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Abstract

In this paper, we are going to observe the band structure and I-V characteris-

tics of Graphene Boron Nitride Vertical Heterojunction Van der Waals Resonant

Tunneling Diode. Furthermore, showing negative differential resistance (NDR)

characteristics which is a very important features and advantage of resonant tun-

neling diodes (RTD).
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1 Introduction

1.1 The Era of Tunneling Diode(TD)

For the fast operation in the electronic world tunneling diode (TD) was intro-

duced by Leo Esaki at August 1957 [8]. TD provides same functionality as a

CMOS transistor [1]. At a specific external bias voltage range the device con-

duct current by which the device switched on. The differences between CMOS

and tunnel diode is in CMOS current going through source to drain and in tunnel

diode current goes through the depletion region by tunneling [1]. A TD is a p

and n type junction where high concentration of electrons in the conduction band

of the n-type region and empty states in the valence band of p-type region. The

forward voltage applied then Fermi level of n-type increase and Fermi level of p-

type decrease thus electron flows. Depending on how many electrons in the n-type

region are energetically aligned with the valance band of p- type the current will

increase or decrease. At the reverse bias the electron of valance band of p-type

region energetically aligned with the empty states of n-type region so large reverse

bias tunneling current flows. I-V characteristics of tunneling diode given below.
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Figure 1: Characteristics of TD Diodes

1.2 Resonent Tunneling Diode(RTD)

Resonant tunneling diode (RTD) comes from the idea of TD. RTD gives faster

operation than TD. Beside this there is a major advantage in RTD over TD and

that is when a high reverse bias voltage is applied to TDs, there is very high leak-

age current and at the RTD side there we could find different amount of leakage

current depending on the material used for the RTD.

1.3 Application Area of TD

As we have already known [1] that TD are considered more than useful in achiev-

ing ultrahigh speed in wide-band devices over the very accepted and current tran-
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sistor technology CMOS. A special and practicable form of a TD is the RTD.

It has resonant tunneling structure by which electrons are permitted to tunnel

through in different resonant states at certain energy levels. Additionally it con-

tains a very solitary property called Negative Differential Resistance (NDR) which

is very large at room temperature [2].

Figure 2: I-V characteristic of RTD showing NDR

1.4 Application Area of RTD

As we have informed that [3] RTD can be fabricated in different types of resonant

tunneling structure such as heavily doped PN junction in Esaki diodes, double

barriers and triple barriers along with various kinds of elements like as type IV,

III-V, II-IV semiconductors.
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1.5 Working Principle of RTD

In the device Figure3, a quantum well is enclosed by two tunnel barrier with large

band gap material and a heavily doped emitter region with narrow energy gap

materials and finally a collector region [1].

Figure 3: Structural diagram of RTD [1]

At low forward bias voltage, due to non-resonant, leakage current through

surface states, scattering assisted tunneling along with thermionic emission small

current flows. With the increment of biasing voltage as many electrons get close

to the energy same as quasi energy state (Resonant level), those electrons start to

tunnel through the scattering states within quantum-well from emitter to collector

by creating an increased current, when the energy reached to Resonant level a

highest current is achieved is called peak current and the phenomena is named

Resonant tunneling. Resonant tunneling happens at specific resonant energy level
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with particular doping level along with quantum wells width [1]. When the energy

of the electrons of emitter side exceeds the quasi energy, current starts to decrease.

And after a certain applied voltage, current starts to rise again. The minimum

current is called Valley current or leakage current.

Figure 4: Band structure of RTD under different biasing [2]

1.6 Advantages of RTD over TD

As RTD has more advantages over TDs and CMOS technology so its application

cover a wide area in the field of electronic. RTD got advantage when a reverse

voltage is applied as it produces high leakage current and furthermore close to

symmetrical I-V characteristics while both forward and reverse bias are applied.

As we know [5] that RTD gives NDR, this NDR gives the opportunity to design

bistability and positive feedback. Beside this because of this NDR facilities with

RTD it is possible to create novel memories, multistage logic, oscillators and nu-
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merous things that operates at low power and low voltage. Furthermore, [4] for

ultrahigh speed analog and digital devices RTDs are considered as the most practi-

cal quantum effect device. From RTDs NDR facility ultrahigh speed Monostable-

Bistable Transition Logic Element (MOBILE) can be deigned. Finally referred

to [7], a recent discovery called Quantum MOS (Q-MOS) in the group of logic

circuits has shown very low power delay profile and good noise immunity which

is made by incorporating RTD with n-type transistors of conventional Comple-

mentary Metal Oxide Semiconductor (CMOS). CMOS circuit displays almost 20

percent slower sensing time compared to this RTD based Q-MOS sensing circuit.
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2 Material Study

Graphene, a two-dimensional single-atom thick membrane of carbon atoms ar-

ranged in a honeycomb crystal, has been the most widespread material due to its

excellent electrical, magnetic, thermal, optical and mechanical properties. Bilayer

graphene is also an important material as it has very unique electronic structure as

well as transport properties. On the other hand, Boron Nitride, a hexagonal lattice

consisting of analogous structure as graphene has recently attracted much atten-

tion due to its superior mechanical and thermal conducting properties. Though

both were discovered in the same century the difficulties of different production

techniques and high cost of BN has limited its fabrication practices for about

hundred years. In contrast to the zero bandgap of graphene, BN Nano Ribbons

exhibit a wide bandgap suitable for semiconductors, optoelectronics and dielec-

tric substrate for high-performance graphene electronics. Graphene sandwiched

by monolayer BN is predicted to have a tunable bandgap without sacrificing its

mobility.

2.1 Lattice Structure and orbital hybridization of Graphene

and BN

Both Graphene and Boron Nitride are defined by sp2 hybridization. sp2 hy-

bridized orbital is responsible for bonding in px and py orbital of graphene and

remaining pz orbital is situated perpendicularly to that plane. This perpendicu-

lar orbital contributes one conducting electron for per carbon atom. Thus among

these four valence orbitals (2s,2px,2py,2pz) of carbon atom the s ,px,py orbitals
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Figure 5: Atomic Structure of Graphene and Boron Nitride[9]

combine to form the in-plane occupied orbital (σ) and unoccupied orbital(σ∗).

These orbitals are even planner symmetry. The pz orbital which is an odd plan-

ner symmetry forms localized π and π∗ orbital. The bonding orbitals are strongly

covalent bonds determining the energetic stability and the elastic properties of

Graphene. The remaining pz orbital is odd with respect to the planner symmetry

and decoupled from the bonding states. From the lateral interaction with neigh-

boring pz orbitals, localized π and π∗ orbitals are formed. Graphite consists of

a stack of many Graphene layers. The unit cell in Graphene can be primarily

defined using two graphene layers translated from each other by a C-C distance,

a(c− c)=1.42. The three-dimensional structure of Graphite is maintained by weak

interlayer Van Der Waals interaction between bond so adjacent layers, which

generate a weak but finite out-of-plane delocalization. Boron having electronic

structure of 1s2 2s2 2p1 along with nitrogen with an electronic structure of 1s2 2s2
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Figure 6: (a) sp2 Hybridization of Graphene, (b) sp2 Hybridization of BN[10]

2p3, forms sp2 hybrid bonds in the B-N sheets. In sp2h ybridization Boron uses

all of the outer electrons to give the configuration 1s1 2p1x 2p1y 2p2
zwhen fabricated

with Nitrogen. After formation of the sp2orbital, the remaining two p electrons

are located in the (filled) pz orbital. The σ bonding in the BN sheets that result

is strong and similar to the bonding in the graphite sheets. However, π bonding

between the full 2pz orbitals of nitrogen and the empty 2pz orbitals of boron is

not possible. This is because the orbital energies of boron and nitrogen are too

dissimilar for a large energy gain. Thus no delocalized electron is present in the

structure. Because of this the boron and nitrogen atoms in alternate layers avoid

each other. This allows for the more efficient packing of the filled pz orbitals, and

the layers are closer than they are in graphite. Nevertheless, the lack of bonding

between the layers still means that BN retains the easy cleavage of graphite and

still is a good dry lubricant.
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2.2 Energy Dispersion Relation of Graphene and Boron Ni-

tride

Graphene, a single atomic sheet of periodically arranged graphite forming an in-

finite honeycomb lattice, is a two-dimensional allotrope having a single layer of

sp2 -bonded carbon atoms that are densely packed. Ever since the first demon-

stration of its zero bandgap, the lattice has attracted much attention not only for

its exceptional strength and thermal conductivity but also for electrical conduc-

tivity. Since Carbon (C), Boron (B) and Nitrogen (N) are all in the same period

of the periodic table, single layer hexagonal Boron Nitride (h-BN) exhibits anal-

ogous honeycomb structure as Graphene and also has distinct bandgap variation

trends. Moreover, the band structure and energy dispersion relation of Graphene

and BN provides better understanding in analyzing the possibilities of opening a

tunable bandgap when Graphene Nano Ribbons (GNR) are embedded in BN Nano

Ribbons (BNNR). Among all possible band structure calculation methodologies

Density Functional Theory (DFT) and nearest Tight Binding (TB) method have

been employed in this paper in order to find appropriate bandgap.[11-14]

2.2.1 Introduction to DFT (Density Functional Theory)

Since 1970s Density functional theory (DFT) has been considered the most versa-

tile method for quantum mechanical calculation. However it did not get complete

recognition until the year of 1990s. In the following year the approximations used

in theory was redefined to such an extent that they satisfactorily agreed with the

experimental data, especially the ones attained from first principles calculation.

Hence, DFT has been defined as the quantum mechanical modelling method used

10



to investigate the electronic band structure as well as other electronic properties

of atoms, molecules and condensed phases. Using this theory, the properties of

a many-electron system can be evaluated specially the ones dependent on elec-

tron density. The name Density Functional Theory has been driven from the fact

that DFT incorporates the use of functionals of the electron density. Compared

to costly methods like first principles calculation or Hartree-Fock theory DFT is

much cost-effective. [15]

Figure 7: (a) Band Structure of Graphene using DFT calculation. (b) Band Struc-

ture of BN using DFT calculation.

11



2.2.2 Introduction to nearest neighbor TB (Tight Binding) model

Tight-binding models are applied to a wide variety of matters and they give good

qualitative results in many cases. The nearest TB model is defined as an approach

that calculates electronic band structures using an approximate set of wave func-

tions based on superposition of wave functions for isolated atoms located at each

atomic site. It is closely related to the Linear Combination of Atomic Orbitals

method (LCAO).TB overlap as well as Hamiltonian matrices directly from first-

principles calculations has always been a subject of continuous interest. Since, the

nearest TB model primarily attempts to represent the electronic structure of con-

densed matter using a minimal atomic-orbital like basis set; it has been redefined

to fit the resultants of first-principles calculations.

Usually, first-principles calculations are done using a large or long-ranged ba-

sis set in order to get convergent results, while tight-binding overlap and Hamilto-

nian matrices are based on a short-ranged minimal basis representation. Therefore

in this paper, we performed a transformation that can carry the electronic Hamil-

tonian matrix from a large or long-ranged basis representation onto a short ranged

minimal basis representation in order to obtain an accurate tight-binding Hamil-

tonian from first principles calculation.[16]

2.2.3 Band Structure (E-k relation) calculation

Electronic band structure of a matter is described by the ranges of energy that an

electron within the matter may have and also the ranges of energy that it may not

have (called band gaps or forbidden bands). By examining the allowed quantum

mechanical wave functions for an electron in a large, periodic lattice of atoms or

molecules, the electronic bands and band gaps can effectively be derived. Again
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by knowing the band structures of Graphene and 2D h-BN lattice, their future

possibilities in making better Nano-scaled devices can easily be comprehended.

Since ab-initio DFT method effectively represents first principles calculation, the

parameters of nearest TB model have been modified to follow the variation trends

of DFT calculation. Therefore, for electronic band gap calculation DFT and Near-

est TB model have been employed in this paper.

From First principles calculations it has been observed that the electronic

bands near the Fermi level are contributed from the orbitals of the atoms. Thus a

π -orbital nearest TB model has been engaged to investigate quantum confinement

as well as edge effects on the electronic band structure of both Graphene and BN.

Compared to the time consuming First principles calculation, this modified near-

est TB method can be effectively applied to study more intricate low dimensional

Nano structures whose properties are controlled by π electrons.

To attain the π-orbital nearest TB Hamiltonian and derive the electronic spec-

trum of the total Hamiltonian, the corresponding Schrodinger equation has to be

solved. According to time-independent Schrodinger’s equation:[16,17-19]

E( ~K)ψ( ~K,~r) = Ĥψ( ~K,~r) (1)

where,

Ĥ=Hop=Hamiltonian operator

E= Eigen Energy (expectation value of the orbital energy

ψ=Eigen function (molecular orbital wave function

Because of translational symmetry in a particular lattice the molecular Eigen

functions can be written as the linear combination of atomic Eigen functions

ψ(j=1,2,3,.....,n); where n is the number of Bloch wave functions) and Bloch or-

13



bital (appendix) basis functions aj(~r):

ψM =
n∑

j=1

ψjaj (2)

However, this Linear Combination of Atomic Orbital (LCAO) gives approximate

solution instead of exact solution of the Schrodinger’s equation. Thus we incorpo-

rated the Variational principal where, for a particular wave function, the expected

value of orbital energy or Eigen energy is given by:

E =

∫
ψ∗Ĥψdr∫
ψ∗ψdr

(3)

The following principle also states that the value of E obtained by using equa-

tion (1) is always greater than that of the exact solution.

General form of equation:

Eψn =
∑
m

Hnmψm (4)

For both 2D and 3D lattice: ψn = ψ0e
~k.~rn; where ~rn is the position (position vec-

tor) of the nth atom. To calculate E(k) relation for 2D or 3D lattice the following

equation is formed:

Eψ0e
i~k~rn =

∑
m

Hmnψ0e
i~k~rm (5)

Eψ0 =
∑
m

Hmnψ0e
i~k( ~rm− ~rn) (6)

E =
∑
m

Hmne
i~k( ~rm− ~rn) (7)

E(~k) =
∑
m

Hmne
i~k( ~rm− ~rn) (8)

Here, (rm-rn) is the vector that runs from mth atom to nth atom.

Self-integrals can be defined as, ε =
〈
εn

∣∣∣Ĥ∣∣∣ εn〉
Hopping integrals can be defined as,t =

〈
ε(n− 1)

∣∣∣Ĥ∣∣∣ εn〉 or
〈
εn |H| ε(n+ 1)

〉
14



2.2.4 Energy Dispersion (E-k relation) calculation of Graphene

Carbon atoms in a Graphene plane are located at the vertices of a hexagonal lattice

where each C atom is surrounded by three C atoms.

Figure 8: (a) Real Space Lattice of Graphene, (b) Reciprocal Space Lattice of

Graphene.

From the figure-8, Graphene network can be regarded as a triangular Bravais

lattice with two atoms (A and B) per unit cell along with basis vectors a1 and a2,

where

â1 =

√
3

2
âx +

1

2
ây;(First Primitive Vector)

â2 =

√
3

2
âx −

1

2
ây;(Second Primitive Vector)

Here,a =
√

3a(C−C) ,where a(C−C)=1.42 is the carbon-carbon distance in

graphene.

At figure we can see that each A or B-type atom is surrounded by three oppo-

site type. By using condition ai.bj = 2πδij , the reciprocal lattice vectors (b̂1 and

15



b̂2) can be obtained where,

b̂1 = b(
1

2
k̂x +

√
3

2
k̂y)

b̂2 = b(
1

2
k̂x −

√
3

2
k̂y)

where b =
4

a
√

3
. In figure-9 these vectors will be shown. The hexagonal

shaped Brillouin zone is built as the Wigner-Seitz cell of reciprocal lattice. Out

of its six corners, two of them are equivalent (the others can be written as one of

these two plus a reciprocal lattice vector).

If carbon atoms are placed onto the Graphene hexagonal network the elec-

tronic wavefunctions from different atoms overlap. Because of symmetry the

overlap between the pz orbitals and the s or the px and py electrons are strictly

zero.

The pz electrons form the π bonds in Graphene can be treated independently

from other valence electrons. Within this π-band approximation, the A-atom or

B-atom is uniquely defined by one orbital per atom site pz (r̂− r̂A) or pz(r̂− r̂B).

From Blochs theorem, the Eigen-functions evaluated at two given Bravais lat-

tice points r̂mand r̂n differ from each other in just a phase factor, e(ik(r̂m−r̂n)).By

using the orthogonality relation in the Schrodinger equation, Hψ = Eψ, the

energy dispersion relation we can be easily obtained from the diagonalization

of E(K̂). For calculating the dispersion relation of Graphene lattice two C-C

molecules m and n1 are considered first. E(kx, ky) or E is considered to be the

energy of the system depending on the k vector.

Since from secular eguation it has been obtained that ε are the site energies of

carbon, thus C-C self-iteration (for A type-A or B type-B type)=ε

And (A type -B type) hopping integral=t

16



In matrix form the diagonal elements become :ε t

t ε


similarly, the iterations(m− n1),(m− n2) form upper diagonal matrix

0 0

t 0


and (m-n3),(m-n4) form lower diagonal matrix

0 t

0 0


Therefore taking â1 and â2 into account relation given by:

E(K) =

0 t

0 0

 e−i~kâ2+
0 t

0 0

 e−i~kâ1+
ε t

t ε

+

0 0

t 0

 e−i~kâ1+
0 0

t 0

 e−i~kâ2
 ε t+ te−i

~kâ1 + te−i
~kâ2

t+ tei
~kâ1 + tei

~kâ2 ε


Here,

E(~k) = ε± |h0| where h0 = t+ tei
~kâ1 + tei

~kâ2

h0 = t(1 + ei
~kâ1 + ei

~kâ2)

h0 = t(1 + ei
~k(âx+b̂y) + ei

~k(âx−b̂y))

17



h0 = t(1 + ei
~kxax+i~kyby + ei

~kxax−i~kyby)

h0 = t(1 + ei
~kxa(ei

~kyby + e−i
~kyby))

h0 = t(1 + ei
~kxa2 cos~kyb)

h0 = t(1 + 2 cos~kyb cos~kxa+ 2i cos~kyb sin~kxa)

|h0| =
√

(1 + 2 cos~kyb cos~kxa)2 + (2 cos~kyb sin~kxa)2

|h0| =
√

1 + 4 cos~kyb cos~kxa+ 4 cos2 ~kyb(sin
2 ~kxa+ cos2 ~kxa)

Now,

a =
3

2
a0 and b =

√
3

2
a0

E(~k) = ε±
√

1 + 4 cos~ky

√
3

2
a0 cos~kx

3

2
a0 + 4 cos2 ~ky

√
3

2
a0

Using the equation the hexagonal shaped Brillouin zone of graphene can be

obtained, the k+,K− and M valley are shown in figure-10. the center is denoted

as Gamma(Γ) valley.

The wave-vector k = (kx, ky) are chosen within the first hexagonal Brillouin

zone . the zeros of h0(k) correspond to the crossing of the bands with the +

and - signs. one can verify that h0(k = k+) = h0(k = k−) = 0 and therefore

the crossing over occurs at the points k+ and k−. furthermore, with a single pz

electron per atom in the − ∗ model (the three other s, px,py fill the low-lying

band), the (-) band (negative energy band) is fully occupied, while the (+) band

(positive energy band) is empty, at least for electrically neutral Graphene. Thus,

the fermi level EF (charge neutrality point) in the zero-energy reference in fig-9
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Figure 9: (a) First Brillouin zone (BZ) of graphene. (b) Energy dispersion relation

of graphene.

and fermi surface is composed of the set of k+ and k− points. Thereby, Graphene

displays a metallic (zero-bandgap) character. However, as the Fermi surface is of

zero dimensions (since it is reduced to a discrete and finite set of points), the term

semi-metal or zero-gap semiconductor is usually employed. Expanding for kin

the vicinity of k+ or k−, k = k+ k or k = k− k, yields a linear dispersion for the

and ∗ bands near these six corners of 2D hexagonal Brillouin Zone.

2.2.5 Band Structure and Energy Dispersion Calculation of BN

B and N atoms in a BN plane are located at the vertex of a hexagonal lattice

where each B is surrounded by three N atoms and each N is surrounded by three

B atoms. The following BN network in Figure-10 can be regarded as a triangular

Bravais lattice with two atoms (one B and one N ) per unit cell along with basis
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vectors â1 and â2 where

â1 =

√
3

2
âx +

1

2
ây (First primitive vector )

â2 =

√
3

2
âx −

1

2
ây (First primitive vector)

Here, a =
√

3aB−N , where aB−N = 2.512Å is the Boron-Nitrogen distance in

BN . 2D h − BN exhibits similar Brillouin zone formation due to its analogous

structure as Graphene. According to Blochs theorem, the Eigen-functions evalu-

ated at two given Bravais lattice points ~rm ~rn and differ from each other in just a

phase factor,ei~k(~rm−~rn).Using the orthogonality relation in the Schrodinger equa-

tion, HΨ = EΨ, the energy dispersion relation can be easily obtained from the

diagonalization of Energy dispersion relation.

For calculating the E(k) dispersion relation of 2D h − BN lattice two BN

molecules m and n1 (as shown in the Figure-11) are considered first. E(kx, ky) or

E is considered to be the energy of the system depending on the k vector. Since

from secular equation it has been obtained that εB and εN are the Site energies of

Boron and Nitrogen respectively,

B −B self-interaction= εB − E(kx, ky) = εB − E

N −N self-interaction = εN − E(kx, ky) = εN − E

And B −N hopping integral= t

In matrix form the diagonal elements become:εB − E t

t εN − E


As the interaction (m− n1),(m− n2) form upper diagonal matrix0 0

t 0


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and (m− n3),(m− n4) form lower diagonal matrix0 t

0 0


Now, by considering â1 and â2 the equation will be,

E(K) =

0 t

0 0

 e−i~kâ1+
0 t

0 0

 e−i~kâ2+
εB − E t

t εN − E

+

0 0

t 0

 ei~kâ1+
0 0

t 0

 ei~kâ2
 εB − E t+ te−i

~kâ1 + te−i
~kâ2

t+ tei
~kâ1 + tei

~kâ2 εN − E


|E(K)| = 0 ( determinant of E(K) is zero) gives the equation the following

form :

(εB − E).(εN − E)− t2(1 + e−ikâ1 + e−ikâ2)(1 + eikâ1 + eikâ2) = 0)

(εB)(εN)− EεB − EεN + E2 − t2(1 + e−ikâ1 + e−ikâ2)(1 + eikâ1 + eikâ2) = 0

Considering the part of the upper equation

(1 + e−ikâ1 + e−ikâ2)(1 + eikâ1 + eikâ2)

1 + e−ikâ1 + e−ikâ2 + e−ikâ1 + (eikâ1e−ikâ1)...(e−ikâ2eikâ1) + eikâ2 +

(e−ikâ1eikâ2) + (e−ikâ2e−ikâ2)

1 + (eikâ1 + e−ikâ1)...(eikâ2 + e−ikâ2) + 1 + (e−ikâ2eikâ1) + 1 + eikâ1e−ikâ1

3 + 2 cos kâ1 + 2 cos kâ2 + (eik(â1−â2)) + (e−ik(â1−â2))
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3 + 2(cos kâ1 + cos kâ2 + 2 cos k(â1 − â2))

3 + 2(2 cos k
(â1 + â2)

2
cos k

(â1 − â2)
2

) + 2 cos k(â1 − â2)

substituting the values of the primitive vectors,â1 + â2 =
√

3âx and â1 − â2 = ây

leads the equation to as follows:

(1 + e−ikâ1 + e−ikâ2)(1 + eikâ1 ...eikâ2) =

3− 4 cos k

√
3

2
âx cos k

1

2
ây + 2(2 cos k0.5ây − 1)

1 + 4 cos k

√
3

2
âx cos k0.5ây + 4(cos k0.5ây)

2

So the equation will become,

εBεN − EεB − EεN + E2 − t2(1 + 4 cos k

√
3

2
âx cos k

1

2
â2 + 4 cos k

1

2
ây) = 0

E2(εB + εN) + εBεN − t2(1 + 4 cos k

√
3

2
âx cos k

1

2
â2 + 4 cos k

1

2
ây) = 0

E(kx, ky) =

(εB + εN)±
√

(−(εB + εN))2 − 4(εBεN − t2(1− 4 cos k

√
3

2
âx cos k

1

2
ây + 4 cos2 k

1

2
ây))

2

(εB + εN)

2
±

1

2

√
ε2B + ε2N + 2εBεN + 16t2(

1

4
+ cos k

√
3

2
âx cos k

1

2
ây + cos2 k

1

2
ây)

(εB + εN)

2
± 1

2

√
(εB − εN)2 + 16t2(

1

4
+ cos k

√
3

2
âx cos k

1

2
ây + cos2 k

1

2
ây)

So the equation become
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E(kx, ky) =

(εB + εN)

2
±
√

(εB − εN)2

4
+ 4t2(

1

4
+ cos k

√
3

2
âx cos k

1

2
ây + cos2 k

1

2
ây)

Using this equation hexagonal shaped Brillouin zone of BN can be obtained,

where out of six corners two of them are equivalent. These two special points are

denoted withK+ andK−. The center is denoted as Gamma (Γ) valley at figure-10.

Figure 10: From Left, Brillouin Zone of hBN and Energy Dispertion Relation of

hBN
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3 Proposed Model of RTD Device

In our work we use the self-consistent capacitive model to create the RTD by using

graphene and hBN layers. At the both top and bottom gate we use SiO2 oxide and

our model consists of two tunneling channel made of layered hBN sandwiched

between three graphene layers as shown in the figure as following the work of

Jing Guo [6]. Here graphene layers works as source and drain contacts. From the

work of Jing Guo [6] we see that there only two graphene layers used with sand-

wiched one layer of hBN to create the tunneling graphene heterojunction which

will work as like TDs. Here we use three graphene layers with two hBN sand-

wiched layers whereas the two hBN layers will act as two tunneling channel as a

result this device will work like RTDs. When bias voltage given then depending

on the electron concentration of graphene layers the electrons will resonantly tun-

nel through the layers. At the previous works model [6] we see that at the forward

bias voltage condition high current flows through the device, on the other hand

on our modeled device we get both voltage peak and valley and thus our model

show negative differential resistance (NDR) characteristics which is a very impor-

tant features and advantage of resonant tunneling diodes (RTD). On the reverse

bias voltage condition from the Jing Guos [6] work we see that high leakage cur-

rent flows but as we make the device work like RTD so in our model we found a

controlled leakage current.

3.1 Principle of Our Device

To explore the qualitative characteristics of theoretically modeled Vertical Tunnel-

ing Graphene field effect transistor (VTG-FET) and for further device escalation,
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a self-consistent capacitance model is used. In addition to that the electrochem-

ical potential profile across the gadget is achievable from the mentioned model.

Soon after that, non-equilibrium-greens-function is used to enumerate current and

conductance across the device. The modulation of density of states in the contacts

fundamentally regulates the operations of the device whereas conventional tran-

sistor depends on source-drain contacts. An important note is DOS of contacts

rely on applied gate voltage and source-drain voltage [6].

Figure 11: Layer Diagram of the RTD device

3.2 Capacitance Model

To estimate the electrochemical potential at graphene and hBN, a self-consistent

capacitance model is used. In a few minutes, we are going to show the calculation

for the device with the channel consisting of hBNs. The charge Qi at each layer-i
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is related to vacuum energy level, Ei as showing in below.

−Qi = Ci(E
vac
i−1 − Evac

i ) + Ci+1(E
vac
i+1 − Evac

i ); i = 0, 1, 2, 3, 4, .... (9)

Here the capacitance C will be C = ε0εr/d. ε is the dielectric constant and d

is the thikness of layers.

Our capacitance model can be represent by the following figure;

C1 C2 C3 C4 C5

E0 E1 E2 E3 E4 E5

Figure 12: Capacitance Model of Device

Here C1 is the capacitance in between the left gate SiO2 layer and Graphene

layer, C2 is the capacitor in between Graphene layer and h − BN layer.C3 is

the capacitor in between h−BN layer and Graphere layer, C4 is the capacitor in

between h−BN layer and Graphere layer.C5 is the capacitor in between Graphene

layer and right SiO2 layer.

As we get the generalized equation so we can now find out the specific equa-

tion of charge at different level of our modeled device. Here we can use Evac = E
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for simplification and the charge at different layer the specific equation will be as

follows;

Qo = C1Eo − C1Eo (10)

Q1 = −C1Eo + (C1 + C2)E1 − C2E2 (11)

Q2 = −C2E1 + (C2 + C3)E3 − C3E3 (12)

Q3 = −C3E2 + (C3 + C4)E3 − C4E4 (13)

Q4 = −C4E3 + (C4 + C5)E4 − C5E5 (14)

Q5 = −C5E4 + (C5 + C6)E5 − C6E6 (15)

So from these equations we can simplified it and the simplification leads us to

the following matrix:



C1 −C1

−C1 C1 + C2 −C2

−C2 C2 + C3 −C3

−C3 C3 + C4 −C4

−C4 C4 + C5 C5

−C5 C5





Eo

E1

E2

E3

E4

E5


=



−eQo

−eQ1

−eQ2

−eQ3

−eQ4

−eQ5



So from this matrix we can form matrix-2 to find E0 to E5 by simplifying this

matrix.
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

E1

E2

E3

E4

E5


=



C1 + C1 −C2

−C2 C2 + C3 −C3

−C3 C3 + C4 −C4

−C4 C4 + C5 −C5

−C5 C5



−1 

−eQ1 + C1E0

−eQ2

−eQ3

−eQ4

−eQ5



Here E0 = −eVg + φg and φg is the bottom gate work function. From the

matrix we can get the value of Ei and with that value we can calculate the charge

density. To calculate the charge density we use the following equation:

Qi = −e
∫ ∞
Ui

Di(E)f e
i (E)dE + e

∫ Ui

−∞
Di(E)fp

i (E)dE (16)

For the above equation

Ui = Ei − φi (17)

For equation-17

E1 = Edir
s (18)

E2 = E3 = E4 = Emid (19)

E5 = Edir
D (20)
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where Edir
s is the source Dirac-point energy, Emid is the channel midgap en-

ergy and Edir
D is the drain Direc-point energy.

Again for the equation-8 D is the density of states and f e(p) is the electron hole

occupancy. Now from matrix 2 and equation-16 are then solved self consistently

until Ui converges.

When we applied an arbitrary Vg and Vb is applied according to figure-11 we

will get an Ui profile. At finite bias the Ui profile will be as follows:

Graphene

Well

Graphene

Contact

Graphene

Contact

BN
Barrier

BN
Barrier

Matel

E

Figure 13: Ui Profile at Finite Bias
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In order to finding the Ui profile we use the following parameters for simula-

tion:

SiO2 insulator thickness, tins = 300nm

SiO2 dielectric, εins = 4

The work function of the Si gate, φg = 4eV

The work function of the graphene source/drain contacts, φSD = 4.7eV

The work function of the hBN channel, φC = 3eV

The distance between graphene contacts and hBN channel is 0.5nm

hBN and graphene well interlayer distance is 0.35nm

Number of channel layers, N =

Here, U0 = −eVg, U1 = Edir
S , UN+5 = Edir

D and U2 to UN+4 is Emid

The electron transport behavior across the device is studied by using NEGF

formalism [22]. The Hamiltonian of the mono layer hBN using π-orbital tight

binding model is given by

H(K) =

 Emid + Egap/2 −t0 − 2t0e
iKxcosKy

−t0 − 2t0e
−iKxcosKy Emid − Egap/2


where Ky =

√
3kya0/2, Kx = 3kxa0/2, itralayer nearest neighbor (NN) hop-

ing parameter, t0 = 2.3eV [23], bandgap of monolayer hBN,Egap = 5eV and the

NN interlayer atomic distance a0 = 0.15 nm. We use interlayer hoping parameter

tp = 0.6eV .

30



4 Simulation Procedure

To obtain I-V characteristics of the device , quantum transport equation is used

using non euilibirum greens function (NEGF) formalism [24] . In order to in-

corporate the charging effects and to obtain built-in electric field, self-consistent

capacitor model and the transport equation are self-consistently solved. the carrier

dymanics is explained as retarded Greens function , GR, Under NEGF formalism.

The function under steady state condition can be shown as

GR(E) =

[
(E + iη)I −H0 −

R∑
S

−
R∑
D

]−1
(21)

H0= Device Hamiltonion∑R
S(D)=self-energy term due to the sourse (drain) contact.

The effect of electron-phonon and electron-electron interactions can be in-

cluded by combining the extra self-energy terms [20] in equation-21, which are

omitted for simplicity. I is the matrix, and η is a small number who helps to

activate the energy-level broadening effects.

The electron and hole statistics are explained by correlation function shown in

below:

Gn(E) = GR(E)

[
in∑
S

+
in∑
D

]
GR†

(E) (22)

Gp(E) = GR(E)

[
out∑
S

+
out∑
D

]
GR†

(E) (23)

The contact in/out-scattering term are calculated from the energy-level broadening

function, ΓS(D) = i
[∑R

S(D)−
∑R†

S(D)

]
, due to source (drain) contact using some

equations written in follows:
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∑in
S = fSΓS ,

∑in
D = fDΓD,

∑out
S = (1− fS)ΓS∑out

D = (1− fD)ΓD

Where fS and fD are the source and drain Fermi function, respectively. Density

of states (DOS) at the jth atomic site can be defined as

ρj(E) =
1

2π
Aj,j(E) (24)

Where A = i(GR−GR†
) is called spectral function. Then, electron (hole) density

at the jth atomic site can be calculated as follows:

n
e(p)
j =

1

π

∫ ∞(Ui)

Ui(−∞)

G
n(p)
j,j (E)dE (25)

where Enj is the charge charge neutrality . point [21] at the jth atomic site and

calculated by exploring two integers over DOS at each atomic site using a trail

energy value, Enj as upper bound for valence states and lower bound for conduc-

tion sates in search of equal distribution, the electrostatic potential distribution is

determined using Poisson as follows:

∇2Uj =
q(ne

j − nh
j )

εa∆z
(26)

where Uj is the Hartree potential at the jth atomic site, ε is the permittivity

of channel material, a is the effective are per atomic site and z-axis grid spacing

∆z = 0.5ac−c. The equation is solved under 3-D discretization using the finite-

difference method. For source, drain and gate contacts, boundary condition is

Drichlet (as the potential is fixed in contacts). In addition, in open faces of GNR

sheet and oxide, the boundary condition is Neumann which is an open boundary.
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5 Result

5.1 Finding the Value of Capacitances

After completing our simulation we found the capacitances value as follows:

C1 = 1.1805e−04 nF

C2 = 0.0177 nF

C3 = 0.0253 nF

C4 = 0.0253 nF

C5 = 0.0177 nF

Where,

C1 is the capacitance between SiO2 and Graphene contact layer

C2 is the capacitance between Graphene contact layer and hBn barrier layer

C3 is the capacitance between hBN barrier and Graphene well layer

C4 is the capacitance between Graphene well layer and hBN barrier layer

C5 is the capacitance between hBN barrier and Graphene contact layer

5.2 VD vs ID Curve Observation

We did the simulation for VG = VFB + X where X is the various voltage we

applied at the gate side of our device.
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Now for X = 0V we get the ID vs VD curve as follows:

Vd
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Id

×10-5

-1

0

1

2

3

4

5

6

V
G

=V
FB

+0 V

Figure 14: ID vs VD Characteristics of Our Device at VG = VFB + 0V
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After this we increase the value of X to 0.5V then the ID vs VD curve came

as follows:

Vd
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Id

×10-5

-1

0

1

2

3

4

5

6

7

8

V
G

=V
FB

+0.5 V

Figure 15: ID vs VD Characteristics of Our Device at VG = VFB + 0.5V
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After this we further increase the value of X to 0.75V then the ID vs VD curve

came as follows:

Vd
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Id

×10-5

0

1

2

3

4

5

6

V
G

=V
FB

+0.75 V

Figure 16: ID vs VD Characteristics of Our Device at VG = VFB + 0.75V
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If we emerge the three IV characteristics then we find the graph as follows;

Vd
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Id

×10-5

0

1

2

3

4

5

6

7 V
G

=V
FB

+0 V

V
G

=V
FB

+0.5 V

V
G

=V
FB

+0.75 V

Figure 17: ID vs VD Characteristics of Our Device

From here we can see that the current at different gate voltage shows differ-

ent characteristics. From this we can found that our modeled device shows the

characteristics of RTD as it shows peak and valley in its characteristics. We also

can determine when it will give us increasing current characteristics and when it

will give a decreasing current characteristics. At different VD it shows different

characteristics.
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5.3 Electron Tunneling Transportation Due to Different Volt-

age VD

Now from the ID and VD if we make different segment of the whole figure-17 into

three zone like zone-1 for 0V ≤ VD ≤ 0.4V , zone-2 for 0.4V ≤ VD ≤ 0.8V and

zone-3 for VD ≥ 1.2V then we can explain the electron tunneling transportation

by using Fig-13. After making the segment of the figure-17 the figure is become

as follows:

Vd
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Id

×10-5

0

1

2

3

4
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+0 V

V
G

=V
FB

+0.5 V

V
G

=V
FB

+0.75 V

Figure 18: ID vs VD Plot After segmentation

After applying different value of VD we observe the resonant tunneling elec-

tron transportation scenario in our modeled device. We found some scenario as
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follows:

5.3.1 At VD = 0V

For electron flow electrons need much energy so that they could overcome the

energy of the barrier but here as we are giving VD = 0V electrons are not getting

much energy to cross the barrier so here no current will flow , ID = 0A.

Graphene
Well

Graphene
Contact

Graphene
Contact

BN
Barrier

BN
Barrier

Matel

E

VD = 0V
No Current Flows

Figure 19: At VD = 0V
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5.3.2 At VD = (0→ 0.4)V

When we applied drain voltage grater than VD = 0V , due to having very small

particle potential of electrons grater than the barrier potential, some electron will

tunnel through the two tunneling barriers and current starts to increase with the

increasing VD. And this type of behavior continuous upto VD = 0.4V For this

reason we will get steeper exponentially increased current for VD = (0→ 0.4)V .

this characteristic is shown in Fig − 18

Graphene

Well

Graphene

Contact

Graphene

Contact

BN
Barrier

BN
Barrier

Matel

E

Resonant Tunneling

VD = 0.4V
Highest Current

Figure 20: At VD = 0.4V
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5.3.3 At VD = (0.4→ 0.8)V

We can see from the Fig − 18,if we give some potential at the drain side greater

than 0.4V up to 0.5V then the electrons will get more energy and has it’s highest

current in between 0.4V and 0.5V . When we increase the VD from 0.5V to 0.8V

the energy of electrons will cross the quasi energy level and thus the current will

start to decrease.

Graphene

Well

Graphene

Contact

Graphene

Contact

BN
Barrier

BN
Barrier

Matel

E

States are no more Resonant

VD = 0.8V
Current Falls

Figure 21: At VD = 0.8V
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5.3.4 At VD > 1.2V

If we increase further voltage at the drain side then electrons will get more energy

So as we increase the voltage at our device from VD = 0.8V to 1.2V there no

significant change in current is not visible. But when we further increase byVD =

1.2V we can see from the graph that our current starts to increase again.

Graphene

Well

Graphene

Contact

Graphene

Contact

BN
Barrier

BN
Barrier

Matel

E

Single Barrier Tunneling

VD ≥ 1.2V
Current Raise Again

Figure 22: At Further Increased Voltage
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5.4 Decision

So from tis result we can say that our device is showing the characteristics of RTD.

It will work as heterojunction Van der Wells resonant tunneling diode.
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6 Conclution

A resonant tunneling structured diode called Resonant Tunneling Diode (RTD)

has been already proven a better option as a replacement of TD or CMOS which

id a upgraded version of TD.A feature of RTD is that it gives faster operation than

TD. Beside this there is a major advantage in RTD over TD and that is when a

high reverse bias voltage is applied to TDs, there is very high leakage current and

at the RTD side there we could nd different amount of leakage current depending

on the material used for the RTD.Additionally it contains a very solitary property

called Negative Differential Resistance (NDR) which is very large at room tem-

perature. we also get different electronic properties from RTD by fabricating RTD

in different types of resonant tunneling structure such as heavily doped PN junc-

tion in Esaki diodes, double barriers and triple barriers along with various kinds of

elements like as type IV,III-V, II-IV semiconductors and it is suited for the design

of highly compact, self-latching logic circuits and so more. RTD has proven fruit-

ful in the development of a gate-level pipelining technique,( nanopipelining )by

significantly improving speed of pipelined systems. the working principle of RTD

depends on biasing voltage VD, where for different biasing voltage RTd shows va-

riety in it’s characteristics like increasing current , peak current ,deceasing current

and the again increasing.

In our device, we have used 2 layers of Boron nitride a hexagonal lattice

consisting of analogous structure, material as our tunneling barrier and both side

of the barriers two Graphene contact are used and a graphene is sandwiched by

monolayer BN is predicted to have a tunable bandgap without sacrificing its mo-

bility.
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Two band structure calculation methodologies called Density Functional The-

ory (DFT) and nearest Tight Binding (TB) method have been particularly used

in this paper in order to nd appropriate bandgap of the two concerned materials.

The name Density Functional Theory (DFT) has been driven from the fact that

DFT incorporates the use of functional s of the electron density and DFT also a

cost effective method. And nearest Tight Binding method calculates electronic

band structures using approximate set of wave functions based on superposition

of wave functions for isolated atoms located at each atomic site.

In our work we build RTD by graphene and hBN layers using the self-consistent

capacitive model which consists of two tunneling channel made of layered hBN

sandwiched between three graphene layers.To estimate the electrochemical poten-

tial at graphene and hBN, a self-consistent capacitance model is used.

Finally To obtain I-V characteristics of the device , quantum transport equa-

tion is used using non euilibirum greens function (NEGF) formalism. to ob-

serve charging effect and built in potential, self-consistent capacitor model and

the transport equation are also self-consistently solved. And after completing our

overall simulation by applying different voltages, we observe electron tunneling

transportation. And the achieved I-V characteristic curve of our Graphene Boron

Nitride Vertical Heterojunction Van der Waals Resonant Tunneling Diode shows

the similar characteristics of a conventional RTD where the peak and valley cur-

rent is visible.
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