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ABSTRACT 
 
We studied stability analysis of a chemostat model of two microorganisms that incorporates both 
different response functions and we made a single code of the model using a computer algebra 
system (CAS) Mathematica for graphical illustration globally. 
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I. INTRODUCTION 
 
The chemostat [3] is a continuous culture device 
controlled by the concentration of limiting nutrient 
and dilution rate and it is used to model 
competition of several microorganisms. So, we 
consider a model in a chemostat with two 
organisms that both consume the single nutrient. 
The model of our interest [2] is as follows: 
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where 
( )

( )

( )

0

c t  denotes the concentration of nutrient
       at time t
p t  denotes the concentration of first 
         microorganism at time t
q t  denotes the concentration of second 
        microorganism at time t
c  repesents the input concentration of 
     the nutrient

 

1 2

represents the dilution rate of the chemostat
,  represent the yield constants of the 

          two microorganisms repectively

δ
η η  

1 2

1 1 2 2

1 2

K , K  represent the growth rate of the two
           microorganisms respectively

; ;
,  represent the specific death rates of 

          the two microorgisms respectively

δ = δ+∈ δ = δ+∈
∈ ∈

 

 
Let 1 2δ = δ = δ  result from assuming that the death 
rates of p  and q  are negligible so that the only 
loss of microorganisms is due to ‘wash out’ at the 
same rate that the nutrient is lost. To pass to non-
dimensional variables, we measure concentrations 
of nutrient in units of , time in unit of 1/ , in 
units of 

0c δ p
1c0η , and q in unitsof 2c0η  

(i.e. 0 1c0c : p /c / c , p := = η and q :=  

2 0q / cη ) and obtains the following differential 
equations. After dropping the bars and writing 

( )( )i c tκ  instead of ( )i 0K c c , we get the model of 
interest: 
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where ( ) ( )1
i i i 0/ , c K c c ,i 1,2−δ = δ δ κ = δ =

( ))

. We 
assume the followings for our response function 

though out the rest of the paper: (i c tκ

( )
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( ) ( )
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i

i

i

i

i

i

i : R R ,

ii is continuously differentiable at 
      one time (ie.  exists),
iii 0 0, and

iv c is monotonically increasing 

      (i.e. c 0 c R ).

+ +

+

κ →

κ

′κ

κ =

κ

′κ > ∀ ∈

 

 
II. PRELIMINARIES 

 
In this section, we present some useful preliminary 
results, the positivity and boundedness of solutions 
of our system (2), steady states and their 
stability[4]. 
  
2.1. Positivity and Boundedness of Solutions: 
 
Theorem 2.1.1: The solutions 

of (2) are positive ( ) ( ) ( ) ( )(x t c t , p t ,q t= ) t 0∀ >  

and for large t.  ( )c t 1<
Proof: Let the statement is false. First suppose that 

 for all  is not true. Let 

. Then 

( )c t 0>
*t mi

t 0>

( ){ }c t∧n t : t 0 0= > = ( ) 0>

0

c t , 

. But from the first equation of (2), we 

have . That is, c t  on a 

neighbourhood of . This implies there exists 
 such that 

)*, t

( )*c t 0= δ >

t

t 0∀ ∈ 
′

0∈>

( )′ >
*

( )c t

t 0>

 is increasing on 

, which contradicts our assumption. 

Thus  for all . 

( * *t ,−∈

c t

)t +∈

( ) 0>

Now to prove ( )p t 0 t> ∀ >

( ) ( )p t q t 0∧ =

0

}
, we let 

. We assume 

first that 

{1t min t : t 0= >

( )1p t =

[
0 ( )q t >. Then  for all 0

]1t 0, t∈ . Let Μ = .Then for {
1

10 t t
min (c(t))
≤ ≤

κ − δ }1

[ ]1t 0, t∈ , second equation of (2) becomes 
p '(t) ≥ Μ

1

p(t)  which implies that 
1tp(t ) p(0) e≥ 0Μ > , a contradiction. Therefore, 

( )p t 0>

t 0>

t 0

 for all .  t 0>

=
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(c p q)

(c p q)
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min

1′+ +
≤

δ δ
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p q)(c ′+ +
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q)(c p ′

A similar argument shows that  for all 
. 

q(t) 0>

Thus, the system (2) with positive initial conditions 
at produces a positive solution for . t 0>
 
Finally, from the first equation of (2), we have 

 for . This implies that t 0>

 for . Hence if t 

becomes large then 

t 0>

) 1< . □ 
 
Theorem 2.1.2: For 0∈> , the solutions 

 of (2) satisfy 
 

( ) ( )
min

1 1p t q t+ + ≤ +∈
δ δ

 

for large t, where {max 1 2max 1, , }δ = δ δ  and 

 
 
Proof: Adding the three equations in (2) yields 

( 1 21 c p q− + δ + δ  )
This leads to  

( ) ( )minc p q 1 c p q′+ + ≤ − δ + +  
Now  

max

c p q) (c p
p q) (c p q)

′+ ≤ + +
′+ +
≤ + +

, 
q)

Again,  

 

min

(c p q)

1 (c p q)

− + +

′+ +
−

δ δ

 

Obviously 
max

(c p q)′+ +
≥

δ δ
,  

Let   

 
ma min

(c p q)′+ + + +
≤ ε ≤

δ δ
 

 
Therefore,  
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 max max max

1 1 (c p q ′+ +
− ε ≤ −

δ δ δ
)

  

And also 
min min min

1 (c p q) 1′+ +
− ≤

δ δ δ
+ ε  

Hence, ( )
max min

1 1c p q− ε ≤ + + ≤ + ε
δ δ

. 

 
III. STEADY STATES 

 
The steady states of system (2) are: 
 

( ) 1 2
1 2 1 3 2

1

1 c 1 cE : 1,0,0 , E : c , ,0 , E : c ,0,
  − −

= = =  δ   2


δ 

2.

)

 

where the  are implicitly defined as 
 And the coexistence or 

interior steady state is denoted 
by , where  is defined as the 

unique solution of 

ic
fo

( * *, p

( )i i ic , r i 1,κ = δ =

*
intE : c ,q= *c

( )( )i ic t 0κ − =d  and * *p ,q

)
are 

the solutions of the inequality ( ) (p t q+ t 1<  with 

. *c 1<
 
3.1: Existence of Steady States 
 
(I) is always exists as its components are 
nonnegative. 

1E

(II) Since  is increasing with   
exists with  and 

, In these cases, 
 and  exist. 

( )i cκ

iδ ⇔

3

( )i 0 0κ =

1<
, ic

i0 c<

i 1,2.=( ) ( )i i ic 1κ = κ >

2E E
iδ

(III) Since  is increasing with   

exists, satisfying . So 

for the existence of , 

iκ ( )i 0 0κ =

( ) ilim cκ >

* *

, *c

iδ( )*
i i c

c iff
→∞

κ = δ

intE p  and q  must be 
positive. 
 
 
3.2. Stability Analysis 

Theorem 3. 2.1[6]: Let be a steady state of 
the first order system of differential equations 

sx

( )x ' F x=
nR

 on , where F  is a  function 

from to . 

nR
n

1C

R

(i) If each eigenvalue of the Jacobian matrix 

( )sDF x of  at is negative or has 

negative real part, then is an 
asymptotically stable steady state of 

F
sx

sx

( )x ' F x= . 

(ii) If ( )sxDF  has at least one positive real 
eigenvalue or one complex eigenvalue with 

positive real part, then then is an unstable 
steady state of 

sx
( )x ' F x= . 

Remark: If ( )sDF x

sx

 has some pure imaginary 
eigenvalues or zero eigenvalues but no positive 
eigenvalues or eigenvalues with positive real part, 

then we can’t use the Jacobian at to determine 

the stability of . In this situation the steady 

states may or may not be stable. 

sx

sx
 
Theorem 3.2.2 :If , then only  exists and 
is locally asymptotically stable. If E a  
exist, they are locally asymptotically stable if and 
only if 

ic >1 1E

2 3nd E

( )i jc iκ < δ , for i 2, j 1 and i 1, j 2= = = =  

respectively. If exists then it may stable i.e. the 
solution may coexist. 

inE t

 
Proof: The Jacobian matrix of (2) takes the form: 

 
( ) ( ) ( ) ( )
( ) ( )
( ) ( )

1 2 1 2

1 1 1

2 2

1 p c q c c c
c c 0

q c 0 c

′ ′− − κ − κ −κ −κ

2

J p
 
 ′= κ κ −δ 
 ′κ κ −δ 

…(3) 

 
When ( )1E 1,0,0= exist, the Jacobian matrix is  

( ) (
( )

( )
1

1 2

E 1 1

2 2

1 1 1
J 0 1 0

0 0 1

− −κ −κ ) 
 = κ − δ 
 κ − δ 

…… (4) 

Since is an upper triangular matrix, so the 
eigenvalues lie on the diagonal. Hence E  exists 
and locally asymptotically stable if all the 
eigenvalues are negative. i.e., or 
equivalently, c 1  

1EJ

1

κ −( )i i1 0δ <

i > .
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At 1
2 1

1

1 cE c , ,0
 −

=  δ 


  the Jacobian matrix takes 

the form 

 

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

( )

( )

2

1
1 1 1 1 2 1

1

1
E 1 1 1 1 1

1

2 1 2

1
1 1 1 1 2 1

1

1
1 1

1

2 1 2

1 c1 c c c

1 cJ c c

0 0 c

1 c1 c c c

1 c c 0 0

0 0 c

− ′− − κ −κ −κ δ 
 − ′= κ κ −δ δ 
 κ −δ
   

− ′− − κ −κ −κ δ 
 − ′= κ δ 
 κ −δ
   

 … (5) 

0





 At ( )* * *

intE c , p ,q=  the Jacobian matrix is 

The determinant of the upper left-hand 2 2×  
matrix is positive and its trace is negative, so its 
eigenvalues have negative real parts. The third 
eigenvalue of  is , the entry in the 
lower right-hand corner. Therefore  is 
asymptotically stable if and only if 

. 

2EJ

c 0<

( )2 1 2cκ − δ

2E

( )2 1 2κ − δ
 

At 2
3 2

2

1 cE c ,0,
 −

=  δ 


  the Jacobian matrix takes 

the form  

( ) ( ) ( )

( )

( ) ( )
3

2
2 2 1 2 2 2

2

E 1 2 1

2
2 2 2 2 2

2

1 c1 c c c

J 0 c 0
1 c c 0 c

− ′− − κ −κ −κ δ
 = κ −δ
 − ′κ κ
 δ



−δ


  

 

( ) ( ) ( )

( )

( )

2
2 2 1 2 2 2

2

1 2 1

2
2 2

2

1 c1 c c

0 c
1 c c 0 0

− ′− − κ −κ −κ δ 
= κ − δ
 − ′κ
 δ

… (6) 

c

0








we have some results in [1] which imply that is 
globally asymptotically stable if only  exists; if 
only ,  and  exist, under a reasonable 
additional assumptions  and is globally 
asymptotically stable and if exists, the two 
organisms coexist in the sense that the system is 
uniformly persistent. In this case, the stability of 

may occur. 

1E 2E 3E

inE

intE 
The determinant of the  matrix 2 2×

( ) ( )

( )

2
2 2 1 2

2

2
2 2

2

1 c1 c

1 c c 0

− ′− − κ −κ δ 
 − ′κ δ 

c 


δ

 is positive and its 

trace is negative, so its eigenvalues have negative 
real parts. The third eigenvalue is , the 

entry in the middle of . Therefore  is 

asymptotically stable if and only if . 

( )1 2 1cκ −

3E

( )1 2 1κ −
3EJ

c 0<δ

) (
( )

( )

*

c

0

0

) ( )

( )
( )

*
2

1

*
2 2

*
2

c

0

c

c

0

0

−κ−κ

−δκ

κ −δ 

 κ
 
 
 
 
 

−κ

J

(
) ( )* *

2

q

c c′ ′κ

1 2

*p

′ ′

+ κ

and

*q

α

1

t

E

1E

3E2E

1

),0,0

 

 

( ) (
( )
( )

( ) ( )
( )
( )

int

* * * * *
1 2 1

* *
E 1 1

* *

* * * * *
1 2 1

* *
1

* *
2

1 p c q c c

J p c c

q c 0

1 p c q c

p c

q c

2

 ′ ′− − κ − κ

 ′= κ

 ′κ

′ ′− − κ − κ −

′= κ

′κ

 …(7) 

 

The characteristic equation of  takes the form intE

  
3 2 0λ + αλ +βλ =  ……………………… (8) 

where 

( ) )
( ) ( ) (

* * * *

* *
1 1 2

1 c p c

c c

α = + κ + κ

β = κ κ  

Clearly, in this case one eigenvalue is zero. Now 
since the constant terms  β

int

 are positive, so 
the other two eigenvalues are negative or they have 
negative real parts. Hence if E exists then it may 
stable [6] i.e. the solution may coexist. 
 
3.3. Global Analysis: 
 

 
Theorem 3.3.1. If , then all solutions of (2) 
satisfy 

ic >

  
 ( ) ( ) ( )( ) (

t
im c t , p t ,q t 1
→∞

=l  ….………….  (9) 
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(That is, the above theorem states that E1 is a 
global attractor if it is the only steady state.) 
 
Proof: Since c t( ) 1<  for large t and 

 (i.e., , there are two 
constants  such that 

( )i i1κ − δ <

(

0 ic
A 0, B>

1>
0>

)

) ( )p ' t A p< − t and .For t 
sufficiently large, it follows from the second and 
third equations of (2) that 

( )t ( )Bq t< −

(

q '

)
t
lim p t
→∞

0=  and 

( )
t
limq t 0
→∞

= respectively while the first equation 

of (2) yields ( )
t
li , which proves the 

theorem. 

mc t
→∞

=1

 

Theorem 3.3.2. [1]: If  and 1c <1 1
2

1

1 c c−
>

δ
, then 

system (2) is uniformly persistent; i.e., there exists 
a constant , independent of initial conditions, 
such that 

0ε >

 
( ) ( ) ( )

t t t
liminf c t , liminf p t , liminf q t
→∞ →∞ →∞

≥ ε ≥ ε ≥ ε  

 
3.3.3 Mathematica Code and Graphical 
Illustration: 
 
To generate the Mathematica [5] code we take the 
response functions proposed by Monod 

as ( )1
mcc

a c
κ =

+
, ( )2

n cc
b c

κ =
+

1 2δ = δ

 and the same 

dilution rate for this purpose. 
<<Graphics̀ Legend̀  

Clear@"̀ ∗"D
chemo@8α_, β_, σ_, τ_, r_,rr_<,8u_,v_, w_<, 8xmax_, ymax_<D :=
ModuleA8m = α, a= β,d1= r,d2 =rr,
n= σ, b= τ,c0= u, p0 =v, q0 = w<,
k1@c_D:= m∗c

a+c
;k2@c_D:= n∗c

b+c
;

results=
NDSolve@8c�@tD m 1−c@tD −k1@c@tDD∗ p@tD−

k2@c@tDD∗q@tD, c@0Dm c0,
p�@tD m p@tD∗Hk1@c@tDD −d1L,
p@0Dm p0,
q�@tD m q@tD∗Hk2@c@tDD −d2L,
q@0Dm q0<, 8c, p,q<, 8t,0, xmax<,
MaxSteps→ 5000D;
PlotA
Evaluate@8c@tD, p@tD, q@tD< ê.
resultsD, 8t, 0, xmax<,

Frame→ False,Axes→ Automatic,
PlotRange→ 880,xmax<, 80, ymax<<,
ImageSize→ Automatic,

AspectRatio→
1

GoldenRatio
,

 
 
PlotStyle→ 88Thickness@.005D<,8Dashing@8.008<D,

Thickness@.006D<,8Dashing@8.02,.025<D,
Thickness@.007D<<,

Background→ None,
AxesLabel→ 8"t", "c,p,q"<,
PlotLegend→8"cHtL","pHtL","qHtL"<,
LegendPosition→ 81.1, −.3<,
LegendLabel→ "Solution Functions",
LegendOrientation→ Horizontal,
LegendShadow→ 8.03, −.03<,
LegendLabelSpace→ .8 ;DD  
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CASE ONE: 
chemo@83.6, 0.8, 3, 0.6, 1.1, 1.1<,

0.5, 0.2, 0.6 , 100, 1 ;8 < 8 <D  
 

 
FIG. 1 The solution approaches the first organism free 
steady state. 
 
CASE TWO: 
chemo@83.6,0.8,3,0.6,1.2,1.2<, 80.5,0.2,0.6<,

100,1 ;8 <D  
 

 
FIG. 2 : The solution approaches the Second organism 
free steady state. 
 
CASE THREE: 
 
chemo@83.6, 0.8, 3, 0.6, 1.3, 1.3<,

0.5, 0.2, 0.6 , 500, 1 ;8 < 8 <D  
 

 
 
FIG. 3 : The solution approaches a positive steady state. 
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