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ABSTRACT

This thesis discusses the general role of symmetry in high-energy physics. It concentrates
on the role of fermionic symmetry generators, which generate the symmetry known as
supersymmetry. An extensive discussion of spinors in D-dimensions is given and the
necessity of spinors is explained from a group theoretical point of view. The supersymmetric
transformation rules of the fields are explained and Lagrangians for simple theories are
explained. We generalize to SU(n) gauge theories and give a discussion of confinement
in supersymmetric gauge theories. We also apply supersymmetry in the Starobinsky model
of cosmological inflation by constructing a NSWZ model equivalent to the R2 Starobinsky
model. A parametrically quadratic function, x(t) providing favourable conditions for inflation
is found for field, x in terms of a string modulus, t.
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Chapter 1

Introduction

A symmetry is a transformation on a physical system that can be applied without changing
the physical observables of the system. We observe symmetry in Quantum Field Theory. We
can classify symmetries as discrete and continuous symmetries or global and local symmetries.
For elementary particles two kinds of symmetry can be observed.

� Internal symmetry: Symmemtries that correspond to transformations of the different
fields in a field theory are internal symmetries. For a space-time independent theory
we get a global symmetry. A local symmetry is observed, otherwise.

� Space-time symmetry: Space-time symmetries are transformations on fields which
change the space-time coordinates. General coordinate transformations defining general
relativity are local symmetries. Lorentz and Poincaré transformation are global
symmetries defining special relativity.

Supersymmetry

Supersymmetry (SUSY) is a space-time symmetry where a mapping between particles or
fields of integer spin (bosons) and particles or fields of half-integer spin can be applied.

Fermions are particles which are constrained by the Pauli Exclusion Principle. Fermions
include quarks and leptons. Boson not being constrained by Pauli Exclusion principle
shows different physical properties than those of fermions. Bosons include photons and
the mediators of all other interactions. To understand high energy physics at TeV scale, a
mathematical framework which explains the relation between these two types of particles
is needed. Supersymmetry allows us to unify bosons and fermions despite their different
physical properties.

By the action of a SUSY generator, Q on a fermionic particle we may get the bosonic
super-partner of that particle. Similarly, we get the fermionic super-partner when the
generator acts on a bosonic particle.

Q|Fermion〉 = |Boson〉 and vice versa (1.1)

Supersymmetry is a space-time symmetry. When the supersymmetry operator changes a
particle to its super-partner, what it actually does is to alter the spin of the particle. That
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means by an action of SUSY operator on a particle, the space-time properties of the particle
are being changed.

If supersymmetry is realized in nature, every one-particle should have a super-partner. So,
instead of single particle states, super-multiplets of particle states have to be observed. It
is believed that the super-partners of the elementary particles are to be observed in high
energy physics of TeV scale. Many experiments in LHC and other laboratories are designed
to find these particles.

Particles belonging to the same super-multiplet have different spins but same mass
and quantum numbers. This happens because the SUSY generator, Q commutes with the
translations and quantum number but does not commute with Lorentz generators.

A supersymmetric field theory describes a set of fields and a Lagrangian that exhibits
such a symmetry for those fields. Thus, it provides a description for the particles and
interactions between them.

As all the particles predicted in supersymmetry are not observed in nature, it is assumed
that at low energy physics the supersymmetry is broken. The standard model of QFT can
explain interactions at low energy physics. To extend our understanding of nature at high
energy physics a supersymmetric extension of standard model is done. At low energy, as
supersymmetry is broken, the concept of vacua in supersymmetry and the appearance of
goldstino particle by Goldstine theorem is introduced.

By providing a unified description of bosons and fermions, SUSY may provide a natural
framework to formulate a theory where unification of all known interactions can be explained.

Motivation

Supersymmetry may become one of the most useful theories which answers various unsolved
questions of physics.

By extending standard model to a minimally supersymmetric standard model, the
fundamental interactions of particles can be described at high energy physics. Thus,
problems like confinement and mass gap in high energy physics, naturalness and hierarchy
problem, strong coupling problem can be solved. A Grand Unification Theory (GUT)
which unifies all known interactions may be derived. So, gravity at a quantum level, at a
scale smaller than the Planck’s scale can be explained. A natural framework for inflation
model for early universe cosmology may also be found by applications of supersymmetry
and supergravity. As new super-particles are predicted, the dark matter particles can be
explained.

Supersymmetry can also be found useful in solving strong coupling problems. As
supersymmetric theory has some renormalization properties, it can be used to put more
constraints on Quantum Chromo-Dynamics and thus, exact solutions to strong coupling
effects may be found. By using localization of supersymmetry, infinite path integrals can be
reduced to finite path integrals as well as to simplify the complex integral problems. Using
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the property of holomorphy, computing some non-perturbative contributions to Lagrangian
is possible.

This work is an attempt to explore the basic formalism and apply supersymmetry in high
energy physics and Starobinsky cosmological inflation.

Chapters 2, 3, 4, 5, 6 discuss the formalism and applications of supersymmetry. Chapter 7 is
a discussion of applications of supersymmetry in high energy physics considering the MSSM
and supersymmetry breaking. Chapter 8 is an introduction on the Starobinsky model of
cosmological inflation where we also showed the identical features in different conditions of
this model with the other inflation models.

Several lecture notes by reknowned professors and physicists were used to go through the
basic concepts of supersymmetry. Many books were used to understand the mathematical
concepts and to formulate the algebra for supersymmetry. Lecture notes by Quevedo,
Krippendorf, and Schlotterer (2010) and Bertolini (2012) provided discussions on most of
the topics that were covered in this paper. So, most of the chapters in this paper are based
on these two lecture notes. Along with that, several other lecture notes, books and articles
by reknowned physicists around the world have improved my insight on supersymmetry.
To understand the construction of fermions and spinors with a Lie algebra perspective
Georgy (1999) has been very helpful. Whereas, the new properties that add to spinors with
addition of new dimensions is discussed from the concepts gained from notes by Lambert
(2014) and book by Ammon and Erdmenger (2015). Mathematical concepts from books
by Műller-Kirsten and Wiedemann (2009) and Aitchison (2007) have helped to construct
supersymmetry algebra, superspace and superfields. Notes by Argyres (2001) and Bajc
(2009) have provided with an extensive discussion on construction of the Lagrangians for
superfields for both Abelian and non-Abelian field strengths. Along with the lecture notes
and books described previously, lecture notes by Shirman (2009) aided the understanding
of Wess-Zumino model, supersymmetry breaking and construction of MSSM. “Notes on
Supersymmetry” (2012) also guided comprehensively on MSSM, particles in MSSM with
their coupling and the necessity of R-parity.

To understand the concept of applying localization field in supersymmetry for computing
exact results of QFT article by Rovelli (1999) and Hosomichi (2015) and notes by Terashima
(2005) have also been very helpful. The prediction of supersymmetric particles as candidate
for dark matter is discussed based on Lahanas (2006).

Reports by Bechtle, Plehn, and Sander (2015) has provided the information on the
experiments run in LHC which was aimed at search for supersymmetric particle and
establishment of MSSM in high energy physics.

In addition to the above mentioned notes and books, the book on weak-scale supersymmetry
by Baer and Tata (2006), lecture notes by Hollywood (2008), article on by Kobayashi and
Sasaki (2005), Ellis, Nanopoulos, and Olive (2013), Kehagias, Dizgah, and Riotto (2013),
have expanded the ideas on supersymmetry and its application in different fields.
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In Chapter 9 of this thesis, we worked on the Starobinsky model of cosmological inflation
and showed that supersymmetry being connected to this model can provide a more natural
framework to the inflation model. Supergravity is necessary to combine supersymmetry with
this model. For this, we reduced the no-scalar supersymmetric Wess-Zumino model(NSWZ)
to a case where it becomes equivalent to the Starobinsky model of cosmological inflation.
As NSWZ model is a supersymmetric realization of inflation it includes supergravity and
therefore, the new NSWZ model embeds supergravity into the Starobinsky model of inflation.

We found a parametric function for the field, x, in terms of a String modulus, t in the
NSWZ model, in Chapter 10. We have shown that when instead of being an independent
field, x is parametrically quadratic in terms of String modulus, t, it provides surprisingly
good conditions for inflation. This function, x(t), produces a single real field with double
well which can be the vacuum states and also generates a very flat potential. Both of these
scenarios being very important conditions for the rise of inflation make this model with
parametrically quadratic, x a favourable model of inflation.
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Chapter 2

Lie Groups Defining Supersymmetry

2.1 Lie groups

A continuous group with elements that can be parameterized by d parameters is named as
a Lie Group. For d real numbers that vary continuously, we have a d-dimensional manifold.
Every point in the parameter space can be described by a Cartesian co-ordinate system of
d-orthogonal axes. The topology of that parameter space can be described by the topology
of the group.

Finally, we can define that a group formed by infinite number of elements which are analytic
functions of d parameters is a Lie Group.

If an element g(x), of the Lie group is parameterized by d parameters, x =
(x1, x2, x3, ......xd) which at x = 0 gives us the identity element g(x)|x=0 = e then for any
element in some neighbourhood of the identity, the group elements can be described as:

g (x) = eixaXa for a = (1, 2, 3.....d) (2.1)

A d-dimensional vector space is formed with all the linear combinations of Xa, xaXa. Here,
xa is the basis of this vector space. When the generators form an algebra which operates
under the commutator algebra, the vector space becomes the lie algebra.

[Xa, Xb] = XaXb −XbXa (2.2)

Let, xaXa and xbXb be two different linear combination of generators. Now, as the exponential
of these combinations form a representation of the group, the product of the exponential
should be some exponential of some generators

eixaXaeixbXb = eiδcXc (2.3)

As the generator Xa has the properties of group g, the vector product of two generators Xa

and Xb will give another vector in our vector space that is spanned by the Xa. So, we get

[Xa, Xb] = if cabXc (2.4)
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CHAPTER 2. LIE GROUPS DEFINING SUPERSYMMETRY

2.1.1 Properties of Lie algebra

The commutation relation given in equation 2.4 is the Lie algebra of the group. The Lie
algebra has to be antisymmetric and it should also have a derivative property. As the
generators are hermitian:

X†a = Xa (2.5)

f cab, which are the structure constants describing the group operation law, shows the
antisymmetric property.

f cab = −f cba (2.6)

So,
[Xa, Xb] = − [Xb, Xa] (2.7)

The derivative property of the Lie algebra can be described by the Jacobi identity. This can
be written as:

[Xa, [Xb, Xc]] = [[Xa, Xb] , Xc] + [Xb, [Xa, Xc]] (2.8)

2.2 Spinors and SO(n) algebra

The three generators of SU(2) is represented by Ji. The commutation relations are described
by [Ji, Jj] = iξijkJk. This is the definition of the su(2) algebra. As the generators are

hermitian J†i = Ji these representations are unitary representations of su(2).

In Quantum mechanics, for |γ〉 denoting an eigenstate of J3 to the eigenvalue γ:

J3|γ〉 = γ|γ〉 (2.9)

〈γ|γ〉 6= 0 (2.10)

J± = J1 ± iJ2 (2.11)

[J3, J±] = ±J± (2.12)

[J+, J−] = 3J3 (2.13)

J3J±|γ〉 = J±|γ〉(γ ± 1) (2.14)

This results to either

J±|γ〉 = 0 (2.15)

or

J±|γ〉 = |γ ± 1〉 (2.16)

So, J+ is either a raising operator or an annihilator which results J+|γ〉 = 0. Similarly, J− is
either a lowering operator or annihilates J−|γ〉 = 0.

If the highest weight state |γ〉 is defined by J+|j〉 = 0 ; J3|j〉 = j|j〉 ; 〈j|j〉 = 1. If J− is
applied on state |j〉 k times then

(J−)k|j〉 = Nk|j − k〉 (2.17)

〈j − k|j − k〉 = 1 (2.18)

|Nk|2 =
k!(2j)!

(2j − k)!
(2.19)
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CHAPTER 2. LIE GROUPS DEFINING SUPERSYMMETRY

Angular momentum, J3 results that finite dimensional irreducible representations can be
labelled by j, such that 2j = 0, 1, 2... and we obtain a (2j + 1) dimensional representation.
The Lie algebra describes the covering group of SU(2). For a rotation by 2π in the 1-2 plane

ei2πJ3|j,m〉 = (−1)2m|j,m〉 (2.20)

If 2j is odd, 2m is odd. Then for a rotation of 2π we do not get back to the same element
here. There is a flip by −1. This represents spin(n).

Spin(n) is the covering group of SO(n). For j = integers we get tensor representation of
SO(n) and for half-odd-integers, we get spinor representations of SO(n).

2.3 Fermions and Clifford numbers

From the Dirac Equation of Motion for electrons, we get,

(γµ∂µ −M)ψ = 0 (2.21)

(γµ∂µ +M)(γµ∂µ −M)ψ = 0 (2.22)

According to the Mass-shell condition:

E2 − P 2 −m2 = 0 (2.23)

gives us the Klein-Gordon Equation

(∂2 −m2)ψ = 0 (2.24)

Taking m = M and
∂µ∂νψ = ∂ν∂µψ (2.25)

results to
P 2

1 + P 2
2 + P 2

3 + P 2
4 = {γ1P1 + γ2P2 + γ3P3 + γ4P4} (2.26)

To support this, equation 2.22 requires Clifford Algebra,

{γµ, γν} = γµγν + γνγµ

= 2δµν (2.27)

For a 4-dimensional spinor space µ, ν = 1, 2, 3, 4

{γi, γj} = 2δij1 (2.28)

⇒ [γi, γjγk] = {γi, γj}γk − γj{γi, γk} (2.29)

= 2δi[jγk] (2.30)

γiγj =
1

2
{γi, γj}+

1

2
[γi, γj] (2.31)

= δij1 +
1

2
γ[iγj] (2.32)

In this space γ’s are completely antisymmetrized.
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CHAPTER 2. LIE GROUPS DEFINING SUPERSYMMETRY

For a n-dimensional spinor space, if n = 2m (even) or n = 2m + 1 (odd) there are 2m
numbers of 2m× 2m γ matrices.

For, ρ =

(
0 1
1 0

)
; σ =

(
0 −i
i 0

)
; τ =

(
1 0
0 −1

)
;

γ2s−1 = ρs

= (τ⊗)s−1ρ(⊗12)m−s (2.33)

γ2s = σs

= (τ⊗)s−1σ(⊗12)m−s (2.34)

γ2m+1 = (−i)mγ1γ2......γ2m

= τ(⊗τ)m−1 (2.35)

For, n = 2m the γ2m+1 matrix anticommutes with all γ matrices.

{γi, γj} = 2δij12; i, j = 1, 2, 3...2m+ 1 (2.36)

Where as, for n = 2m+ 1 the γ2m+1 matrix commutes with all γ matrices, so, for odd n, we
can not get γ2m+1.

Properties of fermions

As the γ2m+1 matrix described in equation 2.35 is always unitary and Hermitian matrix, it
must have eigenvalues of ±1.

A projection operator,

P± =
1

2
(1± γ2m+1) (2.37)

can project on spaces where γ2m+1 = ±1. So, a spinor Ψ can be written uniquely as

Ψ = Ψ+ + Ψ− (2.38)

where Ψ± has eigenvalue of ±1.

Due to the inequivalent eigenvalues of Ψ+ and Ψ− there is no such similarity transformation
which can transform +1 into -1. So, these two semispinors live in two different spaces and
thus the Pauli exclusion principle is followed for fermions.

2.4 Spinor representation

The equation 2.30 from the previous section results to

[Γij, γk] = −iγiδj]k (2.39)
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CHAPTER 2. LIE GROUPS DEFINING SUPERSYMMETRY

This means that the Clifford numbers γk transform as the components of an n-vector under
SO(n) rotations generated by Γij. We can define,

Γij = −1

4
γ[iγj]Γij

= −Γji [Γij,Γmn]

= −i(Γj[mδn]i − Γi[mδn]j) (2.40)

Γij are a representation of the spinor representation.

2.4.1 Properties of spinors

A spinor is an object that transforms in a spinor representation of the Lorentz group. Under
a finite Lorentz transformation generated by ωµν , spinors transform as,

ψa −→ (e−
i
2
ωµνσµν )α

β
ψβ left-handed spinor (2.41)

χ̄ȧ −→ (e−
i
2
ωµν σ̄µν )α̇β̇χ̄

β̇ right-handed spinor (2.42)

This can be defined as

δΨa =
1

4
ωµν(σ

µν)α
βΨβ (2.43)

Considering a finite Lorentz transformation, for an infinitesimal rotation by an angle θ in the
(x1, x2) plane:

δ


x0

x1

x2

x3

 = θ


x0

−x2

x1

x3

 (2.44)

ω12 = −ω21 = θ; M12 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 (2.45)

We can obtain a finite rotation by exponentiating M12

xµ ←− (eω
λpMλp)µνx

ν (2.46)

Using the formula:

eiθ = cos θ + i sin θeθM12

= cos θ +M12 sin θ (2.47)
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For a rotation by θ = 2π, e2πM12 = 1. But, under such a rotation, a spinor will transform
differently. We know,

δψ =
1

4
ωµνγµνψ

=
1

2
θγ12ψψ (2.48)

1

2
θγ12ψψ −→ e

1
2
θγ12ψ

= cos
θ

2
+ γ12 sin

θ

2
(2.49)

So, for θ = 2π, ψ −→ −ψ. This means, a spinor under a rotation by 2π gets a minus sign.

2.4.2 Spinors in different dimensions

In different dimensions, each dimension adds some features to the spinors. Depending on
the number of dimensions, n, we get different γ matrices.

We already know that in even dimensions (n = 2m) we get an extra Hermitian γ-matrix,
γ2m+1. As the γ2m+1 matrix is Hermitian and traceless, we get a basis of eigenvectors with
eigenvalues ±1. This eigenvalues represent the chirality of the spinor.

Weyl Spinor A spinor with a definite γn+1 eigenvalue is called a Weyl spinor.

Majorana Spinor If the γ matrices are purely real meaning that the γ matrices are
self-conjugate then they represent Majorana spinors or in other words Real spinors.

n=1

n = 1 = 2(0) + 1 and (γ1)2 = −1 which means γ1 = ±i
As γ1 is complex, in a one-dimensional space, where the only dimension is time, there are no
Majorana spinor.

n=2

n = 2 = 2(1) So, m = 1 To construct the γ matrices we use the equations from sec:2.3

γ1 =

(
0 1
1 0

)
(2.50)

γ2 =

(
0 −i
i 0

)
(2.51)

as the space is even dimensional, we get a γ2m+1 = γ3 matrix.

γ3 =

(
1 0
0 −1

)
(2.52)
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In this case, we have, self-conjugate and symmetric matrices.

γ1
2 = γ2

2;

γ1γ2 = γ2γ1 (2.53)

So, the spinors are symplectic. Due to the presence of real matrix, we have Majorana spinors.
As γ3 have eigenvalue of ±1 we also get Weyl spinors. So, we can have Majorana spinors and
Weyl spinors simultaneously. So, we may have presence of Majorana-Weyl spinors.

n=3

For n = 3 = 2(1) + 1 we have m = 1. Here, we have the same γ matrices as a 2-dimensional
space described in equation 2.50. However, as this is a case of odd dimensional space, we
do not get a γ2m+1 = γ3 matrix with eigenvalue of ±1. Thus, there is no presence of Weyl
spinor.
We can have only Majorana Spinors in three dimensions.

n=4

n = 4 = 2(2) So, we get m = 2 and therefore four 2× 2 γ matrices.

γ1 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 γ2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



γ3 =


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 γ4 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0



γ5 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


(2.54)

The γ matrices are self-conjugate and symmetric. So, we have symplectic spinors and thus,
find Majorana spinor.

In four dimension we can get either Majorana or Weyl spinors but not both.
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Chapter 3

Supersymmetry Algebra and
Representations

3.1 Lorentz and Poincaré groups

3.1.1 Properties of Lorentz group

The Lorentz group SO(4) satisfies the following relation

ΛTηΛ = η (3.1)

where η is the Minkowski space metric tensor.

ηµν = diag(+,−,−,−)

The Lorentz group has six generators, the generator Ji of rotations and Ki of Lorentz boosts.
Here, Ji are Hermitian and Ki are anti-Hermitian. These two generators are expressed as

Ji =
1

2
εijkMjk; Ki = M0i; (3.2)

The Lorentz generators follow the commutation relations

[Ji, Jj] = iεijkJk; (3.3)

[Ji, Kj] = iεijkKk; (3.4)

[Ki, Kj] = iεijkJk; (3.5)

By introducing a complex linear combinations of the generators Ji and Ki, we can construct
representation of Lorentz algebra

J±i =
1

2
(Ji ± iki) (3.6)

J±i are hermitian. Expressing eq:3.3 in terms of J±i we get[
J±i , J

±
j

]
= iεijkJ

±
k (3.7)[

J±i , J
±
j

]
= 0 (3.8)

From this, we can understand that the Lorentz algebra is equivalent to SU(2) algebras.
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SO(4) ' SU(2)× SU(2)

In the Minkowski space complex conjugation interchanges the two SU(2)s. To satisfy that
all rotation and boost parameters are real, all the Ji and Ki have to be imaginary.

∴ (J±i )∗ = −J∓i (3.9)

Therefore, the Lorentz algebra changes into

SO(1, 3) ' SU(2)× SU(2)∗

A four-vector notation for the Lorentz generators in terms of an anti-symmetric tensor
Mµν is introduced. A four-dimensional matrix representation for the Mµν is

(Mµν)µν = i (ηµνδρν − ηρµδσν) (3.10)

Mµν = −Mνµ, M0i = Ki and Mij = εijkJk for µ = 0, 1, 2, 3. In terms of Mµν , the Lorentz
algebra reads

[Mµν ,Mρσ] = i (ηµρMνσ + ηνσMµρ − ηµρMνρ − ηνρMµσ) (3.11)

The Lorentz transformations act on four-vectors as

x′µ = Λµ
νx

ν (3.12)

The Poincaré group corresponds to the basic symmetries of special relativity. It acts on a
space-time coordinates.

x′µ = Λµ
ν︸︷︷︸

Lorentz

xν + aµ︸︷︷︸
translation

(3.13)

The Poincaré group is the Lorentz group augmented by the space time translation
generator, Pµ. Expressing this algebra in terms of the generators Pµ, Mµν gives

[Pµ, Pν ] = 0; (3.14)

[Mµν , Pρ] = −iηρµPν + iηρνPµ (3.15)

3.2 Coleman-Mandula Theorem

Coleman-Mandula Theorem: In 1967, Coleman and Mandula proved a theory and
showed that in a generic quantum field theory, under a number of assumptions like
locality, causality, positivity of energy, finiteness of number of particles etc..., the only
possible continuous symmetries of the S-matrix were the ones generated by Poincaré group
generators, Pµ and Mµν plus some internal symmetry group G commuting with them. Here,
G is a semi-simple group times the Abelian factors.

[G,Pµ] = [G,Mµν ] = 0

So, it can be said that the S-matrix has a product structure of

Poincaré × Internal Symmetries
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Due to the Poincaré symmetries with generators Pµ, Mµν and the internal symmetry group
with generators , Bl which are related to some conserved quantum numbers like electric
charges, isopin, etc, we get the full symmetry algebra,

[Pµ, Pν ] = 0 (3.16)

[Mµν ,Mρσ] = −iηµρMνσ − iηνσMµρ + iηνρMµσ (3.17)

[Mµρ, Pρ] = −iηρµPν + iηρνPµ (3.18)

[Pµ, Bl] = 0 (3.19)

[Mµν , Bl] = 0 (3.20)

Here, fnlm are structure constants and the last two commutation relations show that the full
symmetry algebra is the direct product of the Poincaré algebra and the algebra, G spanned
by the scalar bosonic generators Bl

ISO(1, 3) × G

The Coleman-Mandula Theorem assumes that the symmetry algebra involves only
commutators. Haag, Lopuszanski, and Sohnius introduced Graded algebra which is the
extension of the Lie algebra for supersymmetry; one which includes the anti-commutators in
addition to commutators.

3.3 Graded algebra

The concept of graded algebra is introduced to have a supersymmetric extension of the
Poincar’e algebra. Let Oa be the operators of a Lie algebra, then

OaOb − (−1)ηaηbObOa = iCe
abOes (3.21)

here,

ηa =

{
0 : Oa bosonic generator

1 : Oa fermionic generator
(3.22)

For supersymmetry, there are two types of generators; the Poincar’e generators Pµν and
Mµν and the spinor generators QI

α and Q̄I
α̇, where I = 1, 2, 3....N . To explain simple

supersymmetry we use N = 1. When N > 1 extended supersymmetry is explained. We find
the following commutation relations between

� the Poincaré generator and the spinor generator [Qα,M
µν ] and [Qα, P

µ]

� two spinor generators {Qα, Qβ} and {Qα, Q̄β̇}

� a spinor generator and a internal symmetry generator Ti, [Qα, Ti]
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a) [Qα,M
µν ]

The spinor generator Qα transforms under the exponential of the Lorentz, SL(2,C)
generators σµν

Q′α = exp
(
− i

2
ωµνσ

µν
)
α

β
Qβ (3.23)

=
(
1− i

2
ωµνσ

µν
)
α

β
Qβ (3.24)

but Qα also acts as an operator transforming under Lorentz transformations U =
exp(− i

2
ωµνM

µν) to

Q′α = U †QαU

≈ (1 +
i

2
ωµνM

µν)Qα(1− i

2
ωµνM

µν) (3.25)

Comparing the two expressions for Q′α upto first order in ωµν ,

Qα −
i

2
ωµν(σ

µν)α
βQβ = Qα −

i

2
ωµν(QαM

µν −MµνQα) + O(ω2) (3.26)

⇒ (σµν)α
βQβ = QαM

µν −MµνQα (3.27)

∴ [Qα,M
µν ] = (σµν)α

βQβ (3.28)

b) [Qα,P
µ]

The Jacobi identity for P µ, P ν and Qα is

[P µ, [P ν , Qα]] + [P ν , [Qα, P
µ]] + [Qα, [P

µ, P ν ]] = 0 (3.29)

From (3.14), [P µ, P ν ] = 0

∴ [P µ, [P ν , Qα]] + [P ν , [Qα, P
µ]] = 0 (3.30)

Let us define [Qα, P
µ] with free indices µ, α which will be linear in Q

[Qα, P
µ] = c(σµ)αα̇Q̄

α̇ (3.31)

⇒ [P µ, Qα] = −c(σµ)αα̇Q̄
α̇ (3.32)

By taking adjoints using (Qα̇)† = Q̄α̇ and (σµQ̄)α
† = (Qσµ)α̇ we get,

[Q̄α̇, P µ] = c∗(σ̄)α̇βQβ (3.33)

Using these in (3.30) we get,

[P µ, [P ν , Qα]] + [P ν , [Qα, P
µ]] = [P µ,−c(σν)αα̇Q̄α̇] + [P ν , c(σµ)αα̇Q̄

α̇]

= −c(σν)αα̇[P µ, Q̄α̇] + c(σµ)αα̇[P ν , Q̄α̇]

= c.c∗(σν)αα̇(σ̄µ)α̇βQβ − cc∗(σµ)αα̇(σ̄µ)α̇βQβ

= |c|2(σν)αα̇(σ̄µ)α̇βQβ − |c|2(σµ)αα̇(σν)α̇βQβ

= |c|2(σνσµ − σµσ̄ν)αβQβ = 0

Now, as (σν σ̄µ − σµσ̄ν) 6= 0 for general Qβ the equation given above can hold only for
c = 0

∴ [Qα, P
µ] = [Q̄α̇, P µ] = 0 (3.34)
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c) {Qα,Qβ}

Due to the index structure, this commutator relationship looks like:

{Qα, Qβ} = k(σµν)α
βMµν (3.35)

Now, {Qα, Q
β} commutes with P µ, but k(σµν)α

βMµν does not. So, the relationship
(3.35) can be true only if k = 0.

∴ {Qα, Qβ} = 0 (3.36)

d) {Qα, Q̄β̇}

Due to the index structure, we get an ansatz.

{Qα, Q̄β̇} = t(σµ)αβ̇Pµ (3.37)

where, t is a non-zero constant. By convention, t is set to be 2.

∴ {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ (3.38)

The symmetry transformations QαQ̄β give the effect of translation. For |B〉 being a
Bosonic state and |F 〉 a Fermionic state, we get,

Qα|F 〉 = |B〉,

Q̄β̇|B〉 = |F 〉
⇒ QQ̄ : |B〉 −→ |B (translated)〉

e) [Qα,Ti]

In general, this commutator vanishes but for U(1) automorphism of the
supersymmetry.

Qα −→ eiλQα, Q̄α̇ −→ e−iλQ̄α̇ (3.39)

So, if R is a U(1) generator then,

[Qα, R] = Qα, [Q̄α̇, R] = −Q̄α̇ (3.40)

For extended supersymmetry algebra with supercharges QI
α, we can add some central

charges ZIJ consistent with the Jacobi identities and Coleman Mandula Theorem. ZIJ

is a Lorentz scalar, so, it commutes with all other generators.

{QI
α, Q̄

J
α̇} = 2σµαα̇Pµδ

IJ (3.41)

{QI
α, Q

J
β} = εαβZ

IJ (3.42)[
Qα, Z

IJ
]

= 0 (3.43)[
Pµ, Z

IJ
]

= 0 (3.44)[
Mµν , Z

IJ
]

= 0 (3.45)

The anti-commutation relations imply that ZIJ = −ZJI . Due to this relation, when
N = 1, the central charge, ZIJ is zero.
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3.4 Representations of supersymmetry algebra

The supersymmetry algebra includes the Casimir operators of the Poincare algebra. The
Poincare algebra has two Casimir operators.

P 2 = PµP
µ and W 2 = WµW

µ (3.46)

These two operators commute with all the generators. Here, W µ = 1
2
εµνρσPνMρσ is the

Pauli-Lubanski vector. Casimir operators are used to classify irreducible representations of
a group. These representations of Poincare group are called particles. These particles can be
massive of massless particle.

Massive particle: We consider, a massive particle with mass, m at the rest frame Pµ =
(m, 0, 0, 0). In this frame, P 2 = m2. We know that, WµP

µ = 0. Therefore, at the rest frame,
W0 = 0. So, in the rest frame Wµ = (0, 1

2
εi0jkmM

jk). From this, we can get, W 2 = −m2J̄2.
We can say that massive particles are distinguished by their mass and their spin.

Massless particle: Massless particles have P 2 = 0 and W 2 = 0. In the rest frame,
Pµ = (E, 0, 0, E). This implies that W µ = M12P

µ. The two operators are proportional
for a massless particle. The constant of proportionality is the helicity, M12 = ±j. These
representations have a fixed spin and the different states are distinguished by their energy
and the sign of their helicity.

Super-multiplet: An irreducible representation of the supersymmetry algebra is called a
super-particle. A super-particle corresponds to a collection of particles where these particles
are related by the action of supersymmetry generators QI

α and Q̄I
α̇. Their spins differ by units

of half. As the super-particles are multiplet of different particles, they are sometimes called
super-multiplets.

3.4.1 Properties of supersymmetry algebra

1. The Poincare algebra has two Casimir operators, P 2 and W 2. Compared to this the
supersymmetry algebra has only one Casimir, P 2. As Mµν does not commute with
the supersymmetry generators, W 2 is not a Casimir operator for this algebra. So, a
super-multiplet can contain particle having the same mass having different spins.

As we can not observe the mass degeneracy between bosons and fermions in known
particle spectra, we can imply that if there is any supersymmetry in nature then it
must be broken.

2. In a supersymmetric theory, the energy of a space is always greater than or equal to
zero. We use the supersymmetry algebra on an arbitrary state |φ〉 we get,

〈φ|{QI
α, Q

I
α̇}|φ〉 = 2σµαα̇〈φ|Pµ|φ〉δIJ

= 〈φ|(QI
α(QI

α)† + (QI
α)†QI

α)|φ〉 (taking Q̄I
α̇ = (QI

α)†)

Now, from the positivity of the Hilbert Space,

||(QI
α(QI

α)†||2 + ||(QI
α)†QI

α)||2 ≥ 0 (3.47)
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We know, Trσµ = 2δµ0, now, we take (3.47) and sum over α = α̇ = 1, 2 and get

4〈φ|P0|φ〉 ≥ 0 (3.48)

as anticipated.

3. A super-multiplet contains an equal number of bosonic and fermionic degrees of
freedom. NB = NF . Defining a fermion number operator.

(−1)NF =

{
−1 fermionic state

+1 bosonic state
(3.49)

NF is twice the spin, NF = 2s. When acting on a bosonic particle this produces

(−1)NF |B〉 = |B〉 (3.50)

Where as, acting on a fermionic state this results to

(−1)NF |F〉 = −|F〉 (3.51)

3.4.2 Simple supersymmetry representation

As discussed in section 3.3, for simple supersymmetry, the spinor generator, QI
α and QI

α̇ has
I = N = 1. Both massless and massive super-multiplets can be constructed by this algebra.

Massless super-multiplets:

We know from section 3.3 that for massless representation, the central charges, ZIJ = 0.
From 3.36 and 3.42 we know that all Q’s and Q̄’s commute among themselves.
To construct the irreducible representation the following steps are followed.

1. In the rest frame, Pµ = (E, 0, 0, E) we get,

σµPµ =

(
0 0
0 2E

)
(3.52)

Using 3.52 in 3.41 we get,

{QI
α, Q̄

J
β̇
} =

(
0 0
0 4E

)
αβ̇

δIJ (3.53)

⇒ {QI
1, Q̄

J
1̇
} = 0 (3.54)

From this equation, we get,
〈φ|{QI

1, Q̄
I
1̇
}|φ〉 = 0 (3.55)

which results to QI
1 = QI

1̇
= 0. Then, we have only QI

1 and QI
1̇
, hence, only half of the

generators exist in this case.
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2. From the non-trivial generators, we define,

aI =
1√
4E

QI
2; (aI)

† =
1√
4E

Q̄I
2̇

(3.56)

For a set of N creation and N annihilation operators, these operators aI and (aI)
† satisfy

the following anticommutation relations.

{aI , aJ †} = δIJ (3.57)

{aI , aJ} = 0 (3.58)

{aI†, aJ †} = 0 (3.59)

(3.60)

Since, [
M12, Q

I
2

]
= i(σ12)2

2QI
2 (3.61)

= −1

2
QI

2 (3.62)[
M12, Q̄

I
2̇

]
=

1

2
Q̄I

2 and J3 = M12 (3.63)

the operator QI
2 or aI lowers the helicity of half unit and Q̄I

2̇
or (aI)

† rises the helicity
of half unit.

3. As m = 0, the state will carry some helicity λ0. We start from the Clifford vacuum,
where

aI |λ0〉 = 0 (3.64)

4. The super-multiplet is obtained by creation operators, (aI)
† acting in |λ0〉

|λ0〉, aI†|λ0〉 ≡ |λ0 +
1

2
〉I, aI

†aJ
† ≡ |λ0 + 1〉IJ , ... (3.65)

... a1
†a2
†....aN

†|λ0〉 ≡ |λ0 +
N

2
〉 (3.66)

As the Clifford vacuum has helicity λ0, the highest state representation has the highest
helicity λ = λ0 + N

2
.

Due to the anti-symmetry in I ↔ J , at helicity level λ = λ0 + k
2
, we have,

number of states with helicity, λ0 +
k

2
=

(
N

k

)
(3.67)

Where, k = 0, 1, 2, ....N the total number of states in the irrep will be

N∑
k=0

(
N

k

)
= 2N = (2N−1)B + (2N−1)F (3.68)

Where, half of the states being bosons have integer helicity and the other half of them
being fermions have half integer helicity.

5. As CPT flips the sign of helicity, in order to be CPT invariant, the helicity has to be
distributed symmetrically around zero, i.e CPT conjugates of the constructed particles
must be obtained. This is not needed if the super-multiplet is self-CPT conjugate.
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• Matter (or chiral) multiplet

λ0 = 0 −→
(
0,+

1

2

)
⊕
(
− 1

2
, 0
)

(3.69)

This representation have the same degrees of freedom as one Weyl-fermion and one complex
scalar.

λ = 0 scalar λ = 1
2

fermion
squark quark
slepton lepton
Higgs Higgsino

• Gauge (or vector) multiplet

λ0 =
1

2
−→

(
+

1

2
,+1

)
⊕
CPT

(
− 1,−1

2

)
(3.70)

This has the degrees of freedom of one vector and one Weyl-fermion. This representation helps
to describe gauge fields in a supersymmetric theory. Quarks and leptons are accommodated
in these multiplets.

λ = 1
2

fermion λ = 1 boson
photino photon
gluino gluon

Wino, Zino W, Z

• Gravitino and graviton multiplets

λ0 = 1 −→
(

+ 1,+
3

2

)
⊕
CPT

(
− 3

2
,−1

)
(3.71)

The degrees of freedom are those of a spin 3
2

particle and one vector. In a N = 1
supersymmetric theory, a gravitino multiplet can occur if and only if it is supersymmetric
partner, graviton appears.

λ0 =
3

2
−→

(
+

3

2
,+2

)
⊕
CPT

(
− 2,

3

2

)
(3.72)

Graviton multiplet has helicity 2.

λ = 3
2

fermion λ = 2 boson
gravitino graviton

Massive super-multiplet

Although the steps to construct a massive super-multiplet representation is almost the same
as the massless representation, there are some significant differences.

Considering a state with mass, m in its rest frame, Pµ = (m, 0, 0, 0). As there are full sets of
2N creation and 2N annihilation operators, we get

{QI
α, Q̄

J
β̇
} = 2mδαβ̇δ

IJ (3.73)

And instead of helicity, we take spin. A Clifford vacuum is defined by m, j and j(j + 1) is
the eigenvalue of J2.
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Construction of a massive super-multiplet in simple supersymmetry algebra:
Using the oscillator algebra, we find the annihilation and creation operators.

a12 =
1√
2m

Q1,2, a12
† =

1√
2m

Q̄1,2 (3.74)

Here, a1
† lowers the spin by half unit, on the other hand a2

† rises it by half unit.
A Clifford vacuum is a state with mass, m and spin, j0. This state can be annihilated by
both a1 and a2. Massive representations are constructed by acting creation operators on the
Clifford vacuums.

• Matter multiplet

j = 0 −→
(
− 1

2
, 0, 0′,+

1

2

)
(3.75)

The number of degrees of freedom are the same as the massless case. But, here, we do not
need the addition of CPT conjugates.
This multiplet is made of a massive complex scalar and a massive Majorana spinor.

• Gauge (or Vector) multiplet

j =
1

2
−→

(
− 1, 2×−1

2
, 2× 0, 2×+

1

2
, 1
)

(3.76)

We have, degrees of freedom of those of one massive vector, one massive Dirac-fermion and
one massive real scalar.

3.4.3 Extended supersymmetry

Algebra of extended supersymmetry: For extended supersymmetry, the spinor
generators get an additional label, I, J = 1, 2, ....N . The algebra is slightly different from
the N = 1 algebra. Here, we have, (3.41) and (3.42) and anti-symmetric central charges
ZIJ = −ZJI commuting with all the generators.

[ZIJ , P µ] = [ZIJ ,Mµν ] = [ZIJ , QI
α] = [ZIJ , ZKL] = [ZIJ , Ta] = 0 (3.77)

The existence of central charges, gives rise to the extended supersymmetry.

Massless representation for extended supersymmetry

N=2 Supersymmetry

� Gauge (or Vector) multiplet:

λ0 = 0 −→
(
0,+

1

2
,+

1

2
,+1

)
⊕
CPT

(
− 1,−1

2
,−1

2
, 0
)

(3.78)

The degrees of freedom are those of one vector, two Weyl-fermions and one complex
scalar.
This N = 2 multiplet can be decomposed in terms of one N = 1 vector and one N = 1
chiral multiplet.
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� Matter multiplet (or Hypermultiplet)

λ0 = −1

2
−→

(
− 1

2
, 0, 0,+

1

2

)
⊕
CPT

(
− 1

2
, 0, 0,+

1

2

)
(3.79)

This can also be decomposed in terms of N = 1 chiral multiplets.

� Gravitino multiplet:

λ0 = −3

2
−→

(
− 3

2
,−1,−1,−1

2

)
⊕
CPT

(
+

1

2
,+1,+1,+

3

2

)
(3.80)

We get, the degrees of freedom of a spin 3
2

particle, two vectors and a Weyl-fermion.

� Graviton multiplet:

λ0 = −2 −→
(
− 2,−3

2
,−3

2
,−1

)
⊕
CPT

(
+ 1,

3

2
,
3

2
,+2

)
(3.81)

In this case, the degrees of freedom are those of a graviton, two gravitinos, one vector
which is referred as graviphoton.

N=4 Supersymmetry

λ0 = −1 −→
(
− 1, 4×−1

2
, 6× 0, 4×+

1

2
,+1

)
(3.82)

The degrees of freedom are those of one vector, four Weyl-fermions, three complex scalars.

This single N = 4 multiplet has states with helicity, λ < 2. It can be made of N = 2 vector
multiplet, N = 2 hypermultiplet and their CPT conjugates or one N = 1 vector multiplet,
three N = 1 chiral multiplets and their CPT conjugates.

N=8 Supersymmetry

Maximum multiplet:

1× λ = ±2

8× λ = ±3

2
28× λ = ±1

56× λ = ±1

2
70× λ = ±0
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Massive representation for extended supersymmetry

As the central charge matrix ZIJ is anti-symmetric with U(N) rotation, we can put it in a
standard block diagonal form.

ZIJ =



0 q1 0 0 0 · · ·
−q1 0 0 0 0 · · ·

0 0 0 q2 0 · · ·
0 0 −q2 0 0 · · ·
0 0 0

. . . 0 · · ·
...

...
...

...
. . .

...
...

...
...

... 0 qN
2

...
...

...
...

... −qN
2

0


(3.83)

For K of the qi being equal to 2m, there are 2N − 2K creation operators and 22(N−k) states.

k = 0⇒ (22N−1)B + (22N−1)F = 22N states,

long multiplets (3.84)

0 < k <
N

2
⇒ (22(N−k)−1)B + (22(N−k)−1)F = 22(N−k) states,

short multiplets (3.85)

k =
N

2
⇒ (2N−1)B + (2N−1)F = 2N states,

ultra-short multiplets

(3.86)

N=2 Supersymmetry

• Long multiplets

Gauge (or Vector) multiplet:

j = 0 −→
(
− 1, 4×−1

2
, 6× 0, 4×+

1

2
, 1
)

(3.87)

The degrees of freedom are those of a massive vector, two Dirac-fermions and five real scalars.
The number of degrees of freedom is equal to a massless N = 2 vector multiplet and a massless
N = 2 hyper-multiplet.

• Short multiplets

Matter multiplet:

j = 0 −→
(
2×−1

2
, 4× 0, 2×+

1

2

)
(3.88)

The degrees of freedom correspond to one massive Dirac fermion and two massive complex
scalars. The number of degrees of freedom equals to those of a massless hyper multiplet.
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Vector multiplet

j =
1

2
−→

(
− 1, 2×−1

2
, 2×+

1

2
,+1

)
(3.89)

The degrees of freedom correspond to one massive vector, one Dirac fermion and one real
scalar.

N=4 Supersymmetry

We can get ultra-short multiplets in N = 4 massive supersymmetry. This will consist of a
massive vector, two Dirac fermions and five real scalars.
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Chapter 4

Superspace and Superfields

4.1 Supersymmetric field theory

In Chapter 3, we discussed supersymmetry representations on states, where the
representations were in terms of multiplets of states. Now, to explain supersymmetric field
theories the representation of supersymmetry has to be constructed in terms of multiplets of
fields.

4.1.1 Constructing supersymmetric representation for
supersymmetric field theory

In this section, we build a N = 1 supersymmetry. In the previous chapter we took Clifford
Vacuum, |λ0〉 as the ground state of the supersymmetric representation.

To explain supersymmetric field, we start with a field φ(x). Supersymmetry generators
acting on this field will generate new fields belonging to the same representation

[Q̄α̇, φ(x)] = 0 (4.1)

Let us consider φ(x) to be a scalar field. If φ(x) is real, the Hermitian conjugate of (4.1) will
be

[Qα, φ(x)] = 0 (4.2)

Using Jacobi identity for (φ,Q, Q̄) we get

[φ(x), {Qα, Q̄α̇}] + {Qα, [Q̄α̇, φ(x)]}+ {Q̄α̇, [φ(x), Qα]} = 0 (4.3)

Using equation (3.41) and (4.1) we get,

[φ(x), 2σµPµ] = 0 (4.4)

⇒ 2σµ[φ(x), Pµ] = 0 (4.5)

⇒ [Pµ, φ(x)] ∼ δµφ(x)

= 0 (4.6)

This would imply that, φ(x) is constant and therefore not a field. Therefore, Xα̇β is a
space-time derivative of the scalar field, φ.
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Using generalized Jacobi identity on (φ(x), Q,Q) we get

[φ(x), {Qα, Qβ}] + {Qα, [Qβ, φ(x)]} − {Qβ, [φ(x), Qα]} = 0 (4.7)

In a N = 1 supersymmetry, central charge, ZIJ = 0.

Using (3.42) we get,

{Qα, Qβ} = 0 (4.8)

so

{Qα, [Qβ, φ]} − {Qβ, [φ,Qα]} = 0

{Qα, ψβ} − {Qβ,−ψα} = 0

{Qα, ψβ}+ {Qβ, ψα} = 0

Fαβ + Fβα = 0 (4.9)

Fαβ = −Fβα (4.10)

This means, Fαβ is antisymmetric under α ↔ β. So, Fαβ is antisymmetric and F is a new
scalar field.

So, we take φ(x) to be complex. In this case, the hermitian conjugate of (4.1) can not be
obtained to be the same. So we get,

[Qα, φ(x)] ≡ ψα(x) (4.11)

Where, ψα is a new field which belongs to the same supersymmetry representation. As φ is
a scalar field, psi is a Weyl-spinor. Let us assume,

{Qα, ψβ(x)} = Fαβ(x) (4.12)

{Q̄α̇, ψβ(x)} = Xα̇,β(x) (4.13)

Using (4.11) in the Jacobi identity for (φ,Q, Q̄)

[φ(x), {Qβ, Q̄α̇}] + {Qβ, [Q̄α̇, φ(x)]} − {Q̄α̇, [φ(x), Qβ]} = 0

2σµβα̇[φ(x), Pµ]− {ψβ(x), Q̄α̇} = 0

Xα̇β = {ψβ(x), Q̄α̇} (4.14)

= 2σµβα̇[Pµ,φ(x)] (4.15)

∼ δµφ (4.16)

To find the resulting fields of actions by supersymmetry generators on F, we assume

[Qα, F ] = λα (4.17)[
Q̄α̇, F

]
= χ̄α̇ (4.18)

Enforcing Jacobi identity on (ψ,Q,Q) we get,

[ψα, {Qα, Qβ}] + {Qα, [Qβ, ψα]} − {Qβ, [ψβ, Qα]} = 0

{Qα, Fβα} − {Qβ, Fβα} = 0

{Qα, Fβα}+ {Qβ, Fαβ} = 0

λα + λα = 0

so, λα = 0 (4.19)
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Using Jacobi identity in (ψ,Q, Q̄) we get,[
ψ, {Qα, Q̄α̇}

]
+ {Qα,

[
Q̄α̇, ψ

]
} − {Q̄α̇, [ψ,Qα]} = 0

[ψ, 2σµPµ] + {Qα, Xα̇β} − {Q̄α̇, Fαβ} = 0

2σµ [ψ, Pµ]− χ̄α̇ = 0

χ̄α̇ = 2σµ [Pµ, ψ] (4.20)

χ̄α̇ = 2σµδµψ (4.21)

which means, χ̄α̇ is proportional to a space-time derivative of the field ψ. So, new field are
not being generated any more. Finally, the multiplet of fields we get here, is

(φ, ψ, F ) (4.22)

φ being a scalar field, due to the only presence of particles of spin-0 and spin-1
2
, the

constructed multiplet is a matter multiplet. It is called a Chiral or Wess-Zumino multiplet.

4.1.2 Formulation of supersymmetric field theory

To construct a supersymmetric field theory, we need a set of multiplets and a Lagrangian
made out of the desired field content. Unless the Lagrangian transforms as a total space-time
derivative under the supersymmetric transformations, the theory can not be supersymmetric.

For this, the action constructed for this Lagrangian

S =

∫
d4xL (4.23)

has to be a supersymmetric invariant.

In ordinary space-time supersymmetry is not manifest. So, the usual space-time Lagrangian
is a difficult formulation to construct the supersymmetry algebra.

Supersymmetric field theories involve some supersymmetry generators which are associated
with the extra space-time symmetries. This can be defined on an extension of Minkowski
space, known as superspace. Supersymmetry Lagrangian can be easily constructed in this
extended space.

The extension of ordinary space-time is done by adding 2+2 anticommuting Grassmann
coordinates, θα and θ̄α which are associated to the supersymmetry generators, Qα and Q̄α̇.
The Minkowski space-time, labelled with the coordinates, xµ associated to the general Pµ
are thus, extended to a eight-coordinate superspace labelled by (xµ, θα, θ̄α̇). Many hidden
properties of supersymmetry field theory, along with many classical and quantum properties
of supersymmetry can become manifest in superspace.

4.2 Superspace

4.2.1 Groups and cosets

Every continuous group, G defines a manifold, MG by

Λ : G −→ MG; (4.24)

{g = eiαaT
a} −→ αa (4.25)
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Here, the dimension of G and the dimension of MG are same.
We can define a coset G/H where g ∈ G is identified with g · h ∀ h ∈ H,
For example:

If G = U1(1)× U2(1) 3 g = ei(α1Q1+α2Q2)

H = U1(1) 3 h = eiβQ1

Then, the coset, G/H = U1(1)×U2(1)
U1(1)

and the identification gh will be:

gh = ei((α1+β)Q1+α2Q2)

= ei(α1Q1+α2Q2)

= g

So, G/H = U2(1) where α2 contains the effective information.

In general, a coset,
Mso(n+1)

SO(n)
= Sn.

4.2.2 Minkowski space and Poincare group

For a Poincare group, ISO(1, 3) and Lorentz group, SO(1, 3) a four-dimensional coset-space

can be defined as the Minkowski space, M1,3 = ISO(1,3)
SO(1,3)

. The Poincare group is an isometry
group of this Minkowski space.

Each point in this space has a unique representative which is a translation and can
be parameterized by a coordinate xµ.

xµ ←→ ea
µPµ (4.26)

4.2.3 Defining superspace

A superspace can be defined similarly to a coset Minkowski space. But in the case of
superspace, the Poincare group has to be extended into a super-Poincare group.

From the previous discussion,

Minkowski =
Poincare

Lorentz
=
{Wµν , aµ}
Wµν

(4.27)

which simplifies to a translation that can be identified to a Minkowski space by aµ = xµ.

As the group is the exponent of the algebra, to extend the Poincare group to a super-Poincaré
group, we describe the supersymmetry algebra in terms of commutators. These commutators
are defined as Grassmann variables. Grassman variables commute with fermionic generators
and anticommute with bosonic generators.

N = 1 superspace is defined as a coset

SuperPoincare

Lorentz
=
{Wµν , aµ, θα, θ̄α̇}

{Wµν}
(4.28)
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The anticommutation relation of the Grassmann variables are

{θα, θβ} = 0 (4.29)

{θ̄α̇, θ̄β̇} = 0 (4.30)

{θα, θ̄β̇} = 0 (4.31)

Using the Grassmann parameters, the anticommutator relations for Qα, Q̄
β̇ can be reduced

to commutators:

{Qα, Q̄α̇} = 2 (σµ)αα̇ Pµ (4.32)[
θαQα, θ̄

β̇Q̄β̇

]
= 2θα (σµ)αβ̇ θ̄

β̇Pµ (4.33)

and
[
θαQα, θ

βQβ

]
=

[
θ̄α̇Q̄α̇, θ̄

β̇Q̄β̇

]
= 0 (4.34)

A supersymmetry algebra in terms of only commutators can be obtained in this way and
thus, the super-Poincare group can be obtained by exponentiating this Lie algebra.

A general element, g of super-Poincare group can be written as:

g = ei(W
µνMµν+aµPµ+θαQα+θ̄α̇Q̄

α̇) (4.35)

A point in superspace can be identified with a coset representative by a super-translation
through the one-to-one map (

xµ, θα, θ̄α̇
)
←→ ex

µPµe(θQ+θ̄Q̄) (4.36)

The Grassmann numbers θα, θ̄α̇ can be resembled as coordinates of the superspace.

4.3 Superfields

Superfields are fields which are functions of the superspace coordinates (xµ, θα, θ̄α̇). We know,
θα and ¯thetaα̇ anticommutes.

θα = −θβθα (4.37)

So, θαθα = 0 (4.38)

and θαθβθγ = 0 (4.39)

where, α = β.

Therefore, the most general scalar superfield, S(xµ, θα, θ̄α̇) can be expanded like Taylor
expansion, in powers of θα, θ̄α̇.

S(xµ, θα, θ̄α̇) = ϕ(x) + θψ(x) + θ̄x̄(x) + θθM(x) + θ̄θ̄N(x) + (θσµθ̄)Vµ(x)

+ (θθ)θ̄λ̄(x) + (θ̄θ̄)θρ(x) + (θθ)(θ̄θ̄)D(x) (4.40)

We see that each entries in (4.40) is a field. So, it can be said that a superfield is a multiplet
of ordinary fields.
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4.3.1 Properties of Grassmann variables

Supersymmetric Lagrangians are constructed in terms of superfields. As these superfields
have to interact with each other in terms of different mathematical operations, the properties
of Grassmann variables are discussed in this section.
We start by taking one single variable θ and expand an analytic function of θ as a power
series.

f(θ) =
∞∑
k=0

= f0 + f1θ + f2θ
2

As the higher power terms of θ blow up to zero and we get a general linear function, f(θ).

f(θ) = f0 + f1θ

Taking the derivative, we get
df

dθ
= f1

Assuming that there are no boundary terms, we define the integrals.∫
dθ
df

dθ
:= 0

⇒
∫
dθ = 0 (4.41)

We define integrals over θ such that a non-trivial result is obtained.∫
dθ := 1

⇒ δθ = θ (4.42)

We find that the integral over a function f(θ) is equal to it’s derivative.∫
dθf(θ) =

∫
dθ(f0 + f1θ)

= f0

∫
dθ + f

∫
θdθ

= f1(1) (4.43)

=
df

dθ
(4.44)

Definition of spinors of Grassmann numbers:

The squares of θα, θ̄α̇ the spinors of Grassmann numbers are defined as

θαθα = θθ

⇒ θαθβ = −1

2
εαβθθ (4.45)

θ̄α̇θ̄
α̇ = θ̄θ̄

⇒ θ̄α̇θ̄β̇ =
1

2
εα̇β̇ θ̄θ̄ (4.46)
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Derivatives of these spinors are similar to Minkowski coordinates

∂θβ

∂θα
= δα

β

⇒ ∂θ̄β̇

∂θ̄α̇
= δα̇

β̇ (4.47)

The multi-integrals are defined by∫
dθ1

∫
dθ2θ2θ1 =

∫
dθ1

∫
dθ2(

1

2
ε12θθ)

=
1

2

∫
dθ1

∫
dθ2θθ

=
1

2

∫
dθ1

∫
(θθ)dθ2

=
1

2

∫
dθ1

[
θ

∫
θdθ2 + θ

∫
θdθ2

]
=

1

2

∫
dθ1 [θ · 1 + 1 · θ]

=
1

2

∫
dθ12θ

=

∫
θdθ1

= 1 (4.48)

So, we can define,

1

2

∫
dθ1

∫
dθ2 =

∫
d2θ (4.49)∫

d2θ(θθ) = 1 (4.50)∫
d2θ

∫
d2θ̄(θθ)(θ̄θ̄) = 1 (4.51)

This can also be written in terms of ε

d2θ = −1

4
dθαdθβεαβ (4.52)

d2θ̄ =
1

4
dθ̄α̇dθ̄β̇εα̇β̇ (4.53)

Integration and differentiation can be identified as∫
d2θ =

1

4
εαβ

∂

∂θα
∂

∂θβ
(4.54)

and

∫
d2θ̄ = −1

4
εα̇β̇

∂

∂θ̄α̇
∂

∂θ̄β̇
(4.55)
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4.3.2 Transformation of the general scalar superfield

A general scalar field, ϕ(xµ) is a function of space-time coordinates xµ which transforms
under Poncaré translations. ϕ can be treated as an operator which changes by a translation
with parameter, aµ.

ϕ −→ eiaµP
µ

ϕ(xµ) = ϕ(xµ − aµ) (4.56)

⇒ P µ = −iδµ (4.57)

Here, P is a representation of an abstract operator P µ which acts on F . Comparing these
two transformations to first order in aµ:

(1− iaµP µ)ϕ (1 + iaµP
µ) = (1− iaµP µ)

ϕ (1 + iaµP
µ)− iaµP µϕ (1 + iaµP

µ) = (1− iaµP µ)

ϕ (iaµP
µ)− iaµP µϕ− (iaµP

µ) (iaµP
µ) = −iaµP µ

i [ϕ, aµP
µ] = −iaµP µϕ+ iaµP

µϕiaµP
µ

= −iaµP µϕ (1− aµP µ)

= −iaµP µϕ

= −iaµPµϕ
⇒ i [ϕ, aµP

µ] = −iaµ (−iδµ)ϕ

= −aµδµϕ
i [ϕ, aµP

µ] = −aµδµϕ (4.58)

As a field operator, scalar superfield, S(xµ, θα, θ̄α), transforms under super-Poincaré
translation.

S
(
xµ, θα, θ̄α̇

)
−→ e−iεQ+ε̄Q̄SeiεQ+ε̄Q̄

⇒ S
(
xµ, θα, θ̄α̇

)
−→ S

(
xµ + δxµ, θα + δθα, θ̄α̇ + δθ̄α̇

)
= e−i(εQ+ε̄Q̄)e−i(x

µPµ+θαQα+θ̄α̇+Q̄α̇)Sei(εQ+ε̄Q̄)e−i(x
µPµ+θαQα+θ̄α̇+Q̄α̇)

Now, we evaluate, ei(εQ+ε̄Q̄)ei(x
µPµ+θαQα+θ̄α̇+Q̄α̇)

ei(εQ+ε̄Q̄)ei(x
µPµ+θαQα+θ̄α̇+Q̄α̇) = eix

µPµ+i(ε+θ)Q+i(ε̄+θ̄)Q− 1
2 [θ̄Q̄,εQ]− 1

2 [θQ,ε̄Q̄]

= eix
µPµ+i(ε+θ)Q+i(ε̄+θ̄)Q− 1

2
(−2εσµθ̄Pµ)− 1

2
(2θσµε̄Pµ)

= eix
µPµ+i(ε+θ)Q+i(ε̄+θ̄)Q+εσµθ̄Pµ)−θσµε̄Pµ)

= ei(x
µ+iθσµε̄−iεσµθ̄)Pµ+i(ε+θ)Q+i(ε̄+θ̄)Q̄

Now, under Poincaré translation

S(xµ, θα, θ̄α̇) −→ e−i(εQ+ε̄Q̄)Sei(εQ+ε̄Q̄)

⇒ S(xµ, θα, θ̄α̇) −→ S
(
xµ + δxµ, θα + δθα, θ̄α̇ + δθ̄α̇

)
= e−i(εQ+ε̄Q̄)e−i(x

µPµ+θαQα+θ̄α̇Q̄α̇
)Sei(εQ+ε̄Q̄)ei(x

µPµ+θαQα+θ̄α̇Q̄α̇
)

= e−i(εQ+ε̄Q̄)e−i(x
µPµ+θαQα+θ̄α̇Q̄α̇

)Sei(x
µ+iθασµε̄−iεσµθ̄α̇)Pµ+i(εα+θα)Q+i(ε̄α̇+θ̄α̇)Q̄

Again, as a Hilbert vector S transforms as

S(xµ, θα, θ̄α̇) = e−i(εQ+ε̄Q̄)
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Comparing

S(xµ, θα, θ̄α̇) −→ S
(
xµ + δxµ, θα + δθα, θ̄α̇ + δθ̄α̇

)
(4.59)

= Sei(x
µ+iθασµε̄−iεσµθ̄α̇)Pµ+i(εα+θα)Q+i(ε̄α̇+θ̄α̇)Q̄ (4.60)

= S(xµ + iθασ
µε̄− iεσµθ̄α̇, εα + θα, ε̄α̇ + θ̄α̇)Q̄ (4.61)

Finally, we get

δx = iθσµε̄− iεσµθ̄ (4.62)

δθα = εα (4.63)

δθ̄α̇ = ε̄α̇ (4.64)

The εα and ε̄α̇ needs to be consistent with the supersymmetry algebra {Qα, Q̄α̇} ∼ Pµ as the
space-time translation is generated by the supersymmetry transformation.
We also get,

Qα = −i ∂
∂θα
− σµαβ̇ θ̄

β̇ ∂

∂xµ
(4.65)

= −i∂α − σµαβ̇ θ̄
β̇
µ (4.66)

As Q̄α̇ = Q†α we get,

Q̄α̇ = i
∂

∂θ̄α̇
+ θβ(σµ)βα̇

∂

∂xµ
(4.67)

= i∂̄α̇ + θβσµβα̇∂µ (4.68)

δS = i
[
S, εQ, ε̄Q̄

]
(4.69)

= i(εQ+ ε̄Q̄)S (4.70)

From this, the explicit terms for the change in different parts of S can be obtained. From
(4.40) we got the expansion of the general scalar superfield. Now, when a supersymmetry
action acts on a scalar superfield, S

δS = i(εQ+ ε̄Q̄)S(x, θ, θ̄) (4.71)

= i(εαQα + Q̄α̇ε̄
α̇)S(x, θ, θ̄) (4.72)

=

[
εα(

∂

∂θα
− iσµαβ̇ θ̄

β̇∂µ) + (− ∂

∂θ̄α̇
+ iθβσµβα̇∂µ)ε̄α̇

]
S(x, θ, θ̄) (4.73)
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When this acts on a scalar field, we can find the individual components of S(x, θ, θ̄) by
comparing order of θ and θ̄. Finally,

δϕ = εψ + ε̄χ̄ (4.74)

δψ = 2εM + σµε̄(i∂µϕ+ Vµ) (4.75)

δχ̄ = 2ε̄N − εσµ(i∂µϕ− Vµ) (4.76)

δM = ε̄λ̄− 1

2
∂µψσ

µε̄ (4.77)

δN = ερ+
i

2
εσµ∂µχ̄ (4.78)

δVµ = εσµλ̄+ ρσµε̄+
i

2
(∂νψσµσ̄νε− ε̄σ̄νσµ∂νχ̄) (4.79)

δλ̄ = 2ε̄D +
i

2
(σ̄νσµε̄)∂µVν + iσ̄µε̄∂µM (4.80)

δρ = eεD − i

2
(σν σ̄µε)∂µVν + iσµε̄∂µN (4.81)

δD =
i

2
∂µ(εσµλ̄− ρσµε̄) (4.82)

4.3.3 Properties of superfields

The product of the two superfields S1 and S2 is also a superfield.

δ(S1, S2) = i
[
S1S2, εQ+ ε̄Q̄

]
(4.83)

= iS1 [S2, εQ+ ε̄] + i [S1, εQ+ ε̄]S2 (4.84)

= i(εQ+ ε̄Q̄)S1S2 (4.85)

Linear combination of two superfields are also superfield ∂µS is a superfield. ∂αS is not a
superfield but Dα is a superfield.

i∂α(εQ+ ε̄Q̄)S 6= i(εQ+ ε̄Q̄)∂αS

as (∂α, εQ+ ε̄Q̄) 6= 0.
Defining a covariant derivative,

Dα = ∂α + i(σµ)αβ̇ θ̄
β̇∂µ (4.86)

D̄α̇ = −∂̄α̇ − iθβ(σµ)βα̇∂µ (4.87)

This satisfies that

{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0 (4.88)

∴ [Dα, εQ+ ε̄Q̄] = 0 (4.89)

Therefore, DαS is a superfield.
The anticommutation relations of the super covariant derivatives are

{Dα, D̄β̇} = −2i(σµ)αβ̇∂µ (4.90)

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0 (4.91)
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4.3.4 Reduced superfields

A general superfield is often a product of superfields. When supersymmetry invariant
constraints are acted on S, we can obtain it’s subsets. This will form some reduced set of
superfields carrying the representation of supersymmetry algebra.

Some of the superfields are:

� Chiral Superfield such that D̄α̇φ = 0

� Anti-chiral superfield such that Dαφ = 0

� Vector superfield such that V = V †

� Linear superfield such that DDL = 0 and L = L†

4.4 Chiral superfields

From the definition of covariant derivatives, Dα, D̄α̇ which anti-commute with the
supersymmetry generator Qα, Q̄α̇, we can imply that

δε,ε̄(DαS) = Dα(δε,ε̄)S (4.92)

So, S is a superfield following (4.40) and therefore, DαS is also a superfield. So, we can impose
DαS = 0 as a supersymmetry invariant constraint to reduce the number of components of Y.
As Dα commutes with Q and Q̄, DαS and D̄α̇S are both superfields. Similarly, DµS is also
superfield since Dµ commutes with Q and Q̄. A Chiral superfield φ is a superfield such that

D̄α̇φ = 0 (4.93)

and an anti-chiral superfield ψ is a superfield such that

Dαψ = 0 (4.94)

If φ is Chiral φ̄ has to be anti-chiral. So, a chiral superfield can not be real and φ̄ = φ has to
be anti-chiral. So, a chiral superfield cannot be real and φ̄ 6= φ.

4.4.1 General expression for chiral superfield

To construct a general expression for Chiral superfield, we define some new coordinates.

yµ = xµ + iθσµθ̄ (4.95)

ȳµ = xµ − iθσµθ̄ (4.96)

From this we get,

D̄α̇θβ = D̄α̇y
µ = 0 (4.97)

Dαθ̄β = Dαȳ
µ = 0 (4.98)

41



CHAPTER 4. SUPERSPACE AND SUPERFIELDS

From (4.93) we can show that, φ does not depend on θ̄α̇ and only depends on θ

φ(yµ, θα) = ϕ(yµ) +
√

2θψ(yµ) + θθF (yµ) (4.99)

A Chiral field corresponds to a multiplet of states. ϕ represents a scalar part (Squark,
Slepton, Higgs). ψ is a particle with half-spin (Quark, Lepton, Higgsino) and F is an
auxiliary field.

Taylor expanding (4.99) on z results to

φ(x, θ, θ̄) = ϕ(x) +
√

2θψ(x) + iθσµθ̄∂µϕ(x) + θθF (x)

− i√
2
θθ∂µψ(x)σµθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ(x) (4.100)

Similarly, an anti-Chiral superfield will be

φ̄(x, θ, θ̄) = φ̄(ȳµ) +
√

2θ̄ψ̄(ȳµ)− θ̄θ̄F̄ (ȳ) (4.101)

= ϕ̄(x) +
√

2θ̄ψ̄(x)− iθσµθ̄∂µϕ(x) + θ̄θ̄F̄ (x)

+
i√
2
θ̄θ̄θσµ∂µψ̄(x)− 1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ̄(x) (4.102)

4.4.2 Supersymmetry transformation of chiral field

Under a supersymmetry transformation, a Chiral superfield and an antichiral superfield
transform as follows

δε.ε̄φ = i(εQ+ ε̄Q̄)φ (4.103)

δε̄,εφ̄ = i(ε̄Q̄+ εQ)φ̄ (4.104)

Writing the supersymmetry generators, Qα, Q̄α̇ as the differential operators in the (yµ, θα, θ̄α̇)
coordinate system we get,

Q′α = −i∂α (4.105)

Q̄′α̇ = i∂̄α̇ + 2θασµαα̇
∂

∂yµ
(4.106)

Using this two definition in equation (4.103) and (4.104) results in

δε,εφ = (εα∂α + 2iθασµαβ̇ ε̄
β̇ ∂

∂yµ
)φ (4.107)

=
√

2εψ − 2εθF + 2iθσµε̄(
∂

∂yµ
φ+
√

2θ
∂

∂yµ
ψ) (4.108)

=
√

2εψ +
√

2θ(−
√

2εF +
√

2iσµε̄
∂

∂yµ
φ)− θθ(−i

√
2ε̄σ̄µ

∂

∂yµ
ψ) (4.109)

Now, er arrive to the final expression of the supersymmetry variation of the different
components of the Chiral superfield, φ.

δφ =
√

2εψ (4.110)

δψα =
√

2i(σµ)α̇∂µϕ̄−
√
ε̄α̇F̄ (4.111)

δF = −i
√

2∂µψ̄σ
µε (4.112)

Here, δF is a total derivative.
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4.4.3 Properties of chiral superfield

1. The product of Chiral superfield are also superfield.

2. Any holomorphic function f(φ) where φ is Chiral, is also an Chiral superfield.

3. φ = φ̄ is anti-Chiral for a Chiral superfield φ.

4.5 Vector (or Real)superfield

A real or vector superfield is defined such that

V = V † (4.113)

Due to this reality condition, the supersymmetry invariant projection saves the vector field,
V µ in the general expression. Thus, we get some gauge interactions.
The most general vector superfield,

V (x, θ, θ̄) = V †(x, θ, θ̄) (4.114)

has the form

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
(θθ)(M(x) + iN(x))− i

2
θ̄θ̄(M(x)− iN(x))

+ θσµθ̄Vµ(x) + iθθθ̄(−iλ̄(x) +
i

2
σ̄µ∂µχ(x))

− iθ̄θ̄θ(iλ(x)− i

2
σµ∂µχ̄(x)) +

1

2
(θθ)(θ̄θ̄)(D − 1

2
∂µ∂

µC) (4.115)

This superfield has 8B + 8F degrees of freedom.

Upon supersymmetry gauge transformation, the off-shell degrees of freedom reduces to 4B+4F
where as the on-shell degrees of freedom become 2B + 2F . We see that, the on-shell case
resembles the massless vector multiplet of states. The 8 bosonic components are C,M,N,D,Vµ
and the 4+4 fermionic components are χα and λα.

For a Chiral superfield, Λ, i(Λ − Λ†) will be a vector superfield. The components of this
vector superfield will be

C = i(ϕ− ϕ†) (4.116)

χ =
√

2ψ (4.117)
1

2
(M + iN) = F (4.118)

vµ = −∂µ(ϕ+ ϕ†) (4.119)

λ = D = 0 (4.120)

A generalized gauge transformation to vector fields can be defined as

V −→ V − i

2
(Λ− Λ†) (4.121)

An ordinary gauge transformation for the vector component V will be

Vµ −→ Vµ + ∂µ [Reϕ] (4.122)

=: Vµ − ∂µα (4.123)

Some of the components of V will gauge away by choosing ϕ, ψ, F within Λ.
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4.5.1 Wess-Zumino gauge

When the components of V, C = χ = M = N = 0 the Wess-Zumino Gauge is obtained.
This can be found by choosing the components ϕ, ψ, F of Λ.

In a Wess-Zumino gauge, a vector superfield is expressed as

Vwz(x, θ̄, θ̄) = (θσµθ̄)Vµ(x) + (θθ)(θ̄ ¯λ(x)) + (θ̄θ̄)(θλ(x)) +
1

2
(θθ)(θ̄θ̄)D(x) (4.124)

Vµ corresponds to gauge particles (γ, W±, Z, gluon, λ and λ̄ to gauginos), D is an auxiliary
field.

Off-shell, we get 4B +4F degrees of freedom, due to the gauge invariance. When the equation
of motion for the auxiliary field, D, spinor λ and vector, V µ is imposed, we get 2B + 2F
degrees of freedom, on-shell.

According to the definition of Wess-Zumino gauge, we have no restriction on V µ. So,
supersymmetry gauge transformations can be performed on Wess-Zumino gauge with gauge
parameters,

ϕ = ϕ̄, ψ = 0, F = 0 (4.125)

Powers of Vwz are given by,

V 2
wz =

1

2
(θθ)(θ̄θ̄)V µVµ (4.126)

V 2+n
wz = 0 for all n ∈ N (4.127)

As, Vwz −→ V ′wz under supersymmetry, Wess-Zumino gauge does not commute with
supersymmetry. Thus, Wess-Zumino gauge is not supersymmetric. When a supersymmetry
transformation acts on a Wess-Zumino gauge, a new field will be obtained and this field will
not be a Wess-Zumino gauge.

4.5.2 Abelian field strength superfield

Under local U(1) with charge q and local parameter α(x), a non-supersymmetric complex
scalar field, φ which is coupled to a gauge field, Vµ via co-variant derivative Dµ = δµ − iqVµ
will transform as

ϕ(x) −→ eiqα(x)ϕ(x) (4.128)

Vµ(x) −→ Vµ(x) + ∂µα(x) (4.129)

When supersymmetry is taken into account, we work on Chiral superfields, φ and vector
superfield vector.

Upon imposing the transformation properties,

φ −→ eiqΛφ (4.130)

V −→ V − i

2
(Λ− Λ†) (4.131)

we get gauge invariant φ†e2qV φ.

We can construct a gauge invariant quality out of φ and V.
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Λ is the Chiral superfield which defines the generalized gauge transformations. If φ is Chiral,
then eiqΛφ will also be Chiral.
An Abelian field strength in a non-supersymmetric analogy is defined as

Fµν = ∂µVν − ∂νVµ (4.132)

For supersymmetry, it will be

Wα := −1

4
(D̄D̄)DαV (4.133)

This will result to a field which is Chiral as well as invariant under generalized gauge
transformation.

Properties of Abelian field strength superfield :

Chirality: When acted on a superfield, a right handed super-covariant derivative D̄α̇Wα can
be re-written as εβ̇νD̄α̇D̄β̇D̄γ̇.

As the D̄ anti-commute, the expression D̄α̇, D̄β̇, D̄γ̇ are totally anti-symmetrized. Due to

the restriction on the index value of α̇, β̇, γ̇ indices, the anti-symmetric rank three tensor
vanishes,

T[α̇,β̇,γ̇] = 0 (4.134)

So, we can say,

D̄α̇Wα = −1

4
εβ̇γ̇D̄[α̇D̄β̇D̄γ̇](DαV ) = 0 (4.135)

Invariance: As Λ† is anti-Chiral, it will not be contributing to the transformation law of V.
Since, δµΛ is a Chiral superfield, the anti-commutator {Dα, D̄β̇} = −2i(σµ)αβ̇∂µ results to

δWα =
i

8
εβ̇γ̇D̄β̇{D̄γ̇, Dα}Λ (4.136)

= −1

4
(σµ)αγ̇D̄

γ̇(∂µΛ) (4.137)

= 0 (4.138)

under a transformation of

V −→ V − 1

2
(Λ− Λ†) (4.139)

If V is re-written in a shifted co-ordinate system

yµ = xµ + iθσµθ̄ (4.140)

Where,

θσµθ̄Vµ(x) = θσµθ̄Vµ(y)− 1

2
θ2θ̄2∂µV

µ(y) (4.141)

then, the super-covariant derivatives simplifies to

Dα = δα + 2i(σµθ̄)α∂µ (4.142)

= D̄α (4.143)

D̄α̇ = −∂α̇ (4.144)

Using this new co-ordinate system to write a new expression for Vwz, and using the
super-covariant derivative of equation (4.142), we can obtain Wα in components. This can
be expressed as

Wα(y, θ) = λα(y) + θαD(y) + (σµν)αFµν(y)− i(θθ)(σ)αβ̇∂µλ̄
β̇(y) (4.145)
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4.5.3 Non-Abelian field strength

When the supersymmetry U(1) gauge theories are generalized to non-Abelian theories, they
are generalized to non-Abelian gauge groups. The gauge degrees of freedom will take the
values which are in the associated Lie algebra spanned by hermitian generator Tα

Λ = ΛaT
a (4.146)

V = VaT
a (4.147)[

T a, T b
]

= ifabcTc (4.148)

Similar to the Abelian case, we expect that φ†e2qV φ will be invariant under gauge
transformation φ −→ eiqΛφ. However, a non-linear transformation law V −→ V ′ is obtained
due to the non-commutative nature of Λ and V.

e2qV ′ = eiqΛ
†
e2qV e−iqΛ (4.149)

⇒ V ′ = V − i

2
(Λ− Λ†)− iq

2

[
V,Λ + Λ†

]
(4.150)

Under unitary transformations the field-strength tensor Fµν of non-supersymmetric
Yang-Mills theories transform to UFµνU

−1.

Similarly, to obtain a gauge covariant quantity, we can define

Wα := − 1

8q
(D̄D̄)(e−2qVDαe

2qV ) (4.151)

Under gauge transformations e2qV −→ eiqΛ
†
e2qV e−iqΛ, we assume to get a transformed field

strength superfield

W ′
α = − 1

8q
(D̄D̄)(eiqΛe−2qV e−iqΛ

†
Dαe

iqΛ†e2qV e−iqΛ)

= − 1

8q
eiqΛ(D̄D̄)

(
e−2qVDα(e2qV e−iqΛ

)
= eiqΛ

(
− 1

8q
(D̄D̄e−2qVDαe

2qV
)
− 1

8q
e−iqΛ(D̄D̄Dαe

iqΛ)

= eiqΛWαe
−iqΛ − 1

8q
e−iqΛ(D̄D̄Dαe

iqΛ) (4.152)

Now, we know from the anti-commutation relation of Dα and D̄β̇

{Dα, D̄β̇} = −2i(σµ)αβ̇∂µ

⇒ {Dα, D̄β̇}e
iqΛ = −2i(σµ)αβ̇∂µe

iqΛ

⇒ DαD̄β̇e
iqΛ + D̄β̇Dαe

iqΛ = 0

⇒ D̄β̇Dαe
iqΛ = 0

∴ (D̄D̄)Dαe
iqΛ = 0

Replacing this in equation (4.152) we get,

W ′
α = eiqΛWαe

−iqΛ (4.153)
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So, transformation law for Wα under e2qV −→ eiqΛ
†
e2qV e−2qΛ is

Wα −→ eiqΛWαe
−iqΛ (4.154)

In Wess-Zumino gauge, For

Fα
µν := δµV

a
ν − δνV a

µ + qfabcV
b
µV

c
ν (4.155)

Dµλ̄
a := δµλ

a + qV b
µ λ̄

cfabc (4.156)

the supersymmetric field strength can be evaluated as

W a
α(y, θ) = −1

4
(D̄D̄)Dα(V α(y, θ, θ̄) + iV b(y, θ, θ̄)V c(y, θ, θ̄)fabc) (4.157)

= λaα(y) + θαD
α(y) + (σµνθ)αF

α
µν(y)− i(θθ)(σµ)αβ̇Dµλ̄

αβ̇(y) (4.158)
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Chapter 5

Supersymmetric Lagrangians and
Actions

A supersymmetry transformation action transforms the highest order component of a
superfield into a total derivative. For a general scalar superfield, the highest order term
is (θθ)(θ̄θ̄)D(x) and under supersymmetry transformation this term changes into

δD =
i

2
∂µ(εσµλ̄− pσµε̄) (5.1)

Here, δD is a total derivative.

Due to this property, a space-time integral of this quantity will be invariant under
supersymmetric transformation.

Superfields φ, V and Wα includes the particles of standard model. To determine
supersymmetric couplings of this superfields, Lagarangians which will be invariant under
supersymmetry transformations are constructed. A supersymmetric action integral is defined
as

A :=

∫
d4x

∫
d4θL (5.2)

=

∫
d4x

∫
d2θ

∫
d2θ̄L (5.3)

Here, L is a supersymmetry Lagrangian density.

5.1 Chiral superfield Lagrangian

The highest term component of the Chiral superfield is F. So, under supersymmetry
transformation, we get,

δF = i
√

2ε̄σ̄µ∂µψ (5.4)

So, the most general Lagrangian for a chiral superfield, φ is

L = K(φ, φ†)
∣∣
D

+ (W (φ))
∣∣
F

+ h.c) (5.5)

K(φ, φ†) is a real function of φ and φ†, named Kähler potential. W (φ) is a holomorphic
function of the Chiral superfield, so, W (φ) is a Chiral superfield which is the superpotential.
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In equation (5.5) the |D and |F refers to the D-term and the F-term of the corresponding
superfield.

To satisfy the condition of the renormalizable theory, the Lagrangian must have
dimensionality 4. We know, a Chiral field is constructed of one scalar, one spinor and
another scalar component and the dimensionality of the spinor is the same as a standard
fermion.

[ψ] =
3

2

The dimensionality of the superfield is same as its scalar component.

[φ] = ϕ = 1

From the expansion of (4.100) in section 4.4 we get,

[θ] = −1

2
and

[F ] = 2

Satisfying the normalizability theory, we take

K = φ†φ and

W = α + λφ+
m

2
φ2 +

g

3
φ3

Replacing K and W in (5.5) will result to

L = φ†φ
∣∣
D

+ ((α + λφ+
m

2
φ2 +

g

3
φ2)
∣∣
F

+ h.c) (5.6)

Now, only the D-term of φ†φ will be included in the Lagrangian.
From the previous chapter we got,

φ = ϕ+
√

2θψ + (θθ)F + i(θσµθ̄)∂µ + ϕ− (θθ)(θ̄θ̄)

4
∂µ∂

µϕ− iθθ√
2
∂µψσ

µθ̄

φ̄† = ϕ∗
√

2θ̄ψ̄ + θ̄θ̄F ∗ − i(θσµσ̄)∂µϕ
∗ − (θθ)(θ̄θ̄)

4
∂µ∂

µ +
iθθ̄√

2
θσµ∂µψ̄
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For the D-term of K, we only take the (θθ)(θ̄θ̄) component of φφ†

φ†φ = ((ϕ+
√

2θψ + (θθ)F + i(θσµθ̄)∂µ + ϕ− (θθ)(θ̄θ̄)

4
∂µ∂

µϕ− iθθ√
2
∂µψσ

µθ̄)

(ϕ∗
√

2θ̄ψ̄ + θ̄θ̄F ∗ − i(θσµσ̄)∂µϕ
∗ − (θθ)(θ̄θ̄)

4
∂µ∂

µ +
iθθ̄√

2
θσµ∂µψ̄)

⊃ (θθ)(θ̄θ̄)

[
−1

4
ϕ∗∂µ∂

µϕ− 1

4
ϕ∂µ∂

µϕ∗ + |F |2
]

+ (θσµθ̄)(θσθ̄)∂νϕ∂µφ
∗ − iθ̄ψ̄(θθ)∂µψσ

µθ̄ + i(θ̄θ̄)(θσµ∂µψ̄)(θψ)

= (θθ)(θ̄θ̄)

[
−1

4
ϕ∗∂µ∂

µϕ− 1

4
ϕ∂µ∂

µϕ∗ + |F |2
]

+
1

2
(θθ)(θ̄θ̄)∂µϕ∂µϕ

∗ + iθ̄α̇ψ̄α̇(θθ)∂µψ
β(σ)ββ̇ θ̄

β̇ + i(θ̄θ̄)θα(σµ)αα̇∂µψ̄
α̇θβψβ

= (θθ)(θ̄θ̄)

[
−1

4
ϕ∗∂µ∂

µϕ− 1

4
ϕ∂µ∂

µϕ∗ + |F |2
]

+
1

2
(θθ)(θ̄θ̄)∂µϕ∂µϕ

∗ +
i

2
εα̇β̇(θ̄θ̄)ψ̄α̇(θθ)∂µψ

β(σµ)ββ̇ +
i

2
(θ̄θ̄)(θθ)εαβ(σµ)αα̇∂µψ̄

α̇ψβ

= (θθ)(θ̄θ̄)

[
−1

4
ϕ∗∂µ∂

µϕ− 1

4
ϕ∂µ∂

µϕ∗ + |F |2 +
1

2
∂µϕ∂µϕ

∗ i

2
∂µψ(σµ)ψ̄ − i

2
ψ(σµ)∂µψ̄

]
= (θθ)(θ̄θ̄)

[
|F |2 + ∂µϕ∂µϕ

∗ − iψ(σµ)∂µψ̄
]

+ total derivatives

Therefore, the (θθ)(θ̄θ̄) of K is the corresponding D-term of the superfield.

φ†φ|D = ∂µφ∗∂µ − iψ̄σ̄µ∂µψ + FF ∗ (5.7)

Again, the F term of the superpotential, W will be included in the Lagrangian. We have,
Taylor expansion of W [φ] around φ = ϕ

W (φ) = W (ϕ) + (φ− ϕ)
∂W

∂φ
+

1

2
(φ− ϕ)2∂

2W

∂ϕ2
(5.8)

Here, the (φ− ϕ) term refers to θθF and (φ− ϕ)2 refers to θψ(θψ) term. So, by taking the
(θθ) term out of this expansion, we get the F terms of W (φ). Now, assuming

W (φ) = a+ λφ+
m

2
φ2 +

g

3
φ3 (5.9)

∂W

∂φ
= λ+mφ+ gφ2 (5.10)

∂2W

∂φ2
= m+ 2gθ (5.11)
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Now, evaluating the (θθ) term from, W = m
2
φ2 + g

3
φ3

m

2
φ2 =

m

2

(
ϕ+
√

2θψ + (θθ)F + i(θσµθ̄)∂µϕ−
1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ− i√
2

(θθ)∂µψσ
µθ̄
)

(
ϕ+
√

2θψ + (θθ)F + i(θσµθ̄)∂µϕ−
1

4
(θθ)(θ̄θ̄)∂µ∂

µϕ− i√
2

(θθ)∂µψσ
µθ̄
)

Taking only the terms that will result to (θθ) terms
m

2
φ2 ⊃ (ϕ+

√
2θψ + (θθ)F )(ϕ+

√
2θψ + (θθ)F )

=
m

2

(
(θθ)(ϕF + Fϕ) + 2θαψαθ

βψβ
)

=
m

2

(
(θθ)(2ϕF )− 2θαθβψαψβ

)
=
m

2

(
(θθ)(2ϕF )− 2

1

2
(θθ)εαβψψ

)
= m(θθ)(ϕF − 1

2
(ψψ))

And

1

3
gφ3 ⊃ g

3
(ϕ+

√
2θψ + (θθ)F )(ϕ+

√
2θψ + (θθ)F )(ϕ+

√
2θψ + (θθ)F )

Here, we again took the terms that will result to (θθ) terms

⊃ g

3

(
(θθ)(ϕ2F + ϕFϕ+ Fϕ2) + 2ϕ(3θαψαθ

βψβ)
)

⊃ g

3

(
(θθ)(ϕ2F + ϕFϕ+ Fϕ2)− 2ϕ(3θαθβψαψβ)

)
= g(θθ)

(
ϕ2 − ϕ(ψψ)

)
Now,

W (φ) =
1

2
mφ2 +

g

3
φ3

= m(θθ)
(
ϕF − 1

2
(ψψ)

)
+ g(θθ)

(
ϕ2F − ϕ(ψψ)

)
= (θθ)(mϕ+ gϕ2)F − 1

2
(θθ)(ψψ)− g(θθ)(ψψ)ϕ

= (θθ)(mϕ+ gϕ2)− 1

2
(θθ)(ψψ)(m+ 2gϕ)

= (θθ)
∂W

∂ϕ
− 1

2
(θθ)

∂2W

∂φ2
(ψψ)

W (φ)|D = (
∂W

∂φ
F + h.c)− (

1

2

∂W 2

∂φ2
+ h.c) (5.12)

Using (5.7) and (5.12) in (5.6), we finally, get the Lagrangian.

L = ∂µφ∗∂µφ− iψ̄σ̄µδµψ + FF ∗ + (
∂W

∂φ
F + h.c)− (

1

2

∂W 2

∂φ2
+ h.c) (5.13)

This is known as the Wess-Zumino model.
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The part of Lagrangian which depends in the auxiliary field, F

L(F ) = FF∗ +
∂W

∂φ
F +

∂W ∗

∂ϕ∗
F ∗ (5.14)

This equation says that the field, F does not propagate. So, we obtain,

δS(F )

δF
= F ∗ +

∂W

∂φ
= 0

⇒ F ∗ = −∂W
∂φ

(5.15)

δS(F )

δF ∗
= F +

∂W ∗

∂φ∗
= 0

⇒ F = −∂W
∗

∂φ∗
(5.16)

Replacing F and F ∗ with the values in (5.15) and (5.16) in (5.14) we find,

L = (−∂W
∂ϕ

)(−∂W
∗

∂ϕ∗
) + (

∂W

∂ϕ
)(−∂W

∗

∂ϕ∗
) + (

∂W ∗

∂ϕ∗
)(−∂W

∗

∂ϕ∗
)

L = −
∣∣∂W
∂φ

∣∣2
= −V(F )(ϕ) (5.17)

This Lagrangian defines the scalar potential. It is a positive definite scalar potential, V(F )(ϕ).

5.2 Abelian vector superfield Lagrangian

Lagrangian for Chiral superfield describes spin-0 and spin-1/2 particles. Lagrangian of a
supersymmetric Abelian gauge theory will describe spin-1 particles. To construct an Abelian
vector superfield, we introduce gauge invariance to Kahler potential under supersymmetry.
In general, with supersymmetry, Kahler Potential, K = φ†φ is not invariant under

φ −→ eiqΛφ

φ†φ −→ φ†eiqΛ−Λ†φ

for Chiral Λ.

We introduce a field V, such that

K = φ†e2qV φ

V −→ V − i

2
(Λ− Λ†)

So, under general gauge transformation invariance of K is obtained.

A kinetic term for V with coupling τ is introduced

L = f(Φ)(WαWα)|F + h.c (5.18)

For general f(Φ), this term is not renormalizable but when f(Φ) is a constant, f = τ , it
is renormalizable. For the non-renormalizable term, f(Φ) is known as the gauge kinetic
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function. For renormalizable super Q.E.D, f = τ = 1
3
.

An extra term name ”Fayet Illipoulous term” can be added to L, in supersymmetric terms.

LFI = εVD

=
1

2
εD

where, ε is a constant.

In non-Abelian gauge theory, the gauge fields and their corresponding D-term transforms
under the gauge group, so the LFI term can not exist. Due to the chargeless-ness of the
gauge fields in U(1) theory, the FI term is invariant. So, it can be said that the FI term
exists only for the Abelian gauge theories.

A renormalizable Lagrangian of super QED:

L = (Φ†e2qV Φ)
∣∣
D

+ (W (Φ)
∣∣
F

+ h.c) + εV
∣∣
D

(5.19)

Now,

(Φ†e2qV φ)
∣∣
D

= F ∗F + ∂µφ∂
µφ∗ + iψ̄σ̄µδµψ

+ qV µ
(
ψ̄σ̄µψ + iϕ∗∂µϕ− iϕ∂µϕ− iϕ∂µϕ∗

)
+
√

2q(ϕλ̄ψ̄ + ϕ∗λψ) + q(D + qVµV
µ)|ϕ|2

Due to Wess-Zumino Gauge V n≥3 = 0,

∴ (Φ†e2qV Φ)
∣∣
D

= qD|ϕ|2

We take, Wα to be a Chiral, So, WαWα has to be scalar field. So, we use only the (θθ) terms
to get the F-part of WαWα

1

4
WαWα|F =

1

4
(θθ)(−2iλασµαα̇∂µλ̄

α̇ +D2)− 1

16
(σµσ̄νθ)α(σρσ̄λθ)αFµνFρλ

+
i

4
Dθα(σµσ̄νθ)αFµν

First, we evaluate − 1
16

(σµσ̄νθ)α(σρσ̄λθ)αFµνFρλ term,

− 1

16
(σµσ̄νθ)α(σρσ̄λθ)αFµνFρλ = − 1

16
εαβ(σµσ̄νθ)α(σρσ̄λθ)βFµνFρλ

= − 1

16
εαβ(σµ)αα̇(σ̄ν)α̇γθγ(σ

ρ)ββ̇(σ̄λ)β̇δθδFµνFρλ

= − 1

32
(θθ)Tr{σµσ̄νσλσ̄ρ}FµνF µν

Here,

Tr{σµσ̄νσλσ̄ρ} = 2iεµνλρ + 2ηµνηλρ − 2ηµληνρ + 2ηµρηνλ

So,− 1

16
(σµσ̄νθ)α(σρσ̄λθ)αFµνFρλ = − 1

16
(θθ)εµλτρFµλFρτ −

1

8
(θθ)FµνF

µν
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Then, we evaluate the term i
4
Dθα(σµσ̄νθ)αFµν ,

i

4
Dθα(σµσ̄νθ)αFµν =

i

4
DFµνθ

αθγ(σµ)αα̇(σ̄ν)α̇βεβγFµν

= − i
8
DFµν(θθ)ε

αγ(σµ)αα̇(σ̄ν)α̇βεβγ

=
i

8
DFµν(θθ)ε

αγ(σµ)αα̇(σ̄ν)α̇βεβγ

=
1

8
DFµν(θθ)(σ

µ)αα̇(ᾱν)αα̇

=
i

4
DFµν(θθ)η

µν

= 0

Now, rewriting 1
2
εµνρλ as F µν = 1

2
εµνρλ, we obtain,

1

4
WαW

α|F = − i
2
λσµ∂µλ̄+

1

4
D2 − 1

8
FµνF

µν +
i

8
F µνF

µν (5.20)

If, f(Φ) is real, then the term F µν vanishes otherwise, it becomes a total derivative. So, for
a Q.E.D choice, f = 1

4
, the kinetic terms for the vector superfields are given by

Lkin =
1

4
WαWα

∣∣
F

+ h.c (5.21)

=
1

2
D2 − 1

4
FµνF

µν − iλσµ∂µλ̄ (5.22)

With the FI contribution εV
∣∣
D

= 1
2
εD, the collection of the D terms in L is

L(D) = qD|ϕ|2 +
1

2
D2 +

1

2
εD (5.23)

will result to

δS
δD

= 0

⇒ D = −ε
2
− q|ϕ|2

Substituting those back into (5.23) we obtain,

L(D) = −1

8

(
ε+ 2q|ϕ|2

)2

=: −V(D)(ϕ) (5.24)

a positive semi-definite scalar potential V(D)(ϕ). So, this with the potential for Chiral
superfield from previous section produces the total potential.

V (ϕ) = V(F )(ϕ) + V(D)(ϕ)

=
∣∣∂W
∂ϕ

∣∣2 +
1

8

(
ε+ 2q|ϕ|2

)2
(5.25)
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5.3 Action as a superspace integral

Generally, in a non-supersymmetric physics, the relationship between S and L is

S =

∫
d4xL (5.26)

From the definition of Grassmann Variables,∫
d2θ(θθ) = 1 (5.27)∫

d4θ(θθ)(θ̄θ̄) = 1 (5.28)

So (5.19) can be written as

L =

∫
d4θ K +

(∫
d2θ W + h.c

)
+

(∫
d2 θWαWα + h.c

)
(5.29)

So, the most general action for a supersymmetric Lagrangian can be expressed as

S
[
K(Φ†i , e

2qV ,Φi),W (Φi), f(Φi), ε
]

=

∫
d4x

∫
d4 θ(K + εV )∫

d4x

∫
d2θ(W + fWαWα + h.c) (5.30)

5.4 Non-Abelian field strength superfield Lagrangian

In section 4.5.3 vector superfield with non-Abelian field strength vector is discussed and the
supersymmetric field strength for Wess-Zumino gauge is described by equation (4.158). In
this section, we are going to obtain the Lagrangian for a supersymmetric non-Abelian gauge
theory.

A non-Abelian field strength adds a covariant derivative on a gaugino, λ.

The general expression for the gauge field strength is described by

Wα = T aW a
α (5.31)

Tr(T aT b) = Cδab (5.32)

To introduce these terms, the gauge kinetic term is normalized by

1

16q2C
[Tr(WαWα)]θθ + h.c

For the non-Abelian field strength Lagrangian, the Fayet-Illiopoulos term from the Abelian
case is either gauge invariant or zero. So this term is omitted for this case. Thus, the
Lagrangian for a supersymmetric non-Abelian gauge theory

L =
[
φi
†e2qV
ij φj

]
θθθ̄θ̄

+

([
W (φi) +

1

16q2
W aαW a

α

]
θθ

+ h.c

)
(5.33)

55



CHAPTER 5. SUPERSYMMETRIC LAGRANGIANS AND ACTIONS

Using this in the Lagrangian for Abelian field strength vector, we may find a general
expression for the Lagrangian of a non-Abelian field strength vector superfield.

L = (Dµφi)
∗Dµφi + ψ̄iiσ̄

µDµψi + |F |2

− 1

4
F a
µνF

aµν + λ̄aiσ̄µDµλ
a +

1

2
DaDa

−
(
∂W

∂φi
Fi

1

2

∂2W

∂φi∂φj
(φ)ψiψj + h.c

)
+ qDaφ∗i (T

a)ijφj + iq
√

2φ∗iλ
a(T a)ijψj − iq

√
2ψ̄iλ̄

a(T a)ijφj (5.34)

where,

Dµφi = ∂µψi + iqvaµ(T a)ijφj (5.35)

Dµψi = ∂µψi + iqvaµ(T a)ijψj (5.36)

Dµλ
a = ∂µλ

a − qfabcvbµλc (5.37)

F a
µν = ∂µv

a
ν − ∂νvamu − qfabcvbµvcν (5.38)

The potential V = V (φi, φ
∗
i ) is the sum of the F-terms and the D-terms of the superfield.

VF =
∑
i

|Fi|2

=
∑
i

∣∣∂W
∂φi

∣∣2 (5.39)

VD =
∑
a

1

2
DaDa

=
q2

2

(
φ∗i (T

a)ijφj

)2

(5.40)

(5.41)

So, the potential, V is expressed by

V (φi, φ
∗
i ) =

∑
i

∣∣∂W
∂φi

∣∣2 +
q2

2

(
φ∗i (T

a)ijφj

)2

(5.42)

By integrating the auxiliary fields, we get,

F ∗i =
∂W

∂φi
(5.43)

Da = −qφ∗(T a)ijφj (5.44)

and using (5.42) we get the final result for the Lagrangian for non-Abelian field strength
vector superfield.

L = (Dµφi)
∗Dµφi + ψ̄iiσ̄

µDµψ
i − 1

4
F a
µνF

aµν + λ̄aiσ̄µDµλ
a

−
(

1

2

∂2W

∂φi∂φj
ψiψj − iq

√
2φ∗iλ

a(T a)ijψj + h.c

)
− V (5.45)
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Chapter 6

Supersymmetry Breaking

At energies of order 102 GeV or lower, mass degeneracy in the elementary particle does not
occur. So, it can be said that for supersymmetry to be realized in nature, it has to be broken
in low energy. At some scale Ms such that E < Ms, supersymmetry is broken and the theory
only behaves symmetrically when E > Ms. Supersymmetry can be broken in two ways.

Spontaneous SUSY breaking: The theory is supersymmetric with a scalar potential
admitting supersymmetry breaking vacua. In such a vacua, an energy scale determined by
a non-vanishing VEV of order Ms is introduced. This is the scale of SUSY breaking. In
standard model, Mew ≈ 103 GeV, defines the basic scale of mass for the particles of the
standard model. Through Yukawa couplings, the electroweak gauge bosons and the matter
fields obtain their mass from this symmetry breaking.

Explicit SUSY breaking: The Lagrangian may contain some terms which do not
manifest supersymmetry. So, to preserve the supersymmetric theories, these terms has
positive mass dimension.

Under finite and infinitesimal group elements, the fields ϕi of gauge theories transform as

ϕi ←→
(
eiα

aTa
)
i

j
ϕj (6.1)

δϕi = iαa(T a)i
jϕj (6.2)

If the vacuum state (ϕvac), transforms in a non-trivial way, i.e

(αaT a)i
j(ϕvac)j 6= 0 (6.3)

the gauge symmetry is broken.

Let, ϕ = Peiv in complex polar coordinates of U(1), then infinitesimally

δϕ = iαϕ (6.4)

⇒ δP = 0 and (6.5)

δv = α (6.6)

δv = α corresponds to a Goldstone boson. Similarly, SUSY breaks when the vacuum state
|vac〉 satisfies

Qα|vac〉 6= 0 (6.7)
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When the anti-commutation relation {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ is contracted with (σ̄ν)β̇α, we
get

(σ̄ν)β̇α{Qα, Q̄β̇} = 2(σ̄ν)β̇α2(σµ)αβ̇Pµ

= 4ηµνPµ

= 4P ν (6.8)

For ν = 0, σ̄0 = 1 and

(σ̄0)β̇α{Qα, Q̄β̇} =
2∑

α=1

(QαQ
†
α +Q†αQα)

= 4P 0 (6.9)

= 4E (6.10)

This implies that,

� As QαQ
†
α +Q†αQα is positive definite, E ≥ 0 for any state.

� 〈vac|QαQ
†
α + Q†αQα|vac〉 ≥ 0, so the energy, E is strictly positive. In broken SUSY,

E ≥ 0.

6.1 Vacua in supersymmetric theories

The vacuum energy is zero if and only if the vacuum preserves supersymmetry. So,
non-supersymmetric vacua corresponds to minima of the potential which are not zero. So,
the SUSY is broken on positive energy vacua.

In a SUSY-Gauge theory four possible states are possible.

1. Both gauge symmetry and supersymmetry are broken at the minima.

2. Both gauge symmetry and supersymmetry are preserved at the minima.

3. The minima preserves the gauge symmetry and breaks SUSY.

4. The minima preserves the SUSY and breaks gauge symmetry.

If supersymmetric vacua is present then it has to be the global minima of the potential.

Supersymmetry vacua is described by all possible set of scalar field VEVs satisfying the
D-term and F-term equations to be zero.

F̄ i(φ) = 0 Da(φ̄, φ) = 0 (6.11)

Supersymmetry breaks for a set of VEVs, where equation (6.11) does not hold and the
minima of the potential, Vmin ≥ 0.

On a supersymmetric vacua the supersymmetry variations of the fermion field vanishes.
Due to Lorentz invariance, on a vacuum any fields except for the scalar field, VEV and its
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derivative vanishes. Applying the laws for the transformations of the field components of
chiral and vector superfield, we get the following equations for the vacuum state,

δ〈φi〉 = 0 (6.12)

δ〈F i〉 = 0 (6.13)

δ〈ψiα〉 ∼ εα〈Fi〉 (6.14)

and (6.15)

δ〈F a
µν〉 = 0 (6.16)

δ〈Da〉 = 0 (6.17)

δ〈λaα〉 ∼ εα〈Da〉 (6.18)

In a generic vacuum, the supersymmetric variations of the fermions is proportional to F and
D-terms. According to definition, a supersymmetric vacuum state is SUSY invariant. So,
from the above equation it can be implied that the variations of fermions being equivalent
to the F and D-terms is zero.

6.2 The Goldstone theorem and the goldstino

According to Goldstone theorem, when a global symmetry is spontaneously broken, a massless
mode is present in the spectrum, called the Goldstone field. This field has quantum numbers
related to the broken symmetry. As supersymmetry is a fermionic symmetry, the Goldstone
field is going to be a spin-1

2
Majorana fermion. This field is called the goldstino.

6.3 F-term breaking

To explain the F-term breaking, we consider a case of chiral superfield. The most general
renormalizable Lagrangian for this case would be

L =

∫
d2θd2θ̄Φ̄iΦ

i +

∫
d2θW (Φi) +

∫
d2θ̄W̄ (Φ̄i) (6.19)

where,

W (Φi) = aiΦ
i +

1

2
mijΦ

iΦj +
1

3
gijkΦ

iΦjΦk (6.20)

The equation of motions for the auxiliary fields can be written as

F̄i(φ) =
∂W

∂φi

= ai +mijφ
j + gijkφ

jφk (6.21)

The potential can be written as

V (φ, φ̄) =
∑
i

∣∣ai +mijφ
j + gijkφ

jφk
∣∣2 (6.22)

The transformation laws under supersymmetry for components of a chiral superfield, φ are

δϕ =
√

2εψ (6.23)

δψ =
√

2εF + i
√

2σµε̄∂µϕ (6.24)

δF = i
√

2ε̄σ̄µ∂µψ (6.25)
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So, for a supersymmetry to be broken one of δϕ, δψ, δF 6= 0. But to preserve Lorentz
invariance, we must have

〈ψ〉 = 〈∂µϕ〉 = 0 (6.26)

as they both transform under some Lorentz group. So, the supersymmetry breaking condition
is

����SUSY ⇔ 〈F 〉 6= 0 (6.27)

Supersymmetry breaks if there is a set of VEVs for which all F-terms will not vanish. This
means that for a supersymmetry to be broken, it is necessary to have some ai which has
non-zero values.

As only the fermionic term of the superfield Φ will change

δϕ = δF = 0 (6.28)

δψ =
√

2ε〈F 〉 6= 0 (6.29)

Here, ψ is a Goldstone fermion or the goldstino.

The F-term of the scalar potential is given by

V(F ) = (K−1)i
j ∂W

∂φi
∂W̄

∂φ̄j
(6.30)

So, supersymmetry breaking will happen only for a positive vacuum expectation value.

SUSY ⇔ 〈V(F )〉 > 0 (6.31)

6.4 D-term breaking

In a generic theory with both chiral and vector superfields, if the F-I term does not exist then
the supersymmetry breaking is manifest due to the F-term dynamics. If the F-term goes to
zero, the D-terms can be set to zero by using global gauge invariance. In order to consider
a case where D-term breaking occurs without any influence of F-term, we consider Abelian
gauge factor where FI terms are included.

In this case, we will consider two massive chiral superfield with opposite charge coupled to a
single U(1) factor, which includes the F-I term in the Lagrangian.

L =
1

32π
Im
(
τ

∫
d2θWαWα

)
+

∫
d2θd2θ̄

(
ξV + Φ̄+e

2qV Φ̄+ + Φ̄−e
−2qV Φ̄−

)
+m

∫
d2θΦ+Φ− + h.c (6.32)

Under gauge transformation, the two chiral superfields transform as

Φ± → e±iqΛΦ± (6.33)

The auxiliary fields have the equation of motion

F̄± = mφ∓ (6.34)

D = −1

2

[
ξ + 2q

(
|φ+|2 − |φ−|2

)]
(6.35)
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Due to the F-I parameter, ξ all the auxiliary field equations can not be satisfied. This results
to broken symmetry.
The scalar potential,

V =
1

8

[
ξ + 2q

(
|φ+|2 − |φ−|2

)]2

+m2
(
|φ+|2 + |φ−|2

)
(6.36)

=
1

8
ξ2 +

(
m2 − 1

2
qξ
)
|φ−|2 +

(
m2 +

1

2
qξ
)
|φ+|2 +

1

2
e2
(
|φ+|2 − |φ−|2

)2
(6.37)

The vacuum structure and the low energy dynamics depends on the sign of
(
m2 − 1

2
qξ
)
.

� m2 > 1
2
qξ All terms in potential are positive and the minimum of V is at 〈φ±〉 = 0,

where, V = 1
8
ξ2. Here, supersymmetry is broken and gauge symmetry is preserved. The

only auxiliary field which gets a VEV is D. Thus, here a pure D-term breaking occurs.

The two fermions which belong to the two chiral superfield have mass, m. So, they can

form a massive Dirac fermion. The two scalar fields, φ+ has mass
√
m+ 1

2qξ
and φ−

have mass
√
m− 1

2qξ
. Due to gauge symmetry preservation, the photon Aµ remains

massless and as the supersymmetry is broken λ remain massless which is the goldstino.

� m2 < 1
2
qξ As the sign of the mass term for φ− is negative, the minimum of the

potential is at 〈φ+〉 = 0 and 〈φ−〉 =
√

ξ
2q
− m2

q2 ≡ h. The minimum potential here is

V = 1
8
ξ2 − 1

2
e2h4. So, both supersymmetry and gauge symmetry are broken and both

the D-term and F-term are also broken.

Due to the Yukawa couplings, three fermions mix and form a goldstino and two other
particles with equal mass of mψ̄± =

√
qξ −m2.
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Chapter 7

Supersymmetry in High Energy
Physics

The standard model of QFT is used to describe all known particles and interactions in
four-dimensional space at low energies. To form a model for which the particles can be
described in high energy physics, a supersymmetric extension of the standard model is
introduced. This is the minimally supersymmetric extension of the standard model, or in
short called the MSSM. As at low energy, supersymmetry is not observed, we say that if
supersymmetry is present in nature, it must be broken at the energy scale of 1 TeV.

7.1 The MSSM

In standard model, matter is chiral. So, the Left-handed chiralities and the right handed
chiralities transform under different representations of the gauge group. The field of standard
model includes spin-0 Higgs field, spin-1/2 quark and lepton fields. In MSSM, these fields are
assigned to Chiral and gauge supermultiplets and will generate mass by Higgs interactions
and SUSY-breaking.

Under supersymmetry transformation, the SU(3)c, SU(2)L, U(1) do not change their
quantum numbers. This implies that the SM fields and their assigned partners must have
the same quantum numbers as SU(3)c×SU(2)L×U(1). So, in MSSM, we have vector fields
transforming under SU(3)c × SU(2)L × U(1)Y and chiral superfields which represent

Left-Handed Right-handed
Quarks Qi = (3, 2,−1/6) Ū c

i = (3̄, 1, 2/3) d̄ci = (3̄, 1,−1/3)
Leptons Li = (1, 2, 1/2) q̄ci = (1, 1,−1) v̄ci = (1, 1, 0)

The vector multiplets include new fermions named gauginos and higgsinos

W± = (A±w , λ
±
W , D

±) (7.1)

W 0 = (A0
w, λ

0
W , D

0) (7.2)

A = (A, λ,D) (7.3)

presence of gaugino do not effect the cancellation of gauge anomalies due to their vectorial
coupling. But a single Higgsino running in a triangle loop contributes to YH

3 = +13 which
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CHAPTER 7. SUPERSYMMETRY IN HIGH ENERGY PHYSICS

provides the gauge anomaly. To make this term vanish a second Higgs doublet is introduced
such that

YH1

3 + YH2

3 = (+1)3 + (−1)3 = 0 (7.4)

Finally,

Higgs SU(3)× SU(2)× U(1)
H1 (1, 2, 1/2)
H2 (1, 2,−1/2)

7.2 Interaction

In standard model, the three gauge couplings running in its spectrum do not meet at a single
point at higher energies. But, in MSSM, these three different couplings meet at a single
point, at large E. This provides a scope for supersymmetric gauge coupling unification.

To avoid the breaking of charge and color, we take the F-I term, ξ to be zero. We also need
the Higgs to break SU(2)×U(1)(Y ) −→ U(1)em. The standard Yukawa coupling should give
mass to up-quarks, down-quarks and leptons. So, the superpotential, W is given by

W = y1QH2ū
c + y2QH1d̄

c + y3LH1q̄
c + µH1H2 +W��BL (7.5)

The first three terms correspond to standard Yukawa couplings and the fourth term is a mass
term for the two Higgs field.

W��BL = λ1LLq̄
c + λ2LQd̄

c + λ1ū
cd̄cd̄c + µ′LH2 (7.6)

The ��BL terms break in baryon or lepton number. Standard models preserve baryon and
lepton numbers but due to the couplings of ��BL term this conservation is violated. So, to
forbid these coupling, another symmetry, R-parity is imposed. This is defined as

R := (−1)3(B−L)2s

=

{
+1 : all observed particle

−1 : superparticles
(7.7)

The W��BL terms are forbidden by this.

7.3 Supersymmetry breaking in MSSM

If supersymmetry is spontaneously broken in MSSM, it follows the condition

STrM2 = Tr(−1)FM2

= TrM2
scalar − TrM2

fermions

The particles in MSSM couples very weakly than the SM and the effects of SUSY breaking
is weakly mediated.

The low energy effective Lagrangian in the observable sectors develops the theory of the soft
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CHAPTER 7. SUPERSYMMETRY IN HIGH ENERGY PHYSICS

supersymmetry breaking.

This Lagrangian has contribution

L = LSUSY + L���SUSY

Here,
L���SUSY = m0

2ϕ∗ϕ︸ ︷︷ ︸
scalar masses

+ ( Mλλλ︸ ︷︷ ︸
gaugino masses

+ h.c) + (Aϕ3 + h.c) (7.8)

Mλ, m0
2, and A are the soft breaking terms that determine the amount by which

supersymmetry is expected to be broken.

7.4 Comparison of QCD and SYM in terms of

confinement and mass Gap

In a non-Abelian gauge theory, strong coupling appears at low energy when the group remains
unbroken. Due to this strong coupling, confinement and mass-gap appears in this theory.

7.4.1 QCD, the theory of strong interaction

Confinement: The value of coupling increases as the energy decreases. Thus, at very low
energy, the strong energies become so strong that the quarks can not separate. Due to the
confinement, at strong coupling, quarks and anti-quarks are bind into pairs and these color
singlet bilinears form a condensate which fill the vacuum.

〈qiLq
j
R〉 = 4δij (7.9)

having 4 ∼ Λ3
QCD.

Generation of mass-gap: 4δij is invariant under a diagonal SU(3). SU(3) is a subgroup
of the original SU(3)R × SU(3)L group. Therefore, the global symmetry group GF has a
chiral supersymmetry breaking.

SU(3)L × SU(3)R × U(1)B −→ SU(3)D × U(1)B

The quark condensates break eight global symmetries. So, eight Goldstone boson is
expected. By experiment, it is observed that the eight goldstone bosons correspond to eight
pseudoscalar mesons named pions. These are π0,±, k0,−, k̄0,+, η. We have,

π+ = ud̄ π− = dū π0 = dd̄− uū k0 = sd̄

k− = ūs k̄0 = s̄d K̄+ = s̄u η = uū+ dd̄− 2ss̄

If U(1)A were not anomalous, a ninth meson, η′ meson would appear. This meson would
result to a shift in the phase of condensate. As the Z2F symmetry is broken into Z2, massive
quarks appear. Due to this massive quark, a mass gap is generated in QCD.

64
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7.4.2 SYM, supersymmetric gauge interactions without matter
fields

In SYM, we shall observe strict confinement, a mass gap. Due to the anomaly of U(1)A
a massive η′ particle similar to QCD also appears due to the a chiral symmetry breaking
occurring same as the case of QCD. SYM has multiple isolated vacua.

The structure of the (on- shell) SYM Lagrangian

LSYM = −Tr
[1
4
FµνF

µν + iλ̄��Dλ
]

(7.10)

Strict confinement: The gauginos transform in the adjoint representation that is in the
same N-ality class of the singlet representation. So, the gauginos do not break the flux tubes.
Due to this, the QCD quarks has no effect on the confinement and SYM can enjoy strict
confinement.

Mass-gap: Gauginos have R-charge equal to one. So, the U(1)R symmetry can be broken
to Z2n at the quantum level. Due to this property and the anomaly of U(1)R symmetry, the
symmetry will be similar to the symmetry of QCD. As in the vacuum, the gaugino bilinears
get a non-vanishing VEV, SYM enjoys chiral symmetry breaking. So we have,

〈λλ〉 ∼ Λ3ewπi
k/N , k = 0, 1, 2...N − 1 (7.11)

which breaks Z2n → Z2. Thus, we get N isolated vacua. All of these vacua are Z2 symmetric
and related by ZN rotations. All of these vacua are related by ZN rotations.

Due to the symmetry breaking η′ meson appears. As the η′ is the phase of the condensate,
mass-gap is generated in SYM. However, due to the isolated vacua the mass-gap is dynamical.
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Chapter 8

Starobinsky Model of Cosmic Inflation

The general linear representation for cosmic inflation is given by the action

S =

∫
d4x
√
−gR (8.1)

The chaotic inflation model includes an arbitrary function of R, to describe the non-linear
representation by the action

S = −1

2

∫
d4x
√
−gf(R) (8.2)

For the Starobinsky model of cosmic inflation, this function is defined as

f(R) = R− R2

6M2
(8.3)

So, the Starobinsky model of cosmic inflation is described by

S =
1

2

∫
d4x
√
−g
(
Mp

2R +
1

6M2
R2
)

(8.4)

This theory includes a graviton and a scalar degree of freedom.
The linear representation of the action of this model which includes the scalar degree of
freedom can be described by

S =

∫
d4x
√
−g
(Mp

2

2
R +

1

M
Rψ − 3ψ2

)
(8.5)

This is also the linear expression of the action for Starobinsky model. The equivalent scalar
field version of the Starobinsky model can be found by conformal transformation in the
Einstein frame

S =

∫
d4x
√
−g
[Mp

2

2
R− 1

2
∂µφ∂

µφ− 3

4
M4

pM
2(1− exp(−

√
2

3
φ
/Mp)2

]
(8.6)

This represents the Starobinsky model where the extra scalar degree of freedom is manifest.
The inflaton here, is the scalar, spin-0 metric. In this theory, the scalar potential is

V (φ) =
3

4
M2M4

p (1− exp(−
√

2

3
φ
/Mp)2 (8.7)
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CHAPTER 8. STAROBINSKY MODEL OF COSMIC INFLATION

During inflation (at large values of φ) the dynamic is dominated by this vacuum energy,

V (φ) =
3

4
Mp

2M2 (8.8)

This results to scale invariance. For finite values of φ, the scale invariance is not exact. So,
this violation is measured by the slow-roll parameters.
From 8.6, we get inflation with scalar tilt and tensor to tensor ratio

ns − 1 ∼ − 2

N
(8.9)

r ∼ 12

N2
(8.10)

The additional 1
N

in r with respect to scalar tilt shows the consistency of this theory with
Planck data by predicting the tiny amount of gravitational wave.

8.1 Higgs inflation as Starobinsky model

The Higgs inflation can be described by the form

SHI =

∫
d4x
√
−g
[Mp

2

2
R + ξH†HR− ∂µH†∂µH − λ(H†H − V 2)2

]
(8.11)

where H is the SM Higgs doublet and v is its vacuum expectation value.
In the unitary gauge, H = h√

2
and for h2 >> v2, inflation exists where, ξ2λ ∼ 10. This can

be described by the action

SHI =

∫
d4x
√
−g
(Mp

2

2
R +

1

2
ξh2R− λ

4
h4
)

(8.12)

Here, the Higgs field becomes an auxiliary field.

ξhR = λh3 = 0

and h2 =
ξR

λ
(8.13)

In the Starobinsky model, if we take

M2 =
λ

3ξ2
(8.14)

then the Higgs inflation can be identified as the Starobinsky model

SHI =

∫
d4x
√
−g
(Mp

2

2
R +

ξ2

4λ
R2
)

(8.15)

The vacuum energy, driving the inflation is

VHI =
λ

4ξ2
M4

p (8.16)
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The Higgs inflation and the Starobinsky inflation theory differs by the kinetic term of Higgs
inflation in Einstein frame

∆L =
1

2

1

1 + ξh2/Mp
2∂µh∂

µh (8.17)

The number of e-folds till the end of the inflation is related to h by

N ∼ 6ξh2

8Mp
2 (8.18)

So, the ratio of the slow-roll parameters is given by

εHI
εs

=
8Nξ

1 + 4
3
N8Mξ

∼ 1− 10−5

6λ
(8.19)

The difference of the corresponding reheating temperatures of this two inflation leads to the
value of spectral index at the level of 10−3.

8.2 Universal attractor model as Starobinsky model

The general form of the non-minimal coupling of the universal attractor model is

Satt =

∫
d4x
√
−g
[ 1

2Ω(φ)R
− 1

2
∂µφ∂

µφ− Vj(φ)
]

(8.20)

Here,

Ω(φ) = M2
p + ξf(φ)

VJ = f(φ)2

As the dynamic is completely dominated by the potential, we can describe the action by

Satt =

∫
d4x
√
−g
[Mp

2

2
R +

1

2
ξf(φ)R− f(φ)2

]
(8.21)

The scalar field equation admits two solutions,

f ′ = 0

f =
1

4
ξR

So,

Satt =

∫
d4x+

√
−g
[Mp

2

2
R +

ξ2

16
R2
]

(8.22)

For M2 = 4
3ξ2 , 8.22 is a Starobinsky model.

The vacuum energy which drives the inflation is

Vatt =
3

4
M2Mp

4

=
Mp

4

ξ2
(8.23)
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Universal attractor model and the Starobinsky model differs by their kinetic terms

∆L = −1

2

√
−g ∂µφ∂

µφ

1 + ξf/Mp
2

(8.24)

The number of e-folding is related to φ as

N ∼ 3ξφn

4Mn
p

So, the ratio of the slow-roll parameters are given by

εatt
εs
∼ 1− N 2/n−1

2n2ξ2ξ2/n
(
4

3
)

2/n (8.25)

This value is negligible as it deviates from the unity by 10−3

8.3 Higher-dimensional Starobinsky model

descendants

The higher-dimensional generalization of the Starobinsky model can be described by the
action

S =

∫
ddx
√
−g
(M∗d−2

2
R + aRb

)
(8.26)

Here, R is the (4+d) dimensional Ricci-scalar, M∗ is the corresponding Planck mass and a and
b are dimensionless parameters. By introducing an auxiliary field φ, the higher dimensional
theory can be linearized in the scalar curvature.

S =

∫
ddx
√
−g
(M∗d−2

2
R + ωφ2R− φ2b/b− 1

)
(8.27)

Here,

ω =
b

b− 1

(
(b− 1)a

)1/b

By conformal transformation, where gµν → Ω2gµν and Ωd−2 =
(
1 + 2ωφ2

M∗d−2

)−1
we get,

S =

∫
d4x
√
−g
(M∗d−2

2
R− 1

2
(d− 1)(d− 2)M∗

d−2(∂µlogΩ)2 − V0〈(Ω2−d − 1)Ω
(b− 1)d/b〉b/b− 1

)
(8.28)

Here,

V0 =
M∗

b(d− 2)/b− 1

2ωb/b− 1
(8.29)

If we take, d− 2 =
(
b−1
b

)
d or b = d

2
and parameterize Ω as logΩ = − 1√

(d−1)(d−2)

ψ

M∗
(d − 2)/2 we

get,

S =

∫
ddx
√
−g
[M∗d−2

2
R− 1

2
∂µψ∂

µψ − V0(1− exp(−
√
d− 2

d− 1
)

ψ

M∗
(d− 2)/2

)
d/d− 2

]
(8.30)
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By a dimensional reduction in a d-4 torus, T d−4 having volume, Vd−4 and identifying

χ = V
1
2
d−4ψ

Vd−4M∗
d−2 = Mp

2

we arrive to the four-dimensional action,

S =

∫
d4x
√
−g
[Mp

2

2
R− 1

2
∂µχ∂

µχ− V0(1− exp(−
√
d− 2

d− 1

χ

Mp

))
d
d−2

]
(8.31)

The potential of this generalized Starobinsky model is

V = V0

(
1− exp(α φ

Mp

)
)β

(8.32)

For this potential,

ns ∼ 1− 2

N
(8.33)

r ∼ 8

α2N2
(8.34)

The conformally invariant SO(1, 1) two-field model of conformal inflation is described by
Lagrangian

L =
√
−g
[1
2
∂µχ∂

µχ+
χ2

12
R− 1

2
∂µφ∂

µφ
φ2

12
R− λ

4
(φ2 − χ2)2

]
(8.35)

The Lagrangian is invariant under SO(1, 1), rotations of (φ, χ). The gauge fixings by going
to Einstein frame χ2 − φ2 = 6Mp

2 or to the Jordan frame χ =
√

6Mp
2 will give,

L =
√
−g
(Mp

2

2
R− 1

2
∂µφ∂

µφ− 9λMp
4
)

(8.36)

Ignoring the kinetic term and leaving the auxiliary fields, φ and χ by integration, we get

L =
√
−g 1

144λ
R2 (8.37)

This is the Starobinsky model for Mp → ∞ limit. Like the linear representation, this
propagates a graviton and a scalar.

L =
√
−g(ϕR− 36λϕ2) (8.38)

integrating out the ϕ term we get the R2 theory of 8.37

8.4 Starobinsky inflation and supersymmetry

By embedding supersymmetry in the theory for Starobinsky inflation, the theoretical
context of inflation can be connected to particle physics. The upper-limit on R implies
that the energy scale during the inflation must be much smaller than the Planck scale.
Supersymmetry allows to maintain this constraint naturally, without any fine-tuning.
To combine supersymmetry with inflation, supergravity is needed. In the early-universe
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scenario, an effective inflationary potential that varies slowly over a large range of inflation
field must exist. This can happen for a no-scalar supersymmetric Wess-Zumino model, which
is consistent with the Planck data for N = 50−60 e-folds. For λ = µ

3
in Planck units and upon

a conformal transformation, this Wess- Zumino model is equivalent to Starobinsky R2 model.

Although, the global supersymmetry is broken, a local supersymmetry must exist in
the inflationary phase. This connects the inflationary phase with a re-normalization group
flow of ultra-violet(UV) to the infra-red(IR) of a constrained Chiral scalar superfield of
supergravity. This gives rise to the Goldstino supermultiplet. As the supersymmetry
breaking is directly related to the gravitino mass, gravitino condensation occurs. In the next
chapter, supergravity is embedded into inflation model of cosmology.
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Chapter 9

Embedding Supergravity into
Inflation model

The simplest globally symmetric model is the Wess-Zumino model with a chiral superfield
Φ. This model has the superpotential,

W =
µ̂

2
Φ2 − λ

3
Φ3 (9.1)

From [13], when the imaginary part of the scalar component of Φ vanishes, the Wess-Zumino
model reduces to

V = Aφ2(v − φ)2 (9.2)

Here, for small value of λ, this model will yield a Planck-compatible inflation. To consider
early-universe cosmology, gravity should be included in this global symmetry. So, we
introduce supergravity by constructing a locally supersymmetric model.

By considering an inflation superfield together with a modulus field T which is embedded in
an SU(2, 1)/SU(2)× U(1) no-scale supergravity sector, we can show the equivalence of the
simplest globally supersymmetric model and a no-scale supergravity (no-scale Wess-Zumino)
model. It can be shown that, for specific value of µ̂

λ
this model is compatible to Planck-data.

For the no-scalar case with non-compact SU(N, 1)/SU(N)×U(1) symmetry, a kinetic term
and the effective potential term for the N = 1 supergravity can be found.

The scalar field can be described as the combination G = K + lnW + lnW ∗ where, K is
a hermitian Kähler function and W is a holomorphic superpotential. For a Kähler metric
Kj∗
i ≡ ∂2K/∂φiφ∗j the kinetic term is given by

LKE = Kj∗
i ∂µφ

i∂µφ
∗
j (9.3)

The effective potential is

V = eG
[
∂G

∂φi
Ki
j∗
∂G

∂φ∗j
− 3

]
(9.4)

Here, Ki
j∗ is the inverse of Kahler metric.

For minimal no-scale SU(2, 1)/SU(2)× U(1) case, the Kähler function is

K = −3ln(T + T ∗ − |φ|
2

3
) (9.5)
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As we consider the complex scalar fields, φ and a modulus field, T, we find new expression
for the kinetic term and the potential term.

LKE = (∂µφ
∗, ∂µT

∗)

(
3

(T + T ∗ − |φ|2
3

)2

)( (T+T ∗)
3

−φ
3

−φ∗

3
1

)(
∂µφ

∂µT

)
(9.6)

and the effective potential,

V =
V̂

((T + T ∗ − |φ|2
3

)2
(9.7)

for V̂ =
∣∣∂W
∂φ

∣∣2
T field has a vacuum expectation value 2 < ReT >= c and < ImT >= 0. Ignoring the
kinetic mixing between the T and φ fields we find,

Leff =
c(

c− |φ|2
3

)2 |∂µφ|
2 − V̂(

c− |φ|2
3

)2 (9.8)

Here, this is the minimal Wess-Zumino superpotential for the inflation field.
Taking φ =

√
3c tanh χ√

3
, where ξ = x+iy√

2
we get,

Leff =
1

2
sec2(

√
2/3y)

(
(∂µx)2 − (∂µy)2

)

− µ2 exp(−
√

2/3x)

2
sec2(

√
2/3y)

(
cosh(

√
2/3x)− cos(

√
2/3y)

)
(9.9)

Absorbing the VEV of T into the mass which is defined to be µ̃ = µ
√

c
3
.

During inflation, x is large and we have my = µ/
√

3. At the end of inflation, x = 0 which
gives my = µ/

√
6.

To get the minimal kinetic terms in terms of x and y, we expand the Lagrangian
about y = 0. Finally, we get the potential for the real part of the inflation

V = µ2e−
√

2/3x sinh2(x/
√

6) (9.10)

This is the potential for the NSWZ model for λ ∼ µ
3

in Planck limits.
We see that, the potential in 9.10 and the values of ns and r for λ

3
is equivalent to the

inflation of R +R2 model proposed in Starobinsky inflation model.

Einstein-Hilbert action containing on R2 contribution, where, R is the Ricci-scalar
curvature.

S =
1

2

∫
d4x
√
−g
(
R +

R2

6M2

)
(9.11)

where, M << Mp is some mass-scale. This theory includes supergravity by considering
gravity with an additional scalar field. Considering transformation,

g̃µν =
(
1 +

ϕ

3M2

)
gµν
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and redefining field as

ϕ′ =

√
3

2
ln
(
1 +

ϕ

3M2

)
we obtain the equation of action

S =
1

2

∫
d4x
√
−g̃
[
R̃ + (∂µϕ

′)2 − 3

2
M2
(
1− exp(−

√
2/3ϕ′)

)2
]

(9.12)

this action corresponds to a potential

V =
3

4
M2
(
1− exp(−

√
2/3ϕ′)

)2
(9.13)

is equivalent to 9.10 to the NSWZ model in the real direction. This is the same potential
for the Higgs inflation and other inflation models. When c =< (T + T ∗) >= 1, we see that

M2 = µ2

3
can be identified to µ2. This implies that the Starobinsky mass, M is directly

related to the NSWZ mass µ in the superpotential of the Wess-Zumino model in 9.1.
Thus, NSWZ model shows that inflation models can include no-scale supergravity.

The next chapter is aimed at finding a parametric function of field x in terms of string
modulus, t for which we can construct an NSWZ model that can contribute to cosmological
inflation.
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Chapter 10

Modelling the Starobinsky Potential:
When Does Inflation Arise?

From the previous chapter, we got equation for the potential for the NSWZ model for λ ∼ µ
3

in Planck limits.
V = µ2e

√
2
3
x sinh2(x/

√
6)

For λ = µ
3
, the VEV would be

As =
V

24π2ε

=
µ2

8π2
sinh4(x/

√
6) (10.1)

Figure 10.1: The potential V in the NSWZ model for small x

We see from the graph in Fig:10.1 that for x near to zero there is a potential drop and a
local minima is observed. Then the potential increases with the increment of x and reaches
a stable value at approximately x = 5.3.

For large values of x, we plot graphs of logV vs x and observe in Fig:10.2 that for large values
of x, the potential does not change as we depicted in Fig:10.1.

For this case of inflation, the value of x is fixed by requiring N = 50− 60 e-folds.
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(a) Change in potential V in NSWZ model
for x greater than 10

(b) Change in potential V in NSWZ model
for x going to infinity

Figure 10.2: The potential V in NSWZ model for large x

Having, N = 55, x = 5.35 like Ellis et al. (2013). From the graph in Fig:10.1, it can be
observed that the potential at x = 5.35 reaches a plateau and we would expect a cosmological
inflation at this point.

The slow-roll parameter, ε measures the slope of the potential,V and η measures the curvature
of the potential. If we chose, N = 55 e-folds of inflation, then µ is fixed to be 2.2× 10−5. In
this limit, the slow-roll inflation parameters are

ε =
1

3
csch2(x/

√
6)e−
√
x2/3, (10.2)

η =
1

3
csch2(x/

√
6)
(
2e−x
√

2/3 − 1
)

(10.3)

The equations derived in 10.2 and 10.3 produces similar results as the standard equations for
ε and η which are defined as

ε =
mpl

16π

(
V ′

V

)2

(10.4)

η =
mpl

8π

(
V ′′

V

)
(10.5)

From the graph in Fig:10.3a plotted for equation 10.2, a large value of ε is observed for x
near to zero. However, with the increase of x, exponential decay in the value of ε is observed.
For very large x, ε is observed to be near to zero.

Observing the graph in Fig:10.3b plotted for equation 10.3, we find that η initially has a
large value. With the increase of x, a large drop in η is observed. At x = 1.345 we arrive to
a global minima where η = −1

9
csch[ log3

2
]2 ∼ −0.333. As x increases from 1.345, we observe

a logarithmic rise in η again. However, we can see from this graph that for x > 1.344, η is
very small and always negative.
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(a) Slow-roll parameter ε
for x from zero to infinity

(b) Slow-roll parameter η
for x from zero to infinity

Figure 10.3: Slow-roll parameters of inflation changing with x

10.1 Modelling the slow-roll inflation parameters for x

as different parametric functions

So far, we have observed the slow-roll inflation parameters,η and ε by choosing x to be
independent field that is not determined by other dynamics. When this model is embedded
in a String theory, x will be determined by string theoretic considerations. For example, in
some cases, String theory will force x to be parametrically dependent on a string modulus,
t as in x(t). In this section, we investigate these parameters for x as different mathematical
functions and determine a function for x which results to good approximation of η and ε.
Assuming,

� x = aet where x is an exponential function of t

� x = at2 + bt+ c where x is a quadratic function of t

Figure 10.4: Comparison of slow-roll parameter ε for x as different parametric functions of t

From the graphs in Fig:10.4 and Fig:10.5, we see that both x = et and x = at2 + bt+c results
to similar curves for ε and η.

77



CHAPTER 10. MODELLING THE STAROBINSKY POTENTIAL: WHEN DOES
INFLATION ARISE?

Figure 10.5: Comparison of slow-roll parameter η for x as different mathematical functions
of t

The global minima determined for ε from equation 10.2 is ε = 2.91708×10−60 at x = 84.123.
For x = et, we find that the minima, ε = 0 is at x = 252.9. While for x = at2 + bt+ c results
a minima at ε = 7.22998 ∗ 10−57 for x = 79.337. So, the quadratic function for x yields to a
better result for ε.

Again for η, from equation 10.3 we get a minima of η = −0.333 for x = 1.34552. While,
taking x = et produces a minima of η = −0.333 at x = 2.691, x = at2 + bt+ c gives a minima
of η = −0.333 at x = 1.34552.

From the above discussion, we find that x as a quadratic function yields best results for ε
and η.

The slow-roll expressions for the tensor-to-scalar ratio, r and spectral index, ns for the scalar
perturbations are found in terms of slow-roll inflation parameters, ε and η.
For this we need the value of x, which is fixed by N = 50 − 60 e-folds. The nominal choice
of N = 55 yields x = 5.35. Using this in equation 10.2 and 10.3 we get the value of ε and η.

ε = 0.000219683 and

η = −0.016895

Using these values for

spectral index, ns = 1− 4ε+ 2η

= 0.965331

scalar-to-tensor ratio, r = 10ε

= 0.00219683

These results satisfy the Planck data (“Planck 2013 results. XVI. Cosmological parameters”
(2014))
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10.2 Evaluating potential, V when x is parametrically

quadratic in terms of a string modulus, t

For, x = at2 + bt+ c, a good approximation for the potential is also observed.

Figure 10.6: The Potential V in NSWZ model when x is a quadratic function of t

From the graph in Fig:10.6 we observe that when x is a quadratic function, two vacuum are
produced. This provides a single real field with double well and thus contributes to better
slow-roll inflation.

We compare the graphs for the potential with x being linear and quadratic functions of t in
Fig:10.7 We see that the curves show similar drop and rise in potential. However, x when

Figure 10.7: Comparison between the potential V in NSWZ model for x as a quadratic
function and x as a linear function

parametrically quadratic produces a very flat potential, which is another promising scenario
for the rise of inflation. This warrants for further investigation on the effects of field x being
a quadratic function of string modulus, t.
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Conclusion

Supersymmetry is a comparatively new field in theoretical physics which may provide a
natural framework leading to a theory, where unification of all known interactions can be
explained. This theory extends the standard model of particles in QFT to MSSM and
introduces scope for unification of bosons and fermions. Along with framework for the grand
unification theory, supersymmetry might also provide new approaches to solve a lot other
modern physics research problems.

In recent researches of QFT, supersymmetric gauge field theory is playing a vital role. It
introduced a new field called supersymmetric localization in Quantum field theory which
allows us to get exact results in various computational problems of QFT. SUSY gauge
theory implements the mathematical concept of localization and reaches to a lot of formulas
to approach strong coupling dynamics of gauge theories.

As the action functional, S is invariant under supersymmetry, the path integral which
measures the expectation value of the observable, goes to zero. Hence, the observable is
invariant under transformation. To reduce the difficulty of path integrals over complicated
spaces, integral over a space with continuous symmetry is expressed as sums of contributions
of the symmetry invariant points. This allows the computation of an infinite dimensional
path integral of QFT to be simplified into a finite dimensional one. In many QFT problems,
complicated spaces arise as moduli space of solutions to the field equations. The integrals
over this moduli spaces may provide a useful low-energy approximation to the original path
integral. By using the localization based fermionic symmetry, we can deform the theory, to
provide us with an exact result of the moduli space.

Localization in supersymmetry can be used to reduce infinite path integrals to finite
ones or to simplify integrals of complicated moduli spaces.

Supersymmetry along with particle physics may also answer some of the biggest questions
of astrophysics, with one of them being the existence of dark matter. As supersymmetry
extends the standard model to MSSM, many theorists tend to believe that dark matters
might be some supersymmetry particles that are yet to be discovered through experiment.
These supersymmetry particles are thought to be weakly interacting massive particles since
they could be thermally stable and be abundant in the condition of early universe. It is
also computed that the relic abundance for the annihilation cross section, if a particle of
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weak-scale interactions exists, is equal to the one for existence of a stable particle.

For the existence of supersymmetric dark matter, the R-parity must be conserved.
No special selection rules can be followed if R-parity is broken, as this will result to violation
of baryon-lepton number conservation and will also restrict the existence of cold dark matter.
As the lightest super particles (LSP) is stable under R-parity conservation, only the WIMP
of LSP are taken as the dark matter candidate. As dark matters cannot scatter light, the
LSP has to be chargeless, preserving the relic abundance, the possible WIMP candidates for
dark matter maybe neutralino or gravitino. In most theories, neutralino which is a linear
combination of supersymmetric partners of photon, Z0, and Higgs bosons is assumed to be
the LSP of dark matters.

Standard Model including the Higgs boson has so far proved to be correct as it is able to
explain the observations made from experiments in LHC and other high-energy experiments.
It also, provides unification of all gauge couplings except for gravity. However, for a wide
range of energies, this model seems to be incomplete as it can not explain a lot of phenomena
like dark matter, matter-antimatter asymmetry and the inconsistency of grand-unification of
three gauge couplings at large scale. On the other hand, supersymmetric extension can answer
these questions by including super-particles that are partner to every existing particles in
SM. The experimental proof of supersymmetry can be established if these additional partner
particles are found. Experiments run in LHC, ATLAS, CERN are designed to find proofs
that show that the properties and the effects on precision measurements predicted by SUSY
is present in high energy physics. Thus, the existence of SUSY particle will also be proved.
So far, no experimental data has supported the existence of such particles but a definite
answer is expected to be found when these experiments are run for energy of order TeV.

Supersymmetry can lead to more natural framework of inflationary model. In this thesis,
we presented the Starobinsky model of inflation to be identical with the other inflation
models. By combining supersymmetry with the Starobinsky model of inflation, supergravity
is introduced to this inflation model. A no-scalar supersymmetric Wess-Zumino model offers
a scenario where the effective inflationary potential may vary slowly over a large range of
inflation field. When λ = µ

3
in Planck units, this model upon a conformal transformation

becomes equivalent to the R2 Starobinsky model of inflation and thus, supergravity can be
realized in the Starobinsky model.

We found that the Starobinsky potential as a realization of no-scalar supergravity, gives rise
to inflation when the field, x = 5.35 and at this point, the slow-roll parameters, ε and η
results to values consistent with Planck data.

In this thesis, we showed that when the field, x is parametrically quadratic in a string
modulus, t, a single real field with double well is produced and also found a very flat effective
potential for the NSWZ model. This scenario is very promising for the rise of inflation. This
deserves further investigation on the quadratic relationship of x with the string modulus, t.
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