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ABSTRACT 
 
 
 
Recent advances in electronics and wireless communication technologies have 
enabled the development of large-scale wireless sensor networks that consist of 
many low-power, low-cost, and small-size sensor nodes. Sensor networks hold 
the promise of facilitating large-scale and real-time data processing in complex 
environments. 
 
Some of the application areas are health, military, and home. In military, for 
example, the rapid deployment, self-organization, and fault tolerance 
characteristics of sensor networks make them a very promising technique for 
military command, control, communications, computing, and targeting systems. 
In health, sensor nodes can also be deployed to monitor patients and assist 
disabled patients, and etc. 
 
My area of interest for the project is the survey of different routing protocols that 
have been developed for secure sensor networks and find their capabilities and 
deficiencies and suggest the most efficient among them. 
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1. INTRODUCTION 
 
1.1 WIRELESS SENSOR NETWORKS  
      
A wireless sensor network (WSN) is a wireless network of many autonomous 
low-power, low-cost, and small-size sensor nodes that are self-organized and 
use sensors to co-operatively monitor complex physical or environmental 
conditions, such as motion, temperature, sound etc. Such sensors are generally 
equipped with data processing and communication capabilities and are deployed 
in indoor scenarios e.g.-the home and office, or outdoor scenarios like the 
natural, military and embedded environments. These nodes communicate with 
each other, sharing data collected or other vital information to monitor a specific 
environment.  
A wireless sensor network is a network of many tiny disposable low power 
devices, called nodes, which are spatially distributed in order to perform an 
application-oriented global task. These nodes form a network by communicating 
with each other either directly or through other nodes. One or more nodes among 
them will serve as sink(s) that are capable of communicating with the user either 
directly or through the existing wired networks. The primary component of the 
network is the sensor, essential for monitoring real world physical conditions 
such as sound, temperature, humidity, intensity, vibration, pressure, motion, 
pollutants etc. at different locations. The tiny sensor nodes, which consist of 
sensing, on board processor for data processing, and communicating 
components, leverage the idea of sensor networks based on collaborative effort 
of a large number of nodes [22]. 
 

 
 

Fig 1.1a: Wireless Sensor Network Architecture [32] 
 
 
The ideal wireless sensor is networked and scalable, fault tolerance, consume 
very little power, smart and software programmable, efficient, capable of fast 
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data acquisition, reliable and accurate over long term, cost little to purchase and 
required no real maintenance.[28] 
 
 
1.2 COMPARISON OF MANETS AND SENSOR NETWORKS 
 
MANETS (Mobile Ad-hoc Networks) and sensor networks are two classes of the 
wireless Ad-hoc networks with resource constraints. MANETS typically consist of 
devices that have high capabilities, mobile and operate in coalitions. Sensor 
networks are typically deployed in specific geographical regions for tracking, 
monitoring and sensing. Both these wireless networks are characterized by their 
ad hoc nature that lack pre deployed infrastructure for computing and 
communication. [28] Both share some characteristics like network topology is not 
fixed, power is an expensive resource and nodes in the network are connected to 
each other by wireless communication links. WSNs differ in many fundamental 
ways from MANETS as mentioned below. 

• Sensor networks are mainly used to collect information while MANETS are 
designed for distributed computing rather than information gathering. 

• Sensor nodes mainly use broadcast communication paradigm whereas 
most MANETS are based on point-to-point communications. 

• The number of nodes in sensor networks can be several orders of 
magnitude higher than that in MANETS. 

• Sensor nodes may not have global identification (ID) because of the large 
amount of overhead and large number of sensors. 

• Sensor nodes are much cheaper than nodes in a MANET and are usually 
deployed in thousands. 

• Sensor nodes are limited in power, computational capacities, and memory 
where as nodes in a MANET can be recharged somehow. 

• Usually, sensors are deployed once in their lifetime, while nodes in 
MANET move really in an Ad-hoc manner. 

• Sensor nodes are much more limited in their computation and 
communication capabilities than their MANET counterparts due to their 
low cost. 

 
 
1.3 APPLICATIONS OF WIRELESS SENSOR NETWORKS 
 
Due to their attractive characteristics, WSNs can be deployed for different 
purposes in trying environments. The scope of deployment which has been 
growing in the last decades covers many areas such as disaster management, 
border protection and combat field surveillance. Basically WSNs have the 
potential of being deployed any place where humans cannot easily access or 
there is danger to human life. 
 
Areas of probable usages of WSNs are 

• Military 
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o Sensing intruders on basis. 
o Detection of enemy unit movements on land and sea. 
o Battle field surveillances. 

• Emergency situations 
o Disaster management. 
o Fire/water detectors. 
o Hazardous chemical level and fires 

• Physical World 
o Environmental monitoring of water and soil. 
o Habitual monitoring. 
o Observation of biological and artificial systems. 

• Medical and Health 
o Sensors for blood flow, respiratory rate  
o ECG(electrocardiogram) 

• Industrial Factory process control and industrial automation [6]. 
• Home Networks 

o Home appliances,  
o Location awareness. 
o Person locator 

 
 
 
1.4 ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS: 
 
The communication between the nodes of a WSN must be governed by a set of 
rules (protocols) in order for them to function properly. And the data or 
information that they share amongst them can be tampered with by an outside 
intruder (adversary) for its own benefit jeopardizing the operations of the network. 
Thus the protocol used must provide confidentiality of the data shared among the 
sensor nodes in order to carry out an intended operation in the selected 
environment successfully.  
Due to the difference of wireless sensor networks from other contemporary 
communication and wireless ad hoc networks routing is a very challenging task in 
WSNs. For the deployed sheer number of sensor nodes it is impractical to build a 
global scheme for them. IP-based protocols cannot be applied to these networks. 
All applications of sensor networks have the requirement of sending the sensed 
data from multiple points to a common destination called sink. Resource 
management is required in sensor nodes regarding transmission power, storage, 
on-board energy and processing capacity. 
There are various routing protocols that have been proposed for routing data in 
wireless sensor networks due to such problems. The proposed mechanisms of 
routing consider the architecture and application requirements along with the 
characteristics of sensor nodes. 
There are few distinct routing protocols that are based on quality of service 
awareness or network flow whereas all other routing protocols can be classified 
as hierarchical or location based and data centric. 
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Presently quite a lot of   WSN protocols are available using different techniques 
to ensure proper routing of authentic data; each protocol has its own advantages 
and disadvantages in design.  
 
The figure below shows the different network architectures and routing 
techniques used by the protocols to work.  
 

 
Fig 1.4a: Routing protocols in WSNs. 

 
 
The figure shows three different network structures: 
  
Flat routing: 
 
Each sensor nodes behaves the same way and co-operates with other nodes to 
perform the sensing task. The network contains a large number of such nodes 
and a Base Station (BS) sends queries to certain regions and waits for data from 
the sensors located in the selected regions. Data-centric routing is used where 
there is no global identifier for nodes; instead data is identified using attribute 
based naming. 

Hierarchical Routing: 

This routing method have special advantages related to scalability and efficient 

communication, they also provide energy-efficient routing in WSNs. 

Location-Based Routing: 

Sensor nodes are addressed depending on their locations. Relative coordinates 

of neighboring nodes is obtained either by exchanging information between 

neighbor nodes or by directly communicating with a Global Positioning System 

(GPS). [8] 
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The figure also gives an overview of the different routing techniques employed by 

the protocols to work. This literature intends to survey three protocols, INSENS 

(Hierarchical Routing), TORA (Flat routing), and LEACH (Hierarchical Routing), 

discovering their capabilities and deficiencies and suggesting the most efficient 

among them. 

 
 

2. WSN ROUTING PROTOCOLS 
 
 
2.1 INSENS ROUTING PROTOCOL: 
 
       
INSENS operates by tolerating intrusions by bypassing the malicious nodes 
rather than relying on traditional intrusion-detection techniques to detect them. 
The idea is that even if a well-equipped intruder can compromise individual 
sensor nodes, these intrusions can be tolerated and the network as a whole 
would remain functioning despite such localized intrusions so that the overall 
design of the WSN would remain secure. The paths are designed so that even if 
an intruder takes down a single node or path, independent secondary paths will 
exist to forward the packet to the correct destination. While a malicious node may 
be able to compromise a small number of nodes in its vicinity, it cannot cause 
widespread damage in the network. INSENS operates by having a base station 
possess more resources in terms of power, computation, memory, and 
bandwidth than the individual sensor nodes. This minimizes computation, 
communication, storage, and bandwidth requirements at the sensor nodes at the 
expense of increased computation, communication, storage, and bandwidth 
requirements at the base station. [1] 
 
Each message sent from a source to a destination is sent multiple times, once 
along each redundant path. One or more intruders along some of these paths 
can threaten the delivery or tamper of some of the copies of a message. 
However, as long as there is at least one path that is not affected by an intruder, 
the destination will receive at least one copy of the message that has not been 
tampered with so this approach works despite the presence of (undetected) 
intruders. 
 
INSENS's design is based on three principles:   
 
(i)  Utilize redundancy to tolerate intrusions without any need for detecting the 
node(s) where intrusions have occurred and operate properly even in the 
presence of (undetected) intruders. 
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(ii)Shift the entire computational load i.e. building routing tables, or dealing with 
security and intrusion-tolerance issues from the individual sensor nodes to the 
base station thus minimizing computation, storage, and bandwidth requirements 
at the sensor nodes. 
(iii) Limit the scope of damage done by (undetected) intruders by limiting flooding 
and using appropriate authentication mechanisms. INSENS uses symmetric-key 
cryptography to implement these mechanisms. [1] 
 
To prevent DOS-style flooding attacks individual nodes are not allowed 
broadcasting to the entire network, only the base station is allowed to broadcast.  
 
INSENS constructs network routing for an asymmetric or hierarchical architecture 
consisting of a base station and sensors, unlike a peer-based routing 
architecture. As a result, INSENS's protocol and security architecture are far 
different. In INSENS, each node shares a secret key only with the base station, 
and not with any other nodes. The advantage is in case a node is compromised 
that an intruder will only have access to one secret key, rather than the secret 
keys of neighbors and/or other nodes throughout the network. 
 
 

 
Fig 2.1a: Sample asymmetric WSN topology over 10 sensor nodes with multiple 

paths to the base station. 
  
 
Moreover, setting up keys is simple in INSENS; each node needs only one secret 
key for authenticating itself to the base station, and one initial key for 
authenticating the base station to each node. Tamper detection ensures that the 
base station is able to glean out the correct (untampered) information from all the 
messages it receives from sensor nodes. 
 
INSENS employs the one-way authentication mechanism to authenticate any 
information sent by the base station, and appropriate integrity mechanisms to 
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ensure that any tampering with the information being exchanged can be detected 
by the intended receiver. In addition, INSENS limits flooding of messages by 
allowing communication only between the base station and the sensor nodes, 
and by having sensor nodes drop duplicate messages. 
 
 
Route Discovery: 
 
The base station initiates the first round whenever it needs to construct the 
forwarding tables of all sensor nodes. This is usually in the beginning when the 
network is just established, or when the network may have changed substantially 
due to node mobility. The base station broadcasts a request message that all the 
sensor nodes receive, each sensor node that receives the request message for 
the first time in turn broadcasts a request message. This message broadcasted 
by the sensor node includes a path from the base station to the particular node. 
When a node receives a request message for the first time, it forwards 
(broadcasts) this message after appending its identity in the path, it also records 
the identity of the sender of this message in its neighbour set. If a node receives 
duplicate request messages, the identity of the sender is added to its neighbour 
set, but the duplicate request is not rebroadcast. 
 
This serves three purposes: (1) it informs all sensor nodes that the base station 
is collecting topology information to build forwarding tables, (2) it aids in 
constructing a path from each sensor node to the base station that is used in the 
second round to forward feedback messages to the base station, and (3) a node 
receiving a request message learns that the sender of that message is its 
neighbour. [1] 
 
An adversary in the network can attempt to launch several attacks in this round. 
First, it can attempt to deceive the base station by sending a spurious request 
message. Second, it can include a fake path in the request message it forwards. 
Third, it may not forward a request message, or launch a DOS attack by 
repeatedly sending several request messages. These attacks are counter-acted 
by two mechanisms:  
 
First, we leverage the concept of one-way sequences proposed by the μTESLA 
protocol [Perrig01] to identify a request message initiated by the base station and 
to restrict DOS-style flooding attacks. The base station generates a sequence of 
numbers  n1 , n2 , n3 ,..., nk-1, nk, such that  ni+1 = F( ni ) , where F is a one-way 
function, 0 < i < k , and  n1 is chosen randomly. F is such that it is computationally 
impossible to compute nk-1 in a limited time by knowing nk and F. All sensor 
nodes are pre-configured with function F and value nk. 
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Fig 2.1b: Route request format 
 
 
The base station transmits nk-1 (called a One-Way Sequence (OWS) number) in 
the first request messages shown in Fig 2.1b. If the base station needs to 
construct forwarding tables again, the second request message transmitted by 
the base station will be assigned an OWS2=nk-2. The i'th request message will be 
assigned OWSi=nk-i. All nodes forwarding the i'th request message repeat OWSi 
in the header. A sensor node which receives the i'th request message will 
compute Fj(OWSi) for  j=1,2,…,J, where Fj(#) = F(F(...F(#)) applied j times. A 
sensor node will be having the most up to date OWSfresh that it has received from 
the base station. If OWSfresh is within J applications of the function F to OWSi 
from the i'th request message, then Fj(OWSi) = OWSfresh for some j. This match 
enables the sensor node to verify that the OWS has been generated only by the 
base station. If they don’t match, then the packet is identified spurious and is 
dropped. This policy prevents propagation of spurious messages. Also, 
messages whose OWS is older than OWSfresh are not forwarded. This policy 
prevents a node from flooding the network with out of date messages. For 
example, when a sensor node receives the first request message, it will compare 
F(OWS1) with OWSfresh = nk. If there is a match, then the node knows that only 
the base station could have produced this next OWS in the sequence. Otherwise, 
the message is deemed spurious and is not forwarded. [1] 
 
An infected node cannot generate the next OWS number in the sequence and so 
cannot spoof the base station. But it’s possible that a malicious node could flood 
a modified request message using the current OWS from a valid request 
message just transmitted by the base station, this is known as a rushing attack. 
The adversary tries to transmit a spurious message before the base station can 
propagate its own valid message. The intruder first waits to hear the current 
OWS from the base station and then launches its own attack. The nodes in the 
tree those are closer to the base station than the malicious nodes receive the 
valid request messages first as same OWS are not rebroadcast, these nodes 
then drop the intruder’s spurious request messages received later. And since the 
nodes forward only one request message per OWS, an attacker can send a 
request message no more than once i.e. a DOS attack is infeasible by the 
intruder. Even if the sends a request message with a long fake path, the damage 
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is limited to the nodes nearest to and downstream from the intruder, the rest of 
the network can be considered to be not infected. 
 
In the second mechanism each node is configured with a separate secret key 
that is shared with the base station. A node generates a 16-byte MAC Request 
(MACRx) by applying a keyed MAC algorithm before sending a request 
message. This MAC is applied to the complete path consisting of the current 
node’s identity appended to the path from the incoming request message. 
 
The secret key of the node is used to generate the following MACR:  
 
MACRx =MAC ( size | path |OWS | type, Keyx )  
 
where "|" denotes concatenation. This MACR in the request message is used to 
check the integrity of the path in the second round when the nodes receiving the 
request message need to forward a feedback message to the base station along 
this path (in the reverse direction). A malicious node forwarding a feedback 
message towards the base station with a fake path will not have the correct MAC 
and as a result the spurious message will be dropped.  
 
So, even if a malicious node escapes detection in the first round it will be 
detected in the second round. 
 
In the second round each sensor node sends a feedback message back to the 
base station which contains a set of identities of its neighbor nodes as well as the 
path to itself from the base station. Before generating a feedback message a 
node waits for a certain timeout interval so that a node can listen to its 
neighbours (upstream, peer and downstream) forwarding the same request 
message.  
 

 
 

Fig 2.1c: Route feedback message from node x 
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The figure above (Fig 2.1c) shows a feedback packet, nbr_info denotes the 
identities of all its neighbours, path_info denotes the path to that node from the 
base station. For example, if node x receives the first request message for the 
current OWS from neighbor c, then neighbor c becomes the parent of neighbor x, 
namely px=c. If this first request message from c contained the path base->a->b-
>c, then the path returned in node x's path_info will be base->a->b->c->x. 
 
The MACF ensures that the base station will construct a correct topology, though 
it may be incomplete due to malicious nodes. The following keyed 
MACFeedbackx maintains the integrity of the packet and packets reaching the 
base station are guaranteed after verification to be correct and secure from 
tampering. The nbr_info serves to double-check against any possible tampered 
packets which may have somehow dodged inspection. By now, each child node 
will have already identified its parent as the first of its upstream neighbors to 
send the child a request message with the current OWS. [2] 
 
The linked chain of child-parent pairs creates a reverse unicast path from node x 
back to the base station (multiple paths are not available until after round three). 
Before forwarding a feedback message, a child node should place parent 
identification information into the parent_info field of the feedback message. This 
parent_info determines which of a child's upstream neighbours is the parent who 
should forward the feedback message. A child node places its parent’s MACRp 
into the parent_info field which it already has from the first request message it 
received from the parent during the first round. The MACRp has a corresponding 
OWS which serves as a security function as well as an addressing function. This 
means that spurious message cannot be forwarded as a valid address of any 
upstream node (required for the message to be accepted by the upstream node) 
isn’t available even if the attacker may have the node ID’s. An upstream node 
only forwards packets whose MACR matches its own MACR (selected as the 
child’s parent) in accordance with the OWS, otherwise the packet is dropped. 
 
An originating node only generates the MACF and intermediate nodes use the 
one-way function F to verify an OWS that they don’t recognize, otherwise these 
nodes need not recalculate a MAC and simply engage in logic comparisons of 
MACR's as well as memory copies of the new MACRp into the parent_info field. 
Only the parent_info field is modified as the message is propagated back, the 
path_info and nbr_info in the feedback message remain unchanged. 
 
To combat the memory exhaustion attacks the nodes store only 1 bit per node to 
flag whether an originating ID has been seen before; a malicious node will not be 
able to overflow this fixed and compact memory allocation. Hashing may reduce 
this memory requirement but some feedback messages may be missed that 
hash to the same value. 
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A second mechanism to counter-attack DOS attacks is done using rate control; 
thousands of phantom nodes may send feedback messages by taking advantage 
of the fact that in the second round nodes can in fact forward many feedback 
messages. Malicious nodes can send messages having a valid OWS number, 
any originating ID, and a valid MACRp of any upstream node. An upstream node 
(except the base station) has no way of distinguishing between an authentic 
feedback message and a spurious feedback message in this type of attacks. So 
even if malicious nodes send messages at a very fast rate, the upstream 
(correct) nodes will forward those messages only at a slower (legitimate) rate, 
thus preventing congestion on all the further upstream nodes. 
 
To maintain confidentiality against eavesdropping by a malicious node, the 
path_info (the identity field of the originating node in path_info is left 
unencrypted) and nbr_info is encrypted using the originating node x's secret key. 
Only the Type, OWS, parent_info MACRp, and identity of the originating node or 
sender are left unencrypted. So no topology information is revealed among the 
nodes but the identity of the originating node must be unencrypted so that the 
base station can determine to whom the topology information in the feedback 
packet belongs, and so that duplicate feedback packets can be spotted. 
 
In attacks where an intruder substitutes the MACR of any of its non-parental 
upstream nodes which divert packets away from its one valid parent INSENS’s 
principle allows feedback packets to simply follow another path of linked child-
parent pairs that lead back to the base station. Moreover the broadcast nature of 
the wireless medium other upstream nodes will hear this feedback message and 
drop any duplicates. Therefore spurious messages cannot be forwarded by 
malicious child nodes towards the upstream neighbours. 
 
In the third round the base station receives all the authentic feedback messages 
and recomputes the MACFx and checks if there is a match. If there is a match, 
then the base station attempts to match the nodes listed as neighbors with prior 
information received by the base station. The MACR's in nbr_info received from 
neighbors should be consistent with the MACR's reported back to the base 
station; this proves that the nodes have heard each other’s individual rebroadcast 
which clears them of any phantom nodes. The base station now computes the 
forwarding tables for each node in the network. Since the base station has the 
complete information about the network it can perform better in selecting 
appropriate routes in terms of balancing the routing load on the sensor nodes 
and using appropriate algorithms to select redundant routes that minimize the 
extent of damage a malicious node may cause. The first path selection is done 
using Dijkstra’s shortest path algorithm and the second path is kept at the edge 
from the neighbours of the neighbours of the first path, if no path is found in this 
step the neighbours of the neighbours of the first path are included and a path is 
calculated from them. Again, if no path is found neighbours of the first path are 
also included and the path calculated from them. There could be cases where a 
second path is not found, so then INSENS maintains only a single path. 
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After computing the redundant paths and the forwarding tables for each node the 
base station forwards the forwarding tables to the respective nodes. The base 
station sends the tables to the nodes nearest to it and then proceeds further 
outwards; the redundant routing mechanism is used in this case with standard 
security measures. 
 

 
 

Fig 2.1d: Routing table update message 
 
The above figure (Fig 2.1d) shows the format of the routing table message used 
to propagate the forwarding tables. Dest contains the address ID of the 
destination node x. Size contains the length of the message, and forwarding 
table contains the forwarding table for node x. The forwarding table entry is 
encrypted using the secret key of x. The MAC contains the MAC of the complete 
message generated using the secret key of x. 
 
A node maintains a forwarding table that has several entries, one for each route 
to which the node belongs. Each entry is a 3-tuple: destination, source, and 
immediate sender. Destination is the node id of the destination node to which a 
data packet is sent, source is the node id of the node that created this data 
packet, and immediate sender is the node id of the node that just forwarded this 
packet. For example, given a route from node S to D: S->a->b->c->D, the 
forwarding table of node a will contain an entry <D, S, S>, forwarding table of b 
will contain an entry <D, S, a>, and the forwarding table of c will contain an entry 
<D, S, b>. The node id of the immediate sender is used because a node may 
receive a packet with the same source and destination node many times, 
because each packet is forwarded over multiple routes. For example, if the other 
route from S to D is S->e->f->g->h->D, and b and h are neighbors, b will receive 
the data packet forwarded by h, which it should not forward. This is accomplished 
by including the immediate sender field. 
 
When the protocol INSENS is compared with a protocol having no security or 
intrusion tolerance, it is found that INSENS sends more packets with increasing 
number of nodes; this is due to the security and intrusion-tolerance issues. It is 
also observed that active attacks do more damage than passive attacks due to 
malicious nodes during route discovery. INSENS reduces the number of nodes 
that can be blocked over a single path routing protocol. 
 
Poor performance were obtained when the network is less dense that is nodes 
have fewer neighbours consequently few alternative paths. But the protocol does 
perform increasingly well for denser networks. 
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2.2 TORA 
 
       
The TORA uses a "flat", non-hierarchical routing algorithm to achieve a high 
degree of scalability. TORA is an on-demand routing protocol. The main 
objective of TORA is to limit control message propagation in the highly dynamic 
mobile computing environment. Control messages are localized to a very small 
set of nodes and it provides multiple routes for a destination. Each node has to 
explicitly initiate a query when it needs to send data to a particular destination.  
 
The protocol performs three basic functions: 
• Route creation 
• Route maintenance 
• Route erasure 
 
During the route creation and maintenance phases, nodes use a “height” metric 
to establish a directed acyclic graph (DAG) rooted at the destination. Thereafter, 
links are assigned a direction (upstream or downstream) based on the relative 
height metric of neighboring nodes, as shown in Fig. 5a. Routes are maintained 
by re-establishing routes to destination in response to topological changes.  In 
times of node mobility the DAG route is broken, and route maintenance is 
necessary to re-establish a DAG rooted at the same destination.  
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Fig 2.2a: a) Route creation (showing link direction assignment); b) route 
maintenance (showing the link reversal phenomenon) in TORA. 

 
As shown in Fig. 2.2a(b), upon failure of the last downstream link, a node 
generates a new reference level which results in the propagation of that 
reference level by neighboring nodes, effectively coordinating a structured 
reaction to the failure. Links are reversed to reflect the change in adapting to the 
new reference level. This has the same effect as reversing the direction of one or 
more links when a node has no downstream links. Timing is an important factor 
for TORA because the “height” metric is dependent on the logical time of a link 
failure; TORA assumes that all nodes have synchronized clocks (accomplished 
via an external time source such as the Global Positioning System). TORA’s 
metric is a quintuple comprising five elements, namely: 
 
• Logical time of a link failure 
• The unique ID of the node that defined the new reference level 
• A reflection indicator bit 
• A propagation ordering parameter 
• The unique ID of the node 
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The first three elements collectively represent the reference level. A new 
reference level is defined each time a node loses its last downstream link due to 
a link failure. TORA’s route erasure phase essentially involves flooding a 
broadcast clear packet (CLR) throughout the network to erase invalid routes. 
In TORA there is a potential for oscillations to occur, especially when multiple 
sets of coordinating nodes are concurrently detecting partitions, erasing routes, 
and building new routes based on each other. Because TORA uses internodal 
co-ordination, its instability problem is similar to the “count-to-infinity” problem in 
distance-vector routing protocols, except that such oscillations. 
 
Upon the detection of a network partition, all links must be undirected to erase 
invalid routes and the control packets: query (QRY), update (UPD), and clear 
(CLR) are used to accomplish these tasks. QRY packets are used for creating 
routes, UPD packets are used for both creating and maintaining routes, and CLR 
packets are used for erasing routes. [20] 
 
A node receiving a QRY packet does one of the following: 

• if its route required flag is set, this means that it doesn't have to forward 
the QRY, because it itself has already issued a QRY for the destination, 
but better discard it to prevent message overhead. 

• if the node has no downstream links and the route-required flag was not 
set, it sets its route-required flag and rebroadcasts the QRY message. 

• if a node has at least one downstream neighbour and the height for that 
link is null it sets its height to the minimum of the heights of the neighbour 
nodes, increments its d value by one and broadcasts an UPD packet. 

• if the node has a downstream link and its height is non-NULL it discards 
the QRY packet if an UPD packet was being issued since the link became 
active (rr-Flag set). Otherwise it sends an UPD packet. 

A node receiving an update packet updates the height value of its neighbour in 
the table and takes one of the following actions: 

• if the reflection bit of the neighbours height is not set and its route required 
flag is set it sets its height for the destination to that of its neighbours but 
increments d by one. It then deletes the RR flag and sends an UPD 
message to the neighbours, so they may route through it. 

• if the neighbour’s route is not valid (which is indicated by the reflection bit) 
or the RR flag was unset, the node only updates the entry of the 
neighbour’s node in its table. [24] 

 
TORA is a “link reversal” algorithm that is best suited for networks with large 
dense populations of nodes. Part of the novelty of TORA stems from its creation 
of DAGs to aid route establishment. One of the advantages of TORA is its 
support for multiple routes. Route reconstruction is not necessary until all known 
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routes to a destination are deemed invalid, and hence bandwidth can potentially 
be conserved because of the necessity for fewer route rebuilding. However, route 
rebuilding in TORA may not occur as quickly as in the other algorithms due to the 
potential for oscillations during this period. This can lead to potentially lengthy 
delays while waiting for the new routes to be determined. 
 
 
2.3 LEACH 
 
        
LEACH is based on a hierarchical clustering structure model and energy efficient 
cluster-based routing protocols for sensor networks. In this routing protocol, 
nodes self-organize themselves into several local clusters, each of which has 
one node serving as the cluster-head. In order to prolong the overall lifetime of 
the sensor networks, LEACH changes cluster heads periodically. LEACH has 
two main steps: the set-up phase and the steady-state phase. In the set-up 
phase, there are two parts, the cluster-head electing part and the cluster 
constructing part. After the cluster-heads have been decided on, sensor nodes 
(which are chosen as cluster-heads) broadcast an advertisement message that 
includes their node ID as the cluster-head ID to inform non-cluster sensor nodes 
that the chosen sensor nodes are new cluster-heads in the sensor networks. 
They use the carrier-sense multiple access (CSMA) medium access control 
(MAC) protocol to transmit this information. The non-cluster sensor nodes that 
receive it choose the most suitable cluster-head according to the signal strength 
of the advertisement message, and send a join request message to register on 
the chosen cluster-head. After receiving the join message, the cluster-heads 
make a time division multiple-access (TDMA) schedule for data exchange with 
non-cluster sensor nodes. Then, the cluster head informs the sensor nodes of its 
own cluster and the sensor nodes then start sending their data to the base 
station via their cluster-head during the steady-state phase. [25]  
 
However, the balance of energy consumption between all nodes in this manner 
does not ensure that the sensing coverage is preserved sufficiently. Nodes are 
deployed randomly over an entire desired area; therefore, the sensing areas of 
different nodes may partially overlap. When a local area has a much higher than 
average node density, a target location may be covered by multiple nodes. On 
the other hand, if the node density of a local area is much lower than the 
average, a target location is generally covered by only one node.  
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Fig 2.3a: Clusters in the LEACH network. 

 
To improve the network sensing coverage in LEACH, each sensor node uses the 
value of probability in order to decide whether to be a cluster-head or not. Nodes 
with large values of probability can reduce the energy consumption due to being 
a cluster-head, while the burden of being a cluster-head will mainly be carried by 
nodes with small values of probability. By applying the CPCHSA algorithm, the 
nodes that die off first are those with a smaller normalized effective sensing area. 
As a result, the impact on the network sensing coverage from the dying off of 
these nodes is minimized. 
 
It is worth noting that the network topology is changed whenever at least one of 
the nodes has died off, and therefore the normalized effective sensing area is 
changed accordingly for some nodes. This implies that updating the estimated 
normalized effective sensing area may help the correctness of cluster-head 
selection, thereby improving the network sensing coverage. This updating 
process will consume some energy for all of the nodes but it is negligible. The 
updating procedure includes the detection of the node death and the re-
calculation of the effective sensing coverage. For a specific node, if there is no 
neighboring node died in current round, the re-calculation of the effective sensing 
coverage is not required. Frequent updates can capture timely network topology 
information and achieve a better sensing coverage. The most frequent update 
possible is performing the updating in each round. On the other hand, the 
LEACH-Coverage protocol corresponds to the most infrequent update. [26] 
 
In the data communication phase, each sensor node transmits sensing data to its 
own cluster-head according to the TDMA slot (SN_DATA). Cluster-heads gather 
data from the sensor nodes and carry out aggregation, fusion, and compression. 
After that, the cluster-heads transmit (this) to the base station, including the 
energy level of the sensor nodes (CH_DATA).  
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Fig 2.3b: The message flow of the construction phase and the data 

communication phase in the modified LEACH protocol 
 
 
The base station passes raw data out through the Internet or cellular networks, 
and it stores the energy level information of each sensor node for use in the next 
cluster construction phase. Now, the base station can calculate the total energy 
level of the sensor networks and calculate the number of sensor nodes in the 
sensor networks by using the data sent by the cluster heads. The base station 
can use various kinds of algorithms to calculate the suitable number of cluster-
heads by considering the size of the sensor networks and the number of sensor 
nodes. [25] 
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3. METHODOLOGY 

3.1 LITERATURE REVIEW 

In this step any published work or surveying of the literature of the research work 
done relevant about the study area is gathered for assessment, as given above. 
 

• WSN Architecture 
 
In this step the required background information for the understanding of the 
subject of this thesis work is provided. Also a general understanding of the 
new emerging technologies from the wireless communication point of view is 
given in this step. It is simple to start with MANETs which are the base of 
WSN for the understanding of WSN. 
 
• Functionality of Routing Protocols 

 
The explanation of the main characteristics and differences of the routing 
protocols and how they work for WSNs is presented in this step. This step 
includes how 

o Selection of the path. 
o Control messages etc. 

 

3.2 SIMULATION AND ANALYSIS  

3.2.1 SIMULATION WITH NS-2 WITH MANNASIM 

NS-2 [29] is a discrete event network simulator that has begun in 1989 as a 
variant of the REAL network simulator. Initially intended for wired networks, the 
Monarch Group at CMU have extended NS-2 to support wireless networking 
such as MANET and wireless LANs as well. Most MANET routing protocols are 
available for 
NS-2, as well as 802.11 MAC layer implementation. 
NS-2's code source is split between C++ for its core engine and OTcl, an object 
oriented version of TCL for configuration and simulation scripts. The combination 
of the two languages offers an interesting compromise between performance and 
ease of use. 
Implementation and simulation under NS-2 consists of 4 steps: 
(1) Implementing the protocol by adding a combination of C++ and OTcl code to 
NS-2's source base 
(2) Describing the simulation in an OTcl script 
(3) Running the simulation and 
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(4) Analyzing the generated trace files. 
 
NS-2 is powerful for simulating ad-hoc networks. But to simulate WSN in NS-2, it 
needs to have additional module to represent the protocols specific to WSN. 
MANNASIM [30] is a framework for WSN simulation based on NS-2. It extends 
NS_2 by introducing new modules for design, development and analysis of 
different WSN applications. 
The goal of MANNASIM is to develop a detailed simulation framework, which can 
accurately model different sensor nodes and applications while providing a 
versatile test bed for algorithms and protocols. MANNASIM module comprise of 
two solutions: 

o MANNASIM Framework 
o Script Generator Tool 

 
The MANNASIM Framework is a module for WSN simulation for development 
and analysis of different WSN applications. The Script Generator Tool (SGT) is a 
front end for TCL simulation scripts easy creation. SGT comes blended with 
MANNASIM Framework and it's written in pure Java making it platform 
independent. 
 
 
3.2.2 ANALYSIS USING TRACE GRAPH OUTPUT 
 
There are a number of ways of collecting output or trace data on a simulation. 
Generally, trace data is either displayed directly during execution of the 
simulation, or (more commonly) stored in a file to be post-processed and 
analyzed. There are two primary but distinct types of monitoring capabilities 
currently supported by the NS-2 simulator. The first, called traces, record each 
individual packet as it arrives, departs, or is dropped at a link or queue. Trace 
objects are configured into a simulation as nodes in the network topology, usually 
with a TCL channel object hooked to them, representing the destination of 
collected data (typically a trace file in the current directory). The other types of 
objects, called monitors, record counts of various interesting quantities such as 
packet and byte arrivals, departures, etc. Monitors can monitor counts associated 
with all packets, or on a per-flow basis using a flow monitor [29]. 
Once the trace is available, it needs to be analyzed to get the statistics about the 
current run. NS-2 packaged with an analysis tool called xgraph. But its scope is 
limited to few network parameters. More over for larger traces its performance is 
not up to the mark. 
We have used the output from the trace data and used Microsoft Excel to relate 
the data and compute the graphs.  
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3.2.3 SIMULATION PARAMETERS 

 

The traffic sources are CBR (continuous bit –rate). The source-destination pairs 

are spread randomly over the network. The data packet size is 512 bytes. The 

mobility model uses random waypoint model in a rectangular filed of 500m x 

400m with variable nodes. In this mobility model, each node starts its journey 

from a fixed chosen location to a fixed chosen destination. Once the destination 

is reached it stop. From starting point to destination it chose its way randomly, 

after a pause time it go ahead to destination. Different network scenario for 

different numbers of node, pause time and speeds are generated. Simulations 

are run for 100 seconds. The traffic type was UDP. Simulation parameters are 

listed in table 3.2.3.1. 

      

Table: 3.2.3.1 

Simulation Parameters

Parameter Value

       Simulator                            NS-2 with Mannasim Patch 
        Studied protocols                       INSENS, TORA, LEACH 

      Simulation time                                  100 seconds 
      Simulation area                      500 m x 400 m 

   Node movement model                                mobile 
                       Speed          8 m/s 

    Traffic type             UDP, cbr 
      No. of Nodes                 75,100,125 

 
3.2.4 PERFORMANCE METRICS 
The following performance metrics are considered for evaluation: 

 

o Packet Delivery Fraction (PDF): The percentage ratio of the data 

packets delivered to the destinations to those generated by the sources 

[31] 
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o Throughput: The ratio of the data packets delivered to the destinations to 

those generated by the sources [31].  

o Normalized routing load: The number of routing packets “transmitted” 

per data packet “delivered” at the destination [31] 

 

3.2.5 SIMULATION METRICS 
 

Simulation metrics are listed in Table 3.2.5.1 

Table: 3.2.5.1 
     

ID      Metrics  Definition         Formula  
 
PS      Packet sent   total number of packets   Computed from trace file 

sent by the source node        

 

PR     Packet Received        Total number of packets  Computed from trace file 

     Received by the 

Destination node    

 

PDR   Packet delivery Ratio    Percentage of Throughput PDR= (PR/PS)*100% 

 

RF  Routing Packets  Number of routing packets Computed from trace file 

sent or forwarded    

 

NRL   Normalized  Number of routing packets NRL = RF/PR 

Routing Load  per data packets 
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4. ANALYSIS AND SIMULATION RESULTS 
The simulation results are shown in the following section in the form of line 
graphs. Graphs show comparison between the three protocols by varying 
different numbers of nodes on the basis of the above-mentioned metrics as a 
function of drop rate, received, send, time and speed. 
 

4.1 PACKET DELIVERY RATIO: 
The ratio between the number of packets that are received and the number of 
packets sent. TORA has a lower PDF than the other two protocols, as TORA 
reduces communication overhead; it increases unnecessary overhead due to its 
route adaptation feature in response to topological changes. TORA produces 
less throughput due to extra overhead f the destination or path establishment and 
for upgrading the path in an adaptive fashion.  LEACH performs better as it forms 
cluster heads that reduce overhead. INSENS sends same packets multiple times 
to the destination thus lowering the PDR. 
 

Table 4.1.1: Packet Delivery Ratio for WSN Routing Protocols 
 

No. of Nodes TORA LEACH  INSENS 

75 35.12 71.85 63.21 
100 45.67 78.91 64.56 
125 58.45 77.29 65.67 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 4.1.2: Comparison of the three protocols of WSNs with respect to PDF. 
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4.2 ROUTING LOAD: 
 
Routing load measures the scalability of the protocols, how much overhead a 
protocol can take. The routing overhead measures by the total number of control 
packets sent divided by the number of data packets sent successfully. As 
mentioned before TORA produces higher control load due to its adaptive nature. 
Other protocols need to re-initiate a route discovery when a link fails. TORA 
would be able to patch itself up around the point of failure. This feature allows 
TORA to scale up to larger networks but has higher overhead for smaller 
networks. 
INSENS sends more packets than the other protocols, and the difference 
increases with increasing numbers of nodes in the network. 
This difference is attributed to the overhead involved in dealing with security and 
intrusion-tolerance issues. LEACH performs better even with the routing load of 
forming clusters heads, as the area of the routing load is divided between the 
different clusters. There is also a co relation with the no. of nodes. LEACH and 
INSENS perform better with higher number of nodes. 

 

Table 4.2.1: Routing Overhead for WSN Routing Protocols 
 

No. of Nodes  TORA LEACH  INSENS 

75 4.14 1.46 2.35 

100 3.23 1.42 2.13 

125 2.67 1.38 1.89 
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Routing Overhead for WSN Routing Protocols
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Fig 4.2.2: Comparison of the three protocols of WSNs with respect to Routing 

Overhead. 
 

4.3 AVERAGE END TO END DELAY 
 
This delay includes processing and queuing delay in each intermediate node i.e. 
the time elapsed until a demanded route is available. Unsuccessful route 
establishments are ignored. Includes all possible delays caused by queuing at 
the interface queue, retransmission delays at the MAC, and propagation and 
transfer times. 
TORA tries to minimize communication overhead by localization. This reduces 
end-to-end delay. But LEACH has a lower end to end delay as LEACH is a 
single-hop clustering routing protocol. Aggregates data from a cluster head. The 
Average end to end delay is higher for INSENS as in this protocol all nodes 
share authentication key with the base station creating more delay.  
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Table 4.3.1: Average End to End Delay For WSN Routing Protocols 
 

No. of Nodes  TORA LEACH  INSENS 

75 11456 8564 10111

100 8765 8423 10786

125 7890 8398 11456
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Fig 4.3.2: Comparison of the three protocols of WSNs with respect to Average 
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5. CONCLUSION: 

Comparing all three routing protocols, it is seen that TORA performs less than 
the other two protocols. But TORA itself improves its performance when the node 
number increases. Other protocols need to re-initiate a route discovery when a 
link fails. TORA would be able to patch itself up around the point of failure. This 
feature allows TORA to scale up to larger networks but has higher overhead for 
smaller networks. LEACH has a better performance overall than the other two 
protocols, having a single-hop cluster based architecture. The idea of employing 
cluster-heads does quite help to give a higher Packet Delivery Ratio (PDR).For 
INSENS, as quality of service is the main issue, consequently the performance of 
the network was slightly degraded, although there seems to be a close 
competition between INSENS and LEACH, as a better QoS again means a 
higher PDR. 
 

6. FUTURE WORK 

A huge number of WSN protocols are available having varied network 
architecture and operation, each suited best for a specific environment, e.g.-
WAR (Wireless Anonymous Routing), Phantom routing, SPINS etc. Comparison 
between these protocols can be done with additional parameters such as random 
node mobility, increased number of nodes etc. to determine if they can tolerate 
harsh and changing environments, which the protocols are prone to specially 
when used outdoors, and find out which one performs best in a particular 
environment. 
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	DECLARATION 
	Location-Based Routing: 
	Sensor nodes are addressed depending on their locations. Relative coordinates of neighboring nodes is obtained either by exchanging information between neighbor nodes or by directly communicating with a Global Positioning System (GPS). [8] 
	The figure also gives an overview of the different routing techniques employed by the protocols to work. This literature intends to survey three protocols, INSENS (Hierarchical Routing), TORA (Flat routing), and LEACH (Hierarchical Routing), discovering their capabilities and deficiencies and suggesting the most efficient among them. 

