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ABSTRACT 
In the field of signal processing an adaptive algorithm for the selection of Intrinsic 

Mode Functions (IMF) of Empirical Mode Decomposition (EMD) is a time demand. In this 

paper, we propose an effective model for adaptive selection of IMFs after decomposition. This 

proposed algorithm decomposes an input signal using EMD, then the resultant IMF’s are 

passed through a trained Support Vector Machine (SVM) for the separation of relevant and 

irrelevant IMF’s. The irrelevant IMF’s are then de-noised. And all IMFs are then reconstructed. 

The proposed model selects IMF adaptively without any human supervision and helps 

achieving higher Signal to Noise Ratio (SNR) while keeping Percentage RMS Difference 

(PRD) and Max Error low. Experiment results show up to 36.16% SNR value, PRD and Max 

Error are reduced to 1.557% and 0.085%, respectively. 
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Chapter 1 
           INTRODUCTION 

1.1 Introduction 

In this age of technological advancement signal processing has left its foot print in 

almost every technological sectors. From home automation to deep space exploration, advance 

robotics to medical research signal processing is working as backbone to those respective 

sectors. Signal processing is also used in artificial intelligence. Signal analysis helps in 

acquiring desired information’s from a raw input data set [14]. In regards of performance 

limitation of Fourier based method in analysis of nonstationary signals Wavelet transform are 

commonly used [1]. Although widely used wavelet has locality and adaptability issues. EMD 

has proven itself as powerful algorithm of non-stationary signal analysis [2,3,6]. It decomposes 

a signal into finite set of frequency modulated components known as IMF. Without leaving the 

time domain EMD is adaptive and efficient in decomposing a signal. The resultant IMFs from 

the EMD are then separated in two sets, noise free and noise dominant IMFs. Various 

researchers have used different approaches on separation. Phuong et al. proposes Naïve Bayes 

classifier [3] a probabilistic and decision based classifier for the separation of noise-free and 

noise dominant IMFs. On the other hand, an energy based thresholding method has been 

proposed by [5] and [6]. Based on the results found by Douglas [4] comparison of the two we 

have used the proposed method by [6] for our SVM training. SVM has immense popularity in 

the field of machine learning due to many attractive features and excellent potential empirical 

performance. Moreover, SVM does not suffer from the limitations of data dimensionality and 

limited samples [7,8]. Traditional statistical classification techniques provide ideal results 

when sample size tends to infinity, when in most real cases samples are small and limited [9]. 

Thus we have proposed SVM as the IMF classifier and Savitzky-Golay filter (SGF), also 

known as least-squares smoothing filter is used to smoothen noisy IMFs. In [11], a comparison 

of de-noising methods is presented, where SGF works better in low to medium range SNR 

conditions. 
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1.2 Contribution Summary 

In this paper we have proposed an adaptive IMF selection algorithm which exploits the 

features of energy based thresholding and empirical potential of SVM for the classification of 

noise-free IMFs. Then the adaptively selected noise dominant IMFs are de-noised through 

SGF. Noise free and de-noised IMFs are then reconstructed. Later conclusion is drawn from 

the results found by the comparison of SNR, PRD and Max Error of the input and reconstructed 

signal. 

1.3 Thesis Orientation  

The rest of this thesis is organized as follows:  

 Chapter II discusses on the premises of our thesis – Algorithm to adaptively select 

Intrinsic Mode Functions(IMFs) after Empirical Mode Decomposition (EMD) using 

Support Vector Machine (SVM), Pearson’s Correlation Coefficient and Savitzky-

Golay filter to de-noise the rest of the IMFs. All the IMFs are then reconstructed for 

evaluation. 

 Chapter III discusses our proposed model. 

 Chapter IV describes experimental result analysis to determine the proposed model’s 

efficiency. 

 Chapter VI will conclude this paper with some words on the future scope regarding this 

research as well as its limitations. 
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Chapter 2 

BACKGROUND STUDY 

2.1 Hilbert Huang Transformation (HHT) 

  The Hilbert–Huang transform (HHT) is an empirically based data-analysis method. Its 

source of expansion is adaptive, for which it can produce physically meaningful representations 

of data from non-linear and non-stationary processes. It has a limitation as it can’t be laid to a 

firm theoretical foundation. 

2.2 Empirical Mode Decomposition (EMD) 

The Empirical Mode Decomposition (EMD) is an important step to reduce any given 

data into a collection of intrinsic mode functions (IMF) to which the Hilbert spectral analysis 

can be applied. EMD has proven its strength over many comparative studies [15].  IMF 

represents a simple oscillatory mode as an equivalent to the simple harmonic function, but it is 

much more general: instead of constant amplitude and frequency in a simple harmonic 

component, an IMF can have variable amplitude and frequency along the time axis. 

The procedure of extracting an IMF is called sifting. The sifting process is as follows: 

● Identify all the local extrema in the test data X(t). 

● Connect all the local maxima by a cubic spline line as the upper envelope. 

● Repeat the procedure for the local minima to produce the lower envelope. 

The upper and lower envelopes should cover all the data between them. Their mean is 

m1. The difference between the data and m1 is the first component h1: 

ℎ1 = 𝑋(𝑡) − 𝑚1 [1] 

Ideally, h1 should satisfy the definition of an IMF, since the construction of h1 described 

above should have made it symmetric and having all maxima positive and all minima negative. 

After the first round of sifting, a crest may become a local maximum. New extrema generated 

https://en.wikipedia.org/wiki/Hilbert_spectrum
https://en.wikipedia.org/wiki/Simple_harmonic_motion
https://en.wikipedia.org/wiki/Harmonic
https://en.wikipedia.org/wiki/Harmonic
https://en.wikipedia.org/wiki/Maximum_and_minimum
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Spline_(mathematics)
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Symmetry
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Maxima_and_minima
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in this way actually reveal the proper modes lost in the initial examination. In the subsequent 

sifting process, h1 can only be treated as a proto-IMF. In the next step, h1 is treated as data: 

ℎ2 = ℎ1−𝑚2 [2] 

After repeated sifting up to k times, h1 becomes an IMF, that is: 

ℎ1 = ℎ𝑘−1 − 𝑚𝑘 [3] 

Then, hk is designated as the first IMF component of the data: 

𝑐1 = ℎ𝑘 [4] 

2.3  Intrinsic Mode Function (IMF) 
Intrinsic Mode Functions (IMF) is defined as a function that fulfils the following 

requirements: 

i.  In the whole data set, the number of extrema and the number of zero-crossings 

must either be equal or differ at most by one. 

ii. At any point, the mean value of the envelope defined by the local maxima and 

the envelope defined by the local minima is zero. 

It represents a generally simple oscillatory mode as an equivalent to the simple harmonic 

function. By definition, an IMF is any function with the identical number of extrema and zero 

crossings, whose envelopes are symmetric with respect to zero. This definition assurance’s a 

well-behaved Hilbert transform of the IMF. 

2.4  Pearson’s Correlation Coefficient  

A statistic measuring the linear interdependence between two variables or two sets of data. 

This is implemented in order to identify relevant and irrelevant IMFs. The relevant IMFs are 

selected on the basis of their coefficient value compared to the threshold value. If Pi ≥T the 

IMF is relevant, irrelevant if not. This is taken as an aid to train the SVM. 

https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Oscillation
https://en.wikipedia.org/wiki/Harmonic
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Hilbert_transform
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2.5  Support Vector Machine (SVM) 

In machine learning, support vector machines (SVMs), also known as support vector 

networks are supervised learning models with associated learning algorithms that analyse data 

used for classification and regression analysis. Given a set of training examples, each marked 

for belonging to one of two categories, an SVM training algorithm builds a model that assigns 

new examples into one category or the other, making it a non-probabilistic binary linear 

classifier. An SVM model is a representation of the examples as points in space, mapped so 

that the examples of the separate categories are divided by a clear gap that is as wide as 

possible. New examples are then mapped into that same space and predicted to belong to a 

category based on which side of the gap they fall on. 

In addition to performing linear classification, SVMs can efficiently perform a non-linear 

classification using what is called the kernel trick, implicitly mapping their inputs into high-

dimensional feature spaces. For that reason, SVM is applied in many critical medical diagnostic 

approaches like EEG [16], ECG [17] signal classification, cancer identification, face 

recognition, and speech disorder. 

When data are not labelled, supervised learning is not possible, and an unsupervised 

learning approach is required, which attempts to find natural clustering of the data to groups, 

and then map new data to these formed groups. The clustering algorithm which provides an 

improvement to the support vector machines is called support vector clustering and is often 

used in industrial applications either when data is not labelled or when only some data is 

labelled as a pre-processing for a classification pass. 

2.6  Savitzky-Golay filter 

Savitzky-Golay smoothing filters (also called digital smoothing polynomial filters or least-

squares smoothing filters) are typically used to "smooth out" a noisy signal whose frequency 

span (without noise) is large [18,19]. In this type of application, Savitzky-Golay smoothing 

filters perform much better than standard averaging FIR filters, which tend to filter out a 

significant portion of the signal's high frequency content along with the noise. Although 

Savitzky-Golay filters are more effective at preserving the pertinent high frequency 

components of the signal, they are less successful than standard averaging FIR filters at 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Kernel_trick


7 
 
 

 

rejecting noise. Savitzky-Golay filters are optimal in the sense that they minimize the least-

squares error in fitting a polynomial to frames of noisy data [20]. 

2.7  Degree of Accuracy 

2.7.1 Signal to Noise Ratio (SNR) 

SNR is a measurement unit that compares the level of a desired signal to the level of 

background noise. It is defined as the ratio of signal power to the noise power, often expressed 

in decibels when normalized. A ratio higher than 1:1 (greater than 0 dB) indicates more signal 

than noise. Signal-to-noise ratio is sometimes used informally to refer to the ratio of 

useful information to false or irrelevant data in a conversation or exchange. For any de-noising 

techniques therefore higher SNR values are desired and low values represent poor performance. 

However, pure SNR values are not always used. The industry standards measure SNR in 

decibels(dB) of power and therefore apply a log rule. Here we have used the 20 log rule along 

with the pure SNR ratio to yield better sensitivity in the values. This allows us to normalize the 

values for better illustration purposes. According to industry standards an SNR value of 32 dB 

and above means excellent image quality and SNR values around 20 dB is defined as 

acceptable image quality. 

2.7.2 Percentage RMS Difference (PRD) 

The RMS value of any varying signal provides a measure of the amount of energy 

deliverable by the source if it were instead constant in nature. The difference in RMS value of 

the signal and the that of the processed signal allows us to evaluate how similar they are and 

therefore can be used as a measure of the quality of the de-noising technique(SGF) used. The 

smaller the difference is the better the resemblance to the original signal and hence a sign of 

better performance. Instead of directly using the difference value, a percentage difference 

makes more sense as no two signals have the same energy content. The percentage RMS 

difference normalizes the variety of signals, and provides consistent values that would 

otherwise be erratic in nature. Therefore, lower PRD value represents better performance and 

higher values represent bad performance. 

 

https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Noise
https://en.wikipedia.org/wiki/Decibel
https://en.wikipedia.org/wiki/Information
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2.7.3 Max Error 

Max error represents the maximum value of the absolute difference between two 

signals. Now, if we consider the original signal and the de-noised signal the max error between 

the two signals represents how far off one is from in other in terms of their similarity. Larger 

values would indicate that the smoothing was too much or too little. Hence, lower max error 

values are desired. Lower Max Error values would represent better performance and higher 

values would represent bad performance. 
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Chapter 3 

PROSPOSED MODEL 

3.1 Proposed model 

A complete block diagram of the proposed model is shown in Figure 1. We have used 

EMD to decompose the input signal into a finite number of IMFs. There is no change in the 

traditional EMD algorithm. A statistical threshold value is derived from the IMFs using the 

Pearson’s correlation coefficient and the IMFs are classified into noise free and noise dominant 

IMFs. A minor subset of the classification results is used to train the SVM. Then a larger set 

of IMFs are fed into the SVM classifier. The Noise-free IMFs and the filtered Noise-dominant 

IMFs classified by the SVM are used to reconstruct the signal. 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 1: A flow diagram of the proposed model. 
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3.1.1 Empirical Decomposition and Threshold Derivation  

The input signal is first decomposed into finite set of intrinsic mode functions. The 

Pearson correlation coefficient of the resultant IMFs are then calculated. Following the 

proposal of [6] a threshold value is derived (eqn.5). If Pearson’s correlation coefficient of the 

IMFs is 𝜇i and the threshold is expressed as τ, expression of the threshold is: 

τ =  
max(𝜇𝑖)

10 ∗ max(𝜇𝑖) − 3
 [5] 

The relevant IMFs are selected on the basis of their coefficient values calculated earlier 

in compare to the threshold value. If 𝜇i ≥ τ the IMF is relevant, irrelevant if not. This is taken 

as an aid to train the SVM. 

3.1.2 SVM training and IMF Classification 

Using a subset of the decomposed IMFs, we train an SVM object. To train the SVM 

we used standard deviation [13], and root mean square (RMS) [12] values as features of the 

IMFs for training the SVM object. Then a larger set of IMFs are classified by using the trained 

SVM object. The SVM algorithm classifies the IMFs into noise-free and noise dominant IMFs. 

3.1.3 Denoising the Noise Dominant IMFs 

Using the Savitzky-Golay filter, the set of noise dominant IMFs are then smoothened 

using an 3rd order polynomial and a frame size of 41. A low order polynomial is used so that a 

good amount of smoothing is achieved, higher orders may lead to better metrics but at the cost 

of reduced noise reduction therefore, a high polynomial value is avoided.  

Neither a low frame size nor a high frame size is used as this would over smoothen the data or 

destroy signal properties respectively. The polynomial and frame size were chosen after a few 

close combinations were used to find the optimal one that suits our input data. The third order 

polynomial and a frame size of forty-one yielded better results. 
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3.1.4 Reconstruction of the Signal 

The noise-free IMFs and de-noised IMFs are used to reconstruct the signal. Summation 

of the IMFs gives us the new filtered signal. 

𝑋 = ∑ 𝑛𝑜𝑖𝑠𝑒 𝑓𝑟𝑒𝑒 𝐼𝑀𝐹𝑠 + ∑ 𝑑𝑒 − 𝑛𝑜𝑖𝑠𝑒𝑑 𝐼𝑀𝐹𝑠 [6] 

Where ‘R’ is the reconstructed signal, which we later use for the comparison between 

the original and newly constructed signal also for comparison between different methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 
 

 

Chapter 4 

EXPERIMENTAL SETUP AND RESULTS 

4.1 Experimental setup 

To evaluate the performance of proposed model we used MATLAB® version 14 

simulation tools. The data set used in this simulation is the same as of the paper [10]. A 

randomized white noise has been added to the original signal in order to evaluate the de-noising 

techniques based on the added noise estimate. In the experiment we used the three parameters 

PRD, SNR and Max Error value to evaluate the results. Figure 2, 3, 4 and 5 demonstrate 4 

sample signals, their SVM only de-noised version, their Pearson’s coefficient based 

thresholding de-noised version, and finally using our proposed model consisting of SVM 

classification and de-noising using the Savitzky-Golay smoothing filter. 
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4.2 Results 

Table 1: Calculated PRD values of the different methods 

Signal 
No’s 

Construct 
signal using 
first 3 IMFs 

Construct 
signal using 
first 7 IMFs 

Construct 
signal using 

SVM 
classified 

IMFs 

Construct 
signal using 

PCC 
classified 

IMFs 

Construct 
signal using 

proposed 
Model 

1 33.23221 7.838449 16.09981 16.09981 1.557232 

2 87.25636 10.92784 26.86902 26.86902 20.83046 

3 34.41056 7.861017 16.45177 16.45177 1.731638 

4 85.81789 9.857918 15.99813 15.99813 1.881234 

5 442.0039 17.15239 17.16053 17.16053 1.889945 

6 367.1038 15.93682 15.95132 15.95132 1.803857 

7 393.5864 15.70988 15.72584 15.72584 1.594879 

8 339.2442 15.68831 15.69245 15.69245 1.777524 

9 317.163 16.16164 16.15663 16.15663 1.734342 

10 361.1604 16.90043 16.9242 16.9242 1.995055 

 

The mathematical formula of PRD is as follows: 

𝑃𝑅𝐷 = √
∑ (𝑉(𝑛) − 𝑉𝑅)2𝑁

𝑛=0

∑ (𝑉(𝑛))2𝑁
𝑛=0

× 100% 
[7] 

where Vn: original signal and VR: reconstructed signal.  
Table 1 shows PRD values for signals constructed using five different methods. Lower PRD 

value represents closer resemblance to original signal. Each of the columns represent values of 

respective methods headed by their name. Rows represents the first10 signals out of the used 

input signal set. The values show a clear trend of efficiency as the columns progress. Our 
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proposed model, SVM classification and de-noising through SGF, establishes a clean 

dominance over other methods used. 

Table 2: Calculated SNR values of the different methods 

 
Signal 
No’s 

Construct 
signal 

using first 
3 IMFs 

Construct 
signal using 
first 7 IMFs 

Construct 
signal using 

SVM 
classified 

IMFs 

Construct 
signal using 

PCC 
classified 

IMFs 

Construct 
signal using 

proposed 
Model 

1 9.861508 22.1167 15.89195 15.89195 36.15505 

2 3.602976 19.2322 11.4458 11.4458 13.63161 

3 9.593254 22.09255 15.71066 15.71066 35.23365 

4 3.699018 20.12644 15.94906 15.94906 34.51364 

5 0.233363 15.34763 15.34373 15.34373 34.47421 

6 0.347342 15.98028 15.97261 15.97261 34.87866 

7 0.292333 16.10222 16.09367 16.09367 35.94732 

8 0.360645 16.11375 16.11163 16.11163 35.0058 

9 0.401466 15.85567 15.8585 15.8585 35.21942 

10 0.323476 15.47803 15.466 15.466 34.00385 

 

The mathematical equation of SNR is as follows: 

𝑆𝑁𝑅𝑑𝑏 = 20 × log10

𝑠𝑖𝑔𝑛𝑎𝑙

𝑛𝑜𝑖𝑠𝑒
 [8] 

The proposed model performs exceptionally well over all the other methods, which is 

evident from the three tables (Table 1,2,3). Table 2 and Figure 3 demonstrate the performance 

of the proposed model with other conventional models considering SNR. The proposed method 

stays consistent even for large set data inputs, but for better readability only 10 have been 

shown.  
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The Table 3 presents the experimental results of proposed model and other state-of-art 

models considering the Max Error values. 

 

Table 3: Calculated Max Errors values of the different methods 

Signal 
No’s 

Construct 
signal using 
first 3 IMFs 

Construct 
signal using 
first 7 IMFs 

Construct 
signal using 
SVM 
classified 
IMFs 

Construct 
signal using 
PCC 
classified 
IMFs 

Construct 
signal using 
proposed 
Model  

1 3.352951 0.915177 1.958808 1.958808 0.103132 

2 6.285758 1.269061 4.366918 4.366918 4.355913 

3 3.787007 0.92158 2.519456 2.519456 0.344366 

4 6.158683 1.053266 1.804797 1.804797 0.103655 

5 8.311906 1.865461 1.863248 1.863248 0.135298 

6 8.500025 1.952262 1.956835 1.956835 0.093569 

7 8.445439 1.274218 1.279523 1.279523 0.125799 

8 8.784585 1.602733 1.604387 1.604387 0.099009 

9 8.623053 1.693574 1.694402 1.694402 0.085452 

10 9.908853 1.824299 1.828911 1.828911 0.11097 

 

Max Error also a good parameter for performance evaluation as suggested in [11]. The 

formula used here is quite simple. Ri being the result signal and Si representing the original 

signal, the normalized equation is: 

∆𝑚𝑎𝑥= |𝑅𝑖 − 𝑆𝑖| [9] 
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Figure 2: Original and Reconstructed Signal 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Original and Reconstructed Signal 2. 
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Figure 4: Original and Reconstructed Signal 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Original and Reconstructed Signal 4. 
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Figure 6: PRD values for different methods. 

 

 

Figure 7: SNR values for different methods. 
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Figure 8: ME values for different methods. 
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Chapter 5 

CONCLUSION 

5.1 Conclusion 

This paper presents a noble method of adaptive IMF selection for EMD. In this model 

we implement SVM for the classification of decomposed IMFs. The classified noise dominant 

IMFs are de-noised using the Savitzky-Golay filter. Later noise free and smoothened IMFs are 

reconstructed. The experiment shows that the proposed model achieved a maximum 36.16% 

SNR, PRD and Max Error are reduced to 1.557% and 0.085% respectively in a medium noisy 

environment, a considerable improvement over all other models. 

 

5.2 Future works 

The classification of IMFs, de-noising them and re-constructing back to a clean version 

of the original signal is a field where lots of effort have been put and some remarkable results 

obtained. But there are far too many methods and their combinations to obtain the final results. 

Not all have been tried out yet. This is an attempt to implement, obtain results and compare a 

combination of our choice, an attempt to contribute in the field of signal de-noising. Our future 

target is to do the same with various other methods and group all results, and make a 

comparison study between them. As different classifications would lead to IMFs better suited 

for a specific use case. After successful completion, a general idea about SVM’s capabilities 

in noise reduction can be gained. But it also raises the question are there any better classifiers 

available? Our future work is to discover the answers to the above question to find which 

classifiers and de-noising methods work best on which types of data sets. The proposed model 

in of itself is adaptive in nature but as noise levels change for better results other different 

methods may have different results to offer. 
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