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Abstract 

Word sense disambiguation is a significant task in natural language processing and addresses an 

old problem in the field of computational linguistics. Word sense disambiguation facilitates tasks 

like machine translation, information retrieval, text-to-speech and other application systems. Sense 

ambiguity is introduced because certain words for a given language can have multiple meanings. 

Word sense disambiguation involves identifying the correct sense of a word for a given context. 

Bangla language has a few cases of word sense ambiguity. Many machine learning algorithms 

have already been applied to disambiguate word sense including few implementations of neural 

networks. However, many existing word sense disambiguation systems using supervised learning 

and neural networks were focused only on English data. And an evaluation of their implementation 

on Bangla data is necessary. This thesis attempts to analyze and present results when using an 

updated deep neural network classifier and supervised learning algorithm for word sense 

disambiguation on a Bangla dataset and on an English dataset. A pre-processor for the dataset was 

constructed to appropriately extract features from the context sentences to build sets of refined 

feature vectors which are fed into the neural network.   

 

 

 

 

 



9 
 

CHAPTER 1 

Introduction 

 

1.1 Overview 

Word Sense Disambiguation for most systems involves choosing or classifying the correct 

sense for a given word in a sentence. Existence of homonyms in languages introduces ambiguity 

for word senses. Since certain words can have multiple meanings depending on the context of the 

sentence, the syntactic structure of that given word does not provide sufficient clues to the word’s 

correct sense. Therefore, the context words that occur before and after the target word has to be 

taken into account for accurate sense classification. There are many existing word sense 

disambiguation algorithms and systems. Word sense disambiguation has many applications and is 

an important task that helps and facilitates other natural language processing tasks like machine 

translation, question-answering, information retrieval and text-to-speech systems.  

Machine learning techniques have been applied on tackling word sense disambiguation 

exercises before. Supervised learning algorithms have shown to be very effective at 

disambiguating word senses when it comes to the lexical sample task [1]. Most supervised machine 

learning algorithms for lexical sample tasks learn from the training corpora, by taking in the 

features and labels to build an appropriate classifier. This classifier can then be evaluated by using 

a test data set. The classifier is able to label the senses after fed with test features. The tagged 

senses are then evaluated for accuracy. Deep learning and artificial neural networks have shown 

to be effective at dealing with complex problems and tasks. Neural(s). Therefore, deep neural 



10 
 

network classifier for disambiguating word sense is an approach that is justifiable. There are 

existing models of word sense disambiguation based on neural networks. An analysis of the sense 

tagging task with an updated neural network on Bangla language as well English data will provide 

further insights into how effective they are on natural language processing. 

  

1.2  Objective and Goals 

Neural networks have many applications and have been applied to word sense 

disambiguation. However, there is scope for further application and a revision of newer neural 

network models. This thesis attempts to dive deeper into the performance and efficiency of deep 

neural networks when used for disambiguating word senses on a standard SENSEVAL-2 English 

dataset and also on a small hand labelled Bangla corpus. 

1.3 Motivation 

Natural language processing in Bangla language has advanced and evolved in recent years. 

However, there is room for improvement and further evaluation of natural language processing 

systems for Bangla is important to strive towards perfection and faster systems. Neural networks 

and supervised machine learning houses strong models to use for word sense disambiguation of 

Bangla data. Motivation to work for Bangla language, neural networks and machine learning was 

always present. This thesis paper is the manifestation and combination of that motivation and 

desire to improve the computational linguistic field across all languages. 
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CHAPTER 2 

Literature Review 

Word sense disambiguation systems have been developed using many supervised learning 

techniques and shown to be effective however finding a large corpora to train the systems is still 

difficult [1]. They have been constructed with LSTM neural networks and show promise in 

classification accuracy [2]. Only few word sense disambiguation has been done on Bangla using 

Bangla word net. A word sense disambiguation (WSD) system for Bengali language has been 

developed by Ayan Das and Sudeshna Sarkar; and applied the system to get correct lexical choice 

for the task in Bengali-Hindi machine translation [3]. Many systems have been developed with 

different results and models which permits an in-depth comparative analysis and review of the 

systems. 
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2.1 Word Sense Disambiguation 

Most supervised machine learning algorithms for lexical sample tasks learn from the 

training corpora, by taking in the features and labels to build an appropriate classifier. This 

classifier can then be evaluated by using a test data set. The classifier is able to label the senses 

after fed with test features. The tagged senses are then evaluated for accuracy. Word sense 

Disambiguation algorithms, usually, provide as output the context word selected from the sense 

inventory. The structure of the input and the inventory of context senses is dependent on the 

application: for machine translations from English to Bangla, for example, the sense inventory 

might be the set of Bangla translations for a given English word; for speech synthesis, the inventory 

might be homographs pronounced differently, such as Bass or Bow [4]. 

 

There are two forms of the word sense disambiguation tasks: the lexical sample task and 

the all-words task. A set of target labels is chosen, along with a set of senses for each word from 

some lexical corpora. Supervised machine learning approaches are most used to handle lexical 

sample tasks because the set of words and the set of senses are not very large. Corpus instances 

can be selected and hand-labelled with the correct senses for each lexical word. Classifier systems 

and learning algorithms can then be trained with these tagged data. Early work in word sense 

disambiguation mainly focused on lexical sample tasks, building word-specific systems and 

algorithms for disambiguating single words [4].  

     On the other hand, the all-words task involves systems being given entire texts and a 

vocabulary with a set of senses for each example and are required to disambiguate every word in 

the given text. As a result, there is an occurrence of serious data sparseness problem due to the 
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large data sample and entries; there is likely to be adequate training data for every word in the test 

data set. Additionally, due to the number of polysemous words in large dictionaries and lexicons, 

supervised learning on training data is not always practical for all-words task [4].  

Work has been with unsupervised techniques for word sense disambiguation. Yarowsky, 

in his paper, Unsupervised Word Sense Disambiguation Rivaling Supervised Methods, presents an 

unsupervised algorithm that rivals supervised techniques; the algorithm follows two constraints, 

one sense per discourse and one sense per collocation [5]. 

In Yarowsky’s work, the one-sense-per-discourse hypothesis and model was tested on 

37,232 example sense. The applicability and accuracy of the test words were recorded and showed 

an average of 99.8% accuracy and 50.1% applicability. Therefore, Yarowsky claimed that the 

hypothesis does hold confidence to be exploited and used for sense tagging tasks [5]. 

Yarowsky presents that their algorithm works by harnessing effective and powerful properties and 

modelling a rich diversity of collocation relationship [5]. 

Yoong Keok Lee and Hwee Tou Ng, in their work present an evaluation of knowledge sources and 

look at corpus-based machine learning algorithms on word sense disambiguation on the 

SENSEVAL-1 and SENSEVAL-2 dataset [6].  

Therefore, it is safe to present that other learning algorithms, unsupervised methods and 

knowledge based techniques have significant and justified solutions to word sense disambiguation 

just like Neural network and supervised learning models do. It is important to acknowledge that 

the work presented using these different models are also effective and show promise in practicality.  
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2.2 Neural Networks 

Word Sense Disambiguation with Neural Language Models have been presented in 

previous works.  Yuan, Doherty, Richardson, Evans and Altendorf present, in their paper, different 

WSD algorithms to achieve state-of-the-art precision using neural network language models. The 

methods and models uses a set of word senses, a text corpus and a few example instances for each 

sense [7]. The classification for neural network model for their paper, is based on cosine similarity 

of vectors from labeled example instances and unlabeled text data for the senses. Using the 

WordNet and the New Oxford American Dictionary as sense inventory, there was significant 

performance results. They claim that the LSTM language model produced the best results [7]. 

Long-short term memory is a type of recurrent neural network model. The paper discussed the use 

of semi-supervised methods since obtaining large data is not easy. Vector representation of words 

and context was built using a neural network based language model (NNLM) and two NNLM were 

discussed [7].  

The CBOW computes a context vector from word contexts and then predicts a target sense while 

the LSTM is trained to predict held out words from a sentence [7]. 

Kågebäck and Salomonsson present a bidirectional long short-term memory network model to 

disambiguate word sense in their paper [2]. The bidirectional version of the LSTM takes into 

account two LSTMs in each state, one for words before and one for word after. The model consists 

of a softmax layer, hidden layer and a bi-directional LSTM. The bidirectional LSTM and hidden 

layer for all sense and type, share the parameters, while the softmax is parameterized by word type 

which decides the bias vector and weight matrix for each word type [2]. 
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The proposed BLSTM model by Kågebäck and Salomonsson performed better than previous state-

of-the-art score for the Senseval-2 dataset [2]. 

Work has also been done for word sense disambiguation using neural networks with refined 

concept co-occurrence information, which is automated and does not require hand coding large 

data, as presented by Chung, Kang, Moon, and Lee in their paper [8]. 

As described before, many word sense disambiguation is done using neural network with 

varying precision and efficiency. They are powerful models to use and their effectiveness on 

Bangla language processing will provide further insight of their practical usefulness on different 

languages. 

2.3 Supervised Machine Learning 

Lexical sample word sense disambiguation task is commonly done using supervised 

learning algorithms to detect the correct sense. Firstly, the classifier has to be built using the 

training dataset. Important and relevant features from the dataset needs to be extracted. Which 

features are chosen and how they are refined tend to differ based on different models and systems. 

Therefore, some pre-processing of the raw text data instances has to be done. A feature vector is 

built encoded as numerical values for corresponding lexical data. Collocational and Bag-of-words 

features are two types of feature classes. Collocational features hold information of the specific 

positions to the left and right of the target word [4].    

The collocational feature vector used for supervised word sense disambiguation, as 

described in [4], with a two word window to the left and to the right of the target word follows the 

following structure:  

[𝑤𝑜𝑟𝑑𝑖−2, 𝑃𝑂𝑆𝑖−2, 𝑤𝑜𝑟𝑑𝑖−1, 𝑃𝑂𝑆𝑖−1, 𝑤𝑜𝑟𝑑𝑖+1, 𝑃𝑂𝑆𝑖+1, 𝑤𝑜𝑟𝑑𝑖+2, 𝑃𝑂𝑆𝑖+2]. 
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This feature vector is fed into the supervised learning model with the corresponding 

labelled sense tag as a unit of training data. The algorithm or model then decides the correct sense 

when fed with a test data of context sentences. The output is then compared with the test sense 

label to determine the accuracy score of the model. Many models and algorithms have been 

implemented, including decision lists, decision trees, Naïve Bayes, Exemplar based learning, 

support vector machines, Ensemble methods and many semi-supervised methods [1].  
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CHAPTER 3 

Experimental Setup 

For initial experiment evaluation the following tool kits and libraries were used: CUDA 

7.5 toolkit, NLTK, Tensorflow, scikit-learn and Anaconda.  

The experiments were setup on a personal computer with the following hardware and system 

configuration:  

Operating System: Linux Ubuntu 16.04 

CPU: Intel Core i5 650 @3.20 GHz 

RAM: 4GB 

GPU: Nvidia GT740 
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3.1 CUDA Toolkit: 

Presented as new features in [9] for CUDA toolkit 7.5, compared to previous iterations of 
CUDA toolkit version, the following were introduced: 

16-bit floating point (FP16) data format  

 Store up to 2x larger datasets in GPU memory 

 Reduce memory bandwidth requirements by up to 2x 

 New mixed precision cublasSgemmEX() routine supports 2x larger matrices 

New cuSPARSE GEMVI routines  

 Optimized dense matrix x sparse vector routines - ideal for Natural Language Processing 

Instruction-level profiling helps pinpoint performance bottlenecks  

 Quickly identify the specific lines of source code limiting the performance of GPU code 

 Apply advanced performance optimizations more easily 

 

NVIDIA GPU accelerated CUDA compute platform provides acceleration across many 

different domains and fields including Bioinformatics, Computational chemistry, computational 

fluid dynamics, computational structural mechanics, Data science, Defense, Electronic Design 

automation, Computational finance and many more [10]. 

Deep learning and neural networks are relatively new software models where billions of 

software-neurons and connections are built and trained, in parallel instead of sequentially. Running 

deep neural network algorithms and learning from examples, the computer is essentially writing 

its own software and GPU’s are ideal for such parallel computation [11]. 
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Therefore, since the word sense disambiguation lexical sample task is done using neural network, 

the CUDA toolkit greatly accelerated the training speed of the dataset and allowed a faster query 

and test response. GPU accelerated process greatly improved the efficiency of the system. 

3.2 Tensorflow: 

As stated in the official website and documentation, “TensorFlow is an open source 

software library for numerical computation. Nodes in the graph represent mathematical operations, 

while the graph edges represent the multidimensional data arrays (tensors) communicated between 

them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs 

in a desktop, server, or mobile device with a single API” [12].  

TensorFlow was originally developed by researchers and engineers working on the Google 

Brain Team within Google's Machine Intelligence research organization for the purposes of 

conducting machine learning and deep neural networks research, but the system is general enough 

to be applicable in a wide variety of other domains as well [12]. 

TensorFlow provides the necessary library while keeping many complex implementations 

hidden, and thus does not require re-writing code by hand. Tensorflow was used to allow faster 

deployment of the system and to evaluate the complex model used for word sense disambiguation. 
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3.3 Scikit-learn:  

Scikit-learn is an open source package of efficient tools for data mining, machine learning 

and data analysis. It is built on NumPy, SciPy, and matplotlib [13]. Scikit-learn python module 

made it easy to implement the machine learning techniques and to easily evaluate results greatly 

facilitating the initial experiments which was coded using the python programming language. 

NLTK for python was used to import and read the SENSEVAL -2 dataset.  

3.4 Dataset:  

For English, the SENSEVAL - 2 Lexical Sample dataset were used for initial experiments. 

For Bangla, a small hand labelled set of lexical sample examples were used for the initial 

experiment evaluation of the word sense disambiguation models. 

 

3.5 Algorithm and Model: 

Nearest Neighbors classification: 

The nearest neighbors classification model is described on the scikit-learn website: 

“Neighbors-based classification is a type of instance-based learning or non-generalizing learning: 

it does not attempt to construct a general internal model, but simply stores instances of the training 

data. Classification is computed from a simple majority vote of the nearest neighbors of each point: 

a query point is assigned the data class which has the most representatives within the nearest 

neighbors of the point.” [13] [14]. 
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In general, a larger valued k suppresses noise, but makes the classification boundaries less 

distinct. The best choice of the value k is dependent on the data used. [14]. 

“The basic nearest neighbors classification uses uniform weights: that is, the value assigned to a 

query point is computed from a simple majority vote of the nearest neighbors. Under some 

circumstances, it is better to weight the neighbors such that nearer neighbors contribute more to 

the fit. This can be accomplished through the weights keyword. The default value, weights = 

'uniform', assigns uniform weights to each neighbor. weights = 'distance' assigns weights 

proportional to the inverse of the distance from the query point. Alternatively, a user-defined 

function of the distance can be supplied which is used to compute the weights” [13], [14]. 

 

FIGURE 1 CLASS CLASSIFICATION WITH NEAREST NEIGHBORS 

 

As described in the scikit-learn website, the optimal choice of algorithm, given a dataset, is 

complicated, and depends on a number of factors [14]: 

 Number of samples N (i.e. n_samples) and dimensionality D (i.e. n_features). 

o Brute force query time grows as O[D N] 

o Ball tree query time grows as approximately O[D \log(N)] 



22 
 

o KD tree query time changes with D in a way that is difficult to precisely 

characterize. For small D (less than 20 or so) the cost is approximately O[D\log(N)], 

and the KD tree query can be very efficient. For larger D, the cost increases to 

nearly O[DN], and the overhead due to the tree structure can lead to queries which 

are slower than brute force. [14] 

 Data structure: intrinsic dimensionality of the data and/or sparsity of the data. Intrinsic 

dimensionality refers to the dimension d \le D of a manifold on which the data lies, which 

can be linearly or non-linearly embedded in the parameter space. Sparsity refers to the 

degree to which the data fills the parameter space (this is to be distinguished from the 

concept as used in “sparse” matrices. The data matrix may have no zero entries, but the 

structure can still be “sparse” in this sense). 

o Brute force query time is unchanged by data structure. 

o Ball tree and KD tree query times can be greatly influenced by data structure. [14] 

 

 Number of neighbors k requested for a query point. 

o Brute force query time is largely unaffected by the value of k 

o Ball tree and KD tree query time will become slower as k increases. This is due to 

two effects: first, a larger k leads to the necessity to search a larger portion of the 

parameter space. Second, using k > 1 requires internal queueing of results as the 

tree is traversed. 

 Number of query points. Both the ball tree and the KD Tree require a construction phase. 

The cost of this construction becomes negligible when amortized over many queries. If 

only a small number of queries will be performed, however, the construction can make up 
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FIGURE 2 WSD MODEL USING NEURAL NETWORK 

a significant fraction of the total cost. If very few query points will be required, brute force 

is better than a tree-based method. [14] 

 

“Currently, algorithm = 'auto' selects 'kd_tree' if k < N/2 and the 'effective_metric_' is in the 

'VALID_METRICS' list of 'kd_tree'. It selects 'ball_tree' if k < N/2 and the 'effective_metric_' is 

not in the 'VALID_METRICS' list of 'kd_tree'. It selects 'brute' if k >= N/2. This choice is based 

on the assumption that the number of query points is at least the same order as the number of 

training points, and that leaf_size is close to its default value of 30” as stated in [13], [14]. 

 

 

Neural Network Classifier: 

 

 

 

 

 

 

 

 

 

 

 

 

 

বাাংলা 

 Toy 
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The Neural network classifier is initialized and formed upon the input training data which 

is refined through pre-processing. The collocational feature vector is formed from the words at 

different positions and the parts-of-speech tag of those words. This collocation vector is then fed 

into the neural network as a numerical matrix representation. The neural network calculates 

weights for links and computes activation value in each neuron or unit. 

Each unit in the neural network usually does two major computation components:  

1) A linear calculation on the summation of incoming activation values 𝑎𝑗  and the weights on the 

links  𝑊𝑗,𝑖. 

2) Another non-linear activation function, g, computation.  

𝑖𝑛𝑖 =  ∑ 𝑊𝑗,𝑖𝑎𝑗  

𝑗

=  𝑊𝑖 . 𝑎𝑖 

𝑊𝑗,𝑖 Weight on the link from unity to unit i 
𝑎𝑗 Activation value of unit i (also the output of the unit) 
𝑖𝑛𝑖 Weighted sum of inputs to unit  

  

𝑎𝑖  ← 𝑔(𝑖𝑛𝑖) ← 𝑔 (∑ 𝑊𝑗,𝑖𝑎𝑗  

𝑗

) 

 
𝑎𝑗                               

                                𝑊𝑗,𝑖                                   
                                                                 

 

 

 

 

𝑎𝑖  ← 𝑔(𝑖𝑛𝑖) 

Input Function | Activation Function | Output 

Input Links Output Links 
∑ 𝑊𝑗,𝑖𝑎𝑗   

𝑗

 𝑎𝑖  𝑔 
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As stated by [15], it is important to note that if the selected network is too large, it will be able to 

memorize all the examples by building a large lookup table. However, it will not generalize well 

to inputs that have not been seen before. Like all statistical models, neural networks are subject to 

overfitting when there are too many parameters (i.e., weights) in the model [15]. 

 

 

 

 

3.7 Hardware Specification:  

CPU: 

Processor: 

Name Intel Core i5 650 
Max TDP 73.0 W 
Package Socket 1156 LGA 
Technology 32 nm 
Core voltage 0.912 V ~ 0.95 V 
Family 6 
Ext. Family 6 
Model 5 
Ext. Model 25 
Stepping 2 
Revision C2 

TABLE 1: PROCESSOR SPECIFICATION 
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Clocks (Core #0): 

Core Speed 3.20 GHz (max) 
Bus Speed 133.34 MHz 
QPI Link 3200.11 MHz 
  

TABLE 2: PROCESSOR CLOCK 
 

 

 

Caches: 

L1 Data Cache 
Size 32 Kbytes x 2 

Descriptor 8-way set associative 64-byte line size 
 

L1 Instruction Cache 
Size 32 Kbytes x 2 

Descriptor 4-way set associative 64-byte line size 
 

L2 Cache 
Size 256 Kbytes x 2 

Descriptor 8-way set associative 64-byte line size 
 

L3 Cache 
Size 4 Mbytes  

Descriptor 16-way set associative 64-byte line size 
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Memory: 

------------------------------------------------------------------------- 

Memory Type    DDR3 

Memory Size    4 Gigabytes 

Channels     Dual, (Symmetric) 

Memory Frequency   666.7 MHz (4:20) 

CAS# latency (CL)   9.0 

RAS# to CAS# delay (tRCD)  9 

RAS# Precharge (tRP)   9 

Cycle Time (tRAS)   24 

Row Refresh Cycle Time (tRFC) 74 

Command Rate (CR)   1T 

Uncore Frequency    2400.1 MHz 

 

Chipset: 

------------------------------------------------------------------------- 

Northbridge   Intel Havendale/Clarkdale Host Bridge rev. 12 

Southbridge   Intel H55 rev. 06 

Graphic Interface  PCI-Express 

PCI-E Link Width  x4 

PCI-E Max Link Width x16 
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GPU: 

Name NVIDIA GeForce GT 740 
Revision A2 

GPU Engine Specification: 

CUDA cores 384 
Base Clock (MHz) 993 
  

TABLE 3.1: GPU ENGINE SPECIFICATION 

GPU Memory Specification: 

Memory Clock 1.8 Gbps 
Standard Memory Configuration 2048 MB 
Memory Interface DDR3 
Memory Interface Width 128-bit 
Memory Bandwidth (GB/sec) 28.8 

TABLE 4: GPU MEMORY SPECIFICATION 

GT 740 Feature Support: 

Microsoft DirectX 12 API 
OpenGL 4.4 
Bus Support PCI Express 3.0 
Supported Technologies 3D Vision, DirectX 12, TXAA, FXAA 
PhysX Yes 
NVIDIA surround Yes 
Adaptive VSync Yes 
3d Vision Ready Yes 

TABLE 5: GPU FEATURE SUPPORT 
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Display Support: 

Multi Monitor 3 Displays 
Maximum Digital Resolution 3840x2160* 

4096x2160 
Maximum VGA Resolution 2048x1536 
HDCP Yes 
HDMI Yes 
Standard Display Connectors Dual Link DVI-I, Dual Link DVI-D, 

mini HDMI 
Audio Input for HDMI Internal 

*3840x2160 at 30Hz or 4096x2160 at 24Hz supported over HDMI. 3840x2160 at 
60Hz supported over Display Port. 

TABLE 6:  GPU DISPLAY SUPPORT 

Graphics Card Dimensions: 

Height 4.38 inches 
Length 5.7 inches 
Width Dual Width 

TABLE 7: GRAPHICS CARD DIMENSIONS 

 

Thermal and Power Specification: 

Maximum GPU Temperature (in C) 98 
Graphics Card Power (W) 64 
Minimum Recommended System 
Power(W) 

400 

TABLE 8: THERMAL AND POWER SPECIFICATION 

 

 

  



30 
 

CHAPTER 4 

Experimental Result Analysis 

 

Senseval – 2 Data set output result Using K-Near Neighbors: 

Sense Words Average Accuracy Score (%) 
“Interest” 73.81 
…………….. ……………… 
“Serve” 82.64 

TABLE 9: ACCURACY OF KNN ON SENSEVAL 2 

Total Average Accuracy Score 78.23 % 
 

Senseval – 2 Data set output result Using Deep Neural Network Classifier: 

Sense Words Average Accuracy Score (%) 
“Interest” 53.8 
…………….. ……………… 
“Serve” 54.3 

TABLE 10: ACCURACY OF DNNC ON SENSEVAL 2 

Total Average Accuracy Score  54.05% 
 

 

Hand-labelled Bangla dataset output result: 

Sense Words Average Accuracy Score (%) 
“কাল” 63.4% 
“উত্তর” 77.3% 
“ফল” 84.3% 

TABLE 11: ACCURACY ON BANGLA DATASET 

Total Average Accuracy Score 75% 
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Comparison of ‘Serve.pos’ sense output values (Prediction versus Y_test): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of ‘Interest.pos’ sense output values (Prediction versus Y_test):  

FIGURE 4 COMPARISON OF ‘INTEREST.POS’ SENSE OUTPUT VALUES 

FIGURE 3 COMPARISON OF ‘SERVE.POS’ SENSE OUTPUT VALUES 
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After running and training the system on the training data, the built classifier was used to 

predict sense label for the input feature vectors of new test data and the results were recorded.  

 

        The neural network classifier was initialized and fitted with 4 hidden layers with 100,70,40,30 

neurons on each layer respectively and on test had an accuracy score of 52.3% on initial experiment 

on the senseval-2 English lexical sample dataset split into training and testing data.  

However, fitting the training data on a 3-layer neural network with 10, 60 and 10 neurons on each 

layer had a better accuracy score of 54.2% on initial experiment. Iterative steps to train the model 

beyond 200 did not make significant difference to the output classification result. A possible 

explanation for this difference might be over fitting, however further analysis and iterations on 

more different dataset and feature vector is necessary to pinpoint the factors causing this. 

 

        For, the K Near Neighbors algorithm classifier, a better accuracy score on average was 

achieved. The classifier was able to even hit 82% for one of the sense instances for the senseval-2 

data. A large variance was still present in output result for different sense context words. However, 

a satisfactory result was still reached.  

The hand-labelled sense Bangla dataset had a decent accuracy score on initial experiments. 

However, a further analysis and experiments on large standard sense-tagged data are necessary to 

make any significant claims on the models’ accuracy in disambiguating Bangla word senses for 

lexical sample tasks.  With more improvements, there is very good potential and possibility for 

these models to be effective on Bangla language. 

   

  



33 
 

 

CHAPTER 5 

Conclusion and Future Work 

 

5.1 Conclusion 

This thesis presented and discussed the effectiveness of word sense disambiguation using 

supervised learning and a deep neural network classifier on both English and Bangla data. After 

collecting the SENSEVAL 2 lexical sample data set and applying the individual models, it was 

evident that the K near neighbors supervised classifier performed with satisfactory results. The 

accuracy score turned out to be much better than anticipated. On the other hand, the Neural network 

classifier still has room for improvement. The neural network classifier had significant noise and 

major variance in accuracy. The neural network implementation requires even further experiments 

and tweaking in terms of layers, pre-processing and neuron unit count. In both models, the English 

dataset resulted in more standard and accurate results, since the dataset used, SENSEVAL 2, was 

a large and standard one. However, the Bangla dataset results are yet to be more accurate, since 

the data were hand labelled and was relatively small. A larger dataset of Bangla sense tagged data 

would work even better and would result in a better accuracy score. In general, both the systems 

were able to perform fairly efficiently and effectively with very fast response time. The systems 

and implementations presented in this thesis definitely hold practical value in natural language 

processing and with more experiments, better results can be achieved in the future.     
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5.2 Future Works: 

There were limitations in analyzing the word sense disambiguation models on Bangla 

language due to the lack of sense tagged resources. In the future, I would like to further investigate 

and improve the systems on Bangla using a larger dataset and perhaps newer models. Additionally, 

I would like to improve the deep learning system and implement it with speech to build a stable 

and efficient intelligent system that can have a fluid and clear conversation with a human in 

multiple languages.   
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