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ABSTRACT 
 
Many interesting physical systems are successfully modeled with time-dependant conservation laws 
on smooth manifolds, M. Examples of such systems include hydrodynamic flows in non-trivial 
geometry, important in aerodynamic modeling. Though in many applications the manifold is simply 
Euclidean space; =M  ∇3, the curvilinear basis on which computes is non-orthogonal and quite 
complicated. The finite volume methods have very important property of ensuring that basic 
quantities such as mass, momentum and energy are conserved at a discrete level. Conservation is 
satisfied over each control volume, over a group of control volumes and over the entire solution 
domain. The finite volume methods are used to solve conservation laws on Euclidean manifold.  
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I. INTRODUCTION 

 
The most commonly used methods for generating 
numerical solutions to systems of partial 
differential equations are based on finite difference 
methods. A significant limitation of standard finite 
difference methods is that they usually only 
produce acceptable results when the evolved 
solution is sufficiently smooth. This is important 
because in many applications the models being 
studied are known to admit solutions in which 
discontinuities form even for smooth initial data. 
Much research has been done in the field of 
computational fluid dynamics into the development 
of advanced numerical methods, which are capable 
of accurately evolving solutions irrespective of 
their smoothness. Finite volume methods achieve 
this by analyzing a series of Riemann problem for 
the evolution system and discuss how solutions to 
Riemann problems can be determined in some 
basic cases. The numerical simulations carried out 
in the present work use finite volume methods 
algorithm of LeVeque (1997). This work is 

extension of paper M. Rahaman [2]. In the 
preliminary section, we have discussed tensor, 
transformation, and manifolds and then go for 
derivation of conservation laws. We choose finite 
volume methods for solving conservation law 
because the methods satisfy conservation property 
on each domain.  
 

II. PRELIMINARIES 
 
1. Curved manifolds 
 
Differential geometry describes the geometric 
structure of a curved differentiable manifold, M. 
For example, a manifold M may represent the 
nearly spherical surface of a planet, a curved 
spacetime in relativity theory. A manifold is a set 
of points that looks locally Euclidean in that this 
set can be entirely covered by a collection of local 
coordinate mappings. Consider a two-dimensional 
curved manifold that is embedded in ∇3. Let the 
coordinates ( )21 , xx  be the coordinates on the 
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manifold M. This coordinate system can be related 
to the standard Cartesian coordinate system, (x, y, 
z), through the transformations 

( )
( )
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A vector, ( )21,µµ , in contravariant form on the 
manifold M can be transformed to a vector, 
( )zyx µµµ ,, , in Cartesian space through the 
Jacobian J in the following way:  
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Therefore, the coordinate transformations directly 
give us a natural basis in which to represent vectors 
on M. We will refer to such a basis as a coordinate 
basis. 
 
2. The metric tensor 

The metric tensor, g , is a symmetric tensor that 
provides a measure of length on M. The metric 
relates true distances as measured in ∇3 to the 
coordinate distances measured in the coordinate 
system of the manifold. In particular, the line 
element ( ) ( ) ( )2222 dzdydxds ++= in ∇3 is 

related to 1dx  and 2dx  through 
 βα

αβ dxdxgds =2  ------------ (3) 

The distance along a curve ( )λC  parameterized 
by λ  from C(a) to C(b) is given by 
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The surface area of M⊆Ω  can be evaluated by 
computing the following integral: 
 Surface Area ( )

21

, 21
dxdxg

xx∫Ω=Ω  -------- (5) 

where g is the square root of the determinant of 
the metric tensor. The components of the tensor 

k
αβΓ  are referred to as the Christoffel symbols or as 

connection coefficients. They involve spatial 

derivatives of the metric tensor g . In particular, in 
a coordinate basis they can be written as follows  
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The Christoffel symbols play an important role in 
wave propagation on curved manifolds. 
 
3. Derivation of conservation laws 
 
Conservation laws are time-dependent systems of 
partial differential equations (usually non-linear) 
with a particularly simple structure. In one 
dimension space the equation take the form: 

0)),((),( =
∂
∂

+
∂
∂ txqf

x
txq

t
 -------------- (7) 

Here mRtxq ∈),(  is an m-dimensional vector of 
conserved quantities or state variables such as 
mass, momentum and energy in a fluid dynamics 
problem. More precisely, jq  is the density 
function for the jth state variable, with 

interpretation that dxtxq
x

x jj∫
2

1

),(  is the total 

quantity of this state variable in the interval 
[ ]21, xx  at time t. 
 
The fact that these state variables are conserved 

means that dxtxq j∫
∞

∞−
),( should be constant 

with respect to t. The main assumption underlying 
(7) is that, knowing the value of ( )txq ,  at a given 
point and time allows us to determined the rate of 
flow; or flux of each state variables at (x,t). The 
flux of the jth component ( )qf j  is called the flux 
function for the system of conservation laws. 
 
To see how conservation laws arise from physical 
principles, we begin by driving the equation for 
conservation of mass in a one dimensional gas 
dynamics problems; for example flow in a tube 
where properties of the gas such as density and 
velocity are assumed to be constant across each 
cross section of the tube and ( )tx,ρ  be the density 
of the gas at point x and time t. This density is 
defined in such a way that the total mass of gas in 
any given section from x1 to x2, say, is given by the 
integral of the density: 
Mass in [ ]21, xx  at time t ∫=

2

1

.),(
x

x
dxtxρ --- (8) 
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If we assume that the wall of the tube are 
impermeable and that mass is neither created nor 
destroyed, then the mass in this one section can 
change only because of gas flowing across the 
endpoints x1 or x2. 
 
Now let ),( txu  be the velocity of the gas at the 
point x at time t. Then the rate of flow, or flux of 
gas past this point is given by: 
 Mass flux at ( ) ( ) ( ) ( )txqtxutxtx ,,.,, == ρ  
By our comments above, the rate of change of mass 
in [ ]21, xx  is given by the difference in fluxes at x1 
and x2: 

 ),(),(),( 21
2

1

txqtxqdxtx
dt
d x

x
−=∫ ρ  ----- (9) 

This is one integral form of the conservation law. 
Another form is obtained by integrating this in time 
from t1 to t2, giving an expression for the mass in 
[ ]21, xx  at time 12 tt >  in terms of the mass at 
time t1 and the total flux at each boundary during 
this period: 
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To derive the differential form of the conservation 
law; we must now assume 
that ),(),( txqandtxρ are differentiable 
functions then using, 
 ∫ ∂

∂
=− 2
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Using (11) and (12) in (10) gives: 
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Since this must hold for any section [ ]21, xx  and 

over any time interval [ ]21,tt  we conclude that in 
fact the integrand in (13) must be identically zero. 
That is, 

 0=
∂
∂

+
∂
∂ q

xt
ρ  ---------------------(14) 

This is the desired differential form of the 
conservation law for the conservation of mass, 
which is often called the continuity equation. 
 
4. The Riemann problem 
 
The conservation law together with piecewise 
constant data having a single discontinuity is 
known as the Riemann problem. As an example, 
consider Burger’s equation: 
 0=+ xt qqq   -------------(15) 
with piecewise constant initial data: 

 








>
<

=
0
0

)0,(
xifq
xifq

xq
r

l  --------------(16) 

The form of the solution depends on the relation 
between rl qq and . 
 
Case-I: rl qq >  

In this case there is a unique weak solution, 
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where )(
2
1

rlt qqs +=   --------------------(18) 

is the shock speed, the speed at which the 
discontinuity travels. Note that characteristics in 
each of the regions where q is constant go into the 
shock as time advances. 

 
  
  
 
 
 
 
 
 
 
 
Figure-1: (a) The function q is constant along characteristics. (b) The initial discontinuity in q travels at speed s. Since 
( ) ( )rl qfqf ′>′  the characteristics disappear into the line stx = .  
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The speed of propagation can be determined by 
conservation. The relation between the shock speed 
s and the states rl qandq is called the Rankine 
Hagoniot jumping condition: 

 )()()( rlrl qqsqfqf −=−  --------(19) 
 
For scalar problems this gives simply: 
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Case-II: rl qq <  
In this case there are infinitely many solutions. One 
of these is again (17) and (18) in which the 
discontinuity propagates with speeds. Note that 
characteristics now go out of the shock and that 
this solution is not stable to perturbations. 

 
 
 

 
Figure-2: (a) The function q is still constant along characteristics. (b) The initial discontinuity in q now decomposes 
into a continuously varying rarefaction wave.  
 
If the data is smeared out slightly or if a small 
amount of viscosity is added to the equation, the 
solution changes completely. 
Another weak solution is the rarefaction wave; 
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This solution is stable to perturbations and is in fact 
the vanishing viscosity generalized solution. 
 

III. NUMERICAL METHODS 
 
1. Godunov’s method 
 
Many methods are based on solving the Riemann 
problem between the states rl qandq  in order to 
define the numerical flux ),( rl qqF . To see how 
this comes out, it is useful to view the data nQ at 
time nt as defining a piecewise constant function 

),( n
n txq which has the value n

iQ for all x in the 
interval iC . Suppose we could solve the 
conservation law exactly over the time interval 

[ ]1, +nn tt  with initial data ),( n
n txq  called the 

resulting function ),( txq n  for 1+≤≤ nn ttt . 
Then the numerical flux function is defined by  

 ∫ += 1 )),((1 n

n

t

t i
nn

i dttxqf
k

F ---------(22) 

Provided that the time step ‘k’ is small enough, 
because of the fact that with piecewise constant 
initial data we can find the exact solution easily by 
simply piecing together the solutions to each 
Riemann problem defined by the jump at each 
interface. 
 
2. Finite volume methods 
 
Rather than viewing n

iQ as an approximation to the 

single value ),( ni txq , we will now view it as 
approximating the average value of ‘q’ over an 

interval of length 
N

abxh −
=∆= . We will split 

the physical domain [ ]ba,  into N intervals 

denoted by [ ]1, += iii xxC  where 
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hiaxi )1( −+= . The value n
iQ will 

approximate the average value over the ith interval 
at time nt which is given by 

 ∫∫ ≡≈ +
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Notationally it might better to denote the endpoints 
of the ‘i’th interval by 

2
1

−i
x  and 

2
1

+i
x , which 

would be more symmetric and remind us that 
n
iQ is an approximation to the average value 

between these points. However, the formulas are 
less cluttered if we stick to integer subscripts. 
If ),( txq is a smooth function, then the integral in 
(23) agrees with the value of q at the midpoint of 
the interval to O(h2). By working with cell 
averages, however, it is easier to use important 
properties of the conservation law in deriving 
numerical methods. In particular, we can insure 
that the numerical method is conservative in a way 
that mimics the true solution and this is extremely 
important in accurately calculating shock waves. 

This is because ∑
=

N

i

n
iQh

1
 approximates the 

integral of q over the entire interval [ ]ba,  and if 
we use a method that is in conservation form, then 
this discrete sum will change only due to fluxes at 
the boundaries ax = and bx = . The total mass 
within the computational domain will be preserved 
or at least will vary correctly provided the 
boundary conditions are properly imposed. 
The integrand form of the conservation law (10), 
when applied to one grid cell over a single time 
step, gives 
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Rearranging this and dividing by h gives 
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This tell us exactly how the cell average of ‘q’ 
from (23) should be updated in one time step. In 
general, however, we cannot evaluate the time 

intervals on the right hand side of (24) exactly. 
Since ),( txq i  varies with time along each edge of 
the cell, and we don’t have the exact solution to 
work with. But this does suggest that we should 
develop numerical method in the flux-
differentiating form, 

 )( 1
1 n

i
n

i
n
i

n
i FF

h
kQQ −−= +

+  -----------(25) 

where n
iF  is some approximation to the average 

flux along ixx = by using Godunov’s method, 

 ∫
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n

t
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n

i dttxqf
k

F --------------(26) 

If we can approximate this average flux based on 
the values nQ , then we will have a fully discrete 
method. Since information propagates with finite 
speed, it is reasonable to first suppose that we can 
obtain n

iF based only on the values n
iQ 1− and n

iQ , 
the cell averages on either side of this interface. 
Then we might use a formula of the form. 
 ),( 1

n
i

n
i

n
i QQFF −=  

Where F is some numerical flux function. The 
method (19) then becomes: 

 ( ) ( )( )n
i

n
i

n
i

n
i

n
i

n
i QQFQQF

h
kQQ ,, 11

1
−+

+ −−=   (27) 

The specific method obtained depends on how we 
choose the formula of F, but in general any method 
of this type is an explicit method with a 3-points 
stencil. Moreover, it is said to be in conservation 
form, since it mimics the property (24) of the exact 
solution. Note that if we sum 1+n

ihQ from (19) 
over any set of cells we obtain: 
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The sum of the flux differences cancels out except 
for the fluxes of the extreme edges. Over the full 
domain we have exact conservation except for 
fluxes at the boundaries. 

Note that (27) can be viewed as a direct finite 
difference approximation to the conservation law 

0)( =+ xt qfq , since rearranging it gives, 
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Many methods can be equally well viewed as finite 
difference approximations to this equation or as 
finite volume methods. 
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IV. THE SCALAR FIELD EQUATION 
 
We apply the methods for solving hyperbolic 
equations to the scalar field equation on a 
Euclidean manifold M. This equation models the 
propagation of acoustic waves in a thin membrane 
whose shape is given by the manifold M. The 
scalar field equation can be written as: 

 0)(2

2

=∇∇−
∂
∂ φδ rr

t
 ------------------(30) 

The pressure ),( txp r
and the fluid velocity, 

),( txu r
can be obtained by taking appropriate 

temporal and spatial gradients of the scalar field: 
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 Replacing ),( txr
r
φ  in equation (30) by the above 

definitions and imposing that, 
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Results in the following system of balance laws for 
the pressure and the components of the fluid 
velocity: 

 ck
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We investigate the behavior of the methods on 
three different curvilinear grids that over 2R . The 
grids used to show a variety of geometric 
complexity. These grids are defined by the 
coordinate transformation. 
 ( ) δξηθξβηαξηξ +++=→ 2,xx  

 δξηθηβξαηηξ +++=→ 2),(yy  
 
These grids have been chosen to activate more 
christoffel symbols as the grid number increases. 
The third grid has all nonzero christoffel symbols. 
Only the results for the third grid are presented. 
The initial pressure pulse has the functional form: 
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Where lx  is taken to be a value in the flat region 
near the left edge of the grid. This pulse is 
initialized to be right-propagating. As the wave 
travels to the right, part of it interacts with the dip 
of the surface as shown in fig-3. . In this figures, 
the surfaces is plotted together with the projection 
of the pressure onto the coordinate plane. They 
show the time evolution of the pulse as it interacts 
with the geometry of the dip. First, curves that 
interact with the edge of the dip converge and cross 
on the down-wind side of the dip.  

 
   
 
 
  
  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Figure-3: A time sequence of the multidimensional solution. The contours of the solutions are plotted on a plane 
projected down from the manifold. 

(a) t = 0 
(b) t = 0.4 

(d) t = 1 

(c) t = 1.4 

(e) t = 1.2 (f) t = 1.4 
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Second, curves that interact with the central region 
of the dip can end up heading in the same direction 
that they came form. Both of these effects are seen 
in figures 3. 
 
In figure-3 (c) it appears that the pressure wave is 
following the geodesics of the surface. In the 
figures that follow, a small pressure wave begins to 
travel in the direction from which it comes. Notice 
that the portion of the wave that does not interact 
with the geometry continuous on as it would in a 
Cartesian space.  
 
In order to apply the methods to this problem; 
equation (30) needs to be cast in the form: 
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Specifically, on these equations take the form. 
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A Riemann solver that can handle the spatially 
varying functions that appear in the flux for the 
velocity must be used together with a split method 
to handle the source term in the pressure equation. 
 

V. CONCLUSIONS 
 
We have presented in this paper finite volume 
methods for hyperbolic partial differential 
equations on Euclidean manifolds. The equation is 
solved without radially symmetric initial condition 
(34) in a coordinate basis resulting from the choice 
of coordinates on the manifold. The claim is 
verified by using the finite volume algorithm to 
compute the solution to the scalar field hyperbolic 
partial differential equations on Euclidean 
manifold. The Fortran code that is used to obtain 
the solution by using the standard clawpack 
software package. 
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