
A COMPREHENSIVE ROMAN (ENGLISH)-TO-BANGLA
TRANSLITERATION SCHEME

Naushad UzZaman (naushad@bracuniversity.ac.bd), Arnab Zaheen (arnab@bracuniversity.ac.bd)

and Mumit Khan (mumit@bracuniversity.ac.bd)

Center for Research on Bangla Language Processing
BRAC University, Bangladesh

Abstract:
A transliteration scheme from Roman (English) to Bangla can help increase the use of Bangla in essential and
diverse computing areas such as word processing, Internet and mobile communication and information query
and retrieval. The Bangla script’s irregular phonetic nature and its large repertoire of consonant clusters
(juktakkhors) create a large gap between the pronunciation and the orthography for a given Bangla word. In
this paper, we describe a comprehensive Roman (English)-to-Bangla transliteration scheme that is designed to
handle the full complexity of the Bangla script. We apply a phonetic encoding scheme to produce intermediate
code-strings that facilitate matching pronunciations of input strings and the desired outputs. We also provide
graceful degradation to a more conventional direct phonetic mapping in special circumstances. A prototype of
our scheme shows significant success in test cases.

Key Words: Transliteration, English, Bangla, Bengali, Phonetic mapping

1. INTRODUCTION

Transliteration, in a narrow sense, is the mapping of letters from one writing script into another writing script.
Ideal transliteration is loss-less, i.e., the informed reader should be able to reconstruct the original spelling of
unknown transliterated words [1]. In most transliteration schemes, the letters of the source script are pronounced
similarly as the letters of the goal script [2]. Transcription, on the other hand, is the system of writing the
sounds of a word in one language using the script of another language. If the relations between letters and
sounds are similar in both languages, transliteration may almost be the same as transcription. In a broader sense,
the word ‘transliteration’ can be used to denote both transliteration in the narrow sense and additionally,
transcription [1].
 The scarcity of software products with native “out of the box” support for Bangla creates a significant
barrier to the language’s use in written forms of desktop computing such as word processing and Internet and
mobile communication such as electronic mail, chatting, etc. Creating a usable transliteration scheme from
Roman (English) to Bangla provides a solution to this problem, but the complex orthographic rules in Bangla
pose a challenge. The Bangla script’s irregular phonetic nature and its large repertoire of consonant clusters
(juktakkhors) create a large gap between the pronunciation and the orthography for a given Bangla word.
 Based on this knowledge, we introduce in this paper a comprehensive Roman (English)-to-Bangla
transliteration scheme that handles the full complexity of the Bangla script with the assistance of a phonetic
lexicon. In our proposed transliteration scheme, there are two types of mapping: a direct phonetic mapping and a
lexicon-enabled phonetic mapping. With direct mapping we implement transliteration in the narrow sense — a
lossless mapping from the source to the goal language script. With phonetic lexicon-enabled mapping, on the
other hand, we realize transliteration in the broader sense, i.e., we make it simultaneously work as a
transcription system.

2. PREVIOUS WORK

Building transliteration schemes for English (Roman) to non-European languages is a significant research
challenge, as demonstrated by the plethora of activities involving English to Japanese [3], English to Arabic [4-
7] and English to Chinese [8]. These transliteration schemes are also used in various applications such as cross
language information retrieval using statistical analysis. Bangla, despite being the fourth most widely spoken
language [9], does not yet have a comprehensively defined transliteration scheme. The most noteworthy work
on transliteration from Roman (English) to Bangla has been implemented in ITRANS [10, 11] in early 1991.
Some other established transliteration schemes include ISO 15919 [12] and Harvard-Kyoto [13]. Currently there
are also a few word processors that support transliteration of Bangla using the Roman script [15-19]. All these
schemes only support direct phonetic mapping and are consequently loss-less. However, these schemes are not
able to handle the complex cases in applications like cross language information retrieval.

3. DIRECT PHONETIC MAPPING

We consider direct mapping a trivial phonetic mapping scheme that maps letters from the source script to the
goal script without the help of a phonetic lexicon. Existing transliterations from Roman (English) to Bangla use
this method. The most popular such mapping is provided in ITRANS [11], which is used by a number of
applications [5, 6], while others have defined their own. In this paper, we provide another direct mapping
method to be used in our own transliteration scheme.

There is a key difference between existing English-to-Bangla direct phonetic mapping methods and
ours. In traditional direct mapping schemes, the user is provided with only one letter or letter-group in the
source script to represent one letter in the goal script, i.e., these are one-to-one mapping schemes. In our direct
phonetic mapping scheme, for a number of suitable cases, we provide the user with multiple options of such
letter or letter-groups in the source script (which, in our case, is Roman) to represent one letter in the goal script
(Bangla), i.e., ours is, partially, a many-to-one mapping scheme. We realize this flexibility by introducing an
intermediate step where the input-string in the source script is converted to an intermediate code-string before its
final conversion into the goal script. For example, the Roman-letter source input strings phul, phool, fool and ful
should all correspond to the word ফুল /phul/ in Bangla. In our method, each of these four input-strings
corresponds to just one intermediate code-string <phul>, which is finally converted to the corresponding Bangla
word ফুল.

Table 1 completely describes our proposed rules for direct phonetic mapping from Roman (English) to
Bangla. It includes the valid input character/character-groups in the source script and their corresponding
intermediate and final output forms. The Unicode number of each Bangla letter is also given.

Table 1. Table for direct phonetic mapping
Roman letter or
letter-group

Intermediate
encoding

Name Bangla letter Unicode

a AA আ \u0986
a a SIGN AA ◌া \u09BE
b b BA ব \u09AC
bh bh BHA ভ \u09AD
c/ch c CA চ \u099A
Ch/chh ch CHA ছ \u099B
d d DA দ \u09A6
dh dh DHA ধ \u09A7
D D DDA ড \u09A1
Dh Dh DDHA ঢ \u09A2

e E e \u098F e
 e SIGN E ে◌ \u09C7
f ph PHA ফ \u09AB
g g GA গ \u0997
gh gh GHA ঘ \u0998

h h HA হ \u09B9
H H VISARGA ◌ঃ \u0983

i I i \u0987 i
 i SIGN I ি◌ \u09BF

I II ঈ \u0988 I
 I SIGN II ◌ী \u09C0
j j YA য \u09AF
J J JA জ \u099C
jh jh JHA ঝ \u099D
k k KA ক \u0995
kh kh KHA খ \u0996
l l LA ল \u09B2
m m MA ম \u09AE
M M CANDRABINDU ◌ঁ \u0981
n n NA ন \u09A8
N N NNA ণ \u09A3
Nh Nh NYA ঞ \u099E
ng ng ANUSVARA ◌ং \u0982
Ng Ng NGA ঙ \u0999
o o A a \u0985
O @ BEGIN O O o \u0993
O @ MIDDLE/END O SIGN O ে◌া \u09CB

oi AI ঐ \u0990 oi
 oi SIGN AI ৈ◌ \u09C8

ou AU ঔ \u0994 ou
 ou SIGN AU ে◌ৗ \u09CC
oo u SIGN U u \u09C1
p p PA প \u09AA
ph ph PHA ফ \u09AB
q k KA ক \u0995
r r RA র \u09B0
R R RRA ড় \u09DC
Rh Rh DDHA ঢ় \u09A2
s s SA স \u09B8
sh sh SHA শ \u09B6
S S SSA ষ \u09B7
t t TA ত \u09A4
th th THA থ \u09A5
T T TTA ট \u099F
Th Th TTHA ঠ \u09A0
u u U u \u0989
 u SIGN U ◌ু \u09C1
U U UU ঊ \u098A
 U SIGN UU ◌ূ \u09C2

v bh BHA ভ \u09AD
w u UU ঊ \u098A
x @ BEGIN j YA য \u09AF

x @ MIDDLE/END ks KA SA কস
\u0995
\u09B8

y y YYA য় \u09DF
z j YA য \u09AF
\ \ HASANT ◌্ \u09CD

4. LEXICON-ENABLED PHONETIC MAPPING

A good transliteration scheme between two languages enables the application of cross language information
retrieval and has been successfully implemented in many languages. Most of these implementations, however,
require extensive statistical analyses of source and goal languages. There is a dearth of such analyses in Bangla
at the moment. An alternate solution to this problem is to use a lexicon with phonetic code generation capability.
Such a lexicon can be easily implemented for Bangla, allowing cross-lingual information query and retrieval
until sufficient statistical data is available.

The first step in building a usable phonetic lexicon is to generate a phonetic code-string for each
Bangla word from a supplied lexicon. However, extracting the code-strings for Bangla words of similar
pronunciation (homonyms) is not easy in Bangla, mostly due to the language’s complex orthographic rules. One
solution described in the literature uses a Double Metaphone encoding scheme for Bangla in various
applications such as a spelling checker or a word similarity checker [20, 21]. We use a slightly modified and
improved version of the Double Matephone encoding scheme for our purposes. The following section shows the
algorithm.

4.1. Algorithm for phonetic lexicon-enabled mapping
1. Generate the phonetic code-strings for all Bangla words in the supplied lexicon using the
modified and improved Double Metaphone encoding scheme and store these as items in a phonetic
lexicon.
2. Input Bangla word using Roman (English) characters.
3. Generate the phonetic code-string of the input.
4. IF the input’s phonetic code-string matches the phonetic code-string corresponding to only
one word in the Bangla lexicon THEN

convert the input to that Bangla word.

ELSE IF the input’s phonetic code-string matches a phonetic code-string corresponding to
multiple words in the Bangla lexicon THEN

produce suggestions of all relevant Bangla word outputs and let the user select the correct
output.

ELSE IF the input’s phonetic code-string does not match with any available phonetic code-
string in the phonetic lexicon THEN

convert the input to Bangla using direct mapping.

The challenge here is to generate the phonetic code-strings of the Bangla words in the lexicon as well
as the phonetic code-strings for the Roman input strings. Additionally, any major inconsistencies we encounter
while matching these two types of strings need to be removed.

4.2. Generating phonetic code-strings of Bangla words

As mentioned earlier, we use the Double Metaphone phonetic encoding scheme for Bangla proposed in [20, 21]
to encode the words in our Bangla lexicon into corresponding phonetic code-strings. We convert the Roman
character input-string in a similar manner. For example, we describe in this section how the Bangla word কলম is
encoded into <klm> using the phonetic encoding rule of [20, 21]. Our other challenge is to describe how to
encode the Roman (English) input in a way so that when someone writes kolom, it is also converted to <klm>
(this will be discussed in section 4.3).

4.2.1. Modifications done to Double Metaphone encoding for the purpose of our scheme

The phonetic encoding scheme we used to convert Bangla words is a slightly modified version of the one
proposed in [20, 21]. The modifications were necessary to make the mapping consistent from both directions

(Roman input and Bangla lexicon entry).

4.2.1.1. The case of aspirated consonants

We made some modifications to the encoding proposed in [20, 21] to distinguish aspirated consonants from
their unaspirated counterparts.

Table 2. Modification to encoding in [20, 21]
Bangla
letter

Name Unicode Encoding in [20] Modified
encoding

ভ BHA \u09AD “b” “bh”
ছ CHA \u099B “c” “ch”
ধ DHA \u09A7 “d” “dh”
ঢ DDHA \u09A2 “d” “dh”
ঘ GHA \u0998 “g” “gh”
ঝ JHA \u099D “j” “jh”
খ KHA \u0996 “k” “kh”
ফ PHA \u09AB “p” “ph”
থ THA \u09A5 “t” “th”
ঠ TTHA \u09A0 “T” “Th”

4.2.1.2. The case of Ya-phalaa following aspirated consonants

While the general accuracy of the Double Metaphone phonetic encoding proposed in [20, 21] is supported by
statistics, we had to make some minor improvements to get the best out of the method. In [20, 21], when the
Bangla letter য /ya/ (YA) appears as the latter constituent in a consonant cluster in the middle or end of a word in
a post-base form (as in পদয্/pod̪d ̪o/ or বাধয্তা /baddhot̪a/), the encoding doubles the pronunciation of the preceding
constituent of the cluster. For example, for the words কাবয্ /kabbo/ and পদয্/pod̪d ̪o/, য /ya/ (Unicode YA) is
converted to the same phonetic code as the preceding constituent of the cluster. In কাবয্ /kabbo/, য /ya/ (Unicode
YA) will be converted to , which is the code of ব /b/, and the resulting phonetic code-string will be <kabb>.
Similarly for পদয্ /pod̪d̪o/, য /ya/ (YA) will be converted to <d>, the code for দ /d̪/, and the ensuing phonetic
code-string will be <pdd>. Although this method (of replacing য /ya/ with the previous constituent consonant of
the cluster) works very well in these examples, it fails when the consonant preceding য /ya/ is aspirated. For
example, তথয্ /t̪ot̪t̪hɔ/, বাধয্ /bad̪d ̪hɔ/, সখয্ /ʃokkhɔ/, and লভয্ /lobbho/ will have phonetic codes <tthth>, <badhdh>,
<skhkh>, and <lbhbh>, respectively. These code-strings clearly do not express the correct pronunciations of the
corresponding Bangla words. Instead of a plain doubling of the aspirated consonant, the consonant cluster is
correctly pronounced as a combination of un-aspirated and aspirated consonants, e.g, ধয্ is pronounced not as
ধ+ধ (/d̪h/+/d ̪h/) but as দ+ধ (/d̪/+/d ̪h/). We therefore handle this problem by modifying our algorithm so that it
revises such code-strings to reflect this pronunciation rule, producing <ttth>, <baddh>, <skkh>, and <lbbh>
respectively for the four examples we considered.

4.2.1.3. The case of ambiguity concerning Reph+YA and RA+YA-phalaa

The phonetic encoding in [20, 21] is based on Unicode and there was an ambiguity concerning the use of Bangla
Reph and Ya-phalaa until Unicode 4.0 [23]. According to [23], the Unicode format defines that Reph is formed
when a RA (র), which has the inherent vowel killed by the virama/halant, begins a syllable. This is shown in the
following example:

 The YA-phalaa () is a post-base form of YA (য) and is formed when the Ya is the final consonant of
a syllable cluster. In this case, the previous consonant retains its base shape and the virama/halant is combined
with the following Ya. This is shown in the following example.

 An ambiguous situation is encountered when the combination of Ra + virama/halant + Ya is
encountered.

 To resolve the ambiguity with this combination and to have consistent behavior, the latest Unicode
standard takes into account the processing order of the Bengali script. When parsing the text, the ability to form
the Reph is identified first and therefore the Reph form should have priority in processing. Thus, it is necessary
to insert a U+200C ZERO WIDTH NON-JOINER character (ZWNJ in short) into the stream between the Ra
and virama/halant to allow the virama/halant and Ya to be grouped together during processing:

 In the example above, the ZWNJ is used because two characters that would join by default are intended
to remain as separate entities. In cases other than where the RA is the first character in the cluster, the ZWNJ is
not required for the formation of the Ya-phalaa. However, for ease of placing the Ya-phalaa input as a single
key input, it should be permissible for the Ya-phalaa to be consistently formed by "ZWNJ + VIRAMA + YA"
(U+200C + U+09CD + U+09AF).
 It is clear that there is an ambiguity in writing the character sequence র+◌্ +য in Bangla and that its
solution has been given in Unicode 4.0.1 [23]. However, the software we use to implement transliteration uses
previous versions of Unicode and is unable to handle this case at present. In the future, we will be able to
resolve this ambiguity by employing a ZWNJ and produce different codes for different cases. In the meantime,
we propose a temporary solution as described below. In our encoding scheme, we had problems with this
ambiguity specifically when the sequence র+◌্ +য occurred in the middle or the end of a word (e.g.,

). In Bangla language, the sequence র+◌ ্+য always appears as

in the middle or the end of a word; there is no case of in those circumstances[24]. We have, therefore,

modified our algorithm to only consider when encountered with র+◌্ +য in the middle or the end of a word.

4.3. Generating phonetic code-strings of Roman (English) word inputs

In Table 3, we propose the phonetic encoding scheme for Roman character input-strings. We use almost the
same direct mapping scheme from Table 1, with different intermediate codes for a few cases. Table 3 contains
only those exceptions. We also termed “Intermediate encoding” of Table 1 “Encoding like Bangla” in Table 3.

Table 3. Proposed encoding for phonetic mapping

English letter or
bigram

Encoding like
Bangla Name

Bangla
letter

Unicode

H h VISARGA ◌ঃ \u0983
J j JA জ \u099C
M Not Coded CANDRABINDU ◌ঁ \u0981
N n NNA ণ \u09A3
Ng ng NGA ঙ \u0999
O Not Coded A a \u0985
O @ BEGIN o O o \u0993
O @ MIDDLE/END Not Coded SIGN O ে◌া \u09CB
R r RRA ড় \u09DC
Rh r DDHA ঢ় \u09A2
Sh s SHA শ \u09B6
S s SSA ষ \u09B7
\ Not Coded HASANT ◌্ \u09CD

5. EXAMPLE OF TRANSLITERATION

We now show the outputs of both direct and phonetic mapping schemes for a given Roman (English) text input.

Following is a Bangla text input using English alphabet:
ami bhalo achi. tomar khobor ki. ajke shondha bela tumi ki korcho. obak
bepar holo, ami ekhon bangla likhte pari inglish diye. aro mojar bepar holo
ami dui bhabe likhte pari. ekTa DairekT arekTa phoneTik. tomar desh e koto
Taka te ek Dolar. ami ei bhabe abar juk\to bor\no likhte pari.

5.1. Output in direct mapping

Our output in direct mapping for the above input will be the following:
আিম ভােলা আিছ. েতামার েখােবার িক. আযেক েশানধা েবলা তুিম িক েকারেছা. aবাক েবপার েহােলা, আিম eেখান বাংলা িলখেত পাির iনশিলশ িদেয়.
আেরা েমাযার েবপার েহােলা আিম di ভােব িলখেত পাির. eকটা ডাiেরকট আেরকটা েফােনিটক. েতামার েদশ e েকােতা টাকা েত eক েডালার. আিম
ei ভােব আবার যুেkা েবাের্না িলখেত পাির.

5.2. Output in phonetic mapping

And the output using phonetic mapping will be the following:
আিম বহাল/ভাল/ভােলা আিছ. েতামার খবর কi/িক/কী. আজেক সnয্া েবলা তুিম কi/িক/কী করছ. aবাক েবপার/বয্াপার হল, আিম eখন/eখেনা
বাংলা/বাঙলা িলখেত পাির/পািড় iংিলশ িদেয়. আর/আেরা/আড় মজার েবপার/বয্াপার হল আিম di ভােব িলখেত পাির/পািড়. eকটা ডাiেরকট
আেরকটা েফােনিটক . েতামার েদশ/েdষ e কত/েকঁাত টঁাকা/টাকা েত eেঁকা/eক ডলার . আিম ei ভােব আবার যুk বরণ/বর্ণ/bণ িলখেত পাির/পািড়

Table 4. Few examples from above paragraph to make the process clear
English word Output in direct

mapping
Output in
phonetic
mapping

Selected word

shondha েশানধা সnয্া সnয্া

bela েবলা েবলা েবলা

bepar েবপার েবপার/বয্াপার বয্াপার

mojar েমাযার মজার মজার

DairekT1 ডাiেরকট ডাiেরকট ডাiেরকট

ami আিম আিম আিম

ek eক eেঁকা/eক eক

juk\to যুেkা যুk যুk

bor\no েবাের্না বরণ/বর্ণ/bণ বর্ণ

Table 4 shows how we can handle the similar sounding multiple words in a suggestion. We can select
our expected word among the suggestions either manually or generate the correct word automatically, given
available contextual statistical data and appropriate methods.

6. PERFORMANCE

A transliteration software-prototype [25] was implemented based on the methods discussed above and tested
with users. The users were given an introduction on how to use the software. Even though the main idea behind
this phonetic mapping is that the user can write in the Roman character(s) based on his (ideally competent)
knowledge of Bangla pronunciation, there are letters in Bangla that can cause ambiguity as they are usually
written using the same Roman character. For example, ত /t̪/, থ /t̪h/, ট /t/, ঠ /th/ — all of these letters are written
using the Roman character "t" or "th". We asked the user to use specific Roman characters for a few specific
Bangla characters, which means there remains an irreducible element of direct phonetic mapping for a few
Bangla letters even when we are using phonetic mapping with a phonetic lexicon. For the example cases

1 Not found in the lexicon, so direct mapping used for the suggestion

mentioned above, we instruct the users to use the following codes: "t" for ত /t̪/, "th" for থ /t̪h/, "T" for ট /t/, and
"Th" for ঠ /th/.

We encountered a couple of problems during this try-out: i) for a given input-string the corresponding
word is entirely absent from the lexicon, ii) the inflected form of a head-word is sometimes missing from the
lexicon, e.g., we may have a সরকার /ʃɔrkar/ in our lexicon, but we may not have other inflected forms of সরকার
/ʃɔrkar/ such as সরকােরর /ʃɔrkarer/, etc.

We handle these cases by providing a graceful degradation from lexicon-enabled phonetic mapping
into direct phonetic mapping, as described in the last ELSEIF clause in the 4th step of our algorithm presented in
section 4.1. The phonetic lexicon for our prototype. In our performance checking survey, more than 10 users
took approximately 2500 words from Bangla newspaper articles and inputted them in Roman (English) format.
We found that 32% of the input strings did not have corresponding Bangla words in our lexicon. Graceful
degradation of these cases to direct phonetic mapping provided the correct output string in 23% of the cases. We
could not handle the remaining words (9% of total) mainly because of the limitations of our current lexicon,
which already contains more than 100,000 entries of Bangla words. This limitation can be overcome in two
ways: i) by increasing the number of words in our lexicon and ii) by using morphological synthesis to efficiently
generate all possible inflected words for the lexicon. Currently, our scheme provides the user with the correct
output in 100% of the cases where the relevant Bangla word is present from the lexicon.

Performance Statistics at a glance:

Words found in the lexicon: 68%

Given the word is in the lexicon, the instances it was handled properly by phonetic mapping with
phonetic lexicon: 100%

Words not found in the lexicon: 32%
Words not found in the lexicon but handled properly by direct mapping: 23%
Words not found in the lexicon because of the absence of inflected words: 7%
Words not found in the lexicon and not handled properly by direct mapping: 2%

7. USING TRANSLITERATION WITH PHONETIC MAPPING IN CROSS LANGUAGE
INFORMATION RETRIEVAL APPLICATION

In cross language information retrieval, a user issues a query in one language to search a collection in a different
language. If the two languages use the same alphabet then similar sounding words can be written in the same
way in two languages and can easily be found as well. However, if two languages use two different alphabets
then it is not an easy task to issue a query in one language to search a collection in a different language.

A cross language information retrieval application can be developed using our proposed transliteration
scheme with phonetic lexicon-enabled phonetic mapping. In this application, the input will be a Roman
character input-string and it will retrieve similarly pronounced Bangla words from Bangla documents. Details of
this application can be found in [20].

8. CONCLUSION

We have designed a phonetic lexicon-based English-to-Bangla transliteration (and, simultaneously,
transcription) scheme that is more comprehensive than the schemes realized so far by others. Our proposed
transliteration scheme is meant to act as a bridge until a more thorough computational linguistic appraisal of the
Bangla language is realized. Our scheme can also relieve desktop and mobile-device users of the burden to learn
multiple Bangla-based input methods for different systems and devices. In addition, the scheme can be used in
powerful applications such as cross language information query and retrieval.

9. ACKNOWLEDGEMENT

This work has been supported in part by the PAN Localization Project (www.panl10n.net), grant from the
International Development Research Center, Ottawa, Canada, administrated through Center for Research in
Urdu Language Processing, National University of Computer and Emerging Sciences, Pakistan. We would also
like to thank other members of our research group and BRAC University students who helped by participating
in our performance survey.

10. REFERENCES

[1] Wikipedia entry of Transliteration, available online at http://en.wikipedia.org/wiki/Transliteration
[2] Wikipedia entry of Transcription, available online at

http://en.wikipedia.org/wiki/Transcription_%28linguistics%29
[3] Kevin Knight and Jonathan Graehl, “Machine Transliteration”, Computational Linguistics 24(4): 599-612

(1998).
[4] Yaser Al-Onaizan and Kevin Knight, “Machine Transliteration of Names in Arabic Text”, Proc. of ACL

Workshop on Computational Approaches to Semitic Languages, 2002.
[5] Nasreen Abdul Jaleel and Leah S. Larkey, “English to Arabic Transliteration for Information Retrieval: A

Statistical Approach”, CIIR Technical Report IR-261, Dept. of Computer Science, University of
Massachusetts.

[6] Leah S. Larkey, Nasreen Abdul Jaleel, Margaret Connell, “What’s in a Name?: Proper Names in Arabic
Cross Language Information Retrieval”, CIIR Technical Report, IR-278.

[7] Nasreen Abdul Jaleel and Leah S. Larkey, “Statistical Transliteration for English-Arabic Cross Language
Information Retrieval”, CIKM 2003: Proceedings of the twelfth international conference on information
and knowledge management , New Orleans, LA, 139-146.

[8] GAO Wei, “Phoneme based Statistical Transliteration of Foreign Names for OOV problem”, MSc Thesis,
Chinese University of Hong Kong, 2004.

[9] The Summer Institute of Linguistics (SIL) Ethnologue Survey 1999, available online at
http://www2.ignatius.edu/faculty/turner/languages.htm.

[10] ITRANS, available online at http://www.aczoom.com/itrans/
[11] ITRANS table, available online at http://sanskrit.gde.to/web-interface/bengali.html
[12] ISO 15919 Transliteration of Devanagari and related Indic scripts into Latin characters, available online at

http://homepage.ntlworld.com/stone-catend/trind.htm.
[13] Harvard-Kyoto Convention for transliterating the Sanskrit language in ASCII, available online at

http://en.wikipedia.org/wiki/Harvard-Kyoto.
[14] Aksharmala mapping, available online at

http://aksharamala.com/help/chm/Input%20Schemes/ITRANS/Bengali/quick.html
[15] Iwrite32, available online at http://members.tripod.com/~sbiswas/IWrite32/IWrite32.html
[16] Bornosoft, available online at http://www.bornosoft.com/
[17] Kickkeys, available online at http://www.kickkeys.com/
[18] Lekho, available online at http://lekho.sourceforge.net/
[19] Bengali Transliteration System by prabashi.org, available online at

http://www.prabasi.org/Literary/ComposeArticle.html
[20] Naushad UzZaman, “Phonetic Encoding for Bangla and its Application to Spelling checker,

Transliteration, Cross language information retrieval and Name searching”, Undergraduate thesis
(Computer Science), BRAC University, May 2005.

[21] Naushad UzZaman and Mumit Khan, “A Double Metaphone Encoding for Bangla and its Application in
Spelling Checker”, Proc. 2005 IEEE Natural Language Processing and Knowledge Engineering, Wuhan,
China, October, 2005.

[22] Definition of phonetic encoding available online at
http://www.nist.gov/dads/HTML/phoneticEncoding.html.

[23] Clarification of Bengali Reph and Ya-phalaa in Unicode 4.0.1, available online at
http://www.unicode.org/versions/Unicode4.0.1/.

[24] Dr. Suniti Kumar Chatterji, “Bhasha-Prakash Bangala Vyakaran”, D. Mehra Publishers, Kolkata, May
1989, Page 59

[25] Prototype of Transliteration available online at http://student.bu.ac.bd/~naushad/software/pata/

