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ABSTRACT 
 
Optimization in design and utilization of both hardware and software is needed in 

order to achieve more energy efficient systems. In this paper we presented a 

Reinforcement learning based DPM approaches for our LAN card power 

management system. The presented approaches do not require priori model of the 

system as an Opposite to the existing DPM approaches. Thesis outcomes also show 

that sleeping is indeed feasible in the LAN and in some cases, with very little 

impact on other protocols. Moreover, reinforcement learning is a machine 

intelligence approach that has been applied in many different areas whereas Q-

learning is one of the most popular algorithms that perform reinforcement learning. 

At last, with the desired outcomes of this thesis work, power management issues of 

LAN card system were solved effectively. In future we aim to compare DPM 

problem with mission learning problem. The RL based learning algorithm can then 

be implemented to find the right value of power constraint. 
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CHAPTER 01 
 
 
 
 

INTRODUCTION: 
 
Energy efficient systems are widely recognized and vast amount of funding are 

being approved by the electrical industries to develop efficient mechanisms to 

solve real world problems effectively [1], [2], [3],[4] because we do have huge 

amount of scopes to make our daily lives comfortable and smooth but our 

resources are limited. With little resource we have to build sustainable yet 

intelligent systems for our future generations. In addition, we cannot undermine the 

adverse impact of technologies on our environment. Therefore, we need work and 

research more and more about energy efficient systems which will give us what we 

need in a quicker and intelligent way and at the same time keep a close look on the 

use of resources. Energy efficient design requires the development of new 

computer-aided design techniques to help explore the trade- off between power and 

conventional design constraints, i.e., performance and area. Among these 

techniques, dynamic power management (DPM) [5] and its extensions, such as 

application-driven/assisted power management [6], [7], and dynamic voltage 

scaling (DVS) have been extensively applied with good results.DPM is a flexible 

and general design methodology aiming at controlling performance and power 

levels of electronic systems by exploiting the idleness of their components. A 

system is provided with a power manager (PM) that monitors the overall system 

and component states and controls the power state of each component. This control 

procedure is called power management policy. Therefore, DPM will have to 

integrate several methodologies in it. One effective methodology is Reinforcement 

Learning(RL).Reinforcementlearningisusedinmanydifferentareas.Itisvery 
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familiar learning method in natural life. The machine learns to achieve a goal by 

trial and error interaction within a dynamic environment. Target of RL is to 

minimize its average long term penalty. It is completed by learning a policy 

mapping between the state and the action. Q learning and SARSA are two of the 

most common algorithms in reinforcement learning. The whole thesis will work on 

DPM with RL method by implementing both Q algorithm and SARSA algorithm 

for the power management solution of LAN cards. After that this thesis will look 

into the comparison between these two algorithms and will choose the better one 

for the LAN card by observing the corresponding outputs achieved by using both 

the RL algorithms. 
 
 
 
 
IMPORTANCE OF ENERGY EFFICIENCY: 
 
While system design is concerned with selection and organization of system 

components, the system utilization addresses the question of how those 

components should be used. Electronic systems often consist of one or more 

microprocessors and a set of devices with multiple low-power states. Many 

microprocessors support dynamic clock frequency adjustment and some newer 

devicesalsosupportdynamicsupplyvoltagesetting[8].Thus,atthesystemlevelit is 

possible to reduce energy by transitioning components into low- power states 

(dynamic power management) and by changing the frequency and voltage level of 

the microprocessor(dynamic voltage scaling). 
 
On the other hand, It is obvious that in order to support new generation network 
services and infrastructure, network operators and Internet service providers need a 
large number of more sophisticated network devices able to perform complex 
operations in a scalable way and assure expected quality of service. This is one of 
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the reasons for the rapid growth of the energy requirements of wired and wireless 

modern computer networks. Therefore, the energy consumption trends in the next 

generation networks have been widely discussed and the optimization of total 

power consumption in today’s computer networks has been a considerable research 

issue [9, 10]. New solutions both in hardware and software have been developed to 

achieve the desired trade-off between power consumption and the network 

performance according to the network capacity, current traffic and requirements of 

the users. The aim is to reduce the gap between the capacity provided by a network 

for data transfer and the requirements, especially during low traffic periods. In 

particular,theenergydissipatedinanetworkcanbeminimizedbyswitchingoffidleenerg 

y consuming components such as routers, line cards, and communication 

interfaces, and by reducing the speed of processors and link speed. In general, data 

transfers should be aggregated along as few devices as possible instead of 

balancing traffic in a whole computer network. Selectively shutting down routers 

and links in periods of low demand seems to be a good solution for reducing the 

energy usage due to the fact that typical networks are usually over provisioned. The 

techniques developed for keeping the connectivity and saving the energy can be 

successfully used for energy-efficient dynamic management in LANs (local area 

networks),WANs(wide area networks)as well as in computing centers. 
 
 
 

MOTIVATION & OVERVIEW OF THE THESIS: 
 
Power management schemes exist to minimize the power consumption on devices 

such as desktops, note- books and a number of other portable devices. The schemes 

used for conserving power are generally implemented by the operating system in 

the device and use various power-saving techniques such as dynamic voltage 

scaling (DVS), slowing clocks and using lower power-consuming modes as 
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provided by the underlying hardware. However, no such dynamic power 

management schemes are available for internet devices such as routers and 

switches at the system level. In this paper, we look at the feasibility of introducing 

such schemes in LAN switches. We chose to begin with LAN devices and in 

particular LAN switches for several reasons: LAN switches comprise the bulk of 

network devices in the LAN and they also consume the largest percentage of 

energy. Given the intention to save energy on switches, we have to decide our 

methodologies. In order to save energy in a device, we can either turn it off or put 

it into deep sleep states where most of the components are powered off or clocked 

at a lower frequency at lower voltage levels. The one caveat is that these 

approaches can only be used when the device is idle for some minimal amount of 

time (very frequent power on/off actually uses more power due to spikes in current 

draw when a device is powered on and, furthermore, devices take a certain amount 

of time to transition between sleep and wake states that could result in packet 

losses). Turning our attention to the LAN switch, we note that saving energy here 

translates to powering off or putting to sleep LAN switch components, interfaces, 

or entire switches. However, the side effect of putting ports or switches to sleep is 

that layer 2 protocols running on the switches may be negatively affected. Thus, 

implementing power management schemes in a switch presents several challenges: 

switches do not function in isolation and hence slowing or powering down switches 

can result in performance penalties in terms of network throughput and end-to-end 

delay, or worse, packetloss. 
 
In this paper, we examine the different questions arising from the approach of 
putting switch components to sleep. In our thesis work, we used traffic data from 
our LAN to show that there are significant periods of inactivity in our LAN that 
can be used for sleeping. We then developed an abstract sleep model for generic 
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switch architecture and use it to discuss algorithms for sleeping. Furthermore, our 

work shows our study of the performance of these algorithms on the traffic data 

collected at various interfaces at different locations in our LAN. We then finally 

used an efficient energy management system such as Dynamic Power Management 

(DPM) with Q – learning method to save the energy of LAN card with a suitable 

algorithm. We studied different sets of power management schemes. Then we 

studied reinforcement learning method with SARSA algorithm design. 
 
We also developed a suitable algorithm and transferred it into mat lab 
programming. We finally achieved our desired result and we can say that the 
power of LAN card can be effectively managed with our suggested methodology. 
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CHAPTER 02 
 
 
 
 

POWER MANAGEMENT SCHEMES: 
 
A workload that uses a given system component can be represented by a two state 

finite state machine in terms of how it uses the component: busy and idle. Busy 

state corresponds to the times during which the workload uses the component to 

actively perform some processing. For instance, when an application thread in 

running on the CPU or the hard disk is spinning to serve a block request. 

Conversely, the idle state corresponds to the instances when the workload is not 

generating any requests for the component, as a consequence of which, it is 

inactive or not being utilized. Energy consumption for any workload on an 

operational system is the product of the power consumption of the system 

components and the runtime of the workload: 
 
 
 
 
 
 

E =   …………………………. (1) 
 
 
 
 
 
 
 
 
 
Based on this equation, an intuitive way of dynamically achieving energy savings 
is to reduce power consumption of the system with minimal impact on the 
execution time of the workload. This will result in reduction in energy 
 
consumption proportional to the decrease in power consumption. This approach  
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towards energy management is referred to as active power management, since it is 

based on actively managing the power consumption of the system to achieve 

energy savings. The power consumption can be managed during both the busy as 

well as the ideal states of the workload. Based on the sates of the workloads (and 

hence component), i.e. busy or idle, during which power management is performed, 

the active power management techniques can be divided into two categories: 1) 

DVFS 2) DPM 

 
When the workload is in the idle state, the system component is inactive and is 

ability to actively execute work-loads or serve user requests is not required. 

Consequently, modern system components like CPUs, hard drives, network cards 

etc. support sleep states, which consume lower but compromise the ability of the 

component to actively serve workload requests. Dynamically utilizing such sleep 

states during the idle state to achieve energy saving is referred to as Dynamic 

Power Management or DPM. 
 
The goal of both the active power management techniques – DPM and DVFS, is to 

maximize the reduction in power consumption with minimal impact on 

performance, so that the energy consumption (based on equation 1) can be 

minimized. The following discussion will provide details on the existing states of 

the art approaches for active power management. Now, first we have to analyze 

different sets of energy management systems and choose the best method for our 

research. 
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DYNAMIC POWER MANAGEMENT SYSTEM: 
 
 
The fundamental premise for the applicability of power management schemes is 
that systems, or system components, experience non-uniform workloads during 
normal operation time. Non-uniform workloads are common in communication 
networks and in almost and interactive system. 

 
System-level dynamic power management decreases the energy consumption by 

selectively placing idle components into lower power states. System resources can 

be modeled using state-based abstraction where each state trades off performance 

for power [20]. For example, a system may have an active state, an idle state, and a 

sleep state that has lower power consumption, but also takes some time to 

transition to the active state. The transitions between states are controlled by 

commands issued by a power manager (PM) that observes the workload of the 

system and decides when and how to force power state transitions. The power 

manager makes state transition decisions according to the power management 

policy. The choice of the policy that minimizes power under performance 

constraints (or maximizes performance under power constraint) is a constrained 

optimization problem. 
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Fig. 1 shows later (a) the system power consumption level over time without DPM, 

 
(b) the case when the ideal DPM is applied, and (c) the case when non ideal DPM 
isapplied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: 01 
 
 
 
 
Non ideal DPM wastes the idle interval at the second idle period and pays a 

performance penalty at the third idle period. These inefficiencies come from 

inaccurate prediction of the duration of the idle period or, equivalently, the arrival 

time of the next request for an idle component. Thus, the ultimate goal in DPM is to 

minimize the performance penalty and wasted idle intervals while, at the same time, 

minimizing power. The objective can be achieved by an ideal PM with complete 

knowledge of present, past and future workloads. In some cases such knowledge can 

be provided by applications that provide hints on future requirements of the system 

resources. Unfortunately, the application- driven approach is not viable when 

applications cannot be modified. 
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The existing DPM policies can be broadly classified into 3 categories. 

 
1. Timeout Policies  

 
2. Predictive Policies  

 
3. Stochastic Policies  

 
 
In general, we can model the unavoidable uncertainty of future requests by 

describing the workload as a stochastic process. Even if the realization of a 

stochastic process is not known in advance, its properties can be studied and 

characterized. This assumption is at the basis of many stochastic optimal control 

approaches that are routinely applied to real-life systems. DPM has been 

formulated and solved as a discrete-time stochastic optimal control problem by 

Benini et al. [24]. Also, continuous-time stochastic approaches were proposed in 

[23],[21],[22].Unfortunately, in many instances of real-life DPM problems, it is 

hard, if not impossible, to pre characterize the workload of a power management 

system. Consider, for instance a disk drive in a personal computer (PC). The work 

load for the drive strongly depends on the application mix that is run on the PC. 
 
This, in turn, depends on the user, on the location, and similar “environmental 

conditions” which are not known at design or fabrication time. IN these cases, the 

stochastic process describing the workload is subject to large variation over time. 

For instance, hard disk work-loads for a workstation drastically change with the 

time of the day or the day of the week. This characteristic is called non stationary. It 

is generally hard to achieve robust and high-quality DPM without considering this 

effect. Optimal control of non stationary stochastic systems is a well- developed 

field .Several adaptive control approaches are based on an estimation procedure that 
 
“learns” online the unknown or time-varying parameters of the system, coupled 
with a flexible control scheme that selects the optimal control actions based on the 
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estimated parameters. This approach is also known as the principle of estimation 
and control. The most common power management policy at the system level is a 
timeout policy implemented in most operating systems. The drawback of this policy 
is that it wastes power while waiting for the timeout to e xpire[17]. 
 
Predictive policies for hard disks [18] and for interactive terminals [19] force the 

transition to a low power state as soon as a component becomes idle if the predictor 

estimates that the idle period will last long enough. An incorrect estimate can cause 

both performance and energy penalties. The distribution of idle and busy periods for 

an interactive terminal is represented as a time series in [32], and approximated with 

a least-squares regression model. The regression model is used for predicting the 

duration of future idle periods. A simplified power management policy predicts the 

duration of an idle period based on the duration of the last activity period. The 

authors of [32] claim that the simple policy performs almost as well as the complex 

regression model, and it is much easier to implement. In [19], an improvement over 

the prediction algorithm of [32] is presented, where idleness prediction is based on a 

weighted sum of the duration of past idle periods, with geometrically decaying 

weights. The policy is augmented by a technique that reduces the likelihood of 

multiple wrong predictions. All these policies are formulated heuristically, and then 

tested with simulations or measurements to assess their effectiveness. 
 
In contrast, approaches based on stochastic models can guarantee optimal results. 

Stochastic models use distributions to describe the times between arrivals of user 

requests (inter-arrival times), the length of time it takes for a device to service a 

user’s request, and the time it takes for the device to transition between its power 

states. The system model for stochastic optimization can be described either with 

just memory less distributions (exponential or geometric) or with general 

distributions [25,26, 27]. Power management policies can also be classified into two 
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categories by the manner in which decisions are made: discrete time (or clock 

based) and event driven [25,26, 27]. In addition, policies can be stationary (the 

same policy applies at any point in time) or non- stationary (the policy changes over 

time). All stochastic approaches except for the discrete adaptive approach presented 

in are stationary. The optimality of stochastic approaches depends on the accuracy 

of the system model and the algorithm used to compute the solution. In both the 

discrete and the event-driven approaches optimality of the algorithm can be 

guaranteed since the underlying theoretical model is based on Markov chains. 

Approaches based on the discrete time setting require policy evaluation even when 

in low-power state, thus wasting energy. On the other hand, event-driven models 

based on the exponential distribution show little or no power savings when 

implemented in real systems since the exponential model does not describe well the 

request inter-arrival times [25,26, 27]. 
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INTRODUCTION TO REINFORCEMENT LEARNING 
 
All animals and automata exhibit some kind of behavior; they do something in 

response to the inputs that they receive from the environment they exist in. Some 

animals and automata change the way the behave over time; given the same input, 

they may respond differently later on than they did earlier on. Such agents learn. 

The field of machine learning studies learning algorithms, which specify how the 

changes in the learner's behavior depend on the inputs received and on feedback 

from the environment. 

 
Learning algorithms fall into three groups with respect to the sort of feedback that 

the learner has access to. On the one extreme is supervised learning: for every 

input, the learner is provided with a target; that is, the environment tells the learner 

what its response should. The learner then compares its actual response to the 

target and adjusts its internal memory in such a way that it is more likely to 

produce the appropriate response the next time it receives the same input. We can 

think of learning a simple categorization task as supervised learning. For example, 

if you're learning to recognize the sounds of different musical instruments, and 

you're told each time what the instrument is, you can compare your own response 

to the correct one. 

 
On the other extreme is unsupervised learning: the learner receives no feedback 
from the world at all. Instead the learner's task is to re-represent the inputs in a 
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more efficient way, as clusters or categories or using a reduced set of dimensions. 

Unsupervised learning is based on the similarities and differences among the input 

patterns. It does not result directly in differences in overt behavior because its 

"outputs" are really internal representations. But these representations can then be 

used by other parts of the system in a way that affects behavior. Unsupervised 

learning plays a role in perceptual systems. Visual input, for example, is initially 

too complex for the nervous system to deal with it directly, and one option is for 

the nervous system to first reduce the number of dimensions by extracting 

regularities such as tendencies for regions to be of constant color and for edges to 

be continuous. 

 
A third alternative, much closer to supervise than unsupervised learning, is 

reinforcement learning: the learner receives feedback about the appropriateness of 

its response. For correct responses, reinforcement learning resembles supervised 

learning: in both cases, the learner receives information that what it did is 

appropriate. However, the two forms of learning differ significantly for errors, 

situations in which the learner's behavior is in some way inappropriate. In these 

situations, supervised learning lets the learner know exactly what it should have 

done, whereas reinforcement learning only says that the behavior was 

inappropriate and (usually) how inappropriate it was. In nature, reinforcement 

learning is much more common than supervised learning. It is rare that a teacher 

available who can say what should have been done when a mistake is made, and 

even when such a teacher is available, it is rare that the learner can interpret the 

teacher's feedback provides direct information about what needs to be changed in 

the learner, that is, features of the learner's nervous system. Consider an animal 

that has to learn some aspects of how to walk. It tries out various movements. 
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Some work -- it moves forward -- and it is rewarded. Others fail -- it stumbles or 
falls down -- and it is punished with pain. 
 
 
Thus while much of the focus of machine learning has been on supervised 
learning, if we are to understand learning in nature, we need to study unsupervised 
and reinforcement learning. During the workshop, we will explore one 
reinforcement learning algorithm in some detail. 

 
Reinforcement learning area used in many different areas. It is very familiar 
learning method in natural life. The machine learns to achieve a goal by trial and 
error interaction within a dynamic environment. 
 
The general learning model method of Reinforcement Learning is : 
 
 
 
1. An Agent  
 
2. A finite state space  
 
3. A set of available action  
 
4. A plenty of function P = S*A →P  
 
 
To simulate the learning of real biological systems, we need to make some 

simplifying assumptions about our agent and its behavior. (From now on, we'll 

refer to our learner as an "agent" to emphasize that it's actively doing things, not 

just learning what to do.) We will assume that the agent's life is a Markov decision 

process (MDP). That is, 

 
• The agent perceives a finite set S of distinct states in its environment and has 

a finite set A of distinct actions that it can perform.  
 

• At each discrete time step t, the agent senses the current state xt, chooses 
a current action ut, and executes it.  
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• The environment responds with a reward or punishment r(xt, ut) and a new 
state xt+1 = T(xt, ut). Note that we need to formalize reinforcement as a  

 
number, greater for more beneficial, less for more detrimental.  

 
• The reinforcement and next-state functions are not necessarily known to the 

agent, and they depend only on the current state and action. That is, before 

learning, the agent may not know what will happen when it takes a particular 

action in a particular state, but the only relevant information for deciding 

what action to take is the current state, which the agent does have access to.  

 
For example, consider an agent in a one-dimensional world of cells. In each cell 

except those on the end, the agent can go either east or west. At the extreme west 

end lives a swarm of mosquitoes. At the extreme east, there is a mango tree. 

Anywhere else, the agent receives no information at all from the environment. The 

agent can sense which cell it is in, but at the beginning of learning, it has no idea 

what cell it gets to by going east or west and what sort of reinforcement it will 

receive, if any. On the basis of the punishment it receives if and when it reaches 

the west end and the reward it receives if and when it reaches the east end, it must 

learn how to behave anywhere in the world. 

 
The goal of reinforcement learning is to figure out how to choose actions in 

response to states so that reinforcement is maximized. That is, the agent is learning 

a policy, a mapping from states to actions. We will divide the agent's policy into 

two components, how good the agent thinks an action is for a given state and how 

the agent uses what it knows to choose an action for a given state. 

 
There are several ways to implement the learning process but in this thesis, we will 
focus firstly on, Q learning, which is a form of reinforcement learning in which the 
agent learns to assign values to state-action pairs. We need first to make 
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a distinction between what is true of the world and what the agent thinks is true of 

the world. First let's consider what's true of the world. If an agent is in a particular 

state and takes a particular action, we are interested in any immediate 

reinforcement that's received but also in future reinforcements that result from 

ending up in a new state where further actions can be taken, actions that follow a 

particular policy. Given a particular action in a particular state followed by 

behavior that follows a particular policy, the agent will receive a particular set of 

reinforcements. This is a fact about the world. In the simplest case, the Q-value for 

a state-action pair is the sum of all of these reinforcements, and the Q-value 

function is the function that maps from state-action pairs to values. But the sum of 

all future reinforcements may be infinite when there is no terminal state, and 

besides, we may want to weight the future less than the here-and-now, so instead a 

discounted cumulative reinforcement is normally used: future reinforcements are 

weights by a value gamma between 0 and 1 (see below for mathematical details). A 

higher value of gamma means that the future matters more for the Q-value of a 

given action in a given state. 

 
If the agent knew the Q-values of every state-action pair, it could use this 

information to select an action for each state. The problem is that the agent initially 

has no idea what the Q-values of any state-action pairs are. The agent's goal, then, 

is to settle on an optimal Q-value function, one which that assigns the appropriate 

values for all state/action pairs. But Q-values depend on future reinforcements, as 

well as current ones. How can the agent learn Q-values when it only seems to have 

access to immediate reinforcement? It learns using these two principles, which are 

the essence of reinforcement learning: 
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• If an action in a given state causes something bad to happen, learn not to do 

that action in that situation. If an action in a given state causes something 
good to happen, learn to do that action in that situation.  

 
• If all actions in a given state cause something bad to happen, learn to avoid 

that state. That is, don't take actions in other states that would lead you to be 
in that bad state. If any action in a given state causes something good to 
happen, learn to like that state.  

 
The second principle is the one that makes the reinforcement learning magic 

happen. It permits the agent to learn high or low values for particular actions from 

a particular state, even when there is no immediate reinforcement associated with 

those actions. For example, in our mosquito-mango world, the agent receives a 

reward when it reaches the east end from the cell just to the west of it. It now 

knows that that cell is a good one to go to because you can get rewarded in only 

one move from it. 

 
That is, the optimal Q-value of for a particular action in a particular state is the sum 

of the reinforcement received when that action is taken and the discounted best Q-

value for the state that is reached by taking that action. The agent would like to 

approach this value for each state-action pair. At any given time during learning, 

the agent stores a particular Q-value for each state-action pair. At the beginning of 

learning, this value is random or set at some default. Learning should move it 

closer to its optimal value. 

 
An important aspect of reinforcement learning is the constraint that only Q-values 
for actions that are actually attempted in states that actually occurred are updated. 
Nothing is learned about an action that is not tried. The upshot of this is that the 
agent should try a range of actions, especially early on in learning, in order to have 
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an idea what works and what doesn't. More precisely, on any given time step, the 

agent has a choice: it can pick the action with the highest Q-value for the state it is 

in (exploitation), or it can pick an action randomly (exploration). Note that there is 

a tradeoff between these two strategies. Exploitation, because it is based on what 

the agent knows about the world, is more likely to result in benefits to the agent. 

On the other hand, exploration is necessary so that actions that would not be tried 

otherwise can be learned about. We formalize the action decision process in terms 

of probabilities. The simplest possibility is to flip a coin and with a certain 

probability exploit your knowledge (pick the action with the highest Q-value) or 

explore (pick a random action). A better one, which we will use, is to assign a 

probability to each action, basing it on the the Q-value for the action in the state. 

The higher an action's Q-value, the greater the probability of choosing it. But 

because these are still probabilities, there is still a chance of picking an action that 

currently has a low Q-value. It also makes sense to have the probability of 

exploration depend on the length of the time the agent has been learning. Early in 

learning, it is better to explore because the knowledge the agent has gained so far is 

not very reliable and because a number of options may still need to be tried. Later 

in learning, exploitation makes more sense because, with experience, the agent can 

be more confident about what it knows. The equation for the probability of 

choosing an action ut, then, is 

 
System level power management must consider the uncertainty and variability that 

comes from the environment, the application and the hardware. A robust power 

management technique must be able to learn the optimal decision from past history 

and improve itself as the environment changes. This paper presents a novel on- line 

power management technique based on model-free constrained reinforcement 

learning (RL). It learns the best power management policy that gives the minimum 
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power consumption for a given performance constraint without any prior 

information of workload. Compared with existing machine learning based power 

management techniques, the RL based learning is capable of exploring the trade- off 

in the power-performance design space and converging to a better power 

management policy. Experimental results show that the proposed RL based power 

management achieves 24% and 3% reduction in power and latency respectively 

comparing to the existing expert based power management. 
 
The proposed dynamic power management (DPM) framework is based on model-

free reinforcement learning (RL) technique that performs learning and power 

management in a continuous-time and event-driven manner. It has fast 

convergence rate and less reliance on the Mark ovian property. The presented DPM 

framework can dynamically perform power management according to both 

system’s workload and battery state of charge. It uses the reinforcement learning 
 
(RL) technique to determine the output power state for LAN card for a closed-loop 
policy. Experiments on measured data traces demonstrate the superior performance 
of the proposed dynamic power management method in comparison with prior 
works[35]. 

 
 
 
 

BRIEF THEORY FOR MARKOV DECISION PROCESS: 
 
 
 
ResearchonMarkovDecisionProcessisanattractivewaytodealwithuncertainties 
intheareaofartificialintelligence[30]andevenincontrolsystem[31,32]. 

 
 
 
Markov decision process (MDP) is a popular and attractive way for modeling the 
decisionprocesseswithuncertain-ties.Ithasbeenappliedtomanyproblems, 
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Including queuing systems, reinforcement learning, finite state machine, decision 

network, inventory control, etc. In this article, we extend our research from the 

MDP to the Continuous-time MDP (CTMDP). The main goal is to find a policy 

iteration algorithm based on the temporal difference learning method to solve the 

CTMDP problem. 
 
 
 
The MDP, also referred to as controlled Markov chain, describes a problem in 

which a single agent must choose an action at every node of the chain in order to 

maximize some reward-based optimization criterion. The basic idea of the Mark 

ovian property is that the occurrence of the current state only depends on the 

previous state. 
 
 
Most literature about the MDP paid attention to the decision processes without 

considering the effects caused by transition time which commences at a state and 

continues until the next state arrives. However, for some contexts with a dynamic 

environment, the time length of transition appears to be an important factor for the 

quality of solution. For ex- ample, for modeling a robotic path planning problem 

as the MDP problem, the state is defined as its position and we consider the 

transition from state i to state j after an action a . Under the traditional MDP 

model, no matter how long the transition time is, the solution will be the same 

because the transition probability doesn’t change. In fact, it is more reasonable to 

assume that these transitions whose transition time is closer to the expected 

transition time will happen more probably. The expected transition time might be 

associated with the maneuverability of players and the dynamic properties of the 

environment. 
 
 
It is expected that the Continuous-time  MDP (CTMDP) will provide a more 
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suitable model for such dynamic problems. One of the major differences between 

MDP and CT- MDP is that the MDP corresponds to a Markov chain X
+

 but the 
CTMDP corresponds to a Markov stochastic process Xt (For simplicity, we denote 
 
X(t) as Xt in  this  article). The Mark ovian property can be described as P  (Xs+t 
 
=j|Xu;u ≤s)=P(Xs+t =j|Xs), 
 
 
 
Sustained 0 < t, s < ∞.Among Markov theories, a Markov process can be 

described absolutely by two parts: the embed Markov chain and the expected stay 

time at each state. As a result, the CTMDP has not only considered the Markovian 

property but also the time property at each transition. Under the probability model 

based on the MDP, reinforcement learning works well to train the agent to perform 

at high levels in many complex domains (for example, game playing, helicopter 

auto flying, etc). Temporal difference is the most important approach to train the 

evaluation function in reinforcement learning, and then the optimal policy can be 

obtained. 
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CHAPTER 03 
 
 
 
 
 

THESIS METHODOLOGIES: 
 
 
We worked towards a sustainable power management method for LAN card 

system. We chose to use dynamic power management with Q reinforcement 

learning method. We worked on Dynamic power management method as relevant 

literature about DPM demonstrates various approaches. In the simplest approach, 

the greedy policy, a device transitions to the sleep state as soon as it is idle. Here, 

the term device refers to any electronic equipment that serves a particular purpose 

and has more than one modes of power consumption (or performance). The greedy 

policy can give the best power optimization aslong as the requests arrive at long 

time intervals. A request represents a task generated by an application that needs 

processing. Another simple heuristic policy is the time-out policy where a device is 

shut down after it has been idle for a certain threshold of time period. The time-out 

policy can be static or adaptive [5][20] which adjusts the time-out threshold based 

on the previous idle period history. The main shortcoming of time-out policies is 

the power wasted during the time-out period, especially when the workload (arrival 

rate of requests) is lower. This problem is better dealt by the predictive policies 

which work on a system model that is learned from the history information in order 

to best adjust themselves to the dynamic system of advice. 
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The basic idea in predictive policies is to predict the length of idle periods and shut 

down the device when the predicted idle period is longer than a certain threshold 

time period. Nevertheless, predictive policies do share a few limitations. First, they 

do not consider the response time of the device. Second, they do not deal with 

general system models where multiple incoming requests can be queued before 

processing. Third, they cannot perform well with non-stationary requests where the 

workload model is unknown. 
 
 
 
Some of these limitations (queuing, power-performance trade-off) are addressed by 

stochastic policies [9] .These approaches make probabilistic assumptions about the 

usage patterns of a device and exploit the nature of the probability distribution to 

formulate an optimization problem, the solution of which derives an optimal DPM 

strategy. The device states and queues in stochastic policies are generally modeled 

as Markov chains. These policies do provide a flexible way to control the trade-off 

between power consumption and device response depending on the optimization 

constraints. However, Markov model is generally assumed to be stationary and 

known in advance. Therefore, these policies no longer remain optimal as workload 

becomes non- stationary. 
 
 
 
From the above discussion, it is evident that the performance of any selected policy 

heavily depends on the workload. Real workloads are usually non-stationary and 

compose a strict limitation on the success of any single policy. A model-free, 

machine learning approach can cope with this issue by interacting with the 

environment, implementing certain actions, evaluating the 
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effects of the implemented actions and adjusting itself according to the 

environment. Compared with the existing machine learning DPM approaches, the 

RL based DPM approaches can deal with the non-stationary workloads in a much 

better way and can explore the trade-off between a system’s power consumption 

and response time. The model-free, RL based approaches presented in use online 

learning algorithms that dynamically select the best DPM policies from a set of 

pre-selected candidate policies. These algorithms do lead to optimal DPM policies, 

but they heavily rely on and are limited to the pre-selected candidate policies. In 

[21], authors propose an enhanced RL algorithm for system-level DPM. It is also a 

model-free approach that does not require prior knowledge of the state-transition 

probabilities. However, the number of state-action pairs in this system is quite 

large, which may result in increased computational complexity and slow 

convergence.. 
 
In a recent work [18], a model-free, RL based DPM approach was used for non-

stationary workload. The learning agent in this approach receives partial 

information about the workload from a workload estimator using a ML-ANN 

with back propagation algorithm. Based on the estimated workload, this approach 

evaluates certain time-out values in idle state and waits for certain number of 

requests to be accumulated in the service queue when the system is in sleep state. 

Workload estimation using a ML-ANN achieves higher accuracy with the traffic 

data and the results show that the algorithm is capable of exploring the trade-off 

in the power-performance design space and converging to an optimal policy. 

However, since the algorithm waits for certain number of requests in the queue, a 

drawback of this approach is the high latency in requests processing when the 

workload drops abruptly. 
 
We propose a novel RL based DPM  algorithm  in this  paper  for  the power 
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management of our LAN card. The proposed algorithm uses time-out values both 

in sleep and idle states with workload estimation from a ML-ANN. Apart from 

this, we use multiple-states update in both sleep and idle modes and use a better 

exploration-exploitation policy to help algorithm converge fast and explore the 

design space deeper. As compared to the algorithm in 
 
[18], our results show that the algorithm proposed in this paper can find a better 
trade-off curve of power-performance and results in a much lower latency while 
keeping the power consumption at an acceptable level. 

 
 
 
Now firstly, we approached towards RL (Reinforcement learning) methodology. 

RL is a machine learning approach that is concerned with mapping situations to 

actions, in order to minimize a numerical penalty (or cost). As opposed to other 

machine learning approaches, for example supervised learning which is based on 

learning from examples provided by an external supervisor, RL is not dictated 

which actions to take. Instead, it must interact with the environment and discover 

the actions which yield the most reward (minimum penalty) by trying them. During 

the learning process, the agent observes the environment and issues appropriate 

actions based on the system state. As a result, the system changes state and the new 

state assign the agent a penalty (or reward) which indicates the value 

(appropriateness) of the state transition. The overall goal of the learning process is 

to maximize the scalar reward (or minimize the penalty) in each state. 
 
 
 
RL assumes that the system dynamics follow Markov property, i.e., then 
 

next state s
r
 ∈ S and immediate reward r depend only on the current state  

s∈S 
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and action a ∈ A, as given by equation 1 
 
 
 
Pr{st+1=s,rtr+1=r|st,at}…………...(2) 
 

Where Pr is the probability of reaching state s
r
 and getting reward r at time t 

 
+1.Apolicy,π,isamappingfromeachstate,s∈S,andaction,a∈A(s)to the probability of 
taking action a when in state s. Informally, the value of a state sunder a policy π, 

denoted by V 
π

 (s), is the expected reward when starting in states and following the 
policyπ 

 

thereafter. We can define V 
π

 (s) as follows [12]: 
 

V
π

(s)=Eπ{Rt|st=s} 
 
Where Eπ {.} denotes the expected value given that the agent follows policy π, 

 

and t is any time step, γ ∈ (0, 1) is a discount factor. Similarly, we define the value 

of taking action ain state sunder a policy π, denoted by Q
π

 (s, a), as the expected 
reward starting from s, taking action a, and thereafter following policy π. 

 
 
 
 

Q
π

(s,a)=Eπ{Rt|st=s,at=a}………………………….(3) 
 
 
 
 
In a typical Markovian environment, we use a value-iteration algorithm with state 

transition probabilities to take an action in some state s. However, in a model-free 

learning, the agent has no prior information about the state transition probabilities. 

Therefore, we need an estimate of the value function described in equation 3. 
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A variant of RL, the Q-learning is the simplest form of RL that can directly 

approximate the value function V 
π

 (s) independent of the policy being followed. 
The Q-learning principle is given in equation 4. 
 
 

∀(s, a) ∈ S × A :Q(st, at) = Q(st, at) +αt(st, at) {rt+1 + γ maxa Q(st+1, a)  − 
 
Q(st, at)}.... (4) 
 
 

Where αt(st, at) ∈ (0, 1) is the learning rate. Q
π

 (s, a) for each state-action pair 

represents the expected long-term reward if the system starts from state s, takes 
actiona,andthereafterfollowspolicyπ.Basedonthisvaluefunction,theagent decides 
which action should be taken in current state to achieve the maximum long-termre 
ward, without knowing the state-transition probabilities. 
 
The learning algorithm is described below. M represents the transition matrix 

which keeps track of the visited states, actions, corresponding cost and other 

parameters. In each decision epoch, the system finds itself either in sleep state or in 

idle state. In both the states, the PM selects a time-out value (Equation 11) and 

relinquishes the control until the time-out period expires (or if some requests arrive 

during the time-out period in idle state). At the end of the time-out period (or when 

the time-out period is forced to terminate by 

 
Algorithm 1 RL based time-out policy : 
 
 
 
Here is the algorithm used in our thesis, 

 
 

Require: Power-performance parameter λ ∈ (0, 1) 
 

1. Initialize Q, M and probability matrix pr arbitrarily. 
While Policy not good enough do  
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2. Obtain the current workload estimation (Sec.V.B)  
 

3. Get the current observation:   (s,a)  
 

4. Select an action, a, with probability pr (Sec. V.E)  
 

5. Execute the selected action  
 

6. Calculate cost of the last action: ct+1(s, a) (Sec.V.A)  
 

7. Update the learning rate: αt(s, a) (Sec.V.D)  
 

8. Update M with new state-action pair  
 

9. Update Q-value: Q
t+1

(s, a) (Sec.V.C) 
end while  

 
 
 
Q LEARNING ALGORITHM: 

 
 
Our target is to minimize its average long term penalty. It is completed by learning 

a policy mapping between the state and the action. Q learning is one of the most 

common algorithms in reinforcement learning. by performing action the system 

moves from one states to another states. the new agent gives us the new value of 

the state transition. The agent keeps value (s,a) for each state action pair, which 

represents the starts from state s, action a, thereafter policy , the core of the Q 

learning function algorithm update value of the function. For a value for each state 

and action pair is initially chosen by the designer and it will be updated each time 

an action by the following equation: 
 
 
 
 

Q(s,t)←Q(s,t)+Є(s,t)*[  + γ minQ( ,a) - Q( , )] 
 
 
 
Here, 
 
Q(s,t) = Old value 
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Є(s,t) = Learning rate 
 

= Penalty 
 
γ = Discount factor   
minQ( ,a) = Min Future value 
 
Q( , ) = Old value 
 
 
 
 
 
Q Learning Result Final Graph : 
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SARSA ALGORITHM: 
 
 
 

SARSA (so called because it uses state-action-reward-state-action experiences to 
update the Q-values) is an on-policy reinforcement learning algorithm that 
estimates the value of the policy being followed. An experience in SARSA is of the 
form ⟨s,a,r,s',a'⟩, which means that the agent was in state s, did action a, received 
reward r, and ended up in state s', from which it decided to do action a'. This 
provides a new experience to update Q(s,a). The new value that this experience 
provides isr+γQ(s',a'). 

 
 

SARSA takes into account the current exploration policy which, for example, may 

be greedy with random steps. It can find a different policy than Q-learning in 

situations when exploring may incur large penalties. For example, when a robot 

goes near the top of stairs, even if this is an optimal policy, it may be dangerous for 

exploration steps. SARSA will discover this and adopt a policy that keeps the robot 

away from the stairs. It will find a policy that is optimal, taking into account the 

exploration inherent in the policy. 

 
Controller SARSA(S,A,γ,α) 
inputs:  
S is a set of states A 
is a set of actions γ 
the discount  
α is the step size 
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internal state: 
real array Q[S,A] 
previous state s 
previous action a  
Begin  
Initialize Q[S,A] arbitrarily 
observe current state s  
Select action a using a policy based on 
Q repeat forever:  
carry out an action a 
observe reward r and state s'  
select action a' using a policy based on Q  
Q[s,a] ←Q[s,a] + α(r+ γQ[s',a'] - 
Q[s,a]) s ←s'  
a ←a' 
end-repeat 
End 
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COMPARISON BETWEEN THE SARSA LEARNING 
 
AND Q LEARNING ALGORITHM: 
 
 
SARSA stands for State-Action-Reward-State-Action. In SARSA, the agent starts 
in state 1, performs action 1, and gets a reward (reward 1). Now, it’s in state 2 and 
performs another action (action 2) and gets the reward from this state (reward 2) 
before it goes back and updates the value of action 1 performed in state 1. 

 
In contrast, in Q-learning the agent starts in state 1, performs action 1 and gets a 

reward (reward 1), and then looks and sees what the maximum possible reward for 

an action is in state 2, and uses that to update the action value of performing action 

1 in state 1. So the difference is in the way the future reward is found. In Q-

learning it’s simply the highest possible action that can be taken from state 2, and 

in SARSA it’s the value of the actual action that wastaken. 

 
This means that SARSA takes into account the control policy by which the agent is 

moving, and incorporates that into its update of action values, where Q-learning 

simply assumes that an optimal policy is being followed. This difference can be a 

little difficult conceptually to tease out at first but with an example will hopefully 

become clear. 

 
SARSA is better than Q-learning in every aspect, the benefit is that it takes into 

account what your actual system policy, rather than just assuming that you’re 

doing the right thing. But if you have a system where your policy is changing a lot 

it could be much more desirable to use the Q-learning approach and learn assuming 

that you’re moving optimally, and then incorporate that however you will, rather 

than having a SARSA system that tries to account for your constant changing 

movement policy. 
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In a scenario where we only have a few episodes for learning, there’s no real 
difference between the two, as neither was built to address that situation more 
efficiently than the other. 

 
 
 
 
 

THE LEARNING ELEMENTS: 
 
 
This section describes various elements of the learning, including the cost function, 
workload estimation, updating learning rate and experimental result. 

 


 COSTFUNCTION 
 

In the learning algorithm, we use cost instead of reward which can be treated 

in the similar way. The cost assigned to an action is a weighted combination of the 

average power consumption incurred due to the action and the performance 

penalty. We consider the average latency per request as the performance measure 

which is equal to the average queuing time plus the average execution time. The 

cost function is given in equation 5. 

ct(s, a, λ)= (5) 
 
 
In the above expression, tk+1 − tk is the time that the SP remains in state s, and 

 

λ∈ (0, 1) is power-performance trade-off parameter. For λ → 0, the learning 

algorithm gives more importance to latency, thus resulting in a higher power 
consumption. On the other hand, when λ → 1, the learning algorithm turns to 
aggressive power savings, resulting in higher latency. The value of λ can be varied 
slowly from 0 to 1 to obtain the pare to-optimal trade-off curve. 
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 UPDATING LEARNINGRATE 
 

The learning rate αt(s, a) is decreased slowly in such a way that it reflects the 
degree to which a state-action pair has been chosen in the recent past. It is 
calculated as: 
 
 

at (s ,a)= 
 
 
 
Where ξ is a positive constant. Every time a state-action pair (s, a) is visited with 

this learning rate, the difference between its estimated Q-value Q
(t+1)

(s, a) and 

the current Q-value Q
t
(s, a) approaches to zero. Hence, for all state-action pairs, 

the algorithm converges to an optimal policy. 
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WORKLOAD ESTIMATOR: 

 
 

In this section we want an extension to the DTMDP model in continuous time 

process. In CTMDP power management (PM) will set in the discrete time settings. 

Assume that system transition is follow exponential distribution. We want to show 

that parameters are uniquely based on exponential and also idle state also can high 

energy coast and give best performance because of the power manager makes 

decision as early as possible system goes idle. The decision stays this position until 

the state before revising the decision. SMDP model usually treat a simple 

distribution at the same time with an exponential distribution. For the sleep state of 

the LAN card transition modeled using uniform distribution, exponential 

distribution model present the user request. It works according to use command. 
 
 
 
Exponential distribution model used to model arrived in the active states. Now we 

want to show that the arrival in the idle states are more than better when filtering 

out small inter arrival time. In this work we present the time indexed Markov chain 

SMDP model (TISMDP) which is non exponential arrival distribution coupled 

with uniform transition distribution. The strategy of the time indexed SMDP model 

can be solved in polynomial time by linear optimization problem. Build the policy 

in this way. 
 
We do not only find out optimal result for the policy optimization the TISMDP 
model, we also representation the simulation and more importantly real 
measurements of WLAN card. Result can be 3 times larger for WLAN card 
according this exponential equation 

E(t) = 1- . 
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Figure: Curve for the exponential equation 
 
 
 

SYSTEM MODEL: 
 
 
 
The optimization of energy consumption under performance constraint (or vice 
versa) is performed for three different devices: a hard disk in a laptop computer, a 
personal communication interactive device, Smart Badge [33], and a WLAN card 
[34] 
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The system modeled consists of the user, device (hard disk, Smart Badge or 

WLAN card) with queue (the buyer associated with the device) as shown in 

figure1. The power manager observes the all event occurrences of interest and 

makes decisions on what state the system should transition to next, in order to 

minimize energy consumption for a given performance constraint. 
 
 
 

BLOCK DIAGRAM OF THE SYSTEM MODEL: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: System Model (block) 
 
 
 
 
The consumption of energy under performance constant is performed for three 

different vice versa such as a hard disk in a laptop, computer or personal 

communication and a LAN card. A system design consists of the demand of the 

user device hard disk or LAN card with queue the buffer associated with the device 

as shown in figure-1. The power manager observes the all event of interest and 

makes decision on what state the system should transition to next, performance 

remains same when the power will consume. 
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STATE ACTION AND THEIR TRANSFER RATE: 
 
To solve Q learning method, we assumed a model based on power management 

system. It consists of two parts- hardware and software. The hardware could be 

devices such as hard disk, processor etc. OS, application software, user input etc. 

are the example of software part. The user always observes the control knobs. 

Some of I/O requests and software system activity depends on operating system, 

based on the information. The current system state will be classified and the 

penalty of current state action pair will be calculated. 
 
Now the action of the system consists: 
 

1) Go-Sleep.  
 

2) Go-Idle.  
 

3) Go-Busy.  
 
 
 
 

Sleep 
 

Go sleep 
 

Go sleep Go busy 
 

Go idle 
 

Idle 

 
Go idle 

 

Busy 

 
Go busy 

 
 
 

Go idle Go sleep Go busy 
   

0.7w 0w 0.9w 
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USER MODEL: 
 
We collected some user request and observed for the computer hard disk running a 

windows operating system with standard software. For WLAN card we used tcp 

dump to get user request arrival time for two different applications. Not only we 

obtain optimal result for strategy optimization using the TISMDP mode but also 

presenting simulation and the real measurement of a LAN card. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure : Latency vs. time curve 
 
 
 
 
Here is the latency vs. time curve which is unstable at the beginning but with the 

increment of time it is becoming stable and it becomes 1.8. It shows the stability of 

the digital system which is under consideration for the research. Using Q learning, 

we achieved this stability for the latency. So, Q learning algorithm helps to reach 

convergence level for latency. 
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CHAPTER 04 
 
 
 
 
 

CODE: 
 
We used matlab for our thesis’s simulation. The code which we used to determine 

the LAN card’s power management algorithm with reinforcement Q learning 

method: 

 
function action=  action_ selector (Q, rule_ number, epsilon) 
 
%% This function returns the next selected actions using epsilon-greedy 

policy global NA 
 
Global fql % global parameters 

initialized ran=rand(1); 
 
% action index is from 1 to J=maximum number of actions which is the same  
 
% as number of columns in Q  
 
% setting the exploration probability  
 
exploitation probability=1-epsilon; 
 
% Selecting an action via epsilon-greedy policy 
 
if ran<exploitation probability 
 
% exploit 

 
[max Q factor,index]=max(Q(rule_number,:)); % note that max/min should be 
in accordance with reward/cost as reinforcement signal 
 
action=index; 
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else % explore 

action=ceil(rand(1)*NA); 

end 
 
end 

2. 
 
function reward=reward calculator (current_state,next_state) 

%% This function calculates the reinforcement signal 
 
% Here we can amend the reward function based on the problem formulation,  
 
% e.g., VS caler paper  
 
% state=[workload, rt, throughput, #VM], DESIRED_RT=Response time 

SLO global DESIRED_RT W MAX_THROUGHPUT MAX_VM 

ifnext_state(2)<DESIRED_RT  
 
slaFactor=0; 

elseifnext_state(2)>2*DESIRED 

_RT slaFactor=1;  
 
else slaFactor=(next_state(2)-

DESIRED_RT)/DESIRED_RT; end  

 
 
end  
 
Ut_1=W(1)*next_state(3)/MAX_THROUGHPUT+W(2)*(1-
next_state(4)/MAX_VM)+W(3)*(1-slaFactor); 
 
ifcurrent_state(2)<DESIRED_RT 
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slaFactor=0; 
 
else 
 
ifcurrent_state(2)>2*DESIRED_RT 
 
slaFactor=1; 
 
else 
 
slaFactor=(current_state(2)-DESIRED_RT)/DESIRED_RT; 
 
end 
 
end 
 
Ut=W(1)*current_state(3)/MAX_THROUGHPUT+W(2)*(1-
current_state(4)/MAX_VM)+W(3)*(1-slaFactor); 
 
reward=Ut_1-Ut; 
 
end 
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SIMULATION GRAPHS: 
 
 
 
1) 

 
 
 
 
 
 
 
 

C
um

ul
at

iv
ea

ve
ra

ge
co

st
 

 
 
 
 
 
20 
 
 
 
15 
 
 
 
10 
 
 
 
5 
 
 
0 

0 1 2 3 4 5 6 7 8 
 

    Time slot (n)    4 
 

       x 10          
  

Figure: Cumulating average cost vs. time slotgraph 
 
 
 
 
Here, this graph is a cumulative average vs. time slot graph which at the very 
beginning is fluctuating but then using Q learning, it reaches an optimal stage and 
reaches convergence. 
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Figure: Power vs. time slot graph 

 
Here , the graph is fluctuating and the dropping rapidly to 610 mW but after the 
increment of time it goes up again and becomes stable at 700 mW. This graph also 
shows the power consumption stability of the system considered. 
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FINAL GRAPH: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: Comparison graph between Q and SARSA 
 
Here is the performance vs. the latency curve. We do not want high rate of 
performance with high rate of latency for any device as it is not an ideal scenario. 
Our prime target was to find a point where performance is satisfactory and latency is 
low which is called pare to optimal point. The pare to optimal point here is 24.5 
which is a better point than any other considered. We also applied both Q learning 
and SARSA algorithm. We can clearly see that SARSA gives better results than Q 
learning. Q learning gives slightly distorted result where SARSA gives a smooth 
result which is very important. That is why we compared Q learning algorithm with 
SARSA algorithm and took the result from SARSA algorithm for our final 
achievement. 
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CHAPTER 05 
 
 
 
 
 
 
 
 

FINAL ACHIEVEMENTS: 
 
We have presented elaborately my work and research so far. We have presented 

dynamic power management methodologies to solve the power management issues 

of digital devices. We also have introduced reinforcement Q learning along with 

the DPM to have a better result for digital device’s power management system. We 

did not take rest unless we got a better result and therefore, introduced another 

learning algorithm which is SARSA. We have worked with WLAN card as a 

digital device and through our research; we have achieved a solution for the 

problem associated with its power wastage issue. We also have considered no noise 

while dealing with the WLAN card power management schemes. The latency vs. 

performance curve shows the pare to optimal point is 24.5 and it is a very 

convincing result. We also found out that SARSA gives a better result than Q 

learning algorithm and we implemented that finding in our research work. This 

result can pave the way for more energy efficient software and hardware design in 

future. 
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SCOPES OF FUTURE WORK: 
 
Although much research has been devoted to energy efficient system design and 
utilization, this area has not yet reached complete maturity. There are still quite a 
few limitations to overcome. 
 
The dynamic power management algorithms we presented assume stationary 

workloads. Although adaptation can be done using the methodology discussed in 

[14], another approach would be to develop a dynamic scheduler that adaptively 

changes the mode of operation of system components based on non-stationary 

workload, thermal control and battery conditions. Such scheduler would need close 

communication of the energy consumption and performance needs between the 

operating system, the applications and the hardware. The scheduler would also 

address the limitation of my research. In effect, this approach requires energy 

aware operating system that allows the dynamic power manager to have close 

interaction with the task scheduler and the process manager. 
 
As system designers become more conscious of power dissipation issues and an 

increasing number of power-optimized commodity components is made available, 

the new generation of power optimization tools is needed to choose and manage 

such components, and guide the system designer towards power-efficient 

implementation. The cycle-accurate energy consumption simulator and profiler are 

just samples of what might be possible. Similar tools, with many more component 

models (e.g. model of the wireless link) and multiple abstraction levels are needed. 

More importantly, the methodology for energy efficient software design is still in 

its infancy. The compilers are just beginning to consider energy consumption as a 

criterion in code optimization. Some optimizations can be automated at the 

compiler level, but for others it may be more appropriate to develop a system that 
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can guide the designer in selection and implementation of appropriate 
optimizations. Energy efficient design and utilization at the system level will 
continue to be a critical research topic in the next few years as there are still many 
unsolved problems and open issues. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

56 



REFERENCES: 
 
 
 
 
 

1. Chandrakasan and R. Brodersen, Low-Power Digital CMOS Design. 
Kluwer, 1995  

 
 

2. J. Monteiro and S. Devadas, Computer-Aided Techniques for Low-Power 
Sequential Logic Circuits. Kluwer,1997  

 
 
 
 

3. Low-Power Design in Deep Submicron Electronics, W. NebelandJ. Mermet, 
Eds. Kluwer 1997  

 
 

4. LowPower Design Methodologies, J.M.RabaeyandM.Pedram,eds.Kluw 
er,1996  

 
 
 
 

5. L. Benini and G. De Micheli, Dynamic Power Management: Design 
Techniques and CAD Tools. Kluwer,1997.  

 
 

6. R.KravetsandP.Krishinan,“Application-DrivenPower Management for 
Mobile Communication,” Wireless Networks, vol.6,  

 
 
 

7. J.  Flinn  and  M.  Satyanarayanan,  “Energy-Aware  Adaptation  for   
MobileApplications,”Proc.Symp.OperatingSystemsPrinciples, pp. 48-
63,1999.  

 
 

8. . Kołodziej, S. Khan, F. Xhafa, Genetic algorithms for energy-aware 
scheduling in compu- tational grids, in: Proc. 6th IEEE International 
Conference on P2P, Parallel, Grid, Cloud and Internet Computing 
(3PGCIC2011), 26-28.10.2011, Barcelona, Spain, 2011, pp.17–24. 

 
 
 
 

57 



 
9. R. Bolla, R. Bruschi, F. Davoli, F. Cucchietti, Energy E fficiency in the 

Future Internet: A Survey of Existing Approaches and Trends in Energy-
Aware Fixed Network Infrastructures, IEEE Communications Surveys & 
Tutorials 13 (2011)223–244.  

 
10. S. N. Roy, Energy logic: a road map to reducing energy consumption in 

telecom munications networks, in: Proc. 30th International 
Telecommunication Energy Conference (INTELEC 2008),2008  

 
 
 
11. P. Yang, C.Wong, P. Marchal,F.Catthoor,D.Desmet,D. Verkest, and R. 

Lauwereins. Energy-aware runtime scheduling forembedded-multiprocessor 
SOCs. IEEE Design &Test of Computers, 18(5):46– 58,2001  

 
 
 
 
 
12. M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for 

reduced cpuenergy. In OSDI ’94: Proceedings of the 1st USENIX 
conference on Operating Systems Design and Implementation, page 2, 
Berkeley, CA, USA, 1994. USENIXAssociation.  

 
 
13. K. Govil, E. Chan, and H. Wasserman. Comparing algorithm for 

dynamic speed-setting of a low-power cpu. In MobiCom ’95:   
Proceedings of the 1st annual international conference on Mobile 
computing and networking, pages 13–25, New York, NY, USA, 1995. 
ACM Press.  

 
14. Y. Zhu and F. Mueller. Feedback edf scheduling of real-time tasks 

exploitingdynamicvoltagescaling.Real-TimeSyst.,31(1-3):33–63, 2005.  
 
15. A. Weisseland F. Bellosa. Process cruise control: event-driven clock 

scaling for dynamic power management. In CASES ’02: Proceedings of the 
2002 international conference on Compilers, architecture, and 
synthesisforem-beddedsystems,pages238–246,NewYork,NY,USA, 2002. 
ACMPress.  

 
 
 
 

58 



 
16. P.J.deLangenandB.H.H.Juurlink.Leakage-awaremultiprocessor 

schedul-ingforlowpower.InIPDPS.IEEE,2006.  
 
17. D. Ramanathan, R. Gupta, “System Level Online Power Management 

Algorithms”, Design, Automation and Test in Europe, pp. 606–611,2000  
 
18. Y. Lu and G. De Micheli, “Adaptive Hard Disk Power Management on 

Personal Com- puters”, IEEE Great Lakes Symposium on VLSI, pp. 50–53, 
1999.  

 
 
19.C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method for  

Energy Sav- ing of Event-Driven Computation”, in International 
Conference on Computer Aided Design, pp. 28–32, 1997. 

 
 
 
 
20. Intel, Microsoft and Toshiba, “Advanced Configuration and Power 

Interface specification”, available at  
http://www.intel.com/ial/powermgm/specs.html,1996. 

 
 
21. Q. Qiu, Q. Wu, and M. Pedram,“Stochastic Modeling of a Power-Managed 

System: Construction and Optimization,” Proc. Int’l Symp. Low Power  
Electronic Devices, pp.194-199,1999. 

 
22. Q. Qiu , Q. Wu, and M. Pedram, “OS-Directed Power Management for  

Mobile Electronic Systems,” Proc. 39thPower Source conf., pp. 506-
609,2000. 

 
 
23. Q. Qiu and M. Pedram, “Dynamic Power Management Based on 

Continuous-Time Markov Decision Process,” Proc. Design Auto-mation 
Conf., pp. 555-561,1999. 

 
 
24. L. Benini, A. Bogliolo, G. Paleologo, and G. De Micheli, “Policy 

Optimization for Dynamic Power Management,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 18, no. 6, pp. 813-
833, June1999. 

 
 
 
 

59 

http://www.intel.com/ial/powermgm/specs.html
http://www.intel.com/ial/powermgm/specs.html
http://www.intel.com/ial/powermgm/specs.html


25. T. Simunic, L. Benini and G. De Micheli, “Energy Efficient Design of  
Portable Wireless Devices”, International Symposium on Low Power 
ElectronicsandDesign,pp.49–54,2000.  

26. T.Simunic,L.BeniniandG.DeMicheli,“DynamicPowerManagementfor 
Portable Systems”, The 6th International Conference on Mobile 
Computing and Networking, pp. 22–32,2000. 

 
27. T. Simunic, L. Benini and G. De Micheli, “Power Management of Laptop 

Hard Disk”,Design, Automation and Test in Europe, p. 736,2000. 
 
28. P. Rong, and M. Pedram, “Battery-Aware Power Management Based on  

Markovian Decision Processes,” IEEE Trans. on Computer Aided Design,  
Vol. 25, No. 7, Jul. 2006, pp.1337-1349. 

 
29. Kan-Jian Zhang, Yan-Kai Xu, Xi Chen and Xi-Ren Cao. Policy iteration 

based feedback control, in Automatica, 44(4): 1055– 1061,2008. 
 
30. Francisco S. Melo, Manuela Veloso. Decentralized MDPs with sparse 

interactions, in Artificial Intelligence, 175(11): 1757– 1789,2011. 
 
31. Roger Brockett. Optimal Control of Observable Continuous Time Markov 

Chains, in Proceedings of the 47th IEEE Con- ference on Decision and 
Control, Cancun, Mexico, Dec. 9-11,2008. 

 
32. M. Srivastava,A. Chandrakasan. R. Brodersen, “Predictive system 

shutdown and other architectural techniques for energy efficient 
programmable computation,” IEEE Transactions on VLSI Systems, vol. 4, 
no. 1, pp. 42–55, March1996. 

 
33. G. Q. Maguire, M. Smith and H. W. Peter Beadle\Smart Badges: a 

wearable computer and communication system", 6th International 
Workshop on Hardware/Software Codesign,1998. 

 
34. Lucent, IEEE 802.11 Wave LAN PC Card – Users Guide,p.A-1. 
 
 
 
35. Q. Qiu and M. Pedram, \Dynamic power management based on continuous-

time markov decision processes”, Design Automation Conference , 
pp.55{561,1999.



 


