UNIFIED APPROACH OF GENERALIZED INVERSE AND ITS APPLICATIONS

Mohammad Maruf Ahmed

Department of Mathematics and Natural Science BRAC University, 66 Mohakhali Dhaka – 1212, Bangladesh Email: maruf06@bracuniversity.ac.bd maruf 1978@yahoo.com

ABSTRACT

This paper deals with *Unified Approach of Generalized inverse (g-inverse) and its applications.* General approaches of generalized inverses with a special convergence are discussed. Derivation of g-inverse by using minimal polynomial is shown. Mathematica codes are used in these examples. Special derivations of g-inverses using Contour integration are given. G-inverse has been applied in network theory and to optimize problems.

Key words: convergence, minimal polynomial, inconsistent system, network theory, optimizes.

1. INTRODUCTION

The inverse of a matrix was defined and its various properties were discussed by many authors. It is stated that if a matrix A has an inverse, the matrix must be square and its determinant must be non-zero. Let us consider a system of linear equations

Ax=b.

If A is an $n \times n$ non-singular matrix, the solution to the system in the equation Ax=b exists and is unique and is given by

$$x = A^{-1}b$$

However, there are cases where A is not a square matrix (i.e. rectangular matrix) and also the cases where A is

 $n \times n$ singular matrix; i.e when the linear equations are inconsistent. In these cases there may still be solution to the system and a unified theory to treat all cases may be desirable. One such theory involves the use of **generalized inverse of matrices**. The generalized inverse is also referred to as **Pseudo-inverse**, **Moore-Penrose inverses or simply g-inverse** with possible subscripting of the letter g.

Moore [1] first published the work on generalized inverses. **Penrose** [2] defined uniquely determined generalized inverse matrix and investigated some of its properties.

2. DEFINITION

Generalized inverse (g- inverse)

Let A be $m \times n$ matrix of rank $R(A) = r \le \min(m, n)$. Then a generalized inverse (g-inverse) of A is an $n \times m$ matrix denoted by A^- such that $x = A^-b$ is a solution of the consistent set of linear equations Ax=b.

A matrix A^- satisfying $AA^-A = A$ obviously coincides with A^{-1} when A^{-1} exists.

3. DIFFERENT CLASSES OF G-INVERSES

Let *A* be an $m \times n$ matrix over the complex field *C*. Clearly, analogous results are obtainable when the matrices are defined over a real field.

Consider the following matrix equations: (i) AXA = A

$$\begin{array}{ll} (l) & AAA = A, \\ (ii) & YAY - Y \end{array}$$

$$(11) \quad AAA = A, \qquad (1.2)$$

$$(111) \quad (AA) = AA, \qquad (1.3)$$

$$(iv) (AX)^* = AX,$$
 (1.4)

where' * 'denotes the conjugate transpose.

X is a **g-inverse** if equation (1.1) is satisfied and we denote $X = A^{-}$.

(a) If (1.1) and (1.2) are satisfied then X is a **reflexive g-inverse** and we denote $X=A^r$.

(b) If (1.1), (1.2) & (1.3) are satisfied then X is a **left weak g-inverse** and we denote $X = A^{w}$.

(c) If (1.1), (1.2) & (1.4) are satisfied then X is **right weak g-inverse** and we denote $X = A^n$. (d) If (1.1), (1.2), (1.3) & (1.4) are all satisfied then we call X is **Pseudo -inverse** or (**Moore & Penrose generalized inverse**) and we denote $X = A^+$. It is also known as **M-P g-inverse**.

4. EXPANSIONS AND CONVERGENCE OF G-INVERSE

For applications of a constructive nature (and some theoretical purposes) it is highly desirable to have some representations of A^+ in terms of A and A^* . Although **Moore** [1], **Penrose** [2] and most recently **Graybill** [3] have given methods for determining M-P inverse, it would be highly desirable to have a representation analogous to the Neumann expansion for the inverse of a non-singular matrix.

A Neumann type series expansion of A^+ involving only positive power of A^*A is given by the following theorem:

Theorem For any square matrix $A \neq 0$ and a real number α with

$$0 < \alpha < \min_{\substack{d_{ii\neq 0} \\ i=1,2...,n}} \frac{2}{|d_{ii}|^2} , \qquad (1.5)$$

where d_{ii} are the (diagonal) elements of D in the representation of A, the series

$$\alpha \sum_{k=0}^m (I - \alpha A^* A)^k A^*,$$

converges and

$$\alpha \sum_{k=0}^{m} (I - \alpha A^* A)^k A^* = A^* \quad . \tag{1.6}$$

Proof Let A = WDV to write

 $A^+ = W^* D^+ V^*$ (1.7) where W and V are unitary matrices

and
$$D^+ = (d_{ii}^+)$$
 . (1.8)

Using
$$A = WDV$$
 we obtain
 $(I - \alpha A^* A)^k = W^* (I - \alpha D^* D)^k W$
 $k = 0, 1, 2, \dots, \dots$
 $(I - \alpha A^* A)^k A^* = W^* (I - \alpha D^* D)^k D^* V^*$

Using (1.5) we get

$$\sum_{k=0}^{\infty} (1 - \alpha \left| d_{ii} \right|^2)^k d_{ii}^* = \alpha^{-1} d_{ii}$$

i=1,....,*n* so that

$$\alpha \sum_{k=0}^{m} (I - \alpha A^* A)^k A^* = W^* D^+ V^* = A^+ A^*$$

5. SPECIAL REPRESENTATIONS OF G-INVERSES

An interpolation polynomial for the Moore-Penrose inverse

Here we express A^+ as a Lagrange-Sylvester interpolation polynomial in powers of A, A^* . For any complex square matrix A let $\sigma(A)$ denote the spectrum of A and $\psi(A)$ its minimal polynomial written as $\psi(\lambda) = \prod_{\mu \in \sigma(A)} (\lambda - \mu)^{\nu(\mu)}$,

where the root $\mu \in \sigma(A)$ is simple if $\nu(\mu) = 1$ and multiple otherwise.

For any scalar function $f(\lambda)$ which is analytic at the multiple roots of $\psi(\lambda)$ and defined at the simple roots of $\psi(\lambda)$ it is possible to construct a matric function f(A) which satisfies the first four requirements:

a)
$$f(\lambda) = K \Rightarrow f(A) = KI$$

b) $f(\lambda) = \lambda \Rightarrow f(A) = A$

c)
$$f(\lambda) = g(\lambda) + h(\lambda) \Rightarrow f(A) = g(A) + h(A)$$

d) $f(\lambda) = g(\lambda)h(\lambda) \Rightarrow f(A) = g(A)h(A)$.

We intend to construct A^+ as the matric function f(A) corresponding to the scalar function $f(\lambda) = \lambda^+$ and consider only the case where $\lambda = 0 \in \sigma(A)$ as otherwise A is nonsingular.

Corollary If $\lambda = 0$ is a simple root, this effort to construct A^+ this way lead only to the satisfaction of (1.1) and (1.2).

We use therefore $A^+ = (A^*A)^+ A^*$ to construct A^+ by using the Lagrange-Sylvester interpolation polynomial to give explicit expressions associated with (A^*A) , as all the roots in $\sigma(A^*A)$ are simple.

$$A^*A = \sum_{\lambda \in \sigma(A^*A)} \lambda \frac{\prod_{\lambda \neq \mu \in \sigma(A^*A)} (A^*A - \mu I)}{\prod_{\lambda \neq \mu \in \sigma(A^*A)} (\lambda - \mu)} \quad (1.9)$$

so that
$$A^{+}=\sum_{\lambda\in\sigma(A^{*}A)}\lambda^{+}\left(\frac{\prod_{\lambda\neq\mu\in\sigma(A^{*}A)}(A^{*}-\mu I)}{\prod_{\lambda\neq\mu\in\sigma(A^{*}A)}(\lambda-\mu)}\right)A^{*}$$

We call (1.9) the Lagrange-Sylvester interpolation polynomial for A^+ .

Example Let
$$A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

Then $A^*A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$

And $\psi(A^*A) = (A^*A)^2 - 2(A^*A)$ is the minimal polynomial. Writing $\psi(\lambda) = \lambda(\lambda - 2)$

we have $(A^*A)^+ = \frac{1}{2} \frac{(A^*A)}{2} = \begin{pmatrix} 1/4 & -1/4 \\ -1/4 & 1/4 \end{pmatrix}$

and

$$A^{+}=(A^{*}A)^{+}A^{*} = \begin{pmatrix} 1/4 & -1/4 \\ -1/4 & 1/4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1/2 & 0 \\ -1/2 & 0 \end{pmatrix}.$$

Example Let $A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix}$

$$A^*A = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{pmatrix}$$

The minimal polynomial of (A^*A) is $\psi(\lambda) = \lambda(\lambda - 2)(\lambda - 4)$

Therefore,

$$(A^*A)^+ = \frac{1}{2} \left(\frac{A^*A(A^*A - 4I)}{2(2 - 4)} \right)^+$$
$$= \frac{1}{4} \left(\frac{A^*A(A^*A - 2I)}{4(4 - 2)} \right)$$
$$= \frac{14}{32} (A^*A) - \frac{3}{32} (A^*A)^2$$
$$= \frac{1}{16} \begin{pmatrix} 5 & -1 & -3 & -1 \\ -1 & 5 & -1 & -3 \\ -3 & -1 & 5 & -1 \\ -1 & -3 & -1 & 5 \end{pmatrix}$$

Hence A^+

$$=\frac{1}{16} \begin{pmatrix} 5 & -1 & -3 & -1 \\ -1 & 5 & -1 & -3 \\ -3 & -1 & 5 & -1 \\ -1 & -3 & -1 & 5 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{3}{8} & \frac{-3}{8} & \frac{-1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{3}{8} & \frac{-3}{8} & \frac{-1}{8} \\ \frac{1}{8} & \frac{3}{8} & \frac{-3}{8} & \frac{-1}{8} \\ \frac{-1}{8} & \frac{1}{8} & \frac{3}{8} & \frac{-3}{8} \\ \frac{-3}{8} & \frac{-1}{8} & \frac{1}{8} & \frac{3}{8} \end{pmatrix}.$$

Mathematica code

Mohammad Maruf Ahmed

 $b = Transpose[a] \\ \{\{1, -1, 0, 0, \}, \{0, 1, -1, 0, \}, \{0, 0, 1, -1, \}, \{-1, 0, 0, 1, \}\}$

c = b.a {{2,-1,0,-1}, {-1,2,-1,0}, {0,-1,2,-1}, {-1,0,-1,2}}

gi = PseudoInverse[c]

$$\left\{\left\{\frac{5}{16}, -\frac{1}{16}, -\frac{3}{16}, -\frac{1}{16}\right\}, \left\{-\frac{1}{16}, \frac{5}{16}, -\frac{1}{16}, -\frac{3}{16}\right\}, \left\{-\frac{3}{16}, -\frac{1}{16}, -\frac{1}{16}, -\frac{1}{16}\right\}, \left\{-\frac{1}{16}, -\frac{3}{16}, -\frac{1}{16}, \frac{5}{16}\right\}\right\}$$

ginverse = gi.b

$$\left\{\left\{\frac{3}{8}, -\frac{3}{8}, -\frac{1}{8}, \frac{1}{8}\right\}, \left\{\frac{1}{8}, \frac{3}{8}, -\frac{3}{8}, -\frac{1}{8}\right\}, \left\{-\frac{1}{8}, \frac{1}{8}, \frac{3}{8}, -\frac{3}{8}\right\}$$
$$\left\{-\frac{3}{8}, -\frac{1}{8}, \frac{1}{8}, \frac{3}{8}\right\}\right\}$$

% / / MatrixForm

$\begin{bmatrix} 3 \end{bmatrix}$	_ 3	_ 1	1
8	8	8	$\overline{8}$
1	3	3	1
$\left \begin{array}{c} \frac{3}{8} \\ \frac{1}{8} \end{array}\right $	$-\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$	$-\overline{8}$	$-\frac{1}{8}$ $-\frac{3}{8}$
1	1	3	3
$\left -\frac{1}{8} \right $	8	8	$-\frac{1}{8}$
3	1	1	3
$\begin{bmatrix} -\frac{1}{8} \\ -\frac{3}{8} \end{bmatrix}$	$-\frac{1}{8}$	$-\frac{8}{3}$ $-\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$	$\left[\frac{3}{8}\right]$

Theorem If A is any $m \times n$ matrix such that $(A A^*)^{-1}$ exists, then

$$A^{+} = \frac{1}{2\pi i} \int_{c} A^{*} (AA^{*} - Iz)^{-1} \frac{1}{z} dz$$

where C is a closed contour containing non-zero eigenvalues of AA^* but not containing the zero eigenvalue of AA^* in or on C.

Theorem The M-P g-inverse of a $m \times n$ matrix A of complex numbers is given by the formula

$$A^+ = \int_0^\infty e^{-A^*A} A^* dt$$

6. APPLICATIONS OF G-INVERSES

6.1 Applications in Network Theory

Here we demonstrate the use of g-inverse in the analysis of active networks. The indefinite

admittance matrix connecting the node currents and voltages in an n-terminal network plays an important role in network analysis [4]. Its singularity, however, poses difficult problems. Since singular matrices do not admit a regular inverse, special techniques had to be devised by network analysis to handle such matrices. It is our objective to show how the g-inverse can be brought into service to obtain all the results in an elegant way. The emphasis will be on the development of a suitable calculus, which we hope will be of use in general network theory, rather than on detailed examination of particular problems.

6.2 The indefinite admittance matrix and its inverse

Consider a n-terminal network as shown in Fig. Let currents i_1 , i_2 ,, i_n enter the terminals 1,, n from outside and let voltages v_1 ,, v_n be measured between these terminals and an arbitrary reference terminal F.

Let $i = (i_1, i_2, \dots, i_n)$ denote the current vector and $v = (v_1, \dots, v_n)$ the voltages vector. Such a network is defined by a linear relationship.

$$i=Yv \tag{1.10}$$

where the matrix *Y* is known as the *indefinite* admittance matrix.

By applying Kirchoff's current law and the relativity law of potentials one finds that the matrix *Y* is constrained by the relations Ye = 0, e'Y = 0', where e = (1,1, ..., 1)', i.e., the sum of the elements in each row and in each column of *Y* is zero. Such a matrix is said to be *doubly centered*. Thus *Y* is singular and the relationship between *i* and *v* induced by *Y* is not one to one, so that the inverse relationship (such as $v = Y^{-1}i$, when *Y* is nonsingular) cannot be uniquely deduced from (1.10) alone. From the equation i = Yv we find that $v = Y^{-1}i$ provides an inverse relationship for some g-inverse Y^{-1} .

By using Kirchoff's voltage law and the relativity law of currents, one finds that, in a relationship such as v = Zi, the matrix Z is also doubly centered, that is, Ze = 0, eZ = 0. Then the problem may be posed as that of finding a g-inverse Z of Y, which also be doubly centered.

We shall consider the case where the network is fully connected, i.e R(Y) = n - 1, so that if B is matrix such that YB = 0, then there exists a vector such that B = e t.

Theorem The unique doubly centered inverse of Y is Y^+ , the Moore-Penrose inverse.

Proof Let Z be a g-inverse of Y, that is,

$$YZY = Y \Leftrightarrow Y(I - ZY) = 0 \Leftrightarrow I - ZY = et \qquad (1.11)$$

If Z is doubly centered, then $I-ZY = et \implies e(I-ZY) = e et$ e = eet = nt

that is , e = nt and $ZY = I - n^{-1}ee'$ or ZY is symmetrical. Similarly, Yz is symmetrical.

Also from (1.11), $R(Z) \ge R(Y)$, but Ze' = 0 and hence R(Z) = n-1 = R(Y)

But we have ZYZ = Z.

Thus, if Z is doubly centered, then it satisfies all the four conditions of M-P g-inverse i.e $Z=Y^+$, which is unique.

On the other hand if $Z = Y^+$, then column space of Y^+ =column space Y which implies that $Y^+e = 0$. Similarly, $e^{-}Y^+ = 0$ so that Y^+ is doubly centered.

6.3 On the applications of g-inverse on optimizing technique

Proposition 1 Let AX=Y be a system of consistent equations (linear constraints of a programming problem)[5]. Our object is to minimize

$$Q=X*NX$$
 where

 $(N)_{m \times m}$ is a positive matrix subject to the satisfaction of the constraints.

Proof A^{gl} is a g-inverse of $A \ni$

$$AA^{gl} A = A$$

$$(A^{gl}A)*N=N(A^{gl}A)$$

then $X=A^{gl}Y$

is a solution of the quadratic programming problem with linear constraints. Further a choice A^{gl} is given by $A^{g_I} = N^{-I} A^* (AN^{-I} A^*)^g$ and A^{g_I} is called the *minimum norm generalized inverse*. Note that if N=I then $X=A^+Y$ is the minimum norm best solution of AX=Y.

Proposition 2 Let AX=Y be possibly a set of inconsistent equations (constraints of a programming problem) our object is to minimize Q=(Y-AX)*N(Y-AX)Subject to the condition $X=A^{g^2}Y$ is the best in the class approximate solution of AX=Y.

Proof $X=A^{g^2}Y$ is the solution Then $AA^{g^2}A=A$, $(AA^{g^2})M=MAA^{g^2}$ and a choice of A^{g^2} is given by $A^{g^2}=(A^*MA)^gA^*M$ A^{g^2} is called the least squares generalized inverse.

7. CONCLUSION

The aim of this paper is to find out the inverse of a matrix when it is rectangular or square but singular. Such inverse is known as *Generalized Inverse* (g - inverse). It gives general approach of g-inverse and its applications with their analytical and numerical prospects. This paper introduces some new concepts about the numerical results with Mathematica code **PseudoInverse**. We have shown uniform convergence of g-inverse by a special type of expansion. Generalized inverse is determined here by using minimal polynomial. An application of generalized inverse in Network theory is given.

8. REFERENCES

[1] Moore E. H., 1920 on the reciprocal of the general Algebric matrix, Abst. Bull. Amer. Math. Soc. pp.304-305.

[2] Penrose R., 1955 A generalized inverses for matrices, Proc. Camb. Philo. Soc. 51. pp. 406-413.

[3] Graybill F. A., Matrices with applications in Statistics. The Wadsworth Statistics/Probability Series, Wadsworth International Group Belmont, California, 1969.

[4] C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications, Wiley, New York, 1971.

[5] Rohde C.A., Some results on generalized inverses, SIAM Review vol. 8. No. 2.