UNIFIED APPROACH OF GENERALIZED INVERSE AND ITS APPLICATIONS

Mohammad Maruf Ahmed
Department of Mathematics and Natural Science
BRAC University, 66 Mohakhali
Dhaka-1212, Bangladesh
Email: maruf06@bracuniversity.ac.bd
maruf_1978@yahoo.com

Abstract

This paper deals with Unified Approach of Generalized inverse (g-inverse) and its applications. General approaches of generalized inverses with a special convergence are discussed. Derivation of g-inverse by using minimal polynomial is shown. Mathematica codes are used in these examples. Special derivations of g-inverses using Contour integration are given. G-inverse has been applied in network theory and to optimize problems.

Key words: convergence, minimal polynomial, inconsistent system, network theory, optimizes.

1. INTRODUCTION

The inverse of a matrix was defined and its various properties were discussed by many authors. It is stated that if a matrix A has an inverse, the matrix must be square and its determinant must be nonzero. Let us consider a system of linear equations

$$
A x=b .
$$

If A is an $n \times n$ non-singular matrix, the solution to the system in the equation $A x=b$ exists and is unique and is given by

$$
x=A^{-1} b
$$

However, there are cases where A is not a square matrix (i.e. rectangular matrix) and also the cases where A is
$n \times n$ singular matrix; i.e when the linear equations are inconsistent. In these cases there may still be solution to the system and a unified theory to treat all cases may be desirable. One such theory involves the use of generalized inverse of matrices. The generalized inverse is also referred to as Pseudo-inverse, Moore-Penrose inverses or simply g-inverse with possible subscripting of the letter g.

Moore [1] first published the work on generalized inverses. Penrose [2] defined uniquely determined generalized inverse matrix and investigated some of its properties.

2. DEFINITION

Generalized inverse (g - inverse)

Let A be $m \times n$ matrix of $\operatorname{rank} \mathrm{R}(A)=r \leq \min (m, n)$. Then a generalized inverse (g-inverse) of A is an $n \times m$ matrix denoted by A^{-}such that $x=A^{-} b$ is a solution of the consistent set of linear equations $A x=b$.
A matrix A^{-}satisfying $A A^{-} A=A$ obviously coincides with A^{-1} when A^{-1} exists.

3. DIFFERENT CLASSES OF G-INVERSES

Let A be an $m \times n$ matrix over the complex field \boldsymbol{C}. Clearly, analogous results are obtainable when the matrices are defined over a real field.
Consider the following matrix equations:
(i) $A X A=A$
(ii) $X A X=X$,
(iii) $(X A)^{*}=X A$
(iv) $(A X)^{*}=A X$
where * `denotes the conjugate transpose.
X is a \mathbf{g}-inverse if equation (1.1) is satisfied and we denote $\quad X=A^{-}$.
(a) If (1.1) and (1.2) are satisfied then X is a reflexive g-inverse and we denote $X=A^{r}$.
(b) If (1.1), (1.2) \& (1.3) are satisfied then X is a left weak g-inverse and we denote $X=A^{w}$.
(c) If (1.1), (1.2) \& (1.4) are satisfied then X is right weak g-inverse and we denote $X=A^{n}$.
(d) If (1.1), (1.2), (1.3) \& (1.4) are all satisfied then we call X is Pseudo -inverse or (Moore \& Penrose generalized inverse) and we denote $X=$ A^{+}. It is also known as M-P g-inverse.

4. EXPANSIONS AND CONVERGENCE OF G-INVERSE

For applications of a constructive nature (and some theoretical purposes) it is highly desirable to have some representations of A^{+}in terms of A and A^{*}. Although Moore [1], Penrose [2] and most recently Graybill [3] have given methods for determining M-P inverse, it would be highly desirable to have a representation analogous to the Neumann expansion for the inverse of a nonsingular matrix.

A Neumann type series expansion of A^{+} involving only positive power of $A^{*} A$ is given by the following theorem:

Theorem For any square matrix $A \neq 0$ and a real number α with

$$
\begin{equation*}
0<\alpha<\min _{\substack{d_{i i} \neq 0 \\ i=1,2 \ldots n}} \frac{2}{\left|d_{i i}\right|^{2}} \tag{1.5}
\end{equation*}
$$

where $d_{i i}$ are the (diagonal) elements of D in the representation of A, the series

$$
\alpha \sum_{k=0}^{m}\left(I-\alpha A^{*} A\right)^{k} A^{*}
$$

converges and

$$
\begin{equation*}
\alpha \sum_{k=0}^{m}\left(I-\alpha A^{*} A\right)^{k} A^{*}=A^{*} \tag{1.6}
\end{equation*}
$$

Proof Let $A=W D V$ to write

$$
\begin{equation*}
A^{+}=W^{*} D^{+} V^{*} \tag{1.7}
\end{equation*}
$$

where W and V are unitary matrices

$$
\begin{equation*}
\text { and } \quad D^{+}=\left(d_{i i}^{+}\right) \tag{1.8}
\end{equation*}
$$

Using $A=W D V$ we obtain

$$
\begin{aligned}
& \left(I-\alpha A^{*} A\right)^{k}=W^{*}\left(I-\alpha D^{*} D\right)^{k} W \\
& k=0,1,2, \ldots \ldots \ldots \ldots \\
& \left(I-\alpha A^{*} A\right)^{k} A^{*}=W^{*}\left(I-\alpha D^{*} D\right)^{k} D^{*} V^{*}
\end{aligned}
$$

$$
\sum_{k=0}^{\infty}\left(1-\alpha\left|d_{i i}\right|^{2}\right)^{k} d_{i i}^{*}=\alpha^{-1} d_{i i}^{+}
$$

$$
i=1, \ldots \ldots \ldots, n
$$

so that

$$
\alpha \sum_{k=0}^{m}\left(I-\alpha A^{*} A\right)^{k} A^{*}=W^{*} D^{+} V^{*}=A^{+}
$$

5. SPECIAL REPRESENTATIONS OF GINVERSES

An interpolation polynomial for the MoorePenrose inverse

Here we express A^{+}as a Lagrange-Sylvester interpolation polynomial in powers of A, A^{*}. For any complex square matrix A let $\sigma(A)$ denote the spectrum of A and $\psi(A)$ its minimal polynomial written as $\psi(\lambda)=\prod_{\mu \in \sigma(A)}(\lambda-\mu)^{\nu(\mu)}$, where the root $\mu \in \sigma(A)$ is simple if $v(\mu)=1$ and multiple otherwise.

For any scalar function $f(\lambda)$ which is analytic at the multiple roots of $\psi(\lambda)$ and defined at the simple roots of $\psi(\lambda)$ it is possible to construct a matric function $f(A)$ which satisfies the first four requirements:
a) $f(\lambda)=K \Rightarrow f(A)=K I$
b) $f(\lambda)=\lambda \Rightarrow f(A)=A$
c) $f(\lambda)=g(\lambda)+h(\lambda) \Rightarrow f(A)=g(A)+h(A)$
d) $f(\lambda)=g(\lambda) h(\lambda) \Rightarrow f(A)=g(A) h(A)$.

We intend to construct A^{+}as the matric function $f(A)$ corresponding to the scalar function $f(\lambda)=\lambda^{+}$and consider only the case where $\lambda=0 \in \sigma(A)$ as otherwise A is nonsingular.

Corollary If $\lambda=0$ is a simple root, this effort to construct A^{+}this way lead only to the satisfaction of (1.1) and (1.2).

Using (1.5) we get

We use therefore $A^{+}=\left(A^{*} A\right)^{+} A^{*}$ to construct A^{+}by using the Lagrange-Sylvester interpolation polynomial to give explicit expressions associated with $\left(A^{*} A\right)$, as all the roots in $\sigma\left(A^{*} A\right)$ are simple.

$$
\begin{equation*}
A^{*} A=\sum_{\lambda \in \sigma\left(A^{*} A\right)} \lambda \frac{\prod_{\lambda \neq \mu \in \sigma\left(A^{*} A\right)}\left(A^{*} A-\mu I\right)}{\prod_{\lambda \neq \mu \in \sigma\left(A^{*} A\right)}(\lambda-\mu)} \tag{1.9}
\end{equation*}
$$

so that $A^{+}=\sum_{\lambda \in \sigma\left(A^{*} A\right)} \lambda^{+}\left(\frac{\prod_{\lambda \neq \mu \in \sigma\left(A^{*} A\right)}\left(A^{*} A-\mu I\right)}{\prod_{\lambda \neq \mu \in \sigma\left(A^{*} A\right)}(\lambda-\mu)}\right) A^{*}$
We call (1.9) the Lagrange-Sylvester interpolation polynomial for A^{+}.

Example Let $A=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$
Then $A^{*} A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$
And $\psi\left(A^{*} A\right)=\left(A^{*} A\right)^{2}-2\left(A^{*} A\right)$ is the minimal polynomial.
Writing $\quad \psi(\lambda)=\lambda(\lambda-2)$
we have $\left(A^{*} A\right)^{+}=\frac{1}{2} \quad \frac{\left(A^{*} A\right)}{2}=\left(\begin{array}{cc}1 / 4 & -1 / 4 \\ -1 / 4 & 1 / 4\end{array}\right)$
and
$A^{+}=\left(A^{*} A\right)^{+} A^{*}=\left(\begin{array}{cc}1 / 4 & -1 / 4 \\ -1 / 4 & 1 / 4\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right)$ $=\left(\begin{array}{cc}1 / 2 & 0 \\ -1 / 2 & 0\end{array}\right)$.

Example Let $A=\left(\begin{array}{cccc}1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right)$

$$
A^{*} A=\left(\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right)
$$

The minimal polynomial of $\left(A^{*} A\right)$ is

$$
\psi(\lambda)=\lambda(\lambda-2)(\lambda-4)
$$

Therefore,

$$
\begin{aligned}
\left(A^{*} A\right)^{+}= & \frac{1}{2}\left(\frac{A^{*} A\left(A^{*} A-4 I\right)}{2(2-4)}\right)+ \\
& \frac{1}{4}\left(\frac{A^{*} A\left(A^{*} A-2 I\right)}{4(4-2)}\right) \\
= & \frac{14}{32}\left(A^{*} A\right)-\frac{3}{32}\left(A^{*} A\right)^{2} \\
= & \frac{1}{16}\left(\begin{array}{cccc}
5 & -1 & -3 & -1 \\
-1 & 5 & -1 & -3 \\
-3 & -1 & 5 & -1 \\
-1 & -3 & -1 & 5
\end{array}\right) .
\end{aligned}
$$

Hence
A^{+}

$$
\begin{aligned}
&=\frac{1}{16}\left(\begin{array}{cccc}
5 & -1 & -3 & -1 \\
-1 & 5 & -1 & -3 \\
-3 & -1 & 5 & -1 \\
-1 & -3 & -1 & 5
\end{array}\right)\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{cccc}
\frac{3}{8} & \frac{-3}{8} & \frac{-1}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{8} & \frac{-3}{8} & \frac{-1}{8} \\
\frac{-1}{8} & \frac{1}{8} & \frac{3}{8} & \frac{-3}{8} \\
\frac{-3}{8} & \frac{-1}{8} & \frac{1}{8} & \frac{3}{8}
\end{array}\right)
\end{aligned}
$$

Mathematica code

$$
\begin{aligned}
& \mathbf{a}= \\
& \{\{1,0,0,-1\},\{-1,1,0,0\},\{0,-1,1,0\},\{0,0,-1,1\}\} \\
& \{\{1,0,0,-1\},\{-1,1,0,0\},\{0,-1,1,0\},\{0,0,-1,1\}\}
\end{aligned}
$$

$\mathbf{b}=$ Transpose $[\mathbf{a}]$

$\{\{1,-1,0,0\},\{0,1,-1,0\},\{0,0,1,-1\},\{-1,0,0,1\}\}$
$\mathbf{c}=\mathbf{b} . \mathbf{a}$
$\{\{2,-1,0,-1\},\{-1,2,-1,0\},\{0,-1,2,-1\},\{-1,0,-1,2\}\}$
$\mathbf{g i}=$ PseudoInverse[c]
$\left\{\left\{\frac{5}{16},-\frac{1}{16},-\frac{3}{16},-\frac{1}{16}\right\},\left\{-\frac{1}{16}, \frac{5}{16},-\frac{1}{16},-\frac{3}{16}\right\}\right.$,
$\left.\left\{-\frac{3}{16},-\frac{1}{16}, \frac{5}{16},-\frac{1}{16}\right\},\left\{-\frac{1}{16},-\frac{3}{16},-\frac{1}{16}, \frac{5}{16}\right\}\right\}$
ginverse = gi.b
$\left\{\left\{\frac{3}{8},-\frac{3}{8},-\frac{1}{8}, \frac{1}{8}\right\},\left\{\frac{1}{8}, \frac{3}{8},-\frac{3}{8},-\frac{1}{8}\right\},\left\{-\frac{1}{8}, \frac{1}{8}, \frac{3}{8},-\frac{3}{8}\right\}\right.$,
$\left.\left\{-\frac{3}{8},-\frac{1}{8}, \frac{1}{8}, \frac{3}{8}\right\}\right\}$

\% / / MatrixForm

$$
\left[\begin{array}{cccc}
\frac{3}{8} & -\frac{3}{8} & -\frac{1}{8} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{8} & -\frac{3}{8} & -\frac{1}{8} \\
-\frac{1}{8} & \frac{1}{8} & \frac{3}{8} & -\frac{3}{8} \\
-\frac{3}{8} & -\frac{1}{8} & \frac{1}{8} & \frac{3}{8}
\end{array}\right]
$$

Theorem If A is any $m \times n$ matrix such that $\left(A A^{*}\right)^{-1}$ exists, then

$$
A^{+}=\frac{1}{2 \pi i} \int_{c} A^{*}\left(A A^{*}-I z\right)^{-1} \frac{1}{z} d z
$$

where C is a closed contour containing non-zero eigenvalues of $A A^{*}$ but not containing the zero eigenvalue of $A A^{*}$ in or on C.

Theorem The M-P g-inverse of a $m \times n$ matrix A of complex numbers is given by the formula

$$
A^{+}=\int_{0}^{\infty} e^{-A^{*} A} A^{*} d t
$$

6. APPLICATIONS OF G-INVERSES

6.1 Applications in Network Theory

Here we demonstrate the use of g-inverse in the analysis of active networks. The indefinite
admittance matrix connecting the node currents and voltages in an n-terminal network plays an important role in network analysis [4]. Its singularity, however, poses difficult problems. Since singular matrices do not admit a regular inverse, special techniques had to be devised by network analysis to handle such matrices. It is our objective to show how the g-inverse can be brought into service to obtain all the results in an elegant way. The emphasis will be on the development of a suitable calculus, which we hope will be of use in general network theory, rather than on detailed examination of particular problems.

6.2 The indefinite admittance matrix and its

 inverse

Consider a n-terminal network as shown in Fig. Let currents $i_{1}, i_{2}, \ldots ., i_{n}$ enter the terminals $1, \ldots ., n$ from outside and let voltages $v_{l}, \ldots \ldots, v_{n}$ be measured between these terminals and an arbitrary reference terminal F.

Let $i=\left(i_{1}, i_{2}, \ldots ., i_{n}\right)^{\prime}$ denote the current vector and $v=\left(v_{l}, \ldots \ldots, v_{n}\right)$ the voltages vector. Such a network is defined by a linear relationship.

$$
\begin{equation*}
i=Y v \tag{1.10}
\end{equation*}
$$

where the matrix Y is known as the indefinite admittance matrix.

By applying Kirchoff's current law and the relativity law of potentials one finds that the matrix Y is constrained by the relations $Y e=0, e^{\prime} Y=0^{\prime}$, where $e=(1,1, \ldots ., 1)$, i.e , the sum of the elements in each row and in each column of Y is zero. Such a matrix is said to be doubly centered. Thus Y is singular and the relationship between i and v induced by Y is not one to one, so that the inverse relationship (such as $v=Y^{-l} i$, when Y is nonsingular) cannot be uniquely deduced from (1.10) alone .From the equation $i=Y v$ we find that $v=Y^{-1} i$ provides an inverse relationship for some g-inverse Y^{-}.

By using Kirchoff's voltage law and the relativity law of currents, one finds that, in a relationship
such as,$v=Z i$, the matrix Z is also doubly centered, that is, $Z e=0, e^{\prime} Z=0^{\prime}$. Then the problem may be posed as that of finding a g-inverse Z of Y, which also be doubly centered.

We shall consider the case where the network is fully connected, i.e $R(Y)=n-1$, so that if B is matrix such that $Y B=0$, then there exists a vector such that $B=e t$.

Theorem The unique doubly centered inverse of Y is Y^{+}, the Moore-Penrose inverse.

Proof Let Z be a g-inverse of Y, that is,
$Y Z Y=Y \Leftrightarrow Y(I-Z Y)=0 \Leftrightarrow I-Z Y=e t^{\prime}$
If Z is doubly centered, then
$I-Z Y=e t^{\prime} \Rightarrow e^{\prime}(I-Z Y)=e^{\prime} e t^{\prime}$

$$
e^{\prime}=e e t^{\prime}=n t^{\prime}
$$

that is,$e=n t$ and $Z Y=I-n^{-1} e e$ or $Z Y$ is symmetrical. Similarly, $Y z$ is symmetrical.
Also from (1.11), $\mathrm{R}(Z) \geq \mathrm{R}(Y)$, but $Z e=0$ and hence
$\mathrm{R}(Z)=n-1=\mathrm{R}(Y)$
But we have $Z Y Z=Z$.
Thus, if Z is doubly centered, then it satisfies all the four conditions of M-P g-inverse i.e $Z=Y^{+}$, which is unique.

On the other hand if $Z=Y^{+}$, then column space of $Y^{+}=$column space Y which implies that $Y^{+} e=$ 0 .Similarly, $e^{\prime} Y^{+}=0$ so that Y^{+}is doubly centered.

6.3 On the applications of g-inverse on optimizing technique

Proposition 1 Let $A X=Y$ be a system of consistent equations (linear constraints of a programming problem)[5]. Our object is to minimize

$$
Q=X^{*} N X \text { where }
$$

$(N)_{m} \times{ }_{m}$ is a positive matrix subject to the satisfaction of the constraints.
Proof $A^{g l}$ is a g-inverse of $A \ni$

$$
\begin{gathered}
A A^{g l} A=A \\
\left(A^{g l} A\right) * N=N\left(A^{g l} A\right) \\
\text { then } X=A^{g l} Y
\end{gathered}
$$

is a solution of the quadratic programming problem with linear constraints.
Further a choice $A^{g l}$ is given by
$A^{g l}=N^{-1} A^{*}\left(A N^{-1} A^{*}\right)^{g}$ and $A^{g l}$ is called the minimum norm generalized inverse.
Note that if $N=I$ then $\quad X=A^{+} Y$
is the minimum norm best solution of $A X=Y$.
Proposition 2 Let $A X=Y$ be possibly a set of inconsistent equations (constraints of a programming problem) our object is to minimize

$$
Q=(Y-A X) * N(Y-A X)
$$

Subject to the condition $X=A^{g 2} Y$ is the best in the class approximate solution of

$$
A X=Y .
$$

Proof $X=A^{g^{2}} Y$ is the solution
Then $A A^{g 2} A=A, \quad\left(A A^{g 2}\right) M=M A A^{g^{2}}$
and a choice of $A^{g 2}$ is given by
$A^{g 2}=(A * M A)^{g} A * M$
$A^{g 2}$ is called the least squares generalized inverse.

7. CONCLUSION

The aim of this paper is to find out the inverse of a matrix when it is rectangular or square but singular. Such inverse is known as Generalized Inverse (g inverse). It gives general approach of g-inverse and its applications with their analytical and numerical prospects. This paper introduces some new concepts about the numerical results with Mathematica code PseudoInverse. We have shown uniform convergence of g-inverse by a special type of expansion. Generalized inverse is determined here by using minimal polynomial. An application of generalized inverse in Network theory is given.

8. REFERENCES

[1] Moore E. H., 1920 on the reciprocal of the general Algebric matrix, Abst. Bull. Amer. Math. Soc. pp.304-305.
[2] Penrose R., 1955 A generalized inverses for matrices, Proc. Camb. Philo. Soc. 51. pp. 406-413.
[3] Graybill F. A., Matrices with applications in Statistics. The Wadsworth Statistics/Probability Series, Wadsworth International Group Belmont, California, 1969.
[4] C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its applications, Wiley, New York, 1971.
[5] Rohde C.A., Some results on generalized inverses, SIAM Review vol. 8. No. 2.

