
Comparative Analysis between
Inception-v3 and Other Learning
Systems using Facial Expressions

Detection

By

MD. RAYED BIN WAHED
16141024

AKM NIVRITO
12201020

Department of Computer Science & Engineering
BRAC UNIVERSITY

Supervised by: AMITABHA CHAKRABARTY
Co-supervised by: MOIN MOSTAKIM

Thesis report submitted to the BRAC University in accor-
dance with the requirements of the degree of BACHELOR IN

COMPUTER SCIENCE AND ENGINEERING in the Dept. of En-
gineering & Computer Science.

Submitted On:
18TH AUGUST, 2016

ABSTRACT

In the last five years or so, Machine Learning has taken the world by storm. From predictive
web browsing, to E-mail classification, to autonomous cars; machine learning is at the heart
of every intelligent applications that’s in service today. Image Classification and Facial

Expression Recognition is another field that has benefited immensely from the emergence of
this technology. In particular, an branch of Machine Learning called Deep Learning, has shown
tremendous results in this regard even outperforming more conventional methods such as Image
Processing. Inspired by neurons in the human brain, Artificial Neural Networks, allow us to map
complex functions by stacking layers upon layers of these networks. Our goal in this paper, is to
analyze Inception v-3, the best performing high resolution image classifier based on Convolutional
Neural Network out there today, with other methods including one of our own to see how it
performs on low resolution images detect Facial Expressions.

i

DEDICATION AND ACKNOWLEDGEMENTS

The first persons that come to our minds are our honorable Supervisor and Co-Supervisor
Dr. Amitabha Chakrabarty and Moin Mostakim respectively for their continuous support
and dedication toward our work. They really helped us through this journey of gathering

knowledge which we immensely enjoyed.
Secondly, this work would not have been possible if not for the tremendous love and support

we received from our family and friends, it certainly would have been a tough ride if there
supports were not present.

In particular, I, Md. Rayed Bin Wahed, would like to dedicate this work to my friend and
admiration, Salma Maliha Mou and a special heartfelt thanks to Kevin Markham of dataschool.io
for his video lectures on preparing me for this task.

And I, A.K.M Nivrito, would like to dedicate this to the people who have been supporting
me through all the moments of doubts and sleepless nights- Rupa Barua, Shauvik Shadman,
Talha Siddique, Sadia Intesar, Shakil Bin Karim and Mahrin Tasfe. And a special thanks to Ian
Goodfellow, Yoshua Bengio and Aaron Courville for letting their knowledge be available for us to
grab.

And finally, we would like to acknowledge that as a team it had been a joy to learn and grow
together. We worked together, we kept each other going and certainly we pulled each other up
with covering each others shortcomings. We are certainly stronger and better working together.

iii

AUTHOR’S DECLARATION

We, hereby declare that this thesis is based on the results found by ourselves. Ma-
terials of work found by other researcher are mentioned by reference. This thesis,
neither in whole or in part, has been previously submitted for any degree.

SIGNATURE OF THE AUTHORS:

.......................................
AKM NIVRITO

12201020

.......................................
MD. RAYED BIN WAHED

16141024

SIGNATURE OF THE SUPERVISOR:

.......................................
DR. AMITABHA CHAKRABARTY

ASSISTANT PROFESSOR

DEPT. OF COMPUTER SCIENCE, BRAC UNIVERSITY

SIGNATURE OF THE CO-SUPERVISOR:

.......................................
MOIN MOSTAKIM

LECTURER

DEPT. OF COMPUTER SCIENCE, BRAC UNIVERSITY

v

TABLE OF CONTENTS

Page

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 2

2 Literature Review 3
2.1 Inception: Overview . 5

2.2 Previous Comparative Analysis . 5

2.3 Learning Models . 6

2.3.1 Shallow Learning Models . 6

2.3.1.1 Support Vector Machine . 6

2.3.1.2 Artificial Neural Network . 7

2.3.2 Deep Learning . 9

2.3.2.1 Convolutional Neural Network . 9

2.4 Inception-v3 . 10

2.4.1 Background and Motivation . 10

2.4.2 Structure . 12

2.4.3 Softmax Layer . 13

3 Work and Analysis 15
3.1 Dataset . 15

3.1.1 Collection . 15

3.1.2 Extraction . 16

3.1.3 Processing . 17

3.2 Processing using Inception-v3 . 17

3.2.1 Bottlenecks . 17

3.2.2 Training . 17

vi

TABLE OF CONTENTS

3.2.2.1 First Training with Inception-v3 . 18

3.2.2.2 Result and Analysis after First Training 18

3.2.2.3 Second Training with Inception-v3 19

3.2.2.4 Result and Analysis after Second Training 19

3.2.2.5 Comparison with the Base Paper 20

3.3 Our Simple CNN . 20

3.3.1 Motivation . 20

3.3.2 Structure . 21

3.4 Processing data using our CNN . 21

3.4.1 Comparison with Simple CNN . 23

3.5 Limitations . 24

3.5.1 Ambiguity in the Dataset . 24

3.5.2 Less Computational Resource . 25

3.5.3 Requirements of Advanced Knowledge . 25

4 Conclusion 27
4.1 Future Scope . 27

4.2 Conclusion . 27

A Appendix A 29
A.1 Gaussian Distribution . 29

A.2 CNN in CIFAR-10 and CIFAR-100 . 29

A.3 Eigenfaces . 29

A.4 Gabor Filters . 29

B Appendix B 31

Bibliography 33

vii

LIST OF TABLES

TABLE Page

3.1 Data Labels Distribution in the Datasets . 15

3.2 Confusion Matrix of Test Set Evaluation after the First Training 18

3.3 Confusion Matrix of Test Set Evaluation after the Second Training 19

viii

LIST OF FIGURES

FIGURE Page

2.1 Visual representation of the system developed by Lawrence et al.[20] It is noticeable

that the final layer of CNN in their approach adopts to different classifiers. 4

2.2 Full architecture of CNN by Kirzhevsky et al.[19] . 4

2.3 A simple visualization showing different layers of ANN connecting through neurons[6].

The arrow directions denote that it is a feedforward network. 8

2.4 Layer structure of simple Convolutional Neural Network. Image taken from [8] . 11

2.5 Inception Layer Structure . 12

2.6 Inception-v3 complete architecture. Figure recreated from [4]. 13

2.7 Visual Representation of Softmax Regression. Image from [3]. 14

2.8 The visualization from 2.7 can be transformed into above representation showing

Probability Matrix in Softmax. Image from [3]. 14

3.1 Original representation of data. 16

3.2 Sample of the dataset . 16

3.3 Faulty data in the dataset. 19

3.4 Error Percentages between Models . 20

3.5 Simplified visual representation of our CNN implementation 22

3.6 Cross Entropy Graph . 23

3.7 Comparison with Inception-v3 and our CNN . 24

3.8 Ambuiguity of Data . 25

ix

C
H

A
P

T
E

R

1
INTRODUCTION

In this era of computation, we can observe major improvements of computational resources.

But still such resources bring limitations of their own. Overcoming such limitation is the

major improvement scopes that various research and studies are focusing on. Retrieving

information from images is one of the applications of computer science that requires a lot

computational resources to perform well. It is also a domain that has multiple practical application

scopes, major being behavioral analysis, natural language processing, and biometrics analysis. In

the motivation to overcome the computational resource uses limitation, a convolutional neural

network architecture named Inception has been introduced which not only focuses on reducing

computational costs without hampering accuracy but also has a clever design so that expanding

or modifying the architecture does not take toll on computational resources [27][28]. One of the

important field where can image classifiers models can be applied is facial expression recognition.

In this paper we try to use Inception to detect facial expression on low resolution greyscale images

and compare it with other models on the same criterion.

1.1 Motivation

Machine Learning has generated a great impact on how information are retrieved from visual

data. Recent development on that area has shown some increasingly accurate and optimised

performance. Specially after the involvement of deep learning, the metrics has shown impressive

improvements. The application of such image classifiers is vast. And with the help of recent

improvements in processing powers, the domain of application is expanding fast. The recently

introduced architecture, Inception shows promise on improved accuracy as well as optimized

use of computational resources. In this paper we are putting up a comparative analysis of image

1

CHAPTER 1. INTRODUCTION

classifier models on how well they can perform on recognizing facial expression on low resolution

greyscale images, especially how well the Inception architecture stands among the others.

1.2 Objectives

The main objectives of our thesis is to find out if Inception holds on to the promises it makes -

better accuracy on the expense of lower computational resources. So we look into generate facial

expression recognition on low resolution images and compare and contrast it with other learning

models. SO that we can reach a conclusion if the Inception architecture can really be deployed

on the application domains where less computational power can be used to achieve high level of

image processing.

Report Outline

• Chapter 1 is the formal introduction to our report.

• Chapter 2 is the literature review. There we also introduce the learning models involved

in the comparison that has been implemented in the base paper. And give an introduction

to Inception-v3.

• Chapter 3 consists of our work. We also discuss about the result and the analysis.

• Chapter 4 is the conclusion to our report.

2

C
H

A
P

T
E

R

2
LITERATURE REVIEW

Facial Recognition using deep learning, or more specifically, Convolutional Neural Network

is not a very recent topic. One of the earlier research on facial recognition using CNN can

be cited to the works of Lawrence et al.[20], where they have developed a convolutional

model based on the preceding successes of CNN on recognizing handwritten characters[22].

They also discussed about the other face recognition systems like the scheme by Turk et al.[29]

popularly known as Eigenfaces, and hierarchical neural nets. However, in their approach the

used SOM (Self Organizing Map) while improving it using Luttrel’s method[24] to cut down

computational cost. Also eigenvector expansion via Principle Component Analysis has been

done[20].

Since then improvements in hardware have boosted machine learning systems. The introduc-

tion of the Convolutional Neural Network or CNN approach also has been a major improvement

on the image classifier models. One of the standard CNN models on application was the approach

by LeCun et al.[22] in the LeNet-5 system. Such standard CNN models are structured using

multiple layers of neurons where in a layer the neurons form groups based on the feature they

work on and these groups feed forward to the next layer, and at the end it connects with a fully

connected layer [1]. The layers are in many cases accompanied with max pooling [27]. It had es-

tablished itself as the most efficient model giving the best result on image classification problems.

However, Krizhevsky et al.[19] with their CNN approach where they have used dropout and data

augmentation to solve the problem of overfitting, showed a huge amount of accuracy and efficiency

in results in ILSVRC 2012 surpassing anything that ever been used before [19]. Krizhevsky et al.

developed a deep convolutional network1 using RelU2 as their activation function.

In 2014, Donahue et al.[12] released an open source implementation of Deep Convolutional

1See 2.3.2.1.
2See equation 2.8.

3

CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Visual representation of the system developed by Lawrence et al.[20] It is noticeable
that the final layer of CNN in their approach adopts to different classifiers.

Figure 2.2: Full architecture of CNN by Kirzhevsky et al.[19]

Activation Features named DeCaf. Their work was directed to train a CNN using the network

Krizhevsky et al.[19] proposed, and then show that such activation features outperforms the

conventional visual representations on object recognition tasks, like Caltech-101[13].

Integrating DeCaf, Ouellet[25] had implemented an application of CNN through the use of

emotion detection for gaming. However the real time service implementation required use of a

huge processing power on a AMD Phenom II X4 955 GPU.

4

2.1. INCEPTION: OVERVIEW

2.1 Inception: Overview

The approach we are concerning in our thesis, Inception, was developed based on GoogLeNet

architecture seen in ILSVRC 20143 [27]. It also took inspiration from the approach based on

primate visual cortex dictated by Serre et al. [26] which can handle multiple scales. One of

the important criteria of Inception architecture is their adaption of "Network in Network"

approach by Lin et al [23] which increased the representational power of the neural networks.

This had additionally saved them for computational bottlenecks by dimension reduction to 1×1

convolutions.

The purpose of Inception architecture was to reduce computational resource usage in highly

accurate image classification using deep learning[27]. They had focused on finding an optimized

position between the traditional way of increasing performance, which is to increase size and

depth, and using sparsity in the layers based on the theoretical grounds given by Arora et al.

[7]. Both the approach in their own position can cost a huge amount of computational resources.

For such a deep learning system like Inception which uses fully learned filters in their 22 layer

architecture, this was the main goal to achieve. They focused on the approach of Arora et al.[7] to

generate a correlation statistic analysis to generate groups of higher correlation to feed forward

to the next layer. And they took the idea of multiscale analysis of visual information in their 1×1

, 3×3 and 5×5 convolution layers. All of these layers then go through dimension reduction to

end up in 1×1 convolutions [27].

The Inception architecture used in ILSVRC 2014 had the following structure as denoted by

Szegedy et al.[27]:

• An average pooling layer with 5×5 filter size and stride 3.

• A 1×1 layer with 128 filters for dimension reduction and rectified linear activation.

• A fully connected layer with 1024 units and rectified linear activation.

• A dropout layer with 70% ratio of dropped outputs.

We discuss further about Inception Architecture and CNN in our upcoming sections.

2.2 Previous Comparative Analysis

A comparative analysis of prior image processing techniques using machine learning has been

done by Chudasama et al.[11] which has denoted a comparison of efficiency of machine learning

models on facial expression detection. In our work, it has been taken as the base of comparison,

where we look forward to add the analysis of Inception architecture on same objective on the

same dataset. In their paper, Chudasama et al.[11] two shallow learning models and one deep

3ImageNet Large Scale Visual Recognition Competition.

5

CHAPTER 2. LITERATURE REVIEW

learning models. One of the shallow learning models was a Support Vector Machine on a single

layer learning approach by Knerr et al.[17] The other one was a shallow neural network on

Theano[9]. The deep learning model that was implemented was based on the approach by LeCun

et al.[21] and Krizhevsky et al.[19] After the analysis they have found out that the convolution

neural network approach of Krizhevsky et al. [19] outperformed others by a big measure.

2.3 Learning Models

As previously mentioned, our work takes the work done by Chudasama et al.[11] where they have

implemented two shallow learning models and one deep learning model for the purpose of

comparison. In this section we will discuss about the implemented models and how they work

for further clarification. As we added our work result with the comparison of these models, it is

crucial to understand how these model works to infer a better conclusion about our comparative

analysis.

2.3.1 Shallow Learning Models

2.3.1.1 Support Vector Machine

Support Vector Machine or SVM is a supervised learning model which generates hyperplanes

to generate class identities. SVM is driven by a linear function w>x+b. Here w is the vector of

weights, x is the vector of inputs and b is the bias. Now as many machine learning algorithms can

be written in terms if the dot products between example, the previous function can be rewritten

as [8]:

(2.1) w>x+b = b+
m∑

i=1
αix>x(i)

Here, x(i) is a training example and α is a vector of coefficients. Now if we change the x
with the function φ(x) and the dot products with a kernel, k(x,x(i)) = φ(x) ·φ(x(i)), we get our

prediction function:

(2.2) f (x)= b+ ∑
i=1

αik(x,x(i))

This kernel can be changed and one of the most common kernel is the Gaussian kernel or

Radial Basis Function:

(2.3) k(u,v)=N (u−v;0,σ2I)

6

2.3. LEARNING MODELS

Where N (u−v;0,σ2I) is a Gaussian Distribution4. It acts as a template matching, for

example, a given training example x becomes a template for class y, and when a test point

x′ approaches x according to Euclidean distance, the Gaussian kernel gives a large positive

response.

Our base paper has comparison of SVM implemented based on "one on one" approach by

Knerr et al.[17]

2.3.1.2 Artificial Neural Network

Artificial Neural Network or ANN are learning models inspired by the biological system

of learning and classification. If we simplify the definition, an ANN works on multiple layers

connected through neurons:

• Input Layer: Where the data is given as inputs.

• Hidden Layer: The input then passed through the neurons based on activation func-
tions.

• Output Layer: The outputs are generated here.

4See equation A.1 in Appendix A.

7

CHAPTER 2. LITERATURE REVIEW

Visually we can represent a simple ANN as following figure:

Output

Hidden

Input

Figure 2.3: A simple visualization showing different layers of ANN connecting through neurons[6].
The arrow directions denote that it is a feedforward network.

While discussing about ANN, it is very important to discuss about two functions: basis
function and activation function. Basis functions are the functions that processes the

inputs that go into the hidden layers. So for a shallow ANN the way outputs are generated can

be described in following function [10]:

(2.4) y(x,w)= f

(
M∑
j=1

w jΦ j(x)

)

Here, this f (·) is replaced by the nonlinear activation function, and Φ j(x) is the basis
function which gets adjusted with the coefficient w j supplied through the vector (w).

The activation function is the function that activates the neurons to push the inputs

forward to the next layer. Generally, this activation function can be any nonlinear sigmoidal

function. A general activation function is the logistic sigmoid function:

(2.5) σ(a)= 1
1+ e−a

For multi-class problems, softmax activation is used in place of equation 2.5:

(2.6) softmax(x)i = exp(xi)∑
j exp(x j)

8

2.3. LEARNING MODELS

Other notable activation functions are:

The hyperbolic tan function :

(2.7) f (x)= tanh(x)= 2
1+ e−2x −1

The Rectified Linear Units or RelU :

(2.8) f (x)=
0 for x < 0

x for x ≥ 0

The Exponential Linear Units of ELU :

(2.9) f (x)=
α(ex −1) for x < 0

x for x ≥ 0

Our concerned base reference has implemented an ANN with 3723 neurons, based on hyper-
bolic tan function for activation.

2.3.2 Deep Learning

Deep Learning Networks are feedforward neural networks with multiple layers. It is also

known as Multilayer Perceptrons or MLPs. General feedforward deep learning networks do

not include feedback. There are deep networks with feedback systems called recurrent neural
network or RNN.

2.3.2.1 Convolutional Neural Network

Convolutional Neural Networks or CNN are a special kind of deep artificial neural networks

using Convolution operation in least one of the layers. CNN is useful to process data with grid

like topology. CNN has been outstanding in image classification in challenges like CIFAR and

ImageNet5.

To understand convolution operation, lets take the following example. Imagine a car is

moving and we are tracking it with a sensor. x(t) gives the position of the car at t time. x and

t, both are real valued, but our sensor receives a noisy value. SO we decide to smooth it out by

averaging the several measurement we get. But the most recent values will have most importance,

so we will have to do a weighted average by a weight function w(a) where a is the age. Now if we

do that to the value for every t we will get a smoothing function s, which is[8]:

5See A.2 Appendix A.

9

CHAPTER 2. LITERATURE REVIEW

(2.10) s(t)=
∫

x(a)w(t−a)da

This smoothing function is called convolution operation. It is generally denoted with asterisk

(∗). So we can write equation 2.10 as:

(2.11) s(t)= (x∗w)(t)

In CNN, x is referred as input, w is referred as kernel, and the output is referred as feature
map.

CNN, can generate Sparse Connectivity reducing the cost of matrix computation. For

example, even if an image has a lot of pixels, the kernel can occupy a very small number of

pixels. Also, it can have tied input, where any weight for an input can be tied with other weight

on the network. So less parameters are generated.

The convolution layer, where convolution operation happens, is followed by a detection
or activation layer which similar to the regular ANN acts as the activator to the neuron

connections. The next layer is called the pooling layer. Pooling is actually replaces the output

with a summary statistic from the near outputs[8]. One of the most popular method is max
pooling, primarily suggested by Zhou et al.[30]. In laymen terms, max pooling given a matrix

or a portion of a matrix, picks out the maximum value.

Occasionally, a dropout layer follows. Dropout is done to avoid over-fitting. At training

each node is either dropped out based on the probability 1− p or kept based on the probability p,

where the value p is set during creating the CNN structure. Thus a reduced network is created,

optimizing the computational load and preventing the chances of overfitting.

The base paper has comparison based on an implementation of CNN loosely based on the

works of Krizhevsky et al.[19].

2.4 Inception-v3

Our main motivation is to focus on Inception-v3 architecture, and do a comparative analysis

on accuracy. We have already introduced it in section 2.1. In this section we would look further

on the Inception-v3 architecture. We will start with discussing the background and motivation,

followed by it’s structure. And at the end we would introduce the layer that we are basically

retraining with data.

2.4.1 Background and Motivation

As discussed before in chapter 2, Inception arrived based on the GoogleNet in ILSVRC 2014 [27].

We also have talked about how CNN can use less amount of computation in section 2.3.2.1. Now

10

2.4. INCEPTION-V3

Figure 2.4: Layer structure of simple Convolutional Neural Network. Image taken from [8]

Inception had started as a hypothetical study of approximating a sparse structure in the network.

All the motivation was to acquire a good number accuracy with out strainning too much on the

computational budget. One of the key thing was generating sparse structure increasing both

the depth and width of the network is less costly with computation process. But computation of

non-uniform sparse data structure is not much efficient in the current context. So the Inception

architecture hypothesized clustering the similar sparse nodes into a dense structure, to overcome

the dilemma.

11

CHAPTER 2. LITERATURE REVIEW

2.4.2 Structure

(a)

(b)

FIGURE 2.5. (a) Original Inception module structure. Figure reproduced from [27].
(b)Inception module with expanded filter banks. This is used on coarsest grids
(8×8) to increase high level representation. Figure reproduced from [28].

12

2.4. INCEPTION-V3

Figure 2.6: Inception-v3 complete architecture. Figure recreated from [4].

2.4.3 Softmax Layer

In our approach of Inception architecture, the last layer of Inception has been retrained using

Softmax Regression where we generate probabilities based on our evidences extracted from the

images [3] [27]. The evidences are calculated based on a sum of weights detected by the intensity

13

CHAPTER 2. LITERATURE REVIEW

of pixels, with added bias.

(2.12) evidencei =
∑

j
Wi, jx j +bi

Here is the equation for the evidence for a class i given an input x. Here Wi is the weights, bi

is the bias, and j is the index for summing over pixels in input [3].

Then our probabilities are generated by passing the evidence through softmax function.

(2.13) y= softmax(evidence)

The softmax function or normalized exponential, if given a n-dimensional vector gener-

ates a same dimensional vectors of values ranging from 0 to 1. The function has been already be

noted in equation 2.6.

Figure 2.7: Visual Representation of Softmax Regression. Image from [3].

Figure 2.8: The visualization from 2.7 can be transformed into above representation showing
Probability Matrix in Softmax. Image from [3].

14

C
H

A
P

T
E

R

3
WORK AND ANALYSIS

3.1 Dataset

3.1.1 Collection

The data has been hosted on Kaggle, and obtained from the source [15]. This dataset was

generated for a Facial Expression Recognition Challenge in ICML 2013 by Goodfellow et al.[15]

The training data consists of 28,709 examples of 48x48 size images classified into seven groups.

And the public test set and private test set included additional 3589 examples in each set. All

the data has been collected and generated in labeled images through scripts. The examples are

distributed in following ways[11] :

Label Training Example Validation Example Test Example

Angry 3995 467 491

Disgust 436 56 55

Fear 4097 496 528

Happy 7215 895 879

Sad 4830 653 594

Surprise 3171 415 416

Neutral 4965 607 626

Table 3.1: Data Labels Distribution in the Datasets

15

CHAPTER 3. WORK AND ANALYSIS

3.1.2 Extraction

The dataset, however, did not give us the images directly. The images were actually in the form of

strings which contained pixel values, along with the labels. The following figure demonstrates

the form in which the data was given:

Figure 3.1: Original representation of data.

We wrote a script in Python to convert the strings of data into 48×48 greyscale images. We

have included the complete script on Appendix B. The script has generated images in following

forms:

(a)

(b)

(c)

FIGURE 3.2. (a) Sample of images labeled as Angry. (b) Sample of images labeled as
Happy. (c) Sample of images labeled as Surprised.

16

3.2. PROCESSING USING INCEPTION-V3

3.1.3 Processing

To run it through Inception-v3, we have not done any pre-processing to the image. In our base

paper, some pre-processing has been done before the images has been used. The pre-processing

are listed below:

• To feed into SVM and Shallow Neural Network, they have generated eigenfaces1 from

the images.

• Then they have tried to improve the accuracy by providing Gabor filters2 as a input

feature.

• For CNN, they have subtracted the mean value of each image from every pixel of that

image. Then they have subtracted the mean value of all images from every pixel of each

image, and divided the value with its variance.

3.2 Processing using Inception-v3

3.2.1 Bottlenecks

The first step was to analyze all the images in the training set and calculate their bottleneck

values. Bottleneck is an informal term that is often used to refer to the layer just before the final

output layer that actually does the classification[2]. Retraining this layer outputs values that

eventually help Inception classify the different facial expressions represented in the training data.

Simply retraining this layer is sufficient as Inception has already learned from 1,000 different

classes as part of ImageNet which is useful to distinguish between new objects.

3.2.2 Training

After bottleneck process in the default setup 4000 training steps have been run, where in each

step ten images are chosen randomly to feed through their bottleneck. The resulting predictions

then got compared with the actual labels and using back-propagation process the final layer’s

weight is updated.[2]

The training accuracy gives us the percentage of images used in the current training batch

that were labelled correctly. The validation accuracy is the precision on a randomly selected group

of images from a different set during training[2]. The training accuracy is less reflective of the

performance of the classifier during because it is based on images that have already been learned

from and hence, the network is at risk of over-fitting. A better measure is the validation accuracy.

If there is significant mismatch between the training accuracy and validation accuracy, then that

is indicative that the network is memorizing potentially unhelpful features that don’t generalize

1See section A.3 of Appendix A.
2See section A.4 of Appendix A.

17

CHAPTER 3. WORK AND ANALYSIS

well. Cross entropy is a loss function which gives a glimpse into how well the learning process

is progressing. The training’s objective is to make the loss as small as possible[2]. Inception splits

the training data into 3 parts where 80% are used as the training set, 10% are used as validation

set, and 10% are used as a testing set during the training. In that way over-fitting is avoided and

bottlenecks are fine tuned[2]. Then the validation set has been passed through for tuning and the

test set has been sent through for classification.

3.2.2.1 First Training with Inception-v3

Initially we trained the data on the barebones Inception using all the default values for the

parameters, which are:

• Initial Learning Rate = 0.1

• Number of Epochs per Decay = 30.0

• Learning Rate Decay Factor = 0.16

• Step Size = 4000

3.2.2.2 Result and Analysis after First Training

After our training we have evaluated the test set images. It resulted in an accuracy of 44.83%.

Evaluation of test set has given the following result:

Angry Fear Sad Neut. Surp. Disg. Happy
Angry 0.383 0.118 0.036 0.118 0.154 0.075 0.116

Fear 0.196 0.518 0.054 0.036 0.089 0.054 0.054
Sad 0.157 0.067 0.179 0.079 0.214 0.192 0.113

Neutral 0.116 0.054 0.021 0.588 0.075 0.060 0.086
Surprise 0.210 0.069 0.086 0.086 0.384 0.031 0.135

Disgust 0.070 0.024 0.043 0.055 0.033 0.718 0.055
Happy 0.148 0.049 0.056 0.119 0.161 0.076 0.390

Table 3.2: Confusion Matrix of Test Set Evaluation after the First Training

In the confusion matrix, the numbers highlighted in bold is the recall of different classes.

Recall is percentage of positive cases that were labeled correctly by the classifier.

(3.1) recall= true positive
true positive+ false negative

We can see that for the class Sad, the recall is poor. In the matrix, the cells in red shows that

the class Sad was misclassified as Surprise and Disgust in a higher percentage than the recall.

18

3.2. PROCESSING USING INCEPTION-V3

3.2.2.3 Second Training with Inception-v3

In Inception-v3, for a better result, one needs to make sure that the data are better representation

of the application that it will encounter[2]. So, in order to improve our results from previously

mentioned in section 3.2.2.2, we went through the dataset and removed all images that was not

representative of any facial expression. For example:

Figure 3.3: Faulty data in the dataset.

Then we retrained Inception with all these faulty images removed. This time also we went

with all the default values of the parameters3.

3.2.2.4 Result and Analysis after Second Training

After evaluating the test set images based on our second training we had an accuracy of 44.99%.

And we got following confusion matrix:

Angry Fear Sad Neut. Surp. Disg. Happy
Angry 0.259 0.141 0.176 0.122 0.099 0.056 0.148

Fear 0.089 0.589 0.089 0.036 0.054 0.054 0.089
Sad 0.074 0.085 0.393 0.071 0.107 0.143 0.127

Neutral 0.054 0.060 0.089 0.602 0.049 0.042 0.103
Surprise 0.116 0.092 0.222 0.088 0.276 0.020 0.185

Disgust 0.036 0.029 0.125 0.058 0.014 0.660 0.077
Happy 0.069 0.056 0.153 0.113 0.107 0.051 0.45

Table 3.3: Confusion Matrix of Test Set Evaluation after the Second Training

We can now see that the recalls are better than the inaccurate measurements, a issue we

have previously faced on the first training.

3Default values have been mentioned in section 3.2.2.1

19

CHAPTER 3. WORK AND ANALYSIS

3.2.2.5 Comparison with the Base Paper

Comparing the result with Chudasama et al.’s results [11] clearly shows us that the performance

stands up better than other shallow models. Our result hits an error percentage of 55.01% where

other models reach as high as 78.0% to as low as 44.3%.

Figure 3.4: Error Percentages between Models

It should be noted that this percentage of error Inception produce is without any preprocessed

data or hyper-parameter modification on the model. Where other models have been fed prepro-

cessed version of the data. Taking that into the account, Inception does hold a strong position in

error rate comparison.

3.3 Our Simple CNN

3.3.1 Motivation of building a Simple CNN

While comparing the results with the base paper, we could compare it with accuracy. But we

could not compare it in terms of training time as the base paper has not mentioned any training

time for their tests. However it is important to reach a conclusion on training time as Inception’s

motivation was in terms of using less computational resources to reduce processing time. Also,

for that comparison we can consider only the CNN they have used as others have shown lesser

accuracy on the tests. So for such comparison purpose, we have thought of creating a very

20

3.4. PROCESSING DATA USING OUR CNN

simple CNN using TensorFlow. As it is a very basic CNN, comparing the result with high level

convolutional network like Inception will act as a comparative study between two extreme points

of CNN architectures - one is the simplest possible CNN, and other is a 22 layer complicated

architecture.

3.3.2 Structure

Our network follows the most basic setup that we have discussed before in section 2.3.2.1.

The structure consists of two convolutional layer, two max-pooling layer and a softmax linear

regression layer. The activation function for our CNN is the RelU function mentioned in equation

2.8. The description of the structure is given below:

• First Convolution Layer: Our first convolution layer has a patch size of 5×5 and it

computes 60 features.

• First Max Pool Layer: First max pool layer has a patch size of 2×2 and with stride 2.

• Second Convolution Layer: Our second convolution layer computes 120 features for

each 5×5 patch.

• Second Max Pool Layer: Second max pool layer acts the same as the first max pool layer.

• Fully Connected Layer:Fully connected layer takes the input in the reduced size of

12×12 and is connected with 2048 neurons.

• Dropout Layer: Our dropout layer performs the dropout function based on the parameter

p = 0.54.

• Softmax Layer: Connected with 2048 neurons this final layer performs softmax regression.

All the convolutional layers have a stride of 1.

3.4 Processing data using our CNN

We have processed data with our simple CNN model with a batch size of 20 and with 1434 steps.

So in each step it is going to take 20 images from the training set and then learn from it, and this

step will be repeated 1434 times.

4See the description of dropout layers at section 2.3.2.1 for better understanding

21

CHAPTER 3. WORK AND ANALYSIS

Figure 3.5: Simplified visual representation of our CNN implementation

22

3.4. PROCESSING DATA USING OUR CNN

3.4.1 Comparison with Simple CNN

For a better estimation of performance, following cross entropy graph can be referred which was

generated after our first training:

Figure 3.6: Cross Entropy Graph

Taking a look at the graph, we can see that it took only 6 minutes to train an entire training

set consisting more than 28 thousand images on a Intel Core i5 CPU.

Comparing the results with our CNN shows some vast differences in accuracy. Comparing to

Inception’s 44.99% accuracy, simple CNN generates a meagre 13.01% of accuracy.

Such differences were expected due to high level nature of Inception architecture. As we

have discussed Inception-v3 is a 22 layer convolutional network, while our CNN has only two

convolutional layer. But main takeaway from this comparison is not on accuracy, but on training

time, the amount of time it takes to train more than 28 thousand images. The clear comparison

shows us how fast Inception is even with the amount of structural complexity it has. On a 4-core

Intel Core I5 CPU, it processes better than the most simplest CNN model possible. Inception

has efficiently used a combination of sparse connectivity attribute of convolutional network

and combining multiple sparse connectivity together to represent in a dense structure, which

ultimately lead to faster learning.

Now for the base paper, even though there is no mention of training time, we can still infer

that their CNN model would take longer than the Inception-v3, as their model is structurally

more complex than our basic CNN. So if we had to run them on our CPU, training time would be

longer.

23

CHAPTER 3. WORK AND ANALYSIS

(a)

(b)

FIGURE 3.7. (a) Accuracy comparison between Inception-v3 and our CNN. (b) Training
time comparison between Inception-v3 and our CNN.

3.5 Limitations

3.5.1 Ambiguity in the Dataset

FER-2013 is a very large dataset consisting a huge number of low resolution greyscale images.

Being such large scale dataset it is not free from faulty data, and we have seen some example in

24

3.5. LIMITATIONS

figure 3.3. But another important issue that arises is ambiguity among data. Some pictures in

different classes look very similar, and they are bound to create confusion in the classification.

Example of such data is:

Figure 3.8: This example has 2 images from Fear and 2 images from Sad. Though one might label
all of them as Sad due to their ambiguity.

Such limitation imposed by the dataset has resulted into a lesser accuracy. The ambiguity in

FER-2013 dataset is so frequent that human accuracy on labeling the images is very low as well.

Ian Goodfellow has found out that the human accuracy on FER-2013 dataset was 65±5% [15].

3.5.2 Less Computational Resource

Our limitation was that we did not have higher processing power to run the comparison of

accuracy on a faster processing units. That would have enabled us to use hyperparameters,

through which we could have tinkered with the learning rates, and processing batches etc. We

believe further experiments with hyperparameters would have resulted into better accuracy.

However these parameters will put a lot of computational loads if done in CPU instead of GPU,

which can lead upto days.

3.5.3 Requirements of Advanced Knowledge

Inception architecture is highly modular and intricate in structure. Even though the structure

can be represented in a understandable way, the subtleties and nuances are very complex in their

own places. They pose such a complicated role that, working around a layer can put the model in

such a status that we will not be able to trace the results. Understanding such corners and edges

of architecture requires advanced amount of knowledge along with further time and resources,

25

CHAPTER 3. WORK AND ANALYSIS

including going through the entire source code. So we could not be critical about Inception to the

granular points of it.

26

C
H

A
P

T
E

R

4
CONCLUSION

4.1 Future Scope

The performance of the Inception can be far better by modifying the hyperparameters, to an

extent that it outperform others. Considering it’s efficient use of computation power, and recent

improvement in processing units for embedded hardware, it can have a vast application on

devices that can utilise image processing with less computational cost. One of such application

can be facial expression recognition using cellphone cameras. We plan to work such application

based on Inception in future.

4.2 Conclusion

Throughout our work, Inception has shown us that (a) It gives a good accuracy when it comes

to recognizing facial expression from low resolution images, and (b) it trains faster on a low

processing power better than a simple CNN. So we can conclude that the promises made by

Inception are held well when tested. However, this is not the final definitive conclusion, and there

are many further ways we can move from this point. Considering the limitations we had, the

Inception has not been critically analysed from ground up. Overcoming the limitations would

result into better understanding the pros and cons of such architecture. Nonetheless, so far the

results are promising enough to open doors to many aspects of practical applications. Inception

can be the best architecture to be implemented into the devices with low processing units, until a

better model succeeds the results Inception has shown.

27

A
P

P
E

N
D

I
X

A
APPENDIX A

A.1 Gaussian Distribution

Gausssian Distribution is defined by the following equation [8]:

(A.1) N (x;µ,σ2)=
√

1
2πσ2 exp

(
− 1

2σ2 (x−µ)2
)

A.2 CNN in CIFAR-10 and CIFAR-100

CIFAR-10 and CIFAR-100 are large dataset collected by Kirzhevsky et al.[18]. In both CIFAR-10

and CIFAR-100 classification challenges, CNN has been dominating according to the result

mentioned in [5]. Benjamin Graham with the Fractional Max Pooling[16] approach reached

96.53% accuracy in CIFAR-10, and with the Spatially Sparse Convolutional Network approach

he reached 75.7% accuracy in CIFAR-100.

A.3 Eigenfaces

Eigenfaces are the eigenvectors derived from the covariant matrix of the probability distribution

in the vector spaces of facial images [29].

A.4 Gabor Filters

Gabor Filter is a linear filter used for edge detection. It has been named after Daniel Gabor,

and modeled ofter the simple cells of mammalian visual cortex[14].

29

A
P

P
E

N
D

I
X

B
APPENDIX B

The following portion displays the code used for converting the dataset given as strings of pixel

data to 48×48 grayscale images:

1 import pandas as pd
2 import numpy as np
3 import matplotl ib . pyplot as p l t
4 import matplotl ib . image as mpimg
5
6 from sklearn import svm, metrics
7
8 #Read csv f i l e
9 data = pd . read_csv (’ fer2013 . csv ’)

10
11 #Number of samples
12 n_samples = len (data)
13 n_samples_train = 28709
14 n_samples_test = 3589
15 n_samples_validation = 3589
16
17 # Pixe l width and height
18 w = 48
19 h = 48
20
21 #Separating labe l s and features r e s p e c t i v e l y
22 y = data [’ emotion ’]
23 X = np . zeros ((n_samples , w, h))
24 for i in range (n_samples) :
25 X[i] = np . fromstring (data [’ p ixe ls ’] [i] , dtype=int , sep= ’ ’) . reshape (w, h)
26

31

APPENDIX B. APPENDIX B

27 #Training s e t
28 X_train = X [: n_samples_train] . reshape (n_samples_train , −1)
29 y_train = y [: n_samples_train]
30
31 # C l a s s i f i e r
32 c l f = svm.SVC(gamma=0.001 , kernel= ’ rbf ’ , class_weight= ’ balanced ’)
33
34 print (’ Training C l a s s i f i e r . . . ’)
35 c l f . f i t (X_train , y_train)
36 print (’Done ! ! ! ’)
37
38
39 #Testing s e t
40 X_test = X[n_samples_train : (n_samples_train + n_samples_test)] . reshape (n_samples_test ,

−1)
41 y_test = y [n_samples_train : (n_samples_train + n_samples_test)]
42
43 #Predict ion
44 expected = y_test
45 predicted = c l f . predict (X_test)
46
47 #Results
48 print (" C l a s s i f i c a t i o n report for c l a s s i f i e r %s :\n%s\n" % (c l f , metrics .

c l a s s i f i c a t i o n _ r e p o r t (expected , predicted)))

32

BIBLIOGRAPHY

[1] Conv nets: A modular perspective.

http://colah.github.io/posts/2014-07-conv-nets-modular/.

[2] How to retrain inception’s final layer for new categories.

[3] Mnist for ml beginners.

https://www.tensorflow.org/versions/r0.7/tutorials/mnist/beginners/index.html.

[4] tensorflow/models.

https://github.com/tensorflow/models/tree/master/inception.

[5] What is the class of this image ?

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html43494641522d3130.

[6] Artificial neural network - wikipedia, the free encyclopedia, 2016.

https://en.wikipedia.org/wiki/Artificial_neural_network.

[7] S. ARORA, A. BHASKARA, R. GE, AND T. MA, Provable bounds for learning some deep

representations., in ICML, 2014, pp. 584–592.

[8] I. G. Y. BENGIO AND A. COURVILLE, Deep learning.

Book in preparation for MIT Press, http://www.deeplearningbook.org, 2016.

[9] J. BERGSTRA, F. BASTIEN, O. BREULEUX, P. LAMBLIN, R. PASCANU, O. DELALLEAU,

G. DESJARDINS, D. WARDE-FARLEY, I. GOODFELLOW, A. BERGERON, ET AL., Theano:

Deep learning on gpus with python, in NIPS 2011, BigLearning Workshop, Granada,

Spain, Citeseer, 2011.

[10] C. BISHOP, Pattern Recognition and Machine Learning, Information Science and Statistics,

Springer, 2006.

https://books.google.com.bd/books?id=qWPwnQEACAAJ.

[11] B. CHUDASAMA, C. DUVEDI, AND J. P. THOMAS, Learning facial expressions from an image.

[12] J. DONAHUE, Y. JIA, O. VINYALS, J. HOFFMAN, N. ZHANG, E. TZENG, AND T. DARRELL,

Decaf: A deep convolutional activation feature for generic visual recognition., in ICML,

2014, pp. 647–655.

33

BIBLIOGRAPHY

[13] L. FEI-FEI, R. FERGUS, AND P. PERONA, One-shot learning of object categories, IEEE

transactions on pattern analysis and machine intelligence, 28 (2006), pp. 594–611.

[14] H. G. FEICHTINGER AND T. STROHMER, Gabor analysis and algorithms: Theory and

applications, Springer Science & Business Media, 2012.

[15] I. GOODFELLOW, D. ERHAN, P.-L. CARRIER, A. COURVILLE, M. MIRZA, B. HAMNER,

W. CUKIERSKI, Y. TANG, D. THALER, D.-H. LEE, Y. ZHOU, C. RAMAIAH, F. FENG, R. LI,

X. WANG, D. ATHANASAKIS, J. SHAWE-TAYLOR, M. MILAKOV, J. PARK, R. IONESCU,

M. POPESCU, C. GROZEA, J. BERGSTRA, J. XIE, L. ROMASZKO, B. XU, Z. CHUANG, AND

Y. BENGIO, Challenges in representation learning: A report on three machine learning

contests, 2013.

[16] B. GRAHAM, Fractional max-pooling, CoRR, abs/1412.6071 (2014).

[17] S. KNERR, L. PERSONNAZ, AND G. DREYFUS, Single-layer learning revisited: a stepwise

procedure for building and training a neural network, in Neurocomputing, Springer,

1990, pp. 41–50.

[18] A. KRIZHEVSKY AND G. HINTON, Learning multiple layers of features from tiny images,

(2009).

[19] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with deep

convolutional neural networks, in Advances in neural information processing systems,

2012, pp. 1097–1105.

[20] S. LAWRENCE, C. L. GILES, A. C. TSOI, AND A. D. BACK, Face recognition: A convolutional

neural-network approach, IEEE transactions on neural networks, 8 (1997), pp. 98–113.

[21] Y. LECUN AND Y. BENGIO, Convolutional networks for images, speech, and time series, The

handbook of brain theory and neural networks, 3361 (1995), p. 1995.

[22] Y. LECUN, B. BOSER, J. S. DENKER, D. HENDERSON, R. E. HOWARD, W. HUBBARD, AND

L. D. JACKEL, Backpropagation applied to handwritten zip code recognition, Neural

computation, 1 (1989), pp. 541–551.

[23] M. LIN, Q. CHEN, AND S. YAN, Network in network, arXiv preprint arXiv:1312.4400, (2013).

[24] S. P. LUTTRELL, Hierarchical self-organizing networks, in Proc. 1st IEE Conf. Artificial

Neural Networks, 1989, pp. 2–6.

[25] S. OUELLET, Real-time emotion recognition for gaming using deep convolutional network

features, arXiv preprint arXiv:1408.3750, (2014).

34

BIBLIOGRAPHY

[26] T. SERRE, L. WOLF, S. BILESCHI, M. RIESENHUBER, AND T. POGGIO, Robust object

recognition with cortex-like mechanisms, IEEE transactions on pattern analysis and

machine intelligence, 29 (2007), pp. 411–426.

[27] C. SZEGEDY, W. LIU, Y. JIA, P. SERMANET, S. REED, D. ANGUELOV, D. ERHAN, V. VAN-

HOUCKE, AND A. RABINOVICH, Going deeper with convolutions, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[28] C. SZEGEDY, V. VANHOUCKE, S. IOFFE, J. SHLENS, AND Z. WOJNA, Rethinking the incep-

tion architecture for computer vision, arXiv preprint arXiv:1512.00567, (2015).

[29] M. TURK AND A. PENTLAND, Eigenfaces for recognition, Journal of cognitive neuroscience,

3 (1991), pp. 71–86.

[30] Y. ZHOU AND R. CHELLAPPA, Computation of optical flow using a neural network, in Neural

Networks, 1988., IEEE International Conference on, IEEE, 1988, pp. 71–78.

35

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives

	Literature Review
	Inception: Overview
	Previous Comparative Analysis
	Learning Models
	Shallow Learning Models
	Support Vector Machine
	Artificial Neural Network

	Deep Learning
	Convolutional Neural Network

	Inception-v3
	Background and Motivation
	Structure
	Softmax Layer

	Work and Analysis
	Dataset
	Collection
	Extraction
	Processing

	Processing using Inception-v3
	Bottlenecks
	Training
	First Training with Inception-v3
	Result and Analysis after First Training
	Second Training with Inception-v3
	Result and Analysis after Second Training
	Comparison with the Base Paper

	Our Simple CNN
	Motivation
	Structure

	Processing data using our CNN
	Comparison with Simple CNN

	Limitations
	Ambiguity in the Dataset
	Less Computational Resource
	Requirements of Advanced Knowledge

	Conclusion
	Future Scope
	Conclusion

	Appendix A
	Gaussian Distribution
	CNN in CIFAR-10 and CIFAR-100
	Eigenfaces
	Gabor Filters

	Appendix B
	Bibliography

