
BRAC University Journal, Vol. II, No. 2, 2005, pp. 103-106

A FAST TREE BASED CLUSTER LABELING ALGORITHM FOR
MONTE CARLO SIMULATIONS

Marzuk M Kamal
Department of Physics

Bangladesh University of Engineering & Technology
Dhaka– 1000, Bangladesh

and

M. Nasimul Haque
Department of Mathematics & Natural Science

BRAC University, 66 Mohakhali C/A
Dhaka – 1212, Bangladesh

ABSTRACT

A highly efficient tree based algorithm for studying site or bond percolation on any lattice system is
described. Our approach is to identify the connectivity of the lattice sites in a single phase and to
reduce the redundant computational load in each lattice update. Efficiency increases due to the
creation of a multi-branched tree of the pointers of the cluster numbers at the time of investigation
of cluster organization. At the later updates, the computational efficiency increases further as the
algorithm would have to work only on the randomly chosen lattice sites or bonds instead of
traversing the entire lattice.

Key words: Percolation, Cluster labeling algorithm, Monte Carlo method

I. INTRODUCTION

The concept of percolation is very simple, each
site on a specified lattice is independently either
“occupied," with probability p, or not with
probability 1 − p. The occupied sites form
contiguous clusters which have some interesting
properties. If the value of p is too small then few
sites are occupied and in most of the cases the
occupied sites are far away from each other
forming many clusters. As we increase the value of
p, these disconnected clusters grow bigger and
sometimes two separate clusters touch each other
merging to one cluster. We call a system
“percolates”, if a single cluster is big enough to
touch both of the opposite ends of the lattice
system. It is observed that cluster becomes
spanned above some value of p and we call it
percolation threshold, pc. This is a second order or
continuous phase transition between “not spanned”
and “spanned” states. The value of pc depends on
the topology of the lattice. [1]

One can also consider bond percolation in which
the bonds of the lattice are occupied with

probability p, and this system shows behavior
qualitatively similar to though different in some
details from site percolation.

Percolation phase transition is quite easily
understandable. But, still there are many things
about it that are still not known. For example,
despite decades of effort, no exact solution of the
site percolation problem yet exists on the simplest
two-dimensional lattice and on any higher
dimensional lattice. As there is no exact/theoretical
solution of higher dimensional percolation
problems, numerical simulation plays a very
important role for studying. Because of these and
many other gaps in our current understanding of
percolation, numerical simulations have found
wide use in the field.

Site and bond percolation have found a huge
variety of uses in many fields. Percolation models
appeared originally in studies of actual percolation
in materials percolation of fluids through rock for
example but have since been used in studies of
many other systems, including granular materials,
composite materials, polymers, concrete, aero gel

Marzuk M Kamal and M. Nasimul Haque

 104

and other porous media, and many others.
Percolation also finds uses outside of physics,
where it has been employed to model resistor
networks, forest fires and other ecological
disturbances, epidemics, robustness of the Internet
and other networks, biological evolution, and
social influence, amongst other things.[2-7]

II. THE ALGORITHM

Before discussing our algorithm we would like to
talk about the standard algorithms for percolation.
In standard methods, the whole new state of the
lattice must be recreated for every different lattice
size n and all the clusters have to be identified.
Various authors have pointed out [9-12], however,
if we want to generate states for each value of n
then we can save ourselves some effort by noticing
that a correct sample state with n+1 occupied sites
or bonds is given by adding one extra randomly
chosen site or bond to a correct sample state with n
sites or bonds. In other words, we can create an
entire set of correct percolation states by adding
sites or bonds one by one to the lattice, starting
with an empty lattice. If we randomly change
some lattice sites than the standard methods
suggests that we have to traverse through the entire
lattice to identify the newly formed clusters. For a
small sized lattice this is not a big problem.
Algorithms like Hoshen-Kopelman [8] can easily
handle this problem. But applying the same
algorithm for very big lattice would consume
painfully long time especially when the algorithm
is applied in Monte Carlo simulations.

In our algorithm we have constructed a matrix of
pointers of the cluster values the time of
initialization of the lattice. This pointer are
connected by a multi branched tree which contains
all the information of the cluster system. At the
first phase we identify the clusters and construct
the tree to maintain the connectivity of the
improperly labeled clusters. We also maintain the
cluster sizes in another array which is related to the
tree. The root of the tree contains all the
information of the cluster. The main essence of the
algorithm could be found after randomly changing
the lattice sites. As we have already constructed a
tree of the lattice sites for keeping track of the
clusters, now we only need to readjust the tree
node for the lattice site to be updated.
For convenience we would like to describe our
algorithm for bond percolation. This algorithm
could also be applied to site percolation with little

modification. To start with we have to construct a
lattice with some occupied sites. We consider it
more convenient if we just construct the lattice
with some random probability. This may be done
as follows:

1. Pick a random number within [0, 1]. If
this random number is greater than
another random number within [0, 1],
then proceed to step 2 else jump to step 3.

2. Pick an integer random number and test
whether it is odd or even. If odd then
occupy the bond else leave unoccupied.

3. Repeat until all the bonds are traversed.

Figure 1: Initially presence of two different clusters is
observed. All the sites of each cluster points to their
respective root. If we occupy another bond which may
belong to any of the clusters, the new occupied bond/site
actually merges two different clusters into one. As
clusters are merged the sites must look for a common
root as which is shown in the third figure.

This lattice creation process consumes CPU time
of O(N).
Now we have the lattice to work on. In order to
identify the clusters we first assume that each
occupied site is an independent cluster and we try
to connect these clusters on the basis of nearest
neighbor position. And a data tree is constructed
which contains the size and connectivity
information of each cluster. The flow of our
algorithm is as follows:

1. Each occupied site is treated as
independent cluster. If no nearest
neighbors are occupied give this site a
new cluster number. Insert this
information in the data tree.

2. If there are any nearest neighbors check
for there roots. If the roots are same then
just increase the size of the lattice by one.

3. If roots are different then the root of the
smaller cluster points to the root of the

New lattice
point

 Percolation, Cluster labeling algorithm, Monte
Carlo method

 105

larger cluster. If clusters are of same size
just set the root of one cluster point to the
root of the other cluster.

4. Repeat until the entire lattice is traversed.
5. Compress the path of the data tree of each

cluster just to reduce working overload in
future calculation.

The algorithm is simple enough to get confused
about its efficiency. In fact, the algorithm is very
fast when implemented as the cluster update
occurs in a single phase. In the next section we
have shown some results obtained from applying
the algorithm.

III. RESULT

As we have mentioned earlier that few sites or
bonds are occupied for low p and most of the sites
are occupied for high value of pc. For small p few
sites need to be relabeled after identification of
clusters where as for high p number of cluster will
reduce and will become only one cluster for p=1.
Therefore, number of relabeling will be small in
the above mentioned situation. But near pc number
of clusters is large. Therefore we need to perform
many relabeling after cluster identification,
amalgamation and separation. As we can see in
Figure 2 that cluster relabeling number becomes
high for some value of pc. For 2D square lattice the
percolation threshold pc = ½. And our algorithm
when applied to 32x32 lattice averaged over 10000
lattice updates shows a pick very close to pc = ½.
Compared to standard algorithms our algorithm
requires much less relabeling.

Figure 2: Number of relabeling required for different
values of p in a 32x32 lattice.

The speed of the algorithm is compared to other
standard cluster labeling algorithms. We executed

both algorithms in the same computer to have a
relative estimation of the speed our algorithm. We
see (Fig 3) the computational time increases
linearly with the system size and slope of the curve
corresponding the tree based algorithm is smaller
that the Hoshen-Kopelman algorithm.

VI. CONCLUSION

The aim of the paper was to explain the main idea
of our tree based cluster labeling algorithm. We
have seen that the algorithm works quite better that
the standard algorithm. Here, we have compared
the algorithm with Hoshen-Kopelman algorithm in
the same computer. From the results obtained from
different papers we are convinced that our tree
base algorithm, when applied with Monte Carlo
Simulations, works at efficiency level comparable
to the fastest available algorithm.

Figure 3: Time taken for a single update of L =
100, 200, 400, 600, 800, 1000 & 1200 systems.
Here N = LxL. It is observed from the above graph,
the computational time taken by our tree based
algorithm increases almost linearly with the lattice
size. The triangular points show the corresponding
time taken by Hoshen-Kopelman algorithm.

REFERENCES

1. D Stauffer and A Aharony, “Introduction to
Percolation Theory”, Second Edition, Taylor
& Francis, London (1992)

2. S. de Bondt, L. Froyen, and A. Deruyttere,
“Electrical conductivity of composites: A
percolation approach,” J. Mater. Sci. 27,
1983-1988 (1992).

3. J. Machta, “Phase transitions in fractal porous
media,” Phys. Rev. Lett. 66, 169-172 (1991).

Marzuk M Kamal and M. Nasimul Haque

 106

4. K. Moon and S.M. Girvin, “Critical behavior
of superfluid 4He in aerogel,” Phys. Rev. Lett.
75, 1328-1331 (1995).

5. C.L. Henley, “Statics of a self-organized
percolation model,” Phys. Rev. Lett. 71, 2741-
4728 (1993).

6. C.Moore and M.E.J. newman, “Exact solution
of site and bond percolation on small-world
networks,” Phys. Rev. E 62, 7059-7064
(2000).

7. S. Solomon, G. Weisbuch, L. de Arcangelis,
N. Jan, and D. Stauffer, “Social percolation
models,” Physica A 277, 239-247 (2000).

8. J. Hoshen and R. Kopelman, “Percolation and
cluster distribution: Cluster multiple labeling
technique and critical concentration

algorithm,” Phys. Rev. B 14, 3438-3445
(1976).

9. C.-K. Hu, “Histrogram Monte Carlo
renormalization group method for percolation
problems,” Phys. Rev. B 46, 6592-6595
(1992).

10. H. Gould and J. Tobochnik, An introduction to
computer simulation methods, 2nd edition, p.
444, Addison-Wesley, Reading, MA (1996).

11. C. Moukarzel, “A fast algorithm for
backbones,” Int. J. Mod. Phys. C 9, 887-895
(1998).

12. J.E. de Freitas, L.S. Lucena, and S. Roux,
“Percolation as a dynamical phenomenon,”
Physica A 266, 81-85 (1999).

