
BWN - A Software Platform for Developing
Bengali WordNet

Farhana Faruqe Mumit Khan
Center for Research on Bengali Language Processing,

Department of Computer Science and Engineering,
BRAC University, 66 Mohakhali, Dhaka, Bengalidesh
E-mail: farhanadiba@gmail.com, mumit@bracu.ac.bd

Abstract-Advanced Natural Language Processing (NLP)
applications are increasingly dependent on the availability of
linguistic resources, ranging from digital lexica to rich tagged and
annotated corpora. While these resources are readily available for
digitally advanced languages such as English, these have yet to be
developed for widely spoken but digitally immature languages
such as Bengali. WordNet is a linguistic resource that can be used
in, and for, a variety of applications from a digital dictionary to
an automatic machine translator. To create a WordNet for a new
language however is a significant challenge, not the least of which
is the availability of the lexical data, followed by the software
framework to build and manage the data. In this paper, we
present BWN, a software framework to build and maintain a
Bengali WordNet. We discuss in detail the design and
implementation of BWN, concluding with a discussion of how it
may be used in future to develop WordNets for other languages as
well.

I. INTRODUCTION

One measure of the “digital maturity” of a natural language
is the richness and diversity of linguistic resources available for
that language – from the simple digital dictionaries to the
complex annotated corpora – needed for advanced natural
language processing applications such as automatic machine
translation. Bengali, despite being very widely spoken [8], is
only just beginning to see the development of these linguistic
resources. One such important resource is WordNet, a lexical
semantic database for a language [1]. The basic building block
of WordNet is a synonym set or Synset, a word sense with
which one or more synonymous words or phrases are
associated. Each synset in WordNet is linked with other
synsets through the lexical relations synonymy and anotnymy,
and the semantic relations hypernymy, hyponymy, meronymy,
troponymy, etc. The applications of WordNet range from
creating digital lexica to performing word-sense
disambiguation in automatic machine translation. The synonym
set {পািখ, গগনগিত, েখচর, িচিড়য়া, নেভৗকা, পংিখ, প ী, পkধর, পkাল,ু পkী, পতগ,
পtী, িবহগ, িবহ , িবহ } and {পািখ, জিমর eকক িবেশষ, 30 কািন ভূিম, 26/33/35
শতাংশ, a ল eকক} for example can serve as an unambiguous
differentiator of the two meanings of “পািখ”. Such synsets are
the basic entities in WordNet; each sense of a word is mapped
to a separate synset in the WordNet, and synset nodes are
linked by semantic relationships, such as hypernymy. Building

a WordNet for a language faces two primary challenges –
creating the lexical data, and the software framework to store
and manage that data. The primary focus of this paper is on the
design and implementation of BWN, which is a framework to
enable building and using Bengali WordNet.

The design of Bengali WordNet closely follows that of the
English WordNet [2]. The software design that we detail in
this paper allows the linguists to import lexical data in a
“batch” mode, and then allows for visual querying and editing
of all the relations in the data. The basic design to support data
import and then subsequent queries is relatively simple;
however, support for incrementally building the WordNet and
for editing the data using a visual interface are two key features
of BWN, and these complicate the design in a significant way.

We start by looking at the current approaches for building a
new WordNet and discuss our methodology, and then discuss
the design and implementation of BWN. We then conclude
with a look at what the future holds for BWN.

II. RELATED WORK AND METHODOLOGY

There are two common approaches for building a WordNet
for a target language: (i) a top-down approach, using an
existing WordNet in a source language to seed the linguistic
data for the target language WordNet, and (ii) a bottom-up
approach, where the linguists create the WordNet synsets from
scratch without depending on an existing one. The first
approach has been tried for a number of WordNets
[3][4][5][6][7]. Using a source WordNet as the base, Barbu et
al., Chakrabartu et al., and Farreres et al. generate target
WordNet by mapping the synsets of the two languages. For the
sysnsets to be mappable however, concepts in the source
WordNet must exist in the target WordNet being built.
Additionally, a significant amount of language resource is
required for building a WordNet in this method. For example, a
set of synsets strictly aligned with the source WordNet must
exist before the new WordNet can be built. This is a significant
drawback of building a WordNet from an existing one.

Given that there is a well-defined and well-designed English
WordNet, one would be tempted to use that to map the synsets
and build a Bengali WordNet of a reasonable quality. However,
for that to be successful, there must first be significant level of
linguistic similarity between the two languages, which is not

the case. In addition, Bengali word senses need to be clearly
identified in an English-Bengali-English dictionary, which is
also not available. Even if there were a rich tagged corpus, a

WordNet can be created semi-automatically. Again, we do
not have such a resource available.

There have been many other recent attempts at building a
WordNet quickly, such as creating lexical networks by using
the web or some well-structured corpora such as Wikipedia, or
the BNC corpus. All of these require linguistic resources not
yet available for Bengali, leaving us with the bottom-up
approach as the most practical one.

Considering the challenges with the first approach, a simpler
approach is by using the bottom-up approach, in which we
build a WordNet by starting with the words in the target
language and not by using an existing WordNet. For BWN, we
started by translating the ontology, and chose words using a
frequency list from a newspaper corpus. These synsets are
compiled in lexical source files, which are then injected into
the WordNet database using a “grinder”, and the resulting
system can then be used through a set of interfaces. We discuss
the details of this in the next section.

III. DESIGN AND IMPLEMENTATION

Generally, a WordNet software system is comprised of four
parts as shown Fig. 1: lexical source files, grinder, WordNet
Database and the interface to WNDB to build, use and edit the
WordNet. This is the same structure that we follow in BWN as
well.

A. Lexical Source Files
These files contain the synsets that are manually compiled

by the lexicographers, and are used to eventually populate the
WordNet database. In a WordNet, nouns, verbs, adjectives and
adverbs are organized into synsets, which are further arranged
into a set of lexical source files by syntactic category. This is

where the all the linguistic information is kept, typically hand-
crafted by the linguists. The schema used for nouns in the
lexical source file is shown below:
 Word name। Word name(english) । description।
Pos। ||description(english)||
Hypernyms:
Synonyms:
And a sample “noun” record is shown below.
কাজ।work। িকছু করা বা ৈতিরর লেk সরাসির কাযর্kম। িবেশষয্।
||work -- (activity directed toward making or doing something)||
hypernyms:| কাযর্kম | কৃতকমর্ | ঘিটত িবষয় | মনsািttক-িবষয় | িবমূতর্ ন | িবমূতর্ -সtা
| সtা |
synonyms: কমর্, কমর্কা , কাজ, কাজকাম, কাম, কাযর্

B. Grinder
The grinder is used to convert these lexical source files in a

form that can be injected into the WordNet Database (WNDB).
Basically, it parses and processes the text from the lexical
source files into records, and then stores each record in the
WNDB.

C. WordNet Database (WNDB)
WNDB is the heart of WordNet for any language. For BWN,

the basic design is similar to “Wordnet SQL Builder” [2],
shown in Fig. 2. However, as we shall soon see, there are
significant differences under the hood, primarily to support
incremental building of the database, and editing of the synsets
directly via the user interface. One of the design goals is to
ensure that WNDB is extensible to new lexical relations
between synsets. In addition, in the word table, we store the
English word that can be used to link to other WordNets such
as the EuroWordNet in the future. In the sense table, both the
word and the synset are mapped together. In the synset table,
we generate an ID for a synset but do not create the synset
itself. We regenerate the synset at run-time from the sense and

Fig. 1. Block diagram of WordNet system

Grinder

Lexical Source Files

WordNet Database

Interface

Fig. 2. Block diagram of the WordNet database

word tables, which serves a very important role in the case of
an edit or update operation.

D. WNDB Interface
There are essentially three different interactions with WNDB,
the underlying WordNet database. The first is to create the
initial database using the lexical source files, and then to
incrementally update the database, which is a feature that
significantly contributes to the database schema complexity;
the second is to use the database to query the data; and, the
third is to edit the lexical data, which is the other reason behind
the database schema complexity. In this rest of this section, we
look at each of these interactions in detail.

TABLE 1
Word table after data entry

wordid wordname ewordname
1 কাজ Work
2 কমর্ Work
3 কাজকাম Work

TABLE 2

Synset table after data entry

synsetid description edescription pos

1 িকছু করা বা ৈতিরর লেk
সরাসির কাযর্kম

work -- (activity directed toward
making or doing something)

িবেশষয্

TABLE 3

Sense table after data entry
wordid synsetid
1 1
2 1
3 1

1) Update WNDB: The Grinder takes each record from the
lexical source file, then splits the text according to the database
field and then stores it into the database. The process starts
with reading each record from a lexical source file. To
illustrate the process, let us take the following sample record in
a lexical source file:
“ কাজ। work। িকছু করা বা ৈতিরর লেk সরাসির কাযর্kম। িবেশষয্।
||work -- (activity directed toward making or doing something)||
hypernyms:| কাযর্kম | কৃতকমর্ | ঘিটত িবষয় | মনsািttক-িবষয় | িবমূতর্ ন | িবমতূর্ -সtা
| সtা | synonyms:কমর্, কাজকাম”

After splitting the text, the grinder updates the word table
with the value of wordid (auto incremented integer), wordname,
and ewordname. Each synonym word is also entered into the
word table, (see Table 1).

The Grinder then updates the synset table with synsetid (auto
incremented integer), description, edescription, and pos (see
Table 2).

The Grinder then updates the sense table with those wordids
and the particular synsetid (see Table 3).

To update the hypernym table (Table 4), we need the
synsetid of that particular record and its corresponding
hypernymid; because each synset, with the exception of “entity/
সtা”, may have one or more hypernyms. For that, we have to
match each hypernym with the wordname field’s value in the
word table and then take the wordid; with this wordid, we have
to find out the synsetid (because the hypernymid is nothing but

a synsetid) from the sense table. Here we assume that all of
these hypernym words already exist in the word table.

TABLE 4
Hypernym table after data entry

Synsetid Hypernymid
1 2
1 3
1 4
1 5
1 6
1 7
1 8

The tree table (Table 5) keeps track of the parent of each
hypernym word, because hypernymy relates each child to its
parent. Then the Grinder updates the tree table with
hypernymid and parentid (which is also a synsetid). Since
“entity/সtা” does not have a parent, its parentid is given a value
of 0 (zero) to indicate that.

TABLE 5
Tree table after data entry

hypernymid parentid
2 3
3 4
4 5
5 6
6 7
7 8
8 0

At this point, a specific complication may arise because of

BWN’s support of incremental update – there may be some
hypernym words that do not currently exist in the WordNet
Database. As we have noted earlier, this is one of the key
features of BWN, and one that contributes significantly to the
complexity of the design. We still have to enter these words
into the database because the hypernym and tree tables’ values
are fully dependent upon the synsetid. However, the currently
entered record is only partially complete, which is why we
have to mark it as such. We do that by marking it with a special
tag, “hypernym”, to be updated later when its corresponding
entity record is encountered in the lexical data. When this
record eventually comes as an entity, we update the record
tagged as a “hypernym” with its complete value. In fact, we
have to consider all the synonym words, and not just the entity
word, because the previously entered hypernym word may
exist as part of a synset. Let us illustrate this with the following
example record:
“কালিবn।ু measure, quantity, amount তা

�
kিণক সময়। িবেশষয্।||point,

point in time -- (an instant of time)||
hypernyms: |িবমূতর্ ন | িবমূতর্ -সtা | সtা | synonyms: কালিবn”ু

After entering the data word table (see Table 6), synset table
(see Table 7), and the sense table (see Table 8) as discussed
earlier, the data looks like the following:

TABLE 6
Word table after data entry

wordid wordname Ewordname
12 কালিবn ু measure, quantity, amount

TABLE 7

Synset table after data entry
synsetid description Edescription Pos

9 তা
�
kিণক সময় measure, quantity, amount িবেশষয্

TABLE 8

Sense table after data entry
wordid Synsetid
12 9

TABLE 9

Word table after data entry
wordid wordname ewordname
13 িবমূতর্ -সtা hypernym

TABLE 10
Synset table after data entry

synsetid description Edescription Pos
10 িবমূতর্ -সtা hypernym িবেশষয্

TABLE 11

Sense table after data entry
wordid Synsetid
13 10

TABLE 12

Hypernym table after data entry
synsetid hypernymid
9 6
9 10
9 8

TABLE 13

Tree table after data entry
hypernymid parentid
6 10
10 8
8 0

TABLE 14

Word table after updated data
wordid wordname ewordname
13 িবমূতর্ -সtা Abstract Entity

TABLE 15

Synset table after updated data
synsetid description edescription pos

10 শুধমুাt িবমূতর্ (ৈদিহক রূপহীন)
aিst আেছ eমন সtা

abstract entity -- (an entity
that exists only abstractly)

িবেশষয্

Now suppose that one of the hypernym words “িবমূতর্ -সtা”

does not yet exist in the database; in this case, we have to enter
this word into the word table (see Table 9) and the synset table
(see Table 10), generating the wordid and the synsetid; then,
we have to enter it in the sense table (see Table 11) with the
generated wordid and synsetid.

Then we insert the value into the hypernym table (see Table
12) and the tree table (see Table 13) as discussed earlier.

Now, later one, when this “িবমূতর্ -সtা” hypernym word shows
up as an entity, we have to update the word and the synset
tables with new value, while the sense table remains the same.

For example, the following records add the hypernym word as
an entity:
aমূতর্-সtা । Abstract Entity । শধুমুাt িবমতূর্ (ৈদিহক রূপহীন) aিst আেছ eমন

সtা। িবেশষয্। ||Abstract Entity -- (an entity that exists only
abstractly)||hypernyms:সtা | synonyms: aরূপ-সtা, িনরূপ-সtা, িবমূতর্ -
সtা, সtা।

Here “িবমূতর্-সtা” comes as part of a synonym, and not as an
entity name. Now we have to update the word table (see Table
14) and the synset table (see Table 15) with the new value.

The rest of the entry – the entity name, the synonym, and the
hypernym will be entered in the same manner as discussed
earlier.
2) Using WNDB: The second interface to the WNDB is for
querying the data in WNDB, as shown in Figures 3 and 4. A
typical scenario is the following:

Fig. 3 Result of a search option

TABLE 16

Word table
wordid wordname ewordname

20 aংশ (সmকর্) part, portion
25 aংশ (aবsান) region, part

TABLE 17

Sense table
wordid synsetid

20 17
25 19

TABLE 18

Sense table
wordid synsetid
20 17
21 17
22 17

TABLE 19

Word table
wordid Wordname ewordname

20 aংশ (সmকর্) part, portion
21 aবিশ part, portion
22 বািক aংশ part, portion

TABLE 20
Synset table

synsetid description edescriptio
n

pos

17 েকােনািকছুর সােথ সদুঢ়ৃভােব
সmিকর্ ত েকােনা িকছুর
anভুর্k ভাগ

…… িবেশষয্

19 েকােনা িকছুর বিধর্ত িবsৃত-
aবsান

…… িবেশষয্

TABLE 21

Hypernym table
synsetid hypernymid
17 8
17 9
17 10

TABLE 22

Tree table
hypernymid parentid
8 9
9 10
10 0

1. User enters the query text into query field as shown in
the following figure.

2. The WNDB search engine first finds the sense (or

senses) of that given word from word table (see Table
16), then maps the wordid to the synsetid from the
sense table (see Table 17), and then returns those
synsetids.
In this example, “aংশ” has two senses (each word
represents a single value, as mentioned earlier).
So, the returned synsetids are 17 and 19.

3. For each of the resulting synsetids, we have to find all
the wordids from the sense table. To create a synonym
set, we have to find all the wordnames from the word
table after matching the wordids for a particular
synsetid. Tables 18 and 19 show these procedures.
Here, we consider only one synsetid, 17. For synsetid
17, the synonyms are {aংশ (সmকর্), aবিশ , বািক}.

4. Then, we find the description for each synsetid from
the synset table (see Table 20) with those synsetids.
Then the search result is shown in Fig 3.

5. To view a noun’s hypernymy relation, as shown in Fig
4. The application execute steps 2-4 for each sense,
and then, within each sense, it performs the following
steps:

a. It finds the hypernymids from the hypernym
table (see Table 21) for the specific synsetid.

b. The application also has to track each of the
hypernym’s parent from the tree table (see
Table 22) to track the child-parent relation.

6. After performing steps 5 (a) and (b), it shows the
hypernym from child to parent order.

Fig. 4. Hypernym relation of a noun

 3) Editing WNDB:
BWN supports editing any existing record through a user

interface shown in Fig 5. It also supports a limited version of
delete operation, because an unrestricted deleted may destroy
the underlying tree. If the user wants to delete a record, there
are three cases to consider:

• If the record has synonym, then we can delete it
(updates only the word table);

• If the record is used as a hypernym entry then we
cannot delete it without risking relational integrity;

• If the record is not used as a hypernym entry, then we
can delete that record, which affects all tables except
the tree table.

Fig. 5. Edit interface

IV. CONCLUSION AND FUTURE WORK

We present the design and implementation of BWN, a
software framework for developing a Bengali WordNet. BWN
at the basic level supports building the WordNet database from
lexical source files using a grinder, and then supports querying
the data using an interface; in addition, it has two key features

not found in other designs support for incremental building of
the WordNet database, and for editing the WordNet data using
an interface. These two key features significantly contribute to
the complexity of the design and implementation of BWN.
BWN makes no assumption about the underlying language, so
it should be extendable to other languages as well. Future work
will focus on two fronts – improving the interface to the
underlying WordNet database such as creating Webservice
and .NET bindings, and to link to non-Bengali WordNets such
as the Hindi and Euro WordNets.

V. ACKNOWLEDGMENT

This work has been supported in part by the PAN
Localization Project (www.PANL10n.net) grant from the
International Development Research Center, Ottawa, Canada.
The Center for Research on Bangla Language Processing
(CRBLP) is supported in part by IDRC and Microsoft
Corporation.

VI. REFERENCES
[1] Fellbaum C. “WordNet: An Electronic Lexical Database”, MIT press.

1998.

[2] “wordnet sql builder”,
http://wnsqlbuilder.sourceforge.net/schema.html, last accessed: 16
Oct 2008

[3] Manish Sinha, Mahesh Reddy and Pushpak Bhattacharyya, "An
Approach towards Construction and Application of Multilingual
Indo-WordNet", 3rd Global Wordnet Conference (GWC 06), Jeju
Island, Korea, January, 2006.

[4] Piek Vossen, “EuroWordNet: A Multilingual Database with Lexical
Semantic Networks”, Computational Linguistics, Volume 25,
Number 4, September 1999.

[5] Farreres, Xavier, German Rigau and Horacio Rodriguez. “Using
WordNet for building WordNets.” In: Proceedings of the
COLING/ACL Workshop on Usage of WordNet in Natural
Language Processing Systems, Montreal, 1998.

[6] Barbu, Eduard and Verginica Barbu Mititelu, “Automatic Building
of Wordnets" In: Proceedings of the International Conference Recent
Advances in Natural Language Processing, Borovets, Bulgaria, pp.
329-332, 21-23 September 2005.

[7] Debasri Chakrabarti, Gajanan Rane and Pushpak Bhattacharyya,
Creation of English and Hindi Verb Hierarchies and their
Application to English Hindi MT, International Conference on
Global Wordnet (GWC 04), Brno, Czeck Republic, January, 2004.

[8] Wikipedia contributors, Bengali language, Wikipedia, The Free
Encyclopedia; 2008 Oct 27, 17:06 UTC [cited 2008 Oct 28].
Available:
http://en.wikipedia.org/w/index.php?title=Bengali_language&oldid=
248011954

