KOAD IMPLEMENTED AUTOMATIC ICU SIGNALLING AND ERROR MINIMIZATION

Nazifa Mubashshera Shemonti
ID: 12210010

Arnoba Chakraborty
ID: 12210014

Aniqa Afra Ibnat
ID: 12210016

Department of Electrical and Electronics Engineering
August 2016

BRAC UNIVERSITY
Inspiring Excellence

BRAC University, Dhaka, Bangladesh
DECLARATION

We hereby declare that this thesis is based on the results found by ourselves. Materials of work found by other researcher are mentioned by reference. This thesis, neither in whole nor in part, has been previously submitted for any degree.

Dr. Tarem Ahmed

Signature of Supervisor Nazifa Mubashshera Shomonti

Arnob Chakraborty

Aniqa Afra Ibnat
ABSTRACT

In this paper, a previously developed algorithm based on self-implementation and kernel mapping is executed in medical field to develop an automated, ICU signalling. The method is taken into consideration because it is adaptive, portable and has lower complexity in comparison to contemporary approaches. The proposed algorithm takes in set of different medical parameters to monitor the conditions of individual patients in an ICU. Application of real data and the learning mechanism of underlying patterns of the algorithm results in instantaneous detection and alarming in response to critical circumstances. In addition, the system yields recognitions with minimum false alarms.
TABLE OF CONTENTS

TITLE .. i
DECLARATION ... ii
ABSTRACT ... iii
TABLE OF CONTENT .. iv
LIST OF TABLES .. v
LIST OF FIGURES ... vi

1. INTRODUCTION ... 1
 1.1 Related Work ... 3
 1.2 Outline of Paper .. 4
2. PRELIMINARIES .. 4
 2.1 Kernel Function .. 5
 2.2 Kernel Recursive Least Squares Algorithm ... 7
3. EXPERIMENTS ... 7
 3.1 Data Collection ... 7
 3.2 Results ... 7
 3.3 Complexity Analysis ... 9
4. Conclusion and Future Work ... 10

REFERENCES ... 11
APPENDICES .. A
 KOAD MATLAB Code ... A
 List of Parameters ... J
 EXCEL Dataset of Patients .. K
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Parameters</td>
<td>J</td>
</tr>
<tr>
<td>B</td>
<td>EXCEL Dataset of Detection Statistics of Patients</td>
<td>K</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Detection vs. False Alarm</td>
<td>8</td>
</tr>
<tr>
<td>3.2</td>
<td>Progression of Detection Statistics, δ_t across 120 timesteps</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>A Detection Statistics of Patient 2</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>B Detection Statistics of Patient 3</td>
<td>O</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Intensive Care Unit (ICU) is the application of intensive care medicine, a branch of medicine centered to treat patients who require external assistance to maintain normal bodily functions. Severely ill or injured patients experience difficulty in breathing, sustaining stable blood pressure, performing renal functions, etc. In ICU, such patients are equipped with mechanical ventilators for respiration, cardiac monitors to display blood pressure, dialysis equipment for renal failure and so on. The complex health condition of ICU patients insists on highly trained physicians and nurses in a greater staff-to-patient ratio than regular hospital wards. Each nurse observes and records vital statistics of patients periodically in order to notify the physician when the readings demonstrate irregularity from usual pattern. However, such manual approach is deemed impractical since the possibility of emergency events in the period in-between going unnoticed increases.

ICU patients, in recent times, are attached to numerous probes of multiple devices which constantly display the vital statistics to their corresponding monitors. Each device has a simplistic, automated signalling installed to alert the staff when some reading deviate from a pre-set threshold. The devices nonetheless, cannot establish an underlying correlation contained by the set of vital statistics. This poses a significant drawback for timely detection since certain indicators are reliant on others. For example, blood pressure levels are
determined by oxygenation and perfusion of tissues where ample supply of oxygen is ensured by proper respiration [1].

In developed countries, the recommended ratio for two patients to one nurse in ICUs is conserved uniformly. Moreover, patients on mechanical ventilator with anaesthetics, sedation and analgesics require 1:1 ratio basis intensive care. Such well-established, speciality ICUs are described as Closed ICU, staffed by intensivists. Intensivist is a physician proficient in treating the range of conditions commonly observed in critically ill patients alongside administering the technical procedures and devices in ICU.

The inadequate financial and technological resources allotted to healthcare in developing countries prove to be a challenge to ensure proper ICU facilities. In Bangladesh, the doctor to nurse to patient ratio recommended by World Health Organization of 1:3:5 falls short by less than one doctor per 3000 population. Moreover, there is an alarming shortage of adequately skilled doctors to provide services let alone operate complex machines [2]. The Kernel-based Online Anomaly Detection (KOAD) algorithm proposed in [3] is a real-time application of automated signalling systems. The algorithm constantly monitors the vital statistics provided by the devices connected to an ICU patient. The adaptive property of KOAD learns the pattern of underlying correlation from the input in frequent intervals. The lightweight nature in terms of calculation and memory space renders the algorithm feasible to use with any kind of device.
The objective of this paper is to show KOAD algorithm can be suitable for ICU implementation considering low false alarm rates in detecting emergency events. We provide the course of trial and error procedure to achieve such result by resolving several parameter values. Our experimentations indicate that cumulative dataset inputs improve the performance of the learning algorithm.

1.1 Related Work

Our work builds most closely on the series of works by Ahmed, T. et al. in [3] and [4]. They demonstrate machine learning principles in pattern matching algorithms to hospital monitoring, automated visual surveillance and network flows in high-speed backbones. Other anomaly detection systems include Principal Component Analysis (PCA), One Class Neighbouring Machine (OCNM) and Kernel PCA. PCA is successful for variables with no inherent correlation. The block-based OCNM method maintains no dictionary since it takes the single closest neighbour in consideration. Unlike KOAD, Kernel PCA executes only for large number of inputs [4]. Kernel methods are used in biology and medicine to predict the formation of disulphide bridges in proteins [5] and to build a Cerebellar Model Articulation Controller (CMAC) neural network to model the part of the brain responsible for fine muscle control in animals [6].
1.2 Outline of Paper

The rest of the paper is organized as follows. Section II provides background on kernel machines and minimum volume sets. Section III presents the KOAD algorithm, discusses the choice of algorithm parameters and analyses computational and memory complexity. Section IV details the performance of KOAD algorithm on data of patients obtained from ICU. Section V concludes and provides future avenues of work on the research.

2. PRELIMINARIES

2.1 Kernel Function

Kernel mapping functions, used by kernel machines, when applied to a pair of input data vectors (feature vectors), maps the input data onto a feature space of much higher dimension [8]. The points exhibiting similar behaviour are expected to cluster in the feature space. The inner product of input vectors each mapped onto the feature space can be used to evaluate the kernel function:

\[\kappa(x_i, x_j) = < \phi(x_i), \phi(x_j) > \]

(1.1)

where \(x_i, x_j \) denote the input vectors and \(\Phi \) represents the mapping onto the feature space.
The KOAD algorithm for ICU emergency signalling uses Gaussian kernel with variance σ^2:

$$\kappa(x_1, x_2) = e^{-\frac{||x_1 - x_2||^2}{2\sigma^2}}$$

(1.2)

2.2 Kernel Recursive Least Squares Algorithm

The Kernel Recursive Least Squares (KRLS) algorithm combines the principles of kernel machines and the popular Recursive Least Squares (RLS) algorithm [8] and performs non-linear, non-parametric, efficient approach for performing online data mining. In KRLS, the dimension of the space spanned by $\{\phi(x_i)\}_{i=1}^t$ can increase without bound.

At each timestep, the dimension will increase unless x_t satisfies

$$\phi(x_t) = \sum_{i=1}^{t-1} a_i \cdot \phi(x_i)$$

(1.3)

Feature vector $\phi(x_t)$ is approximately linearly dependent on $\{\phi(x_i)\}_{i=1}^t$ with approximation threshold ν, if the projection error δ_t satisfies the following criterion:

$$\delta_t = \min_a \| \sum_{i=1}^{t-1} a_i \cdot \phi(x_i) - \phi(x_t) \|^2 < \nu$$

(1.4)
This error measurement δ_t is then compared to two thresholds ν_1 and ν_2, where $\nu_1 < \nu_2$.

If $\delta_t < \nu_1$, x_t is sufficiently linearly dependent on the dictionary depicting normal behaviour. Hence, “Green” alarm is raised.

If $\delta_t > \nu_2$, x_t is far away from the normality region and immediately raise a “Red1” alarm to signal an anomaly.

If $\nu_1 < \delta_t < \nu_2$, x_t is considered sufficiently linearly independent on the dictionary and considered to be an unusual event. An “Orange” signal is raised since it may represent an expansion or migration of the normality region. KOAD implements the “usefulness test” to distinguish between arrivals that is an anomaly:

$$\left(\sum_{i=t+1}^{t+\ell} \mathbb{I}(\kappa(x_t, x_i) > d) \right) > \epsilon \ell$$

(1.5)

where \mathbb{I} is the indicator function, d is kernel threshold and $\epsilon \in (0, 1)$ is a selected constant. If the test evaluates false, it elevates the “Orange” alarm to “Red2” alarm.

KOAD also deletes obsolete elements from the dictionary to maintain a sparse and current dictionary. Additionally, it incorporates exponential forgetting so that the impact of past observations is gradually reduced.
3. EXPERIMENTS

3.1 Data Collection

Real data was collected from a renowned private hospital consisting of 120 measurement vectors of 11 vital statistics of 3 patients recorded at 1-minute intervals. The list of vital statistics is as follows. Pulse rate, systolic blood pressure, diastolic blood pressure, mean blood pressure, mean pulmonary arterial pressure, peripheral temperature, oxyhaemoglobin saturation, fractional concentration of inspired oxygen, partial pressure of oxygen, partial pressure of carbon dioxide and serum bicarbonate. The appointed cardiac surgeon of the hospital manually identified the values where statistics reached critical level. The labelled instances are the desired values that need automatic detection.

3.2 Results

In order to detect the incidence of the anomalous situations, predetermined by the physician, KOAD was run on a set of values for thresholds ν_1 and ν_2. Reduction of false alerts was an additional objective of the experiment. Figure 3.1 portrays the changes in probability of false alarm in accordance to the probability of detection. As the normal points lie in the feature space defined by the chosen kernel mapping, it is evident from figure 3.1, that the detection of phenomena with the lowest rate of false alerts is achievable. The values for the thresholds ν_1 and ν_2 for the optimum detection to false alert ratio
may be determined over a training period using a supervised, cross-validation approach from trial and error methods. Furthermore, Figure 3.2 presents a plot of the KOAD detection statistics for a sample experiment. Here KOAD was run with the lower threshold (v_1) set to a value of 0.06, repeated for set of the upper threshold (v_2) that included value of 0.001 to 0.9 with an interval of 0.01. The time steps corresponding to the identified anomalies are shown as red, filled stems which yield high values for the detection statistic.

![Fig. 3.1 Detection vs. False Alarm]
3.3 Complexity Analysis

Principal concerns regarding the real-time applications are storage and complexity issues. For a dictionary size of m, the KOAD creates and eventually stores an $m \times m$ matrix. This results in a computational complexity of $O(m^2)$ in terms of storage requirements and makes the algorithm independent of time and thus suitable for online use.
4. Conclusion and Future Work

In this paper, we have implemented KOAD algorithm for performing automatic, instantaneous detection of emergencies. The algorithm is able to detect anomalous events in real time occurring in a hospital ICU which results in higher detection accuracy with low false alarm rates. The pattern learning algorithm processes a range of vital statistics which are continuously monitored for any particular patient and it has a faster response in detecting anomalies and lower computational complexity compared to similar block-based approaches. Moreover, the system implementation does not require any expensive or sophisticated components which make it easier for developing countries to overcome the financial constraints and establish the usage of the system.

Our future work will expand the testing on investigating the use of additional algorithms to automatically determine the KOAD thresholds. It is also mentionable that the discussed algorithm can be further developed if integrated with medical devices along with supporting interfaces for effective integration and interpretation from multiple sources.
References

APPENDIX

KOAD MATLAB Code

```matlab
clc; clear all; close all;

p = xlsread('Dataset_p3.xls');
X = double(xlsread('Dataset_p3.xls'));

[T f]=size(X);

gamma = 1; % Forgetting factor
r = 1;  % Parameters for resetting P
R = 10000;
el = 10;  % Parameters for resolving orange alarm
epsilon = 0.2;
L = 40;  % Parameters for dropping obsolete elements
d = 0.9;
kernelChoice = 2;
sigma = 0.1;

X = X./repmat(sqrt(sum(X.*X,2)+eps),1,size(X,2)); % normalize to unit circle (i.e. divide by norm)
Y = sum(X, 2); %Add after normalizing

sumdec = 0;
nu1 = 0.06;
for nu2 = 0.001:0.01:0.9
```

sumdec = sumdec + 1;
flagint = zeros(1, T);

Red1 = []]; Red2 = []]; % Clear alarms
Orange = []]; x_Orange = []]; % Store x in timesteps when Orange alarm is raised

% Initialize

t = 1;
x = X(t,:)';
y = Y(t);
k11 = kernel(x, x, kernelChoice, sigma);
K_tilde = [k11];
K_tilde_inv = [1/k11];
Dictionary = [x];
index_m = [t]; % Keeps track of timesteps when elements are added (+2), deleted (-1) or no change to D (0); for debugging only
Orange = [Orange t];
x_Orange = [x_Orange x];
drop_index = [0];
P = [1]; % P = inv(A'A)
m = 1;
m_t(t) = m; % Keep track of m, for debugging only
index_m(t) = 2; % index_m(t)=2 implies x(t) is being added to Dictionary
alpha = y(t)/k11;
deltaStore(1) = nu1 + eps; % For debugging

% % Evaluate y_hat %
\begin{verbatim}
\texttt{y_hat = zeros(T,1);}
\texttt{Error = zeros(1,T);}
\texttt{for j=1:m}
\texttt{\hspace{1em}y_hat(t) = y_hat(t) + alpha(j)*kernel(Dictionary(:,j),x,\texttt{kernelChoice}, \texttt{sigma});}
\texttt{end \hspace{1em}for j=1:m}
\texttt{Error(t) = (Y(t)-y_hat(t))/Y(t)*100;}
\texttt{clear Lambda lambdadotProd;}
\texttt{Lambda = kernel(Dictionary(:,j), x, \texttt{kernelChoice}, \texttt{sigma});}
\texttt{\%Keep track of all dot product (kernel) values; for debugging only}
\texttt{for j=1:m}
\texttt{\hspace{1em}dotProd(t,j) = kernel(Dictionary(:, j), x, \texttt{kernelChoice}, \texttt{sigma});}
\texttt{end \hspace{1em}for j=1:m}
\texttt{for t=2:T}
\texttt{\hspace{1em}x = X(t,:);}
\texttt{\hspace{1em}y = Y(t);}
\texttt{\% Evaluate current measurement \%}
\texttt{k_tilde = zeros(m, 1);}
\texttt{for j = 1:m}
\texttt{\hspace{1em}k_tilde(j) = kernel(Dictionary(:, j), x, \texttt{kernelChoice}, \texttt{sigma}); \% Computing}
\texttt{k_tilde(t-1) \%
\texttt{end \hspace{1em}for j = 1:m}
\texttt{a = K_tilde_inv*k_tilde;}
\texttt{delta = kernel(x, x, \texttt{kernelChoice}, \texttt{sigma}) - k_tilde*a;}
\end{verbatim}
% deltaCheck = a'*K_tilde*a - 2*a'*k_tilde + kernel(x, x); % Verify delta; not part of algorithm

deltaStore(t) = delta; % Keep track of delta, for debugging only

if t > L
 Lambda = [Lambda(2:end, 1:end) ; ceil(k_tilde'-repmat(d, 1, m))]; % Append with 1 or 0
else
 Lambda = [Lambda ; ceil(k_tilde'-repmat(d,1,m))]; % Append with 1 or 0
end % if t > L

if (delta >= nu1 & delta < nu2) % Orange alarm, add to Dictionary
 x_Orange = [x_Orange x];
 Orange = [Orange t];
 Dictionary = [Dictionary x];
 drop_index = [drop_index 0];
 a_tilde = a;
 K_tilde_inv = [(delta*K_tilde_inv+a_tilde*a_tilde') (-1*a_tilde) ; (-1*a_tilde') (1)] / delta;
 K_tilde = [K_tildek_tilde ; k_tilde' kernel(x, x, kernelChoice, sigma)];
 if t > L
 lambda = [zeros(L-1, 1) ; 1];
 else
 lambda = [zeros(t-1, 1) ; 1];
 end % if t > L
 Lambda = [Lambda lambda];

 a = [zeros(m-1, 1) ; 1];
 P = [P zeros(m, 1) ; zeros(m, 1)' gamma]/gamma;
 alpha = [(gamma^(-0.5)*alpha - a_tilde*(y-gamma^(-
\[0.5 \cdot k_{\tilde{t}} \cdot \alpha / \delta \cdot \] \((y - \gamma^\cdot (0.5) \cdot k_{\tilde{t}} \cdot \alpha / \delta) \];

\[m = m + 1; \]

\[m_t(t) = m; \]

\[\text{index}_m(t) = 2; \% \ Element \ added \ to \ D \ in \ this \ timestep \]

\[\text{else} \% \ \delta < \nu_1 \ or \ \delta \geq \nu_2, \ Dictionary \ unchanged \]

\[\text{if} \ \delta > \nu_2 \% \ \text{Red1} \ alarm \]

\[\text{Red1} = [\text{Red1} \ t]; \]

\[\% \ K_{\tilde{t}} = K_{\tilde{t}}; \]

\[\% \ K_{\tilde{t}}^{-1} = K_{\tilde{t}}^{-1}; \]

\[q = (P \cdot a) / (\gamma + a^* \cdot P \cdot a); \]

\[P = (1 / \gamma) \cdot [P - q \cdot a^* \cdot P]; \]

\[\alpha = \alpha + K_{\tilde{t}}^{-1} \cdot q \cdot (y - k_{\tilde{t}} \cdot \alpha); \]

\[m_t(t) = m; \]

\[\text{index}_m(t) = 0; \% \ No \ change \ to \ D \ in \ this \ timestep \]

\[\text{end} \% \ \delta \geq \nu_1 \ & \ \delta < \nu_2 \]

\[\% \ \text{Keep} \ track \ of \ all \ dot \ product \ (kernel) \ values; \ for \ debugging \ only \]

\[\text{for} \ j = 1 : m \]

\[\text{dotProd}(t, j) = \text{kernel}(\text{Dictionary}(:) \cdot j), x, \text{kernelChoice}, \sigma); \]

\[\text{end} \% \ \text{for} \ j = 1 : m \]

\[\% \ \text{Process} \ previous \ orange \ alarm \ % \]

\[\text{if} \ t > \text{el} \ & \ \sum(Orange == t-\text{el}) == 1 \% \ \text{means} \ orange \ alarm \ at \ timestep \ t-\text{el} \]

\[\% \ \text{Identify} \ Dictionary \ element \ j \ corr. \ to \ the \ orange \ alarm \ at \ timestep \ t-\text{el} \]

\[\text{for} \ j = 1 : m \]

\[\text{if} \ x_{\text{Orange}}(:, \text{Orange} == t-\text{el}) == \text{Dictionary}(:, \ j) \]
break;
end % if x_Orange(:, Orange == t-el) == Dictionary(:, j)
end % for j = 1:m

if sum(Lambda(end-el+1:end, j)) <= epsilon*el
 % Orange turns Red
 Red2 = [Red2 Orange(Orange == t-el)]; % Red2 alarm
 x_Orange(:, Orange == t-el) = [];
 Orange(Orange == t-el) = [];
drop_index = [zeros(1, j-1) 1 zeros(1, m-j)];
else
 % Orange turns green
 x_Orange(:, Orange==t-el) = [];
 Orange(Orange==t-el) = [];
end % if size(find(Lambda(end-el+1:end, j) < d), 1) >= 0.80*25
end % if t > el & sum(Orange == t-el) == 1

% Remove obsolete elements %
for j = 1:m
 %Dropping condition: kernel exists for past L timesteps, and is always < d
 if (t > L & sum(Lambda(1:end, j)) == 0)
 drop_index(j) = 1;
 end % if (t>L >(Lambda(:, j), 0) <(Lambda(:, j), d))
end % for j = 1:m

% DropElement(p) %
if (find(drop_index == 1) & m > 1 & t > r)
p = min(find(drop_index == 1)); % Drop Dictionary element # p

% Reorganize K_tilde_p and K_tilde_inv_p, with p'th row/col moved to the end
K_tilde = [K_tilde(1:p-1, 1:p-1) K_tilde(1:p-1, p+1:m) K_tilde(1:p-1, p) ;
K_tilde(p+1:m, 1:p-1) K_tilde(p+1:m, p+1:m) K_tilde(p+1:m, p) ;
K_tilde(p, 1:p-1) K_tilde(p, p+1:m) K_tilde(p, p)];

K_tilde_inv = [K_tilde_inv(1:p-1, 1:p-1) K_tilde_inv(1:p-1, p+1:m)
K_tilde_inv(1:p-1, p) ;
K_tilde_inv(p+1:m, 1:p-1) K_tilde_inv(p+1:m, p+1:m)
K_tilde_inv(p+1:m, p) ;
K_tilde_inv(p, 1:p-1) K_tilde_inv(p, p+1:m)
K_tilde_inv(p, p)];

delta_p = 1/(K_tilde_inv(m, m));

a_tilde_p = -delta_p*K_tilde_inv(1:m-1, m);

K_tilde_inv = K_tilde_inv(1:m-1, 1:m-1)-a_tilde_p*a_tilde_p'/delta_p;

alpha = alpha - (1/delta_p)*[a_tilde_p*a_tilde_p' -a_tilde_p' 1] * K_tilde*alpha;

alpha = alpha(1:m-1);

K_tilde = K_tilde(1:m-1, 1:m-1);

Dictionary(:, p) = [];

drop_index(p) = [];

Lambda(:, p) = [];

dotProd(:, p) = [];

m = m-1;

m_t(t) = m;

index_m(t) = -1; % Element deleted from D in this timestep

% Reset P %

P = R*eye(m);

for i_r = 1:r

k_tilde = zeros(m, 1);
for j = 1:m
 k_tilde(j) = kernel(Dictionary(:, j), X(t-i_r, :)'; kernelChoice, sigma); % Computing k_tilde{t-1}
end % for j = 1:m

a = K_tilde_inv*k_tilde;
q = (P*a) / (gamma+a'*P*a);
P = (1/gamma)*[P - q*a'*P];
alpha = alpha + K_tilde_inv*q*(Y(t_i_r)-k_tilde'*alpha);
end % for i_r = 1:r-1
end % if (find(drop_index ==1) & m>1 & t>r)

% Evaluate y_hat %
for j = 1:m
 y_hat(t) = y_hat(t) + alpha(j)*kernel(Dictionary(:, j), x);
end %for j =1:m

Error(t) = (Y(t)-y_hat(t))/Y(t)*100;
end %for t=2:T

Red1_out = Red1; Red2_out = Red2; deltaStore_out = deltaStore; Error_out = Error;

trueint = zeros(1, T);
act = [34 41 49 56 60 67 76 85 96 103 117]; %Dataset_p1
trueint(act)=1;
flagint(Red1) = 1;
flagint(Red2) = 1;
flagint(1) = 0;
detected = bitand(flagint, trueint);
false = bitxor(flagint, trueint);
falsem = false;
false(act) = 0;
missed = bitxor(falsem, false);
mis(sumdec)= sum(missed);
dec(sumdec)=(sum(detected)/14)*100;
fal(sumdec)=(sum(false)/(40-14))*100;

figure(1)
scatter(sort(dec),sort(fal)), xlabel('Probability of detection'), ylabel('Probability of false alarm');

End

figure(2)
g = stem(deltaStore_out, 'k');
set(g, 'LineWidth', 1);
hold on;
g = stem(act,deltaStore_out(act), 'r', 'filled');
xlabel('timesteps')
ylabel('deltastore_out')

find(deltaStore_out>0.3);
Table A

List of Parameters

<table>
<thead>
<tr>
<th>Column</th>
<th>Parameter</th>
<th>Full</th>
<th>Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PR</td>
<td>Pulse Rate</td>
<td>60 – 100</td>
<td>Beats per minute (beats/min)</td>
</tr>
<tr>
<td>B</td>
<td>SBP</td>
<td>Systolic Blood Pressure</td>
<td>90 – 140</td>
<td>millimeter of mercury (mm of Hg)</td>
</tr>
<tr>
<td>C</td>
<td>DBP</td>
<td>Diastolic Blood Pressure</td>
<td>60 – 89</td>
<td>millimeter of mercury (mm of Hg)</td>
</tr>
<tr>
<td>D</td>
<td>MBP</td>
<td>Mean Blood Pressure</td>
<td>80 – 110</td>
<td>millimeter of mercury (mm of Hg)</td>
</tr>
<tr>
<td>E</td>
<td>MPAP</td>
<td>Mean Pulmonary Arterial Pressure</td>
<td>10 – 25</td>
<td>millimeter of mercury (mm of Hg)</td>
</tr>
<tr>
<td>F</td>
<td>Temp<sub>P</sub></td>
<td>Peripheral Temperature</td>
<td>98.6 – 100.4</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>G</td>
<td>SpO₂</td>
<td>Oxyhaemoglobin Saturation</td>
<td>90 – 100</td>
<td>%</td>
</tr>
<tr>
<td>H</td>
<td>FiO₂</td>
<td>Fractional Concentration Of Inspired Oxygen</td>
<td>0.21 – 1.0</td>
<td>(N/A – it being a ratio)</td>
</tr>
<tr>
<td>I</td>
<td>PaO₂</td>
<td>Partial Pressure of Oxygen</td>
<td>80 – 100</td>
<td>millimeter of mercury (mm of Hg)</td>
</tr>
<tr>
<td>J</td>
<td>PaCO₂</td>
<td>Partial Pressure of Carbon dioxide</td>
<td>36 – 44</td>
<td>millimeter of mercury (mm of Hg)</td>
</tr>
<tr>
<td>K</td>
<td>HCO₃⁻</td>
<td>Serum bicarbonate</td>
<td>22 – 26</td>
<td>milli-equivalent perliter (mEq/L)</td>
</tr>
</tbody>
</table>
Table B

EXCEL Dataset of Detection Statistics of Figure 3.2

<table>
<thead>
<tr>
<th>PR</th>
<th>SBP</th>
<th>DBP</th>
<th>MBP</th>
<th>MPAP</th>
<th>Temp</th>
<th>SPO2</th>
<th>FiO2</th>
<th>PaO2</th>
<th>PaCO2</th>
<th>PaCO2</th>
<th>HCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>142</td>
<td>66</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>66</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>66</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>66</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>66</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>66</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>66</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>66</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>66</td>
<td>104</td>
<td>104.5</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>42</td>
<td>25</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>66</td>
<td>104</td>
<td>104.5</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>66</td>
<td>104</td>
<td>104.5</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>66</td>
<td>104</td>
<td>104.5</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>66</td>
<td>104</td>
<td>104.5</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>66</td>
<td>104</td>
<td>104.5</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>104</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>99.8</td>
<td>88</td>
<td>41</td>
<td>26</td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>98</td>
<td>99.9</td>
<td>99.8</td>
<td>87</td>
<td>41</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
EXCEL Dataset of Detection Statistics of Figure 3.2 (cont’d)

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.8</td>
<td>87</td>
<td>42</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.8</td>
<td>87</td>
<td>42</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.8</td>
<td>87</td>
<td>42</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>65</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.8</td>
<td>87</td>
<td>42</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.8</td>
<td>87</td>
<td>42</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.9</td>
<td>86</td>
<td>40</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.8</td>
<td>99.9</td>
<td>86</td>
<td>40</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>63</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.9</td>
<td>99.9</td>
<td>86</td>
<td>40</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>63</td>
<td>103.5</td>
<td>12.3</td>
<td>97</td>
<td>99.9</td>
<td>99.9</td>
<td>86</td>
<td>40</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>63</td>
<td>103.5</td>
<td>12.2</td>
<td>97</td>
<td>99.9</td>
<td>99.9</td>
<td>86</td>
<td>40</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>103</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>40</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>40</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>40</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>40</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>40</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>41</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>41</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>41</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>99.9</td>
<td>87</td>
<td>41</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
EXCEL Dataset of Detection Statistics of Figure 3.2 (cont'd)

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>150</td>
<td>63</td>
<td>106.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>100</td>
<td>87</td>
<td>41</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>100</td>
<td>87</td>
<td>41</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>100</td>
<td>87</td>
<td>41</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>63</td>
<td>102.5</td>
<td>12.2</td>
<td>98</td>
<td>99.9</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>64</td>
<td>103</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>142</td>
<td>64</td>
<td>103</td>
<td>12.1</td>
<td>98</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>64</td>
<td>103</td>
<td>12.1</td>
<td>97</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>64</td>
<td>103</td>
<td>12.1</td>
<td>97</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>64</td>
<td>103</td>
<td>12.1</td>
<td>97</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>142</td>
<td>64</td>
<td>103</td>
<td>12.1</td>
<td>97</td>
<td>99.8</td>
<td>100</td>
<td>88</td>
<td>41</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.1</td>
<td>97</td>
<td>96</td>
<td>99.9</td>
<td>88</td>
<td>41</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.1</td>
<td>97</td>
<td>96</td>
<td>99.9</td>
<td>88</td>
<td>41</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.1</td>
<td>97</td>
<td>96</td>
<td>99.9</td>
<td>88</td>
<td>42</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.1</td>
<td>97</td>
<td>96</td>
<td>99.9</td>
<td>88</td>
<td>42</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.1</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>88</td>
<td>42</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12.1</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>88</td>
<td>42</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>65</td>
<td>104</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.9</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>97</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>12</td>
<td>96</td>
<td>99.7</td>
<td>99.6</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>11.9</td>
<td>96</td>
<td>99.6</td>
<td>99.6</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>11.9</td>
<td>96</td>
<td>99.6</td>
<td>99.6</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>11.9</td>
<td>96</td>
<td>99.6</td>
<td>99.6</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>11.9</td>
<td>96</td>
<td>99.6</td>
<td>99.6</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>144</td>
<td>65</td>
<td>104.5</td>
<td>11.9</td>
<td>96</td>
<td>99.6</td>
<td>99.6</td>
<td>87</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>144</td>
<td>64</td>
<td>104</td>
<td>11.9</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>83</td>
<td>42</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>11.9</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>42</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>11.9</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>42</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>11.9</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>42</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>11.9</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>42</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>11.9</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>42</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12</td>
<td>97</td>
<td>99.6</td>
<td>99.6</td>
<td>89</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>15</td>
<td>97</td>
<td>99.7</td>
<td>99.7</td>
<td>89</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12</td>
<td>97</td>
<td>99.7</td>
<td>99.7</td>
<td>89</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>143</td>
<td>64</td>
<td>103.5</td>
<td>12</td>
<td>97</td>
<td>99.7</td>
<td>99.7</td>
<td>89</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

EXCEL Dataset of Detection Statistics of Figure 3.2 (cont’d)
Figure A

Detection Statistics of Patient 2

Figure B

Detection Statistics of Patient 3