

Modeling & Testing of a Nano-Satellite And

Implementation of a BalloonSat With Data Analysis

A Thesis submitted to the

Department of Electrical & Electronics Engineering

Of

BRAC University

By

MD. Ishraque Bin Shafique - 12321015

Fazle Rabbi - 12321048

MA.Razzaq Halim – 12321026

Arik Mahmood – 12321074

Supervised By

Dr. Md Khalilur Rhaman

Associate Professor

Department of Computer Science and Engineering

School of Engineering & Computer Science

BRAC University

In partial fulfillment of the requirements for the degree of

Bachelor of Science in Electrical and Electronic Engineering

April 2016

BRAC University, Dhaka

1 | P a g e

Declaration:

We hereby declare that research work titled “Modeling & Testing of a Nano-Satellite

And Implementation of a BalloonSat With Data Analysis” is our own work. This paper

has not been presented elsewhere for assessment. Where materials were used from

other sources it has been properly acknowledged/ Referred.

Signature of the Supervisor Signatures of the Authors

 Dr. Md Khalilur Rhaman

 Md. Ishraque Bin Shafique

 Md. Razzaq Halim

 Arik Mahmud

Fazle Rabbi

2 | P a g e

Table of Contents

Acknowledgement .. 04

Abstract ... 05

Chapter 1: Introduction .. 06

1.1 Introduction .. 07

1.2 Literature Review ... 08

Chapter 2: Structural Analysis ... 09

2.1 Model Description .. 10

2.2 CUBESat Design Specification .. 14

2.3 Random Vibration .. 15

Chapter 3: Balloonsatellite & Ground Station ... 17

3.1 Circuit Specifications ... 18

3.2 Components Used ... 19

3.2.1 Raspberry Pi 2 Model B+ .. 19

3.2.2 Adafruit Ultimate GPS Module .. 20

3.2.3 Raspberry Pi Camera Board ... 21

3.2.4 Adafruit 10-DOF IMU Module ... 22

3.2.5 Adafruit UV Index/IR/Visible Light Module .. 23

3.2.6 XBee 2mW Wire Antenna-Series 2 .. 24

3.2.7 XBee Explorer USB .. 25

3.3 Circuit Assembly ... 26

3.4 Communication Protocols Used ... 27

3.4.1 I2C BUS .. 27

3.4.2 Serial Communication ... 28

3.4.3 Wireless 2.4-GHz Communication .. 29

3.5 Ground Station .. 31

3.6 Processes Inside Raspberry Pi .. 34

Chapter 4: Image Processing & Vegetation Analysis ... 36

4.1 Image Processing ... 37

4.1.1 Basics of Image Processing .. 37

4.1.2 Digital Image ... 38

4.1.3 Image Resolution .. 39

4.1.4 Image Thresholding .. 40

4.2 Vegetation Health Analysis by Color Thresholding .. 42

Chapter 5: Analysis & Result ... 43

5.1 Random Vibration Analysis .. 44

3 | P a g e

Chapter 6: Discussions & Conclusion ... 52

 6.1 Discussions ... 53

6.1.1 Software Analysis ... 53

6.1.2 BalloonSat .. 53

6.2 Conclusion ... 54

Chapter 7: References .. 55

Chapter 8: Appendix ... 58

8.1 Codes .. 59

8.1.1 imu_orientation.. 59

8.1.2 imu_temp .. 69

8.1.3 gps .. 73

8.1.4 UV ... 75

8.1.5 cputemp .. 76

8.1.6 MAIN_run .. 77

8.1.7 picture transmission .. 78

8.1.8 MATLAB Image Processing Code .. 79

8.1.9 Green Mask in MATLAB…………………………………………………………...81

8.2 Additional Images .. 82

4 | P a g e

Acknowledgement

We are very thankful to Dr. Md Khalilur Rhaman sir for giving us the opportunity to

conduct this thesis program, without his endless support this thesis would not have

been possible.

We are grateful BRAC University for providing us with all the resources we needed in

order to conduct our work. We were very fortunate to receive their endless support.

We must thank Asst. Prof. Arifur R. Khan of Kyushu Institute of Technology for his help

regarding our structural analysis. Adding to that we would like to thank Abdulla Hil Kafi, Maisun

Ibn Monowar, Raihana Shams Islam Antara and Munir Muhammad Maruf for giving us their

support and guidance. Never the less, we cannot thank Shifur Rahman Shakil enough for being

our light in the darkness.

Finally, we would like to thank Md. Ashfaque Bin Shafique for his never ending support

throughout the entire period of the project.

5 | P a g e

ABSTRACT

Satellites are very expensive for developing countries like Bangladesh to facilitate, for

which these countries can approach Nano-satellite or balloon satellite which are

cheaper compared to a satellite. A Nano-satellite should be designed in such a manner

that it can withstand the harsh environments of space and meet all the criteria of carrier

vehicle companies. On the other hand, a balloon satellite is much cheaper, easier to

construct and is an excellent illustration of a Nano-satellite although it could not perform

all the possible functions of it. This paper demonstrates a remodeled version of a Nano-

satellite model proposed by an earlier group from BRAC University and also the

structural feasibility of that remodeled structure by performing a vibration analysis on it.

Additionally, it also implements a balloon satellite circuit for monitoring crop health and

deforestation activities by sending images over which are later processed on the ground

station. The circuit also sends latitude, longitude, temperature, pressure, light intensity,

pitch, roll, heading, UV index, infrared, CPU temperature data using sensors and

modules, the balloon satellite is tracked using the latitude and longitude readings. The

data transmission occurs wirelessly and is maintained by a Raspberry Pi B+ which runs

by itself on boot. These data are received on a ground platform where they are

displayed in a GUI in a proper manner and are being saved as well.

6 | P a g e

CHAPTER 1

INTRODUCTION

7 | P a g e

1.1 Introduction

Space age technology has become essential for development, with a satellite a country

has more knowledge of what is going on within its boundaries and also around it to

maintain national security, weather forecast and others. Those satellites are very

expensive to obtain and also require huge amount of funds to maintain, which is very

difficult for developing countries like Bangladesh to facilitate. Due to the lack of finance,

developing countries resort to smaller versions of satellite such as Nano-satellite or

BalloonSat, which are cheaper compared to the larger ones. Although they are smaller

in size and can perform fewer functions, they still can provide with enough information

that can open doorways to space research. With a strong and durable Nano-satellite, a

country is looking forward to many years of information that can help develop many

sectors such as agriculture. On the other hand, a BalloonSat, is much cheaper with a

tradeoff of shorter flight period. Both Nano-satellite and BalloonSat can provide with

valuable information which can be received on a ground station. The information can

contain data or image, data that can be used for understand the condition of our

environment or for research purposes and images to identify certain aspects of interest

such as the color of the crop leaves to estimate nitrogen levels, which in return could

help us improve the yield to crop production. This application could help develop

countries like Bangladesh much faster.

8 | P a g e

1.2 Literature Review

A group from BRAC University proposed a model for a possible Nano-satellite structure

in 2015, their aim was to design the structure in such a way that it could endure and

remain stable in space. The structure consisted of 6 pyramids clipped together, giving

the overall structure many openings for solar panels and a cubic space at the center for

the battery. As we know, Bangladesh is a victim of many natural disasters such as

hurricanes and typhoons and others. Due to heavy rainfall, floods occur damaging the

agricultural lands of the country which in return harms the country’s economy since

Bangladesh is an agricultural country. Therefore, they attempted to construct a Nano-

satellite for Bangladesh in order to monitor the weather, but due to the lack of

equipment and other resources were unable to do so. So instead they proposed the

structural model and hoped for support from expert countries.[1]

A BalloonSat program conducted in University of Colorado at Boulder intended to give

students the opportunity to work on satellite, their intention was to introduce engineering

students to the challenges faced when working with satellites. Since satellites are out of

reach for students, they are instead introduced to BalloonSat which is a cheap

alternative to satellites. The students implemented a number of sensors to retrieve data

from high altitudes and also to track it. The small satellite circuits were attached with a

parachute and a balloon and was intended to float until the balloon burst. The data was

collected from the satellite after it landed back from its flight. They collected

temperature, humidity and other data for illustration purposes.[2]

A BalloonSat with an onboard camera can be used in a broad spectrum of image

processing. One such perfect example is to estimate the health of crops. By this

process a large vegetation area can be sampled in a short time. We have studied a

paper written by a research team at Stanford University related to this technique. In this

thesis paper, however we have implemented image processing algorithms to determine

the nitrogen contents of plant leaves in a field.

In the following chapter we discussed about a model and the theories of random

vibration analysis. In chapter 3 we approached a BalloonSat circuit with off the shelf

components. Following the data received from the BalloonSat, we conversed about two

possible applications in chapter 4. The result and analysis of our thesis were discussed

in chapter 5.

9 | P a g e

CHAPTER 2

STRUCTURAL ANALYSIS

10 | P a g e

2.1 Model Description

Nano satellite provides an excellent opportunity for our country as it will be affordable

and its varied applications can be used to benefit our country. Before moving on to the

applications of the satellite, we have to make sure the body of the satellite adheres to

the requirements of the launcher vehicle and is properly tested in an environment

simulating the harshness of the space. In this chapter, we have presented the physical

model and its specifications, talked briefly about design specification and lastly

explained the tests we have performed on the model.

Our physical model was an extension of a proposal by a thesis group from BRAC

University on their paper titled “Exploring Modular Architecture for Nano Satellite and

Opportunity for Developing Countries” as stated earlier. Their structure is given in

Appendix-8.1 in figure-41. Adding to the idea of six individual pyramid structure whose

vertex has been clipped; we have reimagined and assembled our CAD model with a set

of objectives in mind.

 Dimension of the Nano satellite is to be 10cm*10cm*10cm.

 The mass of the satellite has to be less than 1.33 kilograms.

 Deployable should be constrained by the Nano satellite.

 A system of auto deployment of solar panels.

3D model of the satellite was produced from scratch by ourselves using a CAD

software. We produced each pyramid face on its own and then mated the six individuals

together to form a CubeSat structure. The biggest advantage of this process is each

pyramid body can be tested on its own reducing the cost of producing expensive

prototypes. Each of these pyramid faces will have support structure at the four corners

where the protective plates will be screwed in. Also two extruded support are in the

inner two faces (opposite to each other) for the electronics. The remaining free inner

faces are used to position the hinges. One hinge is placed higher up than the other so

that solar panels, when un-deployed will be on top of one another. The final assembly is

a 10 cm cube with mass of 420 grams when using structural steel as the material. The

inclusion of battery, integrated circuits, sensors and solar panels will add to this mass.

On figure-1 the full model and exploded view is visible. It consists of six independent

pyramid shaped subassembly joining together to form a cube, 6 thick plates that protect

the inner circuitry, a pair of hinges that control solar panel deployment.

11 | P a g e

Figure 1: Full Nano-satellite model & exploded view

Figure 2: Mechanical hinge with spring

12 | P a g e

Every pyramid subassembly has two slots for circuits to be placed on. Different sensors

can be placed on these slots allowing space for adequate electronic devices to monitor

the earth. The empty space on the center is reserved for the battery as it requires the

most amount of thermal protection. Next, the hinges are an important mechanical part of

this design. It is a 2.5 cm x 5 cm hinge assembly which is kept in place by a 0.26cm

diameter 5 cm long pin. The un-deployed and deployed angles with the subassembly

surface are 45° and 180°. As seen on figure-2 and figure-3 the hinges allow for a fixed

amount of movement by mechanical means.

Figure 3: Solar panels in un-deployed and deployed position

We also note that more of these hinge pairs can be added to the other pyramid

subassemblies to support more solar panels if power requirement increases. This is

particularly important because this provides us with a modular design and also the

previous group’s proposal of reaction wheels to control the orientation of the satellite

that required huge power can be met. A model with all solar panels attached is shown

on figure-4.

Lastly, the deployable solar panels will be un-deployed up until it reaches its orbit. This

will be achieved by fastening the structure with nichrome wires with one end attached to

a fuse. Nichrome wire is an alloy of nickel, chromium and iron which is usually used in

resistance wires. After releasing from the carrier vehicle the fuse is blown from the

ground station via a signal, thus deploying the solar panels.

13 | P a g e

Figure 4: Full model with solar panels in all faces

14 | P a g e

2.2 CUBESat Design Specification

From revision 13 of the CUBESAT design specification, a CUBESat has to undergo the

following tests to ensure safety.[3]

 Random Vibration: Random vibration testing shall be performed as defined by

the launch provider

 Thermal Vacuum Bakeout: Thermal vacuum bakeout shall be performed to

ensure proper outgassing of components. The test specification will be outlined

by the launch provider.
 Shock Testing: Shock testing shall be performed as defined by the launch

provider.

Figure 5: Qualification test flow courtesy of Cal Poly

As per the guideline the qualification test flow is shown in figure-5. We successfully

simulated the satellite model against random vibration as per the requirement of a

carrier vehicle. However, for lack of resources and external help we could not simulate

the other two analyses.

15 | P a g e

2.3 Random Vibration

Random vibration, commonly known as white noise is vibration whose amplitudes are

not deterministic. Random vibration analysis is performed usually on aeronautical

structures that undergo high level of vibration. The process of random vibration involves

applying random excitation to the structure to find design flaws, weaknesses and any

changes that may be needed before the structure is physically produced. The analysis

process is a statistical one as random vibration cannot be expressed precisely as a time

function. Power spectral density is used as input to obtain equivalent stress and

response power spectral density (PSD) plot.

Random vibration is analogous to white light. White light can be sent through a prism to

reveal a continuous spectrum of colors as like random vibration can be passed through

a spectrum analyzer to reveal a continuous spectrum of frequencies although the

generally used meaning of the term "random" is not appropriate for this term. If this term

were considered of having no specific pattern, it would not be possible to define a

vibration environment, because the environment would behave in an unpredictable way.

However, the majority of random processes fall in a special category termed stationary.

This means that the parameters by which random vibration is characterized do not

change significantly when analyzed statistically over a given period of time - the RMS

amplitude is constant with time.[4] Random vibration usually is defined by power spectral

density or acceleration spectral density. As random vibration is a statistical method,

required statistical terms are given below:

Standard Deviation-standard deviation is a measure that is used to quantify the amount

of variation or dispersion of a set of data values.

Skewness- skewness is a measure of the asymmetry of the probability distribution of a

real-valued random variable about its mean. The skewness value can be positive or

negative, or even undefined.

Kurtosis- kurtosis is a measure of the sharpness of the peak of a frequency-distribution

curve.

Mechanical failure and fatigue life is the most important aspect of random vibration

analysis for a designer. When a sensitive device is excited at its natural frequency,

relatively large displacements may result in failure of the model. In such a case, the

malfunction might be fixed by lowering the amplitude of excitation at the frequency of

concern - the modal frequency of the device. This might be accomplished by inserting a

vibration isolator between the source of excitation and the device.[3] Alternatively,

displacement might be reduced by adjusting the stiffness of the device, or by increasing

16 | P a g e

damping at the natural frequency of the device. The material of the model will affect the

type of action that need to be taken.

Figure 6:Flow chart of Random vibration process

For a single degree of freedom system, the maximum response from an input PSD can

be given by,

 𝑐𝑛 =√2ln (𝑓𝑛 𝑇)

 𝐶𝑛=𝑐𝑛 +
0.5772

𝑐𝑛

Maximum peak = 𝜎𝑛𝐶𝑛

Where, 𝑓𝑛 = 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

 𝑇 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

 𝜎𝑛 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

 𝑛 = 𝑖𝑛𝑑𝑒𝑥

Random vibration analysis performed on the Nano satellite model and the result is

discussed on chapter-5. The step by step process of random vibration is given on the

figure-6.

Generating CAD model

Import Geometry

Apply Material

 Apply Fixture & Mesh

Random Vibration
Analysis

Modal Analysis

Maximum Stress

17 | P a g e

CHAPTER 3

BALLOON SATELLITE

&

GROUND STATION

18 | P a g e

3.1 Circuit Specifications

A balloon satellite is a smaller version of a Nano satellite, that being said it cannot

facilitate us with many information and services. However, it can provide us with basic

information and images from a desired height. So we have constructed a circuit that will

be able to supply us with data or images from high altitudes.

A satellite performs many various functions and processes which require a capable

processing unit, we are using a Raspberry Pi B+ module to handle all the processes we

are intending to perform. We used a lot of sensors to collect data such as the UV

sensor, IMU module, Adafruit Ultimate GPS module, Raspberry Pi Camera, and we also

used the built in temperature sensor of the Raspberry Pi. UV sensor(si1145) is used to

sense the UV radiation (purpose of reading change in intensity with height). The IMU

module is a collection of few sensors (L3GD20H, LSM303, BMP180) which provides us

with many data. The circuitry will be floating around if used as a balloon satellite or in

space if applied to a Nano-satellite, so we require a means to track its position and that

is why we are adding a GPS module. The Raspberry Pi has a built in temperature

sensor which can be used to monitor the Raspberry Pi temperature conditions. This

allows us to obtain the circuit boxes internal temperature. The camera was added to

help monitor crop health and deforestation by taking photographs. All these data

including the image taken is sent to the ground platform via XBee module wirelessly.

19 | P a g e

3.2 Components Used

3.2.1 Raspberry Pi 2 Model B+

Figure 7: Raspberry Pi 2 B+

Raspberry Pi 2 Model B is a Linux based development platform. It uses a processor

with clock speed of 900 MHz (which can be overclocked to 1000MHz) and 1GB RAM.

The board has 40 GPIO (general purpose input/output pins) used to

communicate/control low level peripherals. This Raspberry Pi can support 64GB

microSD card. Online connectivity is achieved through the RJ45 port.

Features:

1) 40 GPIO pins

2) x USB 2.0

3) MicroSD Card Slot

4) HDMI output

5) Ethernet port

6) 3.5mm Audio Port

7) CSI (Camera Interface)

8) DSI (Display Interface)

9) VideoCore IV 3D Graphics

20 | P a g e

3.2.2 Adafruit Ultimate GPS Module

Figure 8:Adafruit ultimate GPS Module

The Adafruit Ultimate GPS Module can track up to 22 satellites on 66 channels, has an

excellent high-sensitivity receiver (-165 dB tracking), and a built in antenna. It can do up

to 10 location updates a second for high speed. It communicates using serial protocol.

Features:

● Satellites: 22 tracking, 66 searching

● Patch Antenna Size: 15mm x 15mm x 4mm

● Update rate: 1 to 10 Hz

● Position Accuracy: < 3 meters (all GPS technology has about 3m accuracy)

● Velocity Accuracy: 0.1 meters/s

● Warm/cold start: 34 seconds

● Acquisition sensitivity: -145 dBm

● Tracking sensitivity: -165 dBm

● Maximum Velocity: 515m/s

● Input voltage range: 3.0-5.5V DC

21 | P a g e

3.2.3 Raspberry Pi Camera Board

Figure 9:Camera board

The Raspberry Pi Camera Module attaches to Raspberry Pi by CSI interface, which was

designed especially for interfacing to cameras. The CSI bus is capable of extremely

high data rates, and it exclusively carries pixel data.

The sensor itself has a native resolution of 5 megapixels, and has a fixed focus lens

onboard. In terms of still images, the camera is capable of 2592x1944 pixel static

images, and also supports 1080p30, 720p60 and 640x480p60/90 video.

Features:

● Small board size: 25mm x 20mm x 9mm

● A 5MP (2592×1944 pixels) Omnivision 5647 sensor in a fixed focus module

● Support 1080p30, 720p60 and 640x480p60/90 video record

22 | P a g e

3.2.4 Adafruit 10-DOF IMU Module

Figure 10: 10 DOF IMU module

This inertial-measurement-unit combines 3 sensors to give 11 axes of data: 3 axes of

accelerometer data, 3 axes gyroscopic, 3 axes magnetic (compass), barometric

pressure/altitude and temperature. It communicates using the I2C protocol

The Adafruit 10DOF IMU comprises of L3DG20H gyroscope, LSM303DLHC

accelerometer and compass and BMP180 barometric/temperature sensors.

Features:

● Length: 1.5" / 38mm

● Width: 0.9" / 23mm

● Height: 0.125" / 3mm

● Weight: 2.8g

● This board/chip uses I2C 7-bit addresses 0x19 & 0x1E & 0x6B & 0x77

● L3GD20H 3-axis gyroscope: ±250, ±500, or ±2000 degree-per-second scale.

● LSM303 3-axis compass: ±1.3 to ±8.1 gauss magnetic field scale.

● LSM303 3-axis accelerometer: ±2g/±4g/±8g/±16g selectable scale.

● BMP180 barometric pressure/temperature: -40 to 85 °C, 300 - 1100hPa range,

0.17m resolution.

23 | P a g e

3.2.5 Adafruit UV Index/IR/Visible Light Module

Figure 11: UV sensor

The SI1145 is a sensor with a calibrated UV sensing algorithm that can calculate UV

Index. The sensor uses I2C bus and can communicate at very high speeds with the

Raspberry Pi. Values of UV Index, IR Spectrum and Visible Light can be read from the

sensors. The UV sensor like the IMU also communicates using the I2C protocol

Features:

● IR Sensor Spectrum: Wavelength: 550nm-1000nm (centered on 800)

● Visible Light Sensor Spectrum: Wavelength: 400nm-800nm (centered on 530)

● Voltage Supply: Power with 3-5VDC

● Output Type: I2C address 0x60 (7-bit)

● Operating Temperature: -40°C ~ 85°C

● 20mm x 18mm x 2mm / 0.8" x 0.7" x 0.08"

● Weight: 1.4g

24 | P a g e

3.2.6 XBee 2mW Wire Antenna-Series 2

Figure 12: Xbee radio module

The XBee Series 2 is a wireless networking chip for wireless data transmission with

which it is easy to create complex mesh networks based on the XBee ZB ZigBee mesh

firmware. These modules allowed us a very reliable and simple communication between

the Raspberry Pi and the Ground Station PC. Like the GPS module the XBee also

communicates using the serial protocol with the Raspberry Pi/Arduino.

Features:

● 3.3V @ 40mA

● 250kbps Max data rate

● 2mW output (+3dBm)

● 400ft (120m) range

● Built-in antenna

● Fully FCC certified

● 6 10-bit ADC input pins

● 8 digital IO pins

● 128-bit encryption

● Local or over-air configuration

● AT or API command set

25 | P a g e

3.2.7 XBee Explorer USB

Figure 13:Xbee explorer USB

The XBee Explorer USB is a USB to serial base unit for the XBee wireless module. The

main feature of this board is an FT231X USB-to-Serial converter which interprets data

between a computer and the XBee. There is a reset button, and a voltage regulator. In

addition, there are four LEDs that helps to configure the XBee: RX, TX, RSSI (Signal-

Strength Indicator), and power indicator.

26 | P a g e

3.3 Circuit Assembly

The circuit is connected as shown in figure 14, the Raspberry Pi supplies power to all

the components except the GPS module as it requires close to 5V, since the Raspberry

Pi is supplying all the other components it is unable to supply exactly 5V to the gps

which in return will end up adding noise to the gps data. The gps may even fail to get a

fix and so the gps instead draws power directly from the battery. An Arduino shield is

connected with the XBee module, it has no function but the issue was that the XBee

pins spacing was too small and rails that match its spacing was not available, so the

Arduino shield was connected so that we can connect it with the rest of the components

on the same board. The voltage regulator regulates the voltage down to 5V, in consists

of LM2940 chip, two 10µF capacitors at the input side and one 0.1µF capacitor at the

output. The circuit was then assembled on a pcb (printed circuit board) board as shown

in figure 14, the Raspberry Pi is attached below the pcb and the battery and camera are

placed on a plane board below the Raspberry Pi.

Figure 14: Circuit diagram of BalloonSat and the actual integrated setup

27 | P a g e

3.4 Communication Protocols Used

3.4.1 I2C BUS

I2C bus allows multiple slaves devices (up to 1008 devices) to communicate with one or

multiple master devices whereas the SPI can only support one master device, it is

preferred for short distance communication at a rate of 100HZ or 400HZ between digital

circuits and only requires two pins or connections to do so whereas the SPI requires

four connections, the two connections being SDA and SCL. SCL synchronizes the data

transfer over the i2c bus while the SDA is used to transfer the data which gives it an

advantage over the serial communication, due to this synchronization no data

overlapping occurs.

Figure 15:Basic i2c connection between master and slave devices

Figure 16: Basic SPI connections

28 | P a g e

3.4.2 Serial Communication

Serial communication is an asynchronous form of communication where data is sent

one bit at a time over a channel while in the parallel communication multiple bits are

sent at a time over multiple channels increasing the number to wires.

Figure 17: Serial communication sending one bit per clock

Figure 18: Parallel communication

Nowadays to reduce the number of wires, the clock has been removed which is why the

serial communication is asynchronous. Baud rate is what determines how fast the data

is being transmitted, it is required for both devices to operate at the same baud rate

Figure 19:Hardware connections of serial communication

29 | P a g e

3.4.3 Wireless 2.4-GHz Communication

There are many modules are recognized worldwide as data communication device.

Which are license free 2.4Ghz ISM band. ISM band stands for Industrial, Scientific and

Medical band. It’s a part of radio spectrum. It can be used almost any country without

license. But these frequencies and power of these bands varies from country to country.

Some common frequencies are:

● 2.4 GHz = nearly worldwide

● 915 MHz band = North America, South America, some other countries

● 868 MHz band = Europe

For any given distance, a 2.4 GHz installation will have roughly 8.5dB of additional path

loss when compared to other frequencies. Lower frequencies always required larger

antennas to reach the gain. As we know frequency rise as the like as bandwidth rises

too. But the range and obstacle problem is reduced.

 Advantage of 2.4GHz band:

● It has wider signal coverage area

● Better penetration through walls

Disadvantage of 2.4GHz band:

● Might get interference from any kind of Bluetooth devices, wireless devices etc.

which are also operates on same frequency.

There are many different types of RF network with various advantage and

disadvantages. The main we are concern in these devices are network topology, data

rate, power, consumption, range etc.

30 | P a g e

There are few devices that we can use:

XBee:

Low data rate (250 Kbit/s) and low power consumption. It's mainly used in mesh

networking. We need two XBee to communicate each other and through each other via

the mesh to device that are out of distance. This used probably as network device,

particularly in sensor related.

Wi-Fi:

High data rate (54 Mbit/s). It also consumes high power. It need to connect directly

through internet and pc. It also need external power source.

Bluetooth:

Medium data rate. It consumes medium power. Bluetooth are pairing type device.

Pairing type network normally not so much useful for sensor networks. It is only good for

laptops and mobile also it can be use in Arduino via serial RX and TX pins to

communicate.

Power Limit:

2.4 - 2.4835 GHz

Bluetooth 100m

Wi-Fi 802.11a/n/ac

Microwaves ovens 900

XBee 802.15.4

Table 1 Power Limit of 2.4GHz radio-band

31 | P a g e

3.5 Ground Station

We have developed a ground station (G.S) for our project. The Graphical User Interface

(GUI) of the GS has been coded using LabVIEW, which is a system-design platform

and development environment for a visual programming language from National

Instruments. As LabVIEW uses visual language, it is very easy to implement and build

the GUI. The interface is grouped into several tabs where data from the sensors are

viewed separately. The GS also has a data logging option enabled. Every time the

program is run, it will save the data in an Excel spreadsheet for further analysis.

Figure 20: Graphical user interface(GUI)

The tabs are labeled as Connection, GPS, Gyro, IMU Data, Light Sensor and Weather.

The connection tab deals with the serial connection and shows the input in the com

port. There is also a drop down list to select the correct com port to begin the

connection. It also has a slider to adjust the delay of the receiving data.

GPS tab shows the satellite time and date and also the longitude and latitude of the

current position. There is also a button which will call up an executable file (.exe) which

can plot the positions in a map.

The Gyro tab shows the X, Y and Z components of the gyroscope in a live graph.

The IMU Data (inertial measurement unit data) tab displays the pitch, roll, heading and

altitudes in radial dials and a bar.

The following tab is the Light Sensor tab which displays information from the SI1145 UV

sensor. This tab has three dials to visualize Visible Light, Infrared and UV Index.

32 | P a g e

Finally, the Weather tab shows atmospheric temperature and pressure as well as the

CPU temperature of the Raspberry Pi.

Figure 21: LabVIEW g-code for the ground station GUI

Additionally, we have used Visual Studio to create an executable file which once called

will pull data from the data logging file and mark the position of the balloon in a Google

Map window. The map can be zoomed in and out using the mouse scroll wheel.

However, the ground station needs an active internet connection for the Google Map to

load. We can see that in Appendix 8.2 figure 44.

Figure 22: Flowchart of program in LabVIEW

The above diagram summarizes the LabVIEW program used for the Ground Station.

The serial connection opens with a predefined Baud Rate of 9600. The data that is

being pulled from the XBee module connected to the computer is stored in a string

where each data is separated using a comma delimiter. Then pattern match functions

are used to parse each data before the commas. The parsed data are displayed in the

GUI and are being saved in an Excel Spreadsheet for further analysis shown in figure

23. When the program stop button is clicked, the program is halted and the serial

connection with the XBee module is closed.

33 | P a g e

Figure 23: Data logging in Excel

34 | P a g e

3.6 Processes Inside Raspberry Pi

The Raspberry Pi acts as the main brain of the BalloonSat. We have developed the

necessary codes required for working using Python libraries. The code has been broken

down to several sub-functions. This allows easy access to the specific works and each

segments can be edited whenever needed. The sub-functions are gps_xl,

IMUorientation, IMUtemp, UVsensor, getCPUtemp. The main program has been named

MAIN_run. Whenever MAIN_run program is started it calls in the other functions and

access data from the various sensors. The flowchart of the programs is given below:

Figure 24: Sub-functions that are called by the main function(MAIN_run)

35 | P a g e

The RGB image captured by the Raspberry Pi was then devised to be sent wirelessly

using the XBee. The particular version of XBee module have low data transfer rate. As

a result, it takes a very long time to send a single image. Just to make a comparison we

have sent images of various sizes and the time taken are recorded in the following

table.

Image Resolution

(W*H Pixels)

Time required to wirelessly

transfer data

1280 x 960 3313s

1024 x 768 2144s

640 x 480 834s

300 x 300 247s

Table 2 Time required to process and send images of different resolutions.

From the table we can clearly see, even the smallest resolution takes 4 minutes 7

seconds to be transmitted. Therefore, we have suppressed the image transmission from

our normal operation.

36 | P a g e

CHAPTER 4

IMAGE PROCESSING

&

VEGETATION ANALYSIS

37 | P a g e

4.1 Image Processing

4.1.1 Basics of Image Processing

Image processing is the processing of images using computational operations by using

signal processing techniques. The input is an image, a series of images or a video; the

product is maybe an image with a set of characteristics or parameters related to that

image.[5] In recent days, majority of the image processing algorithms involve treating the

image as a 2D signal and applying standard digital signal processing techniques to it.

Processing can also be done in 3D with time being the third dimension or z-axis.

Figure 25: RGB color wheel

Digital image processing has many advantages over its analog counterpart. It allows a

much broader spectrum of computational techniques to be applied to the data and can

avoid problems such as noise during the process. In addition to that, the image being in

digital form is very easy to store in storage devices and can also be transmitted easily to

large distances. Before explaining the actual image processing that we have worked out

in this project, let us at first discuss few of the basics of a digital image.

38 | P a g e

4.1.2 Digital Image

According to James D. Foley, digital image is a numerical representation of a two

dimensional image.[6] Depending on the resolution of the image, the image may be of

raster or vector type; however usually a digital image refers to raster or bitmapped

image. Any digital image comprises of its most elementary units called pixels (picture

elements). Each pixel is made up of three channels named the RGB (Red Green Blue)

channels. And a grayscale image has only one channel. The original image of figure 26

below was taken during the first test run of our BalloonSat.

Figure 26: Image of a park segmented into its three color channels

39 | P a g e

4.1.3 Image Resolution

The resolution of an image is the details that an image holds. The term applies to the

raster type of digital images. It is identified by the width and height of the image as well

as the total number of pixels in the image. The total number of pixels of an image is

calculated by multiplying the height and the width. Then the calculated result is divided

by 1 million; this will give the resolution in megapixels (MP). The greater the value of the

MP, the bigger is the image size.

Figure 27: Comparison of images of different resolutions courtesy of Canon (2005)

40 | P a g e

4.1.4 Image Thresholding

Image thresholding is the simplest method of image segmentation. From a RGB image,

thresholding can be used to create binary images.[7] The simplest thresholding methods

replace each pixel in an image with a black pixel (0) if the image intensity Ix,z is less than

some fixed constant T (that is, Ix,z < T), or a white pixel (1) if the image intensity is

greater than the constant. Color images can also be thresholded. The approach is to

designate a separate threshold for each of the RGB components of the image and

combine them with an AND operation.

Figure 28: Color thresholding of an image of a park

The above figure shows the original image as input and the green filtered image after

color thresholding. The pixels of the original image which have values within the defined

range of RGB values are represented as white (1) and the rest as black (0). Later we

used boundary detection to identify patches of greenery which was inspired by the work

of Maloof et al. [8]

This algorithm can be used to easily estimate the percentage of a particular color range

in a given image. The use of this technique is explained in the following section.

41 | P a g e

The onboard Pi-Cam can capture images of 5MP (2592×1944 pixels) resolution. Due to

limitation in onboard-processing power and as well as storage capacity, we had to

acquire the images at 600 x 400pixels resolution. We processed the images in MATLAB

later on.

We let the Raspberry Pi to take a series of photographs using its camera. The images

are saved in a directory with sequential naming (Image1.jpeg, Image2.jpeg and so on)

for easier handling. Later we took a batch of 30 such images from the Raspberry Pi

using USB flash drive and saved it in a MATLAB directory. The MATLAB script loads

the files one by one, apply color threshold technique, calculate the green of green and

also saves a resulting output in the directory sequentially. We have experimentally

found that MATLAB is very fast in processing the images which is a positive side. On

the contrary, we have to wait for a long time before we can get a batch of images.

The color thresholding limits of each channels are as:

0≤ RED_channel ≤106.0

0≤ GREEN_channel ≤255.0

0≤ BLUE_channel ≤114.0

Image Resolution

(W*H Pixels)

Number of image files Total Time required

(Seconds)

1280 x 960 30 33.88

1024 x 768 30 32.86

640 x 480 30 29.60

300 x 300 30 28.02

Table 3 Time required for processing images captured at different resolutions.

42 | P a g e

4.2 Vegetation Health Analysis by Color Thresholding

Image processing is very useful for agriculture, we can take an image of a vegetation

field and match the leaf color with the leaf color charts to understand the Nitrogen

fertilizer dosage of the field. C. Witt (2005) says that, the leaf color chart (LCC) helps

the farmers to evaluate plant nitrogen (N) demand. [9] The LCC was made by calculating

the leaf spectral reflectance measurement, this reflectance varies with the color of the

leaf. The color chart has four different green shades, so we took each shade and found

its corresponding RGB composition in MATLAB.

Figure 29: LEAF Color Chart(LLC) courtesy of Irrigated Rice Research Consortium

Strip Number Red Green Blue

2 103-255 145-255 0-12

3 83-98 145-165 0-30

4 0-106 111-113 0-30

5 0-104 0-105 0-62

Table 4 RGB Spectrum of IRRI Leaf Color Chart (LCC)

From an image of a crop field, we can now understand the Nitrogen fertilizer level by

finding that images RGB composition and comparing it with these ranges in MATLAB, if

the color range falls in the 1st strip then the Nitrogen level is low, if it falls in the 4th strip

then there is a surplus of Nitrogen, if it falls in the 2nd strip then the Nitrogen level is

below the critical level of Nitrogen composition, if in the 3rd strip then the Nitrogen

composition is above the critical Nitrogen composition and so therefore for a healthy

and good yield the color of the leaf must be between the 2nd strip and the 3rd strip.

43 | P a g e

CHAPTER 5

ANALYSIS & RESULT

44 | P a g e

5.1 Random Vibration Analysis

The finite element analysis was a stationary random vibration test on a student version

of the analysis software Ansys. For simplification of the process, the fillets and chamfers

of the model were ignored. Adding to that, the protective plates on each face of the

model were suppressed to visualize the analysis better. Lastly, threaded connections

were simplified as faces glued together.

We took three space grade materials that are used commonly in space missions and

compared the results to determine the best selection of material. Some physical

properties are shown on the next table.

Material

Yield

Strength(Pa)

Shear

Modulus(Pa)

Poisson’s

Ratio

Density

(g/cm3)

Aluminum

6061-T6

276x106 26x109 0.33 2.7

Aluminum

7075-T6

503x106 26.9x109 0.33 2.81

Ti-6Al-4V 970x106 44x109 0.342 4.43

Table 5: Intrinsic Properties of Aerospace Material

Mode analysis is done as a prerequisite of random vibration test which gives us the

natural frequencies of the structure. To perform this, we had to add fixtures to simulate

how the Nano satellite will be placed in test environment. A fixed geometry was added

to the bottom face of the model simulating how structures are placed on the shaker

table in real life. The modal frequencies are listed on the table below. Top four of the

modes are shown pictorially in figure 30 to figure 33.

45 | P a g e

Mode Frequency [Hz]

1 843.4

2 1854.7

3 1864.5

4 2808.4

5 3903.6

6 3924.6

Table 6: Natural Frequency at Different Modes

Figure 30: Mode 1

46 | P a g e

Figure 31: Mode 2

Figure 32: Mode 3

Figure 33: Mode 4

47 | P a g e

Nano satellites are deployed to orbit by means of transfer vehicle that are launched

from the earth station. The satellites positioned in this carrier vehicle faces tremendous

random vibration excitation ranging from 20 to 2000 Hz. So as per the NASA guideline

random vibration tests have to be conducted with real vibration profile provided by the

CubeSat deployer companies. In our case, we have used the test profile provided by

NanoRacks LLC company, in their NanoRacks CubeSat deployer interface control

document. [10]

Figure 34: Input PSD spectrum

To acquire the solution, we put the test profile in X, Y, Z direction as PSD acceleration

and selected equivalent von-mises stress and response power spectral density as the

expected output. Setting the system damping ratio to 3% and meshing the structure

using program controlled settings we solved the analysis and figured out the

interpretations of the results. We chose the vertex that showed maximum stress on the

equivalent stress plot as the node where the response PSD is probed. We can take a

look at the 1σ equivalent stress plots of the three materials in figure 35 to figure 37. The

response PSD on the three axes are shown on figure 38 to figure 40.

48 | P a g e

Figure 35: Aluminum 6061-T6 1σ equivalent stress plot

Figure 36: Aluminum 7075-T6 1σ equivalent stress plot

Figure 37: Ti-6Al-4V 1σ equivalent stress plot

49 | P a g e

Figure 38: Response PSD on X axis

Figure 39: Response PSD on Y axis

50 | P a g e

Figure 40: Response PSD on Z axis

As shown on the figure 35 to figure 37 maximum stress occurs in the inner corner points

of the pyramid structures. So it can be said that vibration fatigue damage will harm this

area the most. We can take a detailed look on the stress and displacement values for

the three materials in the table 7.

Material Maximum Equivalent

Stress

 (1σ) [Pa]

Maximum

Equivalent Stress

(3σ) [Pa]

Maximum

Displacement

(Y Axis) [cm]

Al 6061-T6 39. 504x106 113.94x106 0.00011747

Al 7075-T6 37.98x106 118.51x106 0.0001181

Ti-6Al-4V 62.003x106 186.01x106 0.00011319

Table 7 Results from Random Vibration Analysis

51 | P a g e

From table 7 it is visible that maximum displacement (on the vertical direction) occurs

on the material Al 7075-T6 that is 0.118mm. If we look at stress values similar results

are seen; The 3σ values are almost the same for the two aluminum alloys. The

maximum surface stress for material-2 is 37.98MPa which is located at the joint of the

inner corner. The probability of surface stress under 37.98MPa is 68.2% wherein

probability of stress under 118.51MPa is 99.73%. So the material that shows the best

promise from these materials is Al 7075-T6. With a yield strength of 503 MPa and

considering a safety factor of 2, maximum allowed stress is 118.51*2=237.02MPa that

is less than 503 MPa. [11] So the Nano satellite structure withstands the input excitation

of random vibration with the selected material.

As an extension to the analysis performed, the maximum stress value can be used in

Steinberg’s three interval method and Miner cumulative damage theory to estimate

fatigue life of the Nano satellite [12]. We encourage performing this analysis additionally if

any group decides to further this research and hopes to make a working prototype of

the model.

The acceleration response is more important in random vibration tests; in which our

structure showed a tendency to get spikes in the three Axes around the frequency

1854-1864 Hz. This proves that the 2nd and 3rd order modes are contributing to the

response PSD. In addition to that, the y axis response on the node shows another high

acceleration value around the frequency 253.4 Hz.[13]

52 | P a g e

CHAPTER 6

DISCUSSIONS

&

CONCLUSION

53 | P a g e

6.1 Discussions

6.1.1 Structural Analysis

Finite element analysis is an important part of this thesis. We have successfully

completed the analysis of random vibration of the 3D model. Note that, the 3D model

used in the analysis consisted solely of the outer body; protective plates, hinges and

screws were suppressed to reduce complexity. By analyzing three different materials

we also determined which one would be the best choice for the structure. Additionally,

the results of our random vibration analysis has passed the specification set by

NanoRacks LLC, a carrier vehicle production facility. However, we could not perform all

the test such as shock test and outgassing test that was necessary to comply with

international standard. This was mainly due to lack of resources and logistical support.

6.1.2 BalloonSat

We were unable to launch the BalloonSat due to the shortage in our budget; the cost of

the balloon and the Helium gas was too high. Additionally, the Xbee module used was

of hundred feet range, higher range radio modules are not available in Bangladesh. The

2.4-GHz radio band is very prone to noise, as a result the data received had errors and

many delays. The gps communicates at 9600 baud rate which is consistent but slow.

We had the facility to increase the baud rate of the Xbee to increase data transmission.

This however was not feasible because one serial port cannot support two different

baud rates. The image data takes too much time to transmit, so we were unable to send

the image data along with the other data.

54 | P a g e

6.2 Conclusion

Satellite are expensive to build and complicated to maintain, however with the

introduction of Nano-satellites it is possible to achieve space research by developing

countries like Bangladesh. From our thesis works, we found out that BalloonSat can be

used transmit data wirelessly from the balloon to the Ground Station(GS). Most of the

earlier researches conducted on BalloonSat relied on the data being saved in a logger;

which is then collected manually. We constructed the BalloonSat from off-the shelf

sensor modules, as a result anyone can follow our paper and construct the circuit on

their own.

The sensory data collected at GS can be used by other researchers to analyze local

weather fluctuation patterns. In addition, each BalloonSat unit also easy to setup and

launch. Many of such units can be used in different places to gather data on a large

area. These data can be analyzed using deep learning to better understand climate

changes such as global warming. [14] In addition satellite imaging can be used to detect

oil spills in rivers and sea beds. [15]

The imaging algorithm used in the BalloonSat can be used to determine the nitrogen

concentration of leaves. Farmers can easily inspect the health of crop in a vast area

without having to manually check small sample volumes. Furthermore, the same

algorithm can be implemented to measure the rate of deforestation.

55 | P a g e

CHAPTER 7

REFERENCES

56 | P a g e

[1] Rhaman, M. K., M. I. Monowar, S. R. Shakil, A. H. Kafi, and R. S. I., Antara.
"Exploring Modular Architecture for Nano Satellite and Opportunity for Developing
Countries." IOP Conf. Series: Earth and Environmental Science 23 (2015). N.p., n.d.
Web. 12 May 2015. <(http://iopscience.iop.org/1755-1315/23/1/012017)>.

doi:10.1088/1755-1315/23/1/012017

[2] Koehler, Chris. "BalloonSat: missions to the edge of space." (2002).

[3] California Polytechnic State University. CubeSat Design Specification Rev. 13. N.p.:
The CubeSat Program, Cal Poly SLO, 20 ` Feb. 2014. PDF

[4] ANDREWS, FRANCIS J. "RANDOM VIBRATION—AN OVERVIEW." (n.d.): n. pag.
Web. 14 Apr. 2016.

[5] Rafael C. Gonzalez; Richard E. Woods (2008). Digital Image Processing. Prentice
Hall. pp. 1–3. ISBN 978-0-13-168728-8.

[6] James D. Foley (1995). Computer Graphics: Principles and Practice. Addison-
Wesley Professional. p. 13. ISBN 0-201-84840-6.

[7] Shapiro, Linda G. & Stockman, George C. (2002). "Computer Vision". Prentice Hall.
ISBN 0-13-030796-3

[8] Maloof, M., Langley, P., Binford, T., Nevatia, R., and Sage, S. (to appear). Improved
rooftop detection in aerial images with machine learning. Machine Learning.
http://www.kluweronline.com/issn/0885-6125.

[9] C. Witt, J.M.C.A. Pasuquin, R. Mutters, and R.J. Buresh. (2005) "New Leaf Color
Chart for Effective Nitrogen Management in Rice"- Better Crops/Vol. 89 (2005, No. 1)

[10] NanoRacks, LLC. "NanoRacks CubeSat Deployer (NRCSD) Interface Control
Document." 0.36 (2013): n. pag. 10 Dec. 2013. Web. 12 Nov. 2015.

[11] Junqiu Li, Helei Tian and Puen Wu, "Analysis of random vibration of power battery
box in electric vehicles," Transportation Electrification Asia-Pacific (ITEC Asia-Pacific),
2014 IEEE Conference and Expo, Beijing, 2014, pp. 1-5.

doi: 10.1109/ITEC-AP.2014.6940829

[12] S. X. Qu, D. Xu and R. Kang, "Analysis of random vibration life of mechanical parts
of actuating cylinder based on the finite element," Quality, Reliability, Risk,
Maintenance, and Safety Engineering (QR2MSE), 2013 International Conference on,
Chengdu, 2013, pp. 917-920.

doi: 10.1109/QR2MSE.2013.6625717

[13] Xiaoguang Lu: The analysis of dynamic performance and optimization of the
structure of the aerospace computer case,2010

[14] Levner, Ilya, et al. "Learning Robust Object Recognition Strategies." The 8th
Australian and New Zealand Conference on Intelligent Information Systems. 2003.

http://iopscience.iop.org/1755-1315/23/1/012017)

57 | P a g e

[15] Kubat, Miroslav, Robert C. Holte, and Stan Matwin. "Machine learning for the
detection of oil spills in satellite radar images." Machine learning 30.2-3 (1998): 195-
215.

[16] J. Zhang and Limin Li, "A PSD analysis of an online thickness measuring system,"
Computer-Aided Industrial Design and Conceptual Design, 2008. CAID/CD 2008. 9th
International Conference on, Kunming, 2008, pp. 388-394.

doi: 10.1109/CAIDCD.2008.4730595

[17] Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., and E. Fereres, 2009, “Thermal and
Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an
Unmanned Aerial Vehicle,” IEEE Transactions on Geoscience and Remote Sensing,
47(3):722–738.

[18] Sur, Ritobrata, Shengkai Wang, and Wending Lu. "Counting Trees in Deforested
Areas from Aerial P Counting Trees in Deforested Areas from Aerial Photographs
hotographs."

58 | P a g e

CHAPTER 8

APPENDIX

59 | P a g e

8.1 Codes

8.1.1 imu_orientation

#!/usr/bin/python

def IMUorientation():

 try:

 import time

 import math

 import smbus

 import datetime

 #IMU register addresses

 GYR_ADDRESS= 0x6B

 CTRL_REG1= 0x20

 CTRL_REG4= 0x23

 OUT_X_L=0x28

 OUT_X_H=0x29

 OUT_Y_L=0x2A

 OUT_Y_H=0x2B

 OUT_Z_L=0x2C

 OUT_Z_H=0x2D

 MAG_ADDRESS = (0x3C>> 1)

 ACC_ADDRESS = (0x32>>1)

 CTRL_REG1_A = 0x20

 CTRL_REG2_A = 0x21

 CTRL_REG3_A = 0x22

60 | P a g e

 CTRL_REG4_A = 0x23

 CTRL_REG5_A = 0x24

 CTRL_REG6_A = 0x25

 HP_FILTER_RESET_A = 0x25

 REFERENCE_A = 0x26

 STATUS_REG_A = 0x27

 OUT_X_L_A = 0x28

 OUT_X_H_A = 0x29

 OUT_Y_L_A = 0x2A

 OUT_Y_H_A = 0x2B

 OUT_Z_L_A = 0x2C

 OUT_Z_H_A = 0x2D

 FIFO_CTRL_REG_A = 0x2E

 FIFO_SRC_REG_A = 0x2F

 INT1_CFG_A = 0x30

 INT1_SRC_A = 0x31

 INT1_THS_A = 0x32

 INT1_DURATION_A = 0x33

 INT2_CFG_A = 0x34

 INT2_SRC_A = 0x35

 INT2_THS_A = 0x36

 INT2_DURATION_A = 0x37

 CLICK_CFG_A = 0x38

 CLICK_SRC_A = 0x39

61 | P a g e

 CLICK_THS_A = 0x3A

 TIME_LIMIT_A = 0x3B

 TIME_LATENCY_A = 0x3C

 TIME_WINDOW_A = 0x3D

 CRA_REG_M = 0x00

 CRB_REG_M = 0x01

 MR_REG_M = 0x02

 OUT_X_H_M = 0x03

 OUT_X_L_M = 0x04

 SR_REG_M = 0x09

 IRA_REG_M = 0x0A

 IRB_REG_M = 0x0B

 IRC_REG_M = 0x0C

 WHO_AM_I_M = 0x0F

 TEMP_OUT_H_M = 0x31

 TEMP_OUT_L_M = 0x32

 OUT_Y_H_M = 0x07

 OUT_Y_L_M = 0x08

 OUT_Z_H_M = 0x05

 OUT_Z_L_M = 0x06

 bus = smbus.SMBus(1)

62 | P a g e

 RAD_TO_DEG = 57.29578

 M_PI = 3.14159265358979323846

 G_GAIN = 0.070 # [deg/s/LSB] If you change the dps for gyro, you need to

update this value accordingly

 LP = 0.052 # Loop period = 41ms. This needs to match the time it

takes each loop to run

 AA = 0.80 # Complementary filter constant

 def writeACC(register,value):

 bus.write_byte_data(ACC_ADDRESS , register, value)

 return -1

 def writeMAG(register,value):

 bus.write_byte_data(MAG_ADDRESS, register, value)

 return -1

 def writeGRY(register,value):

 bus.write_byte_data(GYR_ADDRESS, register, value)

 return -1

 def readACCx():

 acc_l = bus.read_byte_data(ACC_ADDRESS, OUT_X_L_A)

 acc_h = bus.read_byte_data(ACC_ADDRESS, OUT_X_H_A)

 acc_combined = (acc_l | acc_h<<8)

 if acc_combined > 32768:

 acc_combined -= 65536

 return acc_combined >> 4

63 | P a g e

 def readACCz():

 acc_l = bus.read_byte_data(ACC_ADDRESS, OUT_Y_L_A)

 acc_h = bus.read_byte_data(ACC_ADDRESS, OUT_Y_H_A)

 acc_combined = (acc_l |acc_h<<8)

 if acc_combined > 32768:

 acc_combined -= 65536

 return acc_combined >> 4

 def readACCy():

 acc_l = bus.read_byte_data(ACC_ADDRESS, OUT_Z_L_A)

 acc_h = bus.read_byte_data(ACC_ADDRESS, OUT_Z_H_A)

 acc_combined = (acc_l | acc_h<<8)

 if acc_combined > 32768:

 acc_combined -= 65536

 return acc_combined >> 4

 def readMAGx():

 mag_l = bus.read_byte_data(MAG_ADDRESS, OUT_X_L_M)

 mag_h = bus.read_byte_data(MAG_ADDRESS, OUT_X_H_M)

 mag_combined = (mag_l | mag_h<<8)

 return mag_combined if mag_combined < 32768 else mag_combined -

65536

64 | P a g e

 def readMAGy():

 mag_l = bus.read_byte_data(MAG_ADDRESS, OUT_Y_L_M)

 mag_h = bus.read_byte_data(MAG_ADDRESS, OUT_Y_H_M)

 mag_combined = (mag_l | mag_h<<8)

 return mag_combined if mag_combined < 32768 else mag_combined -

65536

 def readMAGz():

 mag_l = bus.read_byte_data(MAG_ADDRESS, OUT_Z_L_M)

 mag_h = bus.read_byte_data(MAG_ADDRESS, OUT_Z_H_M)

 mag_combined = (mag_l | mag_h<<8)

 return mag_combined if mag_combined < 32768 else mag_combined -

65536

 def readGYRx():

 gyr_l = bus.read_byte_data(GYR_ADDRESS, OUT_X_L)

 gyr_h = bus.read_byte_data(GYR_ADDRESS, OUT_X_H)

 gyr_combined = (gyr_l | gyr_h <<8)

 return gyr_combined if gyr_combined < 32768 else gyr_combined -

65536

65 | P a g e

 def readGYRy():

 gyr_l = bus.read_byte_data(GYR_ADDRESS, OUT_Y_L)

 gyr_h = bus.read_byte_data(GYR_ADDRESS, OUT_Y_H)

 gyr_combined = (gyr_l | gyr_h <<8)

 return gyr_combined if gyr_combined < 32768 else gyr_combined -

65536

 def readGYRz():

 gyr_l = bus.read_byte_data(GYR_ADDRESS, OUT_Z_L)

 gyr_h = bus.read_byte_data(GYR_ADDRESS, OUT_Z_H)

 gyr_combined = (gyr_l | gyr_h <<8)

 return gyr_combined if gyr_combined < 32768 else gyr_combined -

65536

 #initialise the accelerometer

 writeACC(CTRL_REG1_A, 0b00100111) #z,y,x axis enabled, continuos

update, 10Hz data rate

 writeACC(CTRL_REG4_A, 0b00111000)

 #initialise the magnetometer

 writeMAG(CRA_REG_M, 0b10011000) #Temp enable, M data rate = 50Hz

 writeMAG(CRB_REG_M, 0b11100000) #+/-12gauss

 writeMAG(MR_REG_M, 0b00000000) #Continuous-conversion mode

66 | P a g e

 #initialise the gyroscope

 writeGRY(CTRL_REG1, 0b00001111) #Normal power mode, all axes

enabled

 writeGRY(CTRL_REG4, 0b00110000) #Continuos update, 2000 dps full scale

 gyroXangle = 0.0

 gyroYangle = 0.0

 gyroZangle = 0.0

 CFangleX = 0.0

 CFangleY = 0.0

 #Read our accelerometer,gyroscope and magnetometer values

 ACCx = readACCx()

 ACCy = readACCy()

 ACCz = readACCz()

 GYRx = readGYRx()

 GYRy = readGYRx()

 GYRz = readGYRx()

 MAGx = readMAGx()

 MAGy = readMAGy()

 MAGz = readMAGz()

 ##Convert Accelerometer values to degrees

 AccXangle = (math.atan2(ACCy,ACCz)+M_PI)*RAD_TO_DEG

 AccYangle = (math.atan2(ACCz,ACCx)+M_PI)*RAD_TO_DEG

 AccZangle = (math.atan2(ACCx,ACCy)+M_PI)*RAD_TO_DEG

67 | P a g e

 #Convert Gyro raw to degrees per second

 rate_gyr_x = GYRx * G_GAIN

 rate_gyr_y = GYRy * G_GAIN

 rate_gyr_z = GYRz * G_GAIN

 #Calculate the angles from the gyro. LP = loop period

 gyroXangle+=rate_gyr_x*LP

 gyroYangle+=rate_gyr_y*LP

 gyroZangle+=rate_gyr_z*LP

 #Complementary filter used to combine the accelerometer and gyro values.

 CFangleX=AA*(CFangleX+rate_gyr_x*LP) +(1 - AA) * AccXangle

 CFangleY=AA*(CFangleY+rate_gyr_y*LP) +(1 - AA) * AccYangle

 #Calculate headin

 heading = 180 * math.atan2(MAGy,MAGx)/M_PI

 if heading < 0:

 heading += 360

 #Normalize accelerometer raw values.

 accXnorm = ACCx/math.sqrt(ACCx * ACCx + ACCy * ACCy + ACCz * ACCz)

 accYnorm = ACCy/math.sqrt(ACCx * ACCx + ACCy * ACCy + ACCz * ACCz)

68 | P a g e

 #Calculate pitch and roll

 #pitch = math.asin(accXnorm)

 #roll = -math.asin(accYnorm/math.cos(pitch))

 roll=(math.atan2(-ACCy,ACCz)*180)/M_PI

 pitch=(math.atan2(ACCx,math.sqrt(ACCy*ACCy+ACCz*ACCz))*180)/M_PI

 #Calculate the new tilt compensated values

 magXcomp = MAGx*math.cos(pitch)+MAGz*math.sin(pitch)

 magYcomp = MAGx*math.sin(roll)*math.sin(pitch)+MAGy*math.cos(roll)-

MAGz*math.sin(roll)*math.cos(pitch)

 #Calculate tiles compensated heading

 tiltCompensatedHeading = 180 * math.atan2(magYcomp,magXcomp)/M_PI

 if tiltCompensatedHeading < 0:

 tiltCompensatedHeading += 360

 time.sleep(0.25)

 pitch = round(pitch,2)

 roll = round(roll,2)

 gyroXangle = round(gyroXangle,2)

 gyroYangle = round(gyroYangle,2)

 gyroZangle = round(gyroZangle,2)

 heading = round(heading,2)

 return pitch,roll,gyroXangle,gyroYangle,gyroZangle,heading

69 | P a g e

 except IOError:

 roll='i/o error'

 pitch=roll

 gyroXangle=roll

 gyroYangle=roll

 gyroZangle=roll

 heading=roll

 return pitch,roll,gyroXangle,gyroYangle,gyroZangle,heading

__

8.1.2 imu_temp

#!/usr/bin/python

def IMUtemp():

 try:

 from smbus import SMBus

 from time import sleep

 from ctypes import c_short

 addr = 0x77

 oversampling = 3 # 0.3

 bus = SMBus(1); # 0 for R-Pi Rev. 1, 1 for Rev. 2

 # return two bytes from data as a signed 16-bit value

 def get_short(data, index):

 return c_short((data[index] << 8) + data[index + 1]).value

 # return two bytes from data as an unsigned 16-bit value

70 | P a g e

 def get_ushort(data, index):

 return (data[index] << 8) + data[index + 1]

 (chip_id, version) = bus.read_i2c_block_data(addr, 0xD0, 2)

 # Read whole calibration EEPROM data

 cal = bus.read_i2c_block_data(addr, 0xAA, 22)

 # Convert byte data to word values

 ac1 = get_short(cal, 0)

 ac2 = get_short(cal, 2)

 ac3 = get_short(cal, 4)

 ac4 = get_ushort(cal, 6)

 ac5 = get_ushort(cal, 8)

 ac6 = get_ushort(cal, 10)

 b1 = get_short(cal, 12)

 b2 = get_short(cal, 14)

 mb = get_short(cal, 16)

 mc = get_short(cal, 18)

 md = get_short(cal, 20)

 p0=1013.25

 #print "Starting temperature conversion"

 bus.write_byte_data(addr, 0xF4, 0x2E)

 sleep(0.005)

 (msb, lsb) = bus.read_i2c_block_data(addr, 0xF6, 2)

 ut = (msb << 8) + lsb

71 | P a g e

 #print "Starting pressure conversion"

 bus.write_byte_data(addr, 0xF4, 0x34 + (oversampling << 6))

 sleep(0.04)

 (msb, lsb, xsb) = bus.read_i2c_block_data(addr, 0xF6, 3)

 up = ((msb << 16) + (lsb << 8) + xsb) >> (8 - oversampling)

 #print "Calculating temperature"

 x1 = ((ut - ac6) * ac5) >> 15

 x2 = (mc << 11) / (x1 + md)

 b5 = x1 + x2

 t = (b5 + 8) >> 4

 #print "Calculating pressure"

 b6 = b5 - 4000

 b62 = b6 * b6 >> 12

 x1 = (b2 * b62) >> 11

 x2 = ac2 * b6 >> 11

 x3 = x1 + x2

 b3 = (((ac1 * 4 + x3) << oversampling) + 2) >> 2

 x1 = ac3 * b6 >> 13

 x2 = (b1 * b62) >> 16

 x3 = ((x1 + x2) + 2) >> 2

 b4 = (ac4 * (x3 + 32768)) >> 15

 b7 = (up - b3) * (50000 >> oversampling)

72 | P a g e

 p = (b7 * 2) / b4

 x1 = (p >> 8) * (p >> 8)

 x1 = (x1 * 3038) >> 16

 x2 = (-7357 * p) >> 16

 p = p + ((x1 + x2 + 3791) >> 4)

 t=t/10.0

 p=p/100.0

 #altitude;only applicable for h<11km(because temp lapse

rate varies with altitude)

 h=((pow(p0/p,0.1903)-1)*(t+273.15))/0.0065

 t = round(t,2)

 p = round(p,2)

 h = round(h,2)

 return t,p,h

 except IOError:

 t='i/o error'

 p=t

 h=t

 return t,p,h

__

73 | P a g e

8.1.3 gps

#!/usr/bin/python

def gps_xl():

 try:

 import serial

 import time

 ser= serial.Serial('/dev/ttyAMA0', 9600)

 s1='$GPRMC'

 Time='0.0'

 Latitude='0.0'

 Longitude='0.0'

 Date='0.0'

 while 1:

 s=ser.readline()

 if s.find(s1)!=-1:

 break

 if s[18] == 'A':

 #time

 hour= s[7:9]

 minute= s[9:11]

 second= s[11:13]

 #latitude

 lat= int(s[20:22])

 decilat= float(s[22:29])

 positionlat= s[30]

74 | P a g e

 pos=lat+(decilat/60)

 #longitude

 lon= int(s[32:35])

 decilong= float(s[35:42])

 positionlong= s[43]

 poslong=lon+(decilong/60)

 if s[55]==',':

 #date

 day= s[56:58]

 month= s[58:60]

 year= s[60:62]

 else:

 day= s[57:59]

 month=s[9:61]

 year= s[61:63]

 Time='{}:{}:{}'.format(hour,minute,second)

 position='Coordinate: {}:{}'.format(pos,poslong)

 Date= '{}/{}/20{}'.format(day,month,year)

 pos = round(pos,4)

 poslong = round(poslong,4)

 ser.close()

75 | P a g e

 return Date,Time,pos,poslong

 else:

 Time='N/A' #if gps don't get fix

 pos='N/A'

 poslong='N/A'

 Date='N/A'

 ser.close()

 return Date,Time,pos,poslong

 except IOError:

 Date='i/o error' #if the module get disconnected or broken

 Time=Date

 pos=Date

 poslong=Date

 return Date,Time,pos,poslong

__

8.1.4 uv

def UVsensor():

 try:

 import time

 import SI1145.SI1145 as SI1145

 sensor=SI1145.SI1145()

 vis = sensor.readVisible()

 IR = sensor.readIR()

 UV = sensor.readUV()/100.0

76 | P a g e

 vis =round(vis,2)

 IR = round(IR,2)

 UV =round(UV,2)

 return vis,IR,UV

 except IOError:

 vis ='i/o error'

 IR = vis

 UV =vis

 return vis,IR,UV

__

8.1.5 cputemp

def getCPUtemperature():

 try:

 import os

 res = os.popen('vcgencmd measure_temp').readline()

 res = res.replace("temp=","").replace("'C\n","")

 res=float(res)

 res=round(res,2)

 return res

 except IOError:

 res='i/o error'

 return res

__

77 | P a g e

8.1.6 MAIN_run

#!/usr/bin/python

from serial import Serial

from IMUtemp import *

from gps_xl import *

from IMUorientation import *

from UVsensor import*

from getCPUtemperature import *

import os

from time import sleep

import numpy as np

import datetime

from math import *

time=0

i=1

while 1:

 a = gps_xl()

 b = IMUtemp()

 c = IMUorientation()

 d = UVsensor()

 e = getCPUtemperature()

 data =

'{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}\r\n'.format(a[0],a[1],a[2],a[3],b[0],b[1],c[0],c[1],c[2],c

[3],c[4],c[5],d[0],d[1],d[2],e,b[2])

 ser = Serial('/dev/ttyAMA0',38400)

 ser.write(data)

 ser.close()

78 | P a g e

__

8.1.7 picture transmission

from PIL import Image

import numpy

from serial import Serial

from time import sleep

im=Image.open('pic1.jpg')

pixRGB=im.load()

r=numpy.zeros((640,480),dtype=numpy.int)

g=numpy.zeros((640,480),dtype=numpy.int)

b=numpy.zeros((640,480),dtype=numpy.int)

i=0

while(i<3):

 ser = Serial('/dev/ttyAMA0',38400)

 for row in range(0,640):

 for col in range(0,480):

 pix_xy=pixRGB[row,col]

 if(i==0):

 r[row,col]=pix_xy[0]

 ser.write(str(r[row,col]))

 ser.write(',')

 if(i==1):

 g[row,col]=pix_xy[1]

 ser.write(str(g[row,col]

 ser.write(',')

 if(i==2):

 b[row,col]=pix_xy[2]

79 | P a g e

 ser.write(str(b[row,col]))

 ser.write(',')

 ser.write('E')

 i=i+1

8.1.8 MATLAB Image Processing Code

clc, close all, clear all

time=0;

for count=1:3

tic

%loading the image and calculating image parameters

image_no=num2str(count);

read_name=strcat('image',image_no,'.jpg');

image=imread(read_name);

[bw,masked]=createMaskGreen(image);

[B,L,N,A] = bwboundaries(bw);

res=size(bw);

h=res(1); %height of photo

w=res(2); %width of photo

truevalue=sum(sum(bw)); %pixels with value==1

total=h*w; %total number of pixels

pcrtnge = (truevalue/total)*100; %percentage of green

per=num2str(pcrtnge);

 %for annotating image

g_per=strcat('The percentage of green in this image is:__',per,'%');

%--

%plotting the images on a figure window

80 | P a g e

f=figure('name',' Green Color Thresholding');

subplot(1,2,1) %plotting original image

imshow(image)

title('Original Image')

subplot(1,2,2) %plotting filtered image

imshow(read_name)

hold on;

for k=1:length(B),

 if(~sum(A(k,:)))

 boundary = B{k};

 plot(boundary(:,2), boundary(:,1), 'r','LineWidth',2);

 end

end

title('Green Filtered')

dim = [.2 .5 .3 .3];

annotation('textbox',dim,'String',g_per,'FitBoxToText','on');

%--

%saving image processed files

save_name= strcat('p_image_',image_no);

%savefig(save_name) %savig .fig file

print(f,'-dtiffn',save_name) %saving as .tiff file

close figure 1 %closing the figure

%--

time=time+toc;

end

time

__

81 | P a g e

8.1.9 Green Mask in MATLAB

function [BW,maskedRGBImage] = createMaskGreen(RGB)

I = RGB;

% Define thresholds for REDchannel(R)

rMin = 0.000; rMax = 106.000;

% Define thresholds for GREENchannel(G)

gMin = 0.000; gMax = 255.000;

% Define thresholds for BLUEchannel(B)

bMin = 0.000; bMax = 114.000;

% Create mask based on chosen thresholds

BW = (I(:,:,1) >= rMin) & (I(:,:,1) <= rMax) & (I(:,:,2) >= gMin) & (I(:,:,2) <= gMax) & (I(:,:,3) >=

bMin) & (I(:,:,3) <= bMax);

% Initialize output masked image based on input image.

maskedRGBImage = RGB;

% Set background pixels where BW is false to zero.

maskedRGBImage(repmat(~BW,[1 1 3])) = 0;

end

82 | P a g e

8.2 Additional Images

Figure 41: Nano-satellite structure of previous group

Figure 42: Temperature data logged over 10 hour period

83 | P a g e

Figure 43: Topside and bottom side of the PCB

Figure 44: Plotting the BalloonSat path using gps data

