]

k
x
3a

c-c

.. TB

.. DFToo



49|P a g e  

Table V 

Data Comparison of DFT vs TB Model for  

A-C9BN20 and  A-C11BN20. 

 

CxBNy DFT simulated bandgap value 

(eV) 

Bandgap obtained from Tight binding model 

(eV) 

C9BN8 0.877399 0.9196 

C9BN12 0.874632 0.8879 

C9BN16 0.874474 0.8893 

C9BN20 0.874124 0.8882 

C9BN24 0.866751 0.7888 

C11BN8 0.45699 0.4724 

C11BN12 0.456267 0.4579 

C11BN16 0.45624 0.4575 

C11BN20 0.456241 0.4577 

C11BN24 0.456261 0.4559 
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Fig. 4.2.2: Graphical Comparison between bandgaps obtained from TB model and DFT calculation for (a) A-

C9BN20 and (b) A-C11BN20. 

              After several alterations the parameters stated in Table.4.2.1 are attained. The 

resultant of the research indicates that bandgap obtained using the nearest TB model 

approximation has about                     difference from the DFT calculated bandgaps. 

Thus, these parameters have been used to investigate the bandgap for other width indexes 

of A-CxBNy and therefore a vast study has been conducted for the purpose. 

 

4.3 An Extensive Analysis of the Band Structure of ABNNR embedded AGNR: 

 

                   In order to understand the distinct variation trends of AGNR confined by ABNNR 

(A-CxBNy)  a series of bandgap ranging from             have been taken into account. 

For calculations simplicity the initial value of y is considered to be 8 and the value increases 

with an interval of 4 and continues up to 24. The value of y is taken up to the width of 24 as 
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A-CxBNy attains somewhat constant value of bandgap at that point. Afterwards bandgap 

remains unchanged regardless of the increase in y. 
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Fig.4.3.1: Bandgap Analysis of ABNNR confined AGNR  
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             The band gaps obtained from these analyses follow a three family hierarchy of 

AGNR. The only difference in that, here for 3p+2 width indexes, there exists a valid bandgap. 

The established bandgaps are stated as follows: 

 

Table VI 

Data of Bandgap Analysis of ABNNR confined AGNR  

 

CxBNy Tight binding 

bandgap value (eV) 

CxBNy Tight binding 

bandgap value (eV) 

C5BN8 0.8423 C13BN8 0.5205 

C5BN12 0.8067 C13BN12 0.5253 

C5BN16 0.5937 C13BN16 0.5283 

C5BN20 0.6003 C13BN20 0.5292 

C5BN24 0.6004 C13BN24 0.5251 

C6BN8 1.2024 C14BN8 0.4710 

C6BN12 1.1731 C14BN12 0.4629 

C6BN16 1.1838 C14BN16 0.4648 

C6BN20 1.2742 C14BN20 0.4604 

C6BN24 1.2738 C14BN24 0.4601 

C7BN8 0.8458 C15BN8 0.6632 

C7BN12 0.8547 C15BN12 0.5954 

CBN16 0.8553 C15BN16 0.5925 

C7BN20 0.8576 C15BN20 0.5965 

C7BN24 0.8605 C15BN24 0.5899 

C8BN8 0.7881 C16BN8 0.4792 

C8BN12 0.7170 C16BN12 0.4850 
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C8BN16 0.7196 C16BN16 0.4810 

C8BN20 0.5833 C16BN20 0.4756 

C8BN24 0.6333 C16BN24 0.4775 

C9BN8 0.9196 C17BN8 0.3292 

C9BN12 0.8879 C17BN12 0.3201 

C9BN16 0.8893 C17BN16 0.3194 

C9BN20 0.8882 C17BN20 0.3209 

C9BN24 0.7888 C17BN24 0.3200 

C10BN8 0.7071 C18BN8 0.5129 

C10BN12 0.7140 C18BN12 0.4972 

C10BN16 0.7144 C18BN16 0.4988 

C10BN20 0.7008 C18BN20 0.4947 

C11BN8 0.4724 C18BN24 0.4947 

C11BN12 0.4579 C19BN8 0.3964 

C11BN16 0.4575 C19BN12 0.3795 

C11BN20 0.4577 C19BN16 0.3830 

C11BN24 0.4559 C19BN20 0.3820 

C12BN8 0.7188 C19BN24 0.3800 

C12BN12 0.6977 C20BN8 0.34837 

C12BN16 0.7016 C20BN12 0.34216 

C12BN20 0.6898 C20BN16 0.34236 

C12BN24 0.6952 C20BN20 0.34203 

C13BN8 0.5205 C20BN24 0.34035 
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         Using the following data table (Table.4.3.2) we can evaluate the graphical 

representation of band structure by varying y for all values of x. In each case the value of x is 

fixed.  
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Fig 4.3.2: Graphical Representation of Bandgap of ABNNR confined AGNR For fixed number of Carbons. 

 

                Since it is evident from the analysis that A-CxBNy attains a stable bandgap for 

width index value 24 of ABNNR, a clear hierarchy relation can therefore be concluded. The 

following figure re-establishes the pre-claimed statement that A-CxBNy follows the hierarchy 
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of AGNNR    
  

   
    

   
    

 . The data collected for specifying the Three Family 

Hierarchy and the corresponding graphical representation are as follows: 

 

Table: VII 

Data Comparison for Determining Three Family  

Hierarchy of A-CxBNy 

 

CxBN24 
Tight binding bandgap 

value 

C5BN24 0.6004 

C6BN24 1.2738 

C7BN24 0.8605 

C8BN24 0.6333 

C9BN24 0.7888 

C10BN24 0.7008 

C11BN24 0.4559 

C12BN24 0.6952 

C13BN24 0.5899 

C14BN24 0.4601 

C15BN24 0.5899 

C16BN24 0.4775 

C17BN24 0.3200 

C18BN24 0.4947 

C19BN24 0.3800 

C20BN24 0.34035 
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Fig. 4.3.3: Three Family Hierarchy of A-CxBNy 

 

Potential combination for making Optical Devices: 

 

                            Another most important conclusion that can be derived from the obtained 

data is that for the ribbon width index 6 of the carbon atoms stimulated bandgap is 1.2738 

eV for BN’s width index 24 and above. Such bandgap is useful in making optical devices. 

Using the electromagnetic waves equation the significance of the bandgap obtained for A-

C6BNy (where y is 24 and above) can be evaluated. Wavelength of electromagnetic wave 

follows the following equation: 

  
  

 
  

       Where,   is the energy (bandgap) in eV,   is plank’s constant,   is the velocity of light 

and   is the wavelength.  
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Now, both plank’s constant and velocity are constant terms where, 

        

             

Therefore, 

  
  

 
  

For the ribbon width index 6 of carbon atoms          

       Thus the resultant becomes            , which is suitable for optical devices 

according to the wavelength distribution as shown below: 

 

 

Fig. 4.3.4: Visibility spectrum. [Source: Wikipedia books ( 1596930284). 

 

4.4 DOS Representation of BNNR embedded GNR: 

 

                For understanding the density of states, electron density and electrostatic 

difference potential a DOS evaluation using the DFT is performed. Using this representation 

occupied and unoccupied energy states can be evaluated. 
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DOS representation for BNNR embedded GNR with semiconducting width index: 

(a) 

 

(b) 

 

(c) 

 

 

(d) 
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                                      (e)                                                                  (f) 

       

Fig. 4.4.1: (a)BNNR embedded GNR(C7BN8), (b) Electrostatic difference potential, (c) Electron density, (d) 

Effective potential, (e) Transmission spectrum and (f) Density of States. 

        Using the electrostatic difference potential the polarity of the material as well as its 

electrostatic force can be determined. The position of of a particular electron can be 

evaluated by employing electron density. Again effective potential helps to calculate the 

orbitals engaged in bonding and anti-bonding mechanism. Form the transmission 

spectrum above it can be concluded  that such Nano ribbons can be used to make better 

nano scale semiconducting devices. 

DOS representation for BNNR embedded GNR with metallic width index(3p+2): 

(a) 
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                                   (b)                                                                          (c) 

       

Fig. 4.4.2: (a)BNNR embedded GNR(C11BN20), (b) Transmission spectrum and (c) Density of States. 

 

4.5 GUI Representation for finding Band Structure of AGNR and ABNNR 

embedded AGNR: 

      

             A Graphical User Interface (GUI) has been created based on DFT evaluated nearest 

TB model. The GUI enables users to calculate the band structutre of both AGNR and AGNR 

confined by ABNNR as well as the corresponding ribbon structures simultaneously. The 

execution in GUI is shown using the following figures.  
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(a) 

 

(b) 



73|P a g e  

 

Fig. 4.5: GUI representation of band structure and ribbon of AGNR and ABNNR embedded AGNR (a) 

General GUI surface (b) GUI surface after calculate operation. 

 

4.6 Summary of the Chapter: 

 

                Materials with tunable bandgap are the center of attraction for making transistors 

and optical devices. The fact that AGNR, when embedded in ABNNR gives tunable bandgap 

has been the source of motivation for this research. Therefore the following chapter has been 

dedicated towards observing the bandgaps as well as finding all the features that contribute 

to the bandgap opening.  
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Chapter 5: Conclusion 

 

5.1 Summary: 

 

               The research in finding a tunable bandgap for ABNNR embedded AGNR was a 

success after several months of dedicated hard work. The key objective of this paper was to 

find out the bandgap variation for metallic width indexes, moreover, determine the most 

approximate parameters that enable the nearest TB model to reciprocate the resultants 

obtained from DFT calculation. The procedure for establishing such a TB model was based 

on traditional quantum physics methodologies, starting from the General Schrodinger’s 

equation to density of states. The validity of the proposed TB model has been further 

illustrated by direct comparison of the output with DFT calculation. 

 

5.2 Proposed Methods for improving bandgap: 

 

                Since the on-site energy of AGNR tends to zero, edge localization depends on on-

site energies of ABNNR. In this paper, the on-site energies of ABNNR are calculated using the 

fermi level energy and energy gap of ABNNR. However, these values of on-site energies can 

be further illustrated by using the fermi level energy and energy gap of ABNNR embedded 

AGNR. This process has been incorporated in the paper and after due research for best 

adjusted parameters, the on-site energies of ABNNR have been used repeatedly along with 

the approximated hopping parameters. The variation of the on-site energies is likely to 

provide better bandgap resultants in future work. 
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5.3 Future Scope of Work: 

 

               Previously only graphene was used to fabricate Nano Ribbons for various device 

applications but analogous structure of BNNR has triggered new scientific investigation. The 

application of BNNR confined AGNR has not only added new dimensions in field of FETs but 

also encouraged possibilities of attaining suitable bandgap for optical devices. The potential 

bandgap also leads to enormous application is digital electronics, pseudo spintronic, 

terahertz technology, infrared Nano-photonics and many more high speed switching devices.  

Therefore fabrication of embedded AGNR in other heterostructures has the potential to open 

a bandgap suitable for optical devices.  
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