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ABSTRACT 

The main purpose of this paper is to use Bayesian technique for identifying the conditions under 
which the bacteria growth is optimal. Such kind of analysis is important in microbiology when 
bacteria need culture in an optimum manner, so they can be identified, before adequate antibiotics 
can be developed. The dataset was collected under three different conditions which can be found in 
Binnie (2004). Therefore our interest lies in investigating how these three covariates are affecting 
the measurements of Bacteria count. 
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I. INTRODUCTION 

The paper mentions the purpose of the original 
study where the data set, generated by Copper 
(1999) is the identification of the conditions under 
which the bacteria growth is optimal. This is very 
important in microbiology and the analysis of 
bacteria, since during culturing scientists need to 
ensure that bacteria will grow as fast as possible if 
they are present in the sample. Here in this paper 
we will try to investigate how the different 
covariates are affecting the outcome (bacteria 
counts). Different models representing the 
relationship of the predictors with the outcome will 
be examined and the best options will be presented. 
All the proposed models will be tested under a 
Bayesian perspective, with the use of MCMC 
algorithms. The goal of this paper is to show an 
application of Bayesian technology in a design of 
experimental studies. The paper will be broken into 
5 sections: understanding the data, some descriptive 
statistics of the data, model and prior specification 
for the data, results, analysis and diagnostics, and 
finally conclusion. 

II. DATA AND VARIABLES

The dataset contains measurements of bacteria 
counts following the culturing of five strains of a 
bacterium called Staphylococcus Aureus. The 
measurements correspond to millions of colony 
forming units (CFU). In addition, values of 3 
covariates are included. Time of incubation, which 
can be 24 or 48 hrs, temperature, which can be 
27, 35 or 43 degrees, and concentration of 
tryptone (a nutrient), where possible percentage 
values are 0.6, 0.8, 1.0, 1.2, 1.4. One can notice 
that this constitutes a factorial design with no 
replicates. 

III. DESCRIPTIVE STATISTICS

In order to identify any existing relationships 
between the covariates and the outcome, as well as 
other interesting patterns, some preliminary 
analysis was performed. The data were plotted in 
different ways and univariate statistics were 
calculated. As an example, one can see the box 
plots of the 3 covariates against the 5 different 
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counts in Figure 1. The box-plots show that in 
general, time a positive effect in the bacteria 
growth is expected. Another interesting result is the 
fact that in all 5 strains, middle level temperature 
(35 degrees) gave the highest counts. It is also 
interesting the fact that the variances show 
considerable differences among the different 5 
strain counts. Also, for the concentration, again the 
effect is positive until it reaches 1.2%, except for 
the 5th strain, where 1.4% gives the most counts. 
One can notice again, the big differences in the 
variance among different concentration levels and 
the 5 strains. 

Figure 1. Box-plots of time, temperature and trypton 
concentration, against the growth (given in counts of 
millions of colony forming units) of 5 different strains of 
Staphylococcus Aureus 

From these plots one can infer that the 3 covariates 
are actually important for the growth of the bacteria 
and they are affecting the outcome. Going one step 
further, we looked for evidence for interaction 
effects for these covariates and the outcome. 
Interaction plots provide some insight about this. 
Figure 2 shows the interaction plots of the 3 
covariates against the counts of the 5 strains. 
Despite the irregularity of the plots, one can 
observe the points of evidence of interaction effects 
between the different covariates. It is also 
interesting that these effects are not uniform in all 5 
strains.  

Figure 2. Interaction plots between the different 
covariates. 

IV. MODEL AND PRIOR SPECIFICATION

Even though the original data contained data from 
5 different bacteria strains and it was of interest 
how the results of the analysis differ for each 
individual strain, it is clear that going though the 
analysis 5 times does not add any significant 
scientific interest under the scope and purpose of 
this paper. Therefore it was decided to carry the 
analysis in 3-way ANOVA framework where strain 
is considered as one variable.  

Taking into account the observations from the 
descriptive analysis as well as the factorial design 
of the data, a 3-way ANOVA model was selected 
to fit these data. Regarding the outcome, even 
though it is referred to as “counts”, it is rather 
continuous with relative large values. Therefore, 
we assumed that the means of the measurements 
follow Normal distributions. 

For the ANOVA model orthogonal 
parameterization was chosen for the different 
effects. Under these conditions the model for the 
mean of the outcome contains an intercept effect, 
three effects for the three covariates and three 
effects for the three interaction effects. For each 
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one of the interaction effects, the contrast matrix 
was the Kronecker product of the matrices of the 
individual effects. One of the questions that need to 
be answered is whether the interaction effects are 
adding anything significant to the model. In order 
to answer this question and check the different 
models we applied the Kuo and Mallick method of 
Bayesian Factors ([3]). Since we are only interested 
in how much each one of the three interaction 
terms contribute to the model, we have added the 
parameters del[1], del[2] and del[3] into the three 
interaction effects. So the rule that updates the 
mean of the outcome has become: 

mu[i]<- conceff[i]+ 
del[1]*timeVtempeff[i]+del[2]*timeVconceff 
[i]+del[3]*tempVconceff[i]………. (1)  

In order to be able to compare the different terms in 
a fair way, the matrices have to be not only 
orthogonal but also orthonormal, meaning that the 
column vectors should have length equal to 1. 
These two conditions can be achieved when using 
the polynomial contrast matrices. Initially, 
standardization was not applied to the outcome of 
the model, but this generated unsatisfactory results, 
were all the models appear to have equal 
probability, and they were undistinguishable by 
this method. Therefore, additional centering was 
applied to the outcome, by subtracting off the mean 
and dividing it by the standard deviation. 

Regarding the priors for the model, for the 
parameters for each one of the simple and 
interaction effects, weak priors were chosen, 
following Normal distributions with means equal to 
zero, while precision is given fixed value equal to 
1/16, in accordance to Kuo and Mallick’s 
suggestions. Here all the prior specifications have 
been taken by considering the conjugacy of the 
parameters involved in the model (1). Therefore the 

posterior distribution of the parameters will be 
tractable. Now using the numerical computational 
algorithms given in the software WINBUGS, 
Bayesian methods are now being applied in this 
hierarchical model. 

V. RESULTS AND DISCUSSION 

The model described above was executed for 
39,000 iterations. 2000 iterations were used as 
burn-out. 3 chains were used for the model. 
Summary statistics results were calculated for 
“mod” and “del” parameters. The results can be 
found in Table 1. The results show that interaction 
term between time and temperature appears more 
than 95% of the time, while the rest are very close 
to zero. Similarly, the model that contains the 
interaction effect term between time and 
temperature, appears again 95.7% of the time, with 
all the rest being close to zero. The higher of the 
rest is the model where no interaction term is 
included. This model appeared 4.3%. So 
comparing the former (M1) with the latter model 
(M2), we have, P(M1/Data) = 0.957, P(M2/Data) = 
0.043, so the Bayesian factor is B = (0.957)/(0.043) 
= 22.26 and so, according to Kass and Raftery 
([4]), there is a strong evidence in selecting model 
M1, over M2. Therefore, for the final phase of the 
analysis, M1 (including only the interaction effect 
between time and temperature), was chosen. 

In the final step the selected model was run again 
in WinBUGS. The model used for mu[i] was mu[i] 
<- b.0 + timeeff[i]+ tempeff[i] + conceff[i] + 
timeVtempeff[i] 

The model was updated 15000 times using three 
different chains. The first 2000 iterations were 
discarded as burn out.  

Table 1: Summary Statistics (Calculation of Bayes factor). 

Node Mean SD MC error 2.5% Median 97.5% Start Sample 
del[1] 0.9571 0.2027 0.009755 0 1 1 2001 39000
del[2] 1.53E-04 0.0124 1.09E-04 0 0 0 2001 39000
del[3] 0 0 2.92E-13 0 0 0 2001 39000
mod[1,1,1] 0 0 2.92E-13 0 0 0 2001 39000 
mod[1,1,2] 1.28E-04 0.01132 1.06E-04 0 0 0 2001 39000 
mod[1,2,1] 0 0 2.92E-13 0 0 0 2001 39000 
mod[1,2,2] 0.9569 0.203 0.009754 0 1 1 2001 39000 
mod[2,1,1] 0 0 2.92E-13 0 0 0 2001 39000 
mod[2,1,2] 2.56E-05 0.00514 2.57E-05 0 0 0 2001 39000 
mod[2,2,1] 0 0 2.92E-13 0 0 0 2001 39000 
mod[2,2,2] 0.0429 0.2026 0.009748 0 0 1 2001 39000 
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Table 2: Summary Statistics (Final Model). 

Node Mean SD MC error 2.5% Median 97.5%
b.0 7.44E-05 0.07005 3.48E-04 -0.1375 -2.00E-05 0.1393
b.conc[1] 0.9233 0.1724 8.21E-04 0.5815 0.923 1.267
b.conc[2] -0.3339 0.1714 7.87E-04 -0.6735 -0.3334 0.004391 
b.conc[3] -0.5652 0.172 8.96E-04 -0.9048 -0.5656 -0.2259
b.conc[4] -0.397 0.1716 8.34E-04 -0.7369 -0.3971 -0.05883
b.temp[1] 0.9013 0.2648 0.001356 0.3771 0.9011 1.424 
b.temp[2] 0.2746 0.2688 0.001428 -0.2548 0.2745 0.8076 
b.time[1] -0.2951 0.6228 0.003201 -1.519 -0.292 0.9278
b.timeVtemp[1] -1.383 0.3809 0.00203 -2.143 -1.38 -0.6314 
b.timeVtemp[2] 1.927 1.126 0.005769 -0.2911 1.925 4.145 

The most straightforward approach for assessing 
convergence is based on simply plotting and 
inspecting traces of the observed MCMC sample. If 
the trace of values for each of the parameters 
exhibits asymptotic behavior over the last few 
iterations, this may be satisfactory.Further, the 
results were processed in BOA where the 
convergence diagnostics were calculated. All the 
results are presented in Table 3. Three chains have 
been run each with 1000 MCMC samples to get the 
convergence of the estimates. Brooks, Gelman and 
Rubin convergence diagnostic based on a multi-
chain comparison between-chain (B) and within-
chain (W) dispersion of samples, in an analysis of 
variance approach. And as a default from the 
boa.menu() function from boa package for R 
software it takes 2nd half of the chain ( 5001-
10000 samples) to calculate the estimates and 
quantiles. It is apparent from the scale reduction 
factors that each estimates are very close to 1. Also 
it is seen from the values of 97.5% quantiles that 
the values are approximately 1.0 which means that 
effective convergence may be diagnosed. This 
suggests that 5000 (half) iterations were sufficient 
to achieve convergence for the parameters. 

Table 3: Corrected Scale Reduction Factors for 
Gelman, Brooks, and Rubin Convergence 
Diagnostics 

Effects  Estimate 0.975 
b_conc_1 0.999976 1.000047
b_conc_2 1.000002 1.000076
b_conc_3 1.000061 1.000395
b_conc_4 1.000062 1.000246
b_temp_1 1.000033 1.00009
b_temp_2 1.000554 1.001462
b_time 1.000129 1.000497
b_timeVtemp_1 1.00032 1.001116 
b_timeVtemp_2 1.000105 1.000475 
b0 1.000035 1.000312

Finally, the posterior distributions for the 
parameters were generated. The summary statistics 
are presented in Table 2. It is apparent from the 
table 2 that MCMC error for the mean estimates 
are vary low and the coverage probabilities are not 
wider for the parameter though the standard 
deviation is showing quite higher values. Therefore 
the Bayesian estimates can be improved by 
studying with prior values though we are getting 
pretty reasonable estimates with these vague priors.  

VI. CONCLUSION

This paper suggests a guide for using Bayesian 
methods in Microbiology data which have been 
illustrated with an example of 3 way ANOVA 
model. Bayesian methods are now being applied in 
diverse and complex design of experiments by the 
advancement of numerical and computational 
algorithms. While the use of Bayesian methods is 
clearly increasing in quantity and quality, the 
authors would like to caution users in the areas of 
reference priors, sensitivity analysis, and 
inferences. For the reference priors, we would like 
to encourage more use of experts and more use of 
previously collected data to formulate prior 
distributions. Sensitivity analysis is needed to 
conclude that the results are robust to prior 
specification. 
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