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ABSTRACT 
 
A highly efficient tree based algorithm for studying site or bond percolation on any lattice system is 
described. Our approach is to identify the connectivity of the lattice sites in a single phase and to 
reduce the redundant computational load in each lattice update. Efficiency increases due to the 
creation of a multi-branched tree of the pointers of the cluster numbers at the time of investigation 
of cluster organization. At the later updates, the computational efficiency increases further as the 
algorithm would have to work only on the randomly chosen lattice sites or bonds instead of 
traversing the entire lattice.  
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I. INTRODUCTION 

 
The concept of percolation is very simple, each 
site on a specified lattice is independently either 
“occupied," with probability p, or not with 
probability 1 − p. The occupied sites form 
contiguous clusters which have some interesting 
properties. If the value of p is too small then few 
sites are occupied and in most of the cases the 
occupied sites are far away from each other 
forming many clusters. As we increase the value of 
p, these disconnected clusters grow bigger and 
sometimes two separate clusters touch each other 
merging to one cluster. We call a system 
“percolates”, if a single cluster is big enough to 
touch both of the opposite ends of the lattice 
system. It is observed that cluster becomes 
spanned above some value of p and we call it 
percolation threshold, pc. This is a second order or 
continuous phase transition between “not spanned” 
and “spanned” states. The value of pc depends on 
the topology of the lattice. [1] 
 
One can also consider bond percolation in which 
the bonds of the lattice are occupied with 

probability p, and this system shows behavior 
qualitatively similar to though different in some 
details from site percolation. 
 
Percolation phase transition is quite easily 
understandable. But, still there are many things 
about it that are still not known. For example, 
despite decades of effort, no exact solution of the 
site percolation problem yet exists on the simplest 
two-dimensional lattice and on any higher 
dimensional lattice. As there is no exact/theoretical 
solution of higher dimensional percolation 
problems, numerical simulation plays a very 
important role for studying. Because of these and 
many other gaps in our current understanding of 
percolation, numerical simulations have found 
wide use in the field. 
 
Site and bond percolation have found a huge 
variety of uses in many fields. Percolation models 
appeared originally in studies of actual percolation 
in materials percolation of fluids through rock for 
example but have since been used in studies of 
many other systems, including granular materials, 
composite materials, polymers, concrete, aero gel 
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and other porous media, and many others. 
Percolation also finds uses outside of physics, 
where it has been employed to model resistor 
networks, forest fires and other ecological 
disturbances, epidemics, robustness of the Internet 
and other networks, biological evolution, and 
social influence, amongst other things.[2-7] 

 
II. THE ALGORITHM 

 
Before discussing our algorithm we would like to 
talk about the standard algorithms for percolation. 
In standard methods, the whole new state of the 
lattice must be recreated for every different lattice 
size n and all the clusters have to be identified. 
Various authors have pointed out [9-12], however, 
if we want to generate states for each value of n 
then we can save ourselves some effort by noticing 
that a correct sample state with n+1 occupied sites 
or bonds is given by adding one extra randomly 
chosen site or bond to a correct sample state with n 
sites or bonds. In other words, we can create an 
entire set of correct percolation states by adding 
sites or bonds one by one to the lattice, starting 
with an empty lattice.  If we randomly change 
some lattice sites than the standard methods 
suggests that we have to traverse through the entire 
lattice to identify the newly formed clusters. For a 
small sized lattice this is not a big problem. 
Algorithms like Hoshen-Kopelman [8] can easily 
handle this problem. But applying the same 
algorithm for very big lattice would consume 
painfully long time especially when the algorithm 
is applied in Monte Carlo simulations. 
 
In our algorithm we have constructed a matrix of 
pointers of the cluster values the time of 
initialization of the lattice. This pointer are 
connected by a multi branched tree which contains 
all the information of the cluster system. At the 
first phase we identify the clusters and construct 
the tree to maintain the connectivity of the 
improperly labeled clusters. We also maintain the 
cluster sizes in another array which is related to the 
tree. The root of the tree contains all the 
information of the cluster. The main essence of the 
algorithm could be found after randomly changing 
the lattice sites. As we have already constructed a 
tree of the lattice sites for keeping track of the 
clusters, now we only need to readjust the tree 
node for the lattice site to be updated. 
For convenience we would like to describe our 
algorithm for bond percolation. This algorithm 
could also be applied to site percolation with little 

modification. To start with we have to construct a 
lattice with some occupied sites. We consider it 
more convenient if we just construct the lattice 
with some random probability. This may be done 
as follows: 
 

1. Pick a random number within [0, 1]. If 
this random number is greater than 
another random number within [0, 1], 
then proceed to step 2 else jump to step 3. 

2. Pick an integer random number and test 
whether it is odd or even. If odd then 
occupy the bond else leave unoccupied. 

3. Repeat until all the bonds are traversed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Initially presence of two different clusters is 
observed. All the sites of each cluster points to their 
respective root. If we occupy another bond which may 
belong to any of the clusters, the new occupied bond/site 
actually merges two different clusters into one. As 
clusters are merged the sites must look for a common 
root as which is shown in the third figure. 
 
This lattice creation process consumes CPU time 
of O(N). 
Now we have the lattice to work on. In order to 
identify the clusters we first assume that each 
occupied site is an independent cluster and we try 
to connect these clusters on the basis of nearest 
neighbor position. And a data tree is constructed 
which contains the size and connectivity 
information of each cluster. The flow of our 
algorithm is as follows: 

1. Each occupied site is treated as 
independent cluster. If no nearest 
neighbors are occupied give this site a 
new cluster number. Insert this 
information in the data tree. 

2. If there are any nearest neighbors check 
for there roots. If the roots are same then 
just increase the size of the lattice by one. 

3. If roots are different then the root of the 
smaller cluster points to the root of the 

New lattice 
point 
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larger cluster. If clusters are of same size 
just set the root of one cluster point to the 
root of the other cluster. 

4. Repeat until the entire lattice is traversed. 
5. Compress the path of the data tree of each 

cluster just to reduce working overload in 
future calculation. 

 
The algorithm is simple enough to get confused 
about its efficiency. In fact, the algorithm is very 
fast when implemented as the cluster update 
occurs in a single phase. In the next section we 
have shown some results obtained from applying 
the algorithm. 
 

III. RESULT 
 
As we have mentioned earlier that few sites or 
bonds are occupied for low p and most of the sites 
are occupied for high value of pc.   For small p few 
sites need to be relabeled after identification of 
clusters where as for high p number of cluster will 
reduce and will become only one cluster for p=1. 
Therefore, number of relabeling will be small in 
the above mentioned situation. But near pc number 
of clusters is large. Therefore we need to perform 
many relabeling after cluster identification, 
amalgamation and separation. As we can see in 
Figure 2 that cluster relabeling number becomes 
high for some value of pc. For 2D square lattice the 
percolation threshold pc = ½. And our algorithm 
when applied to 32x32 lattice averaged over 10000 
lattice updates shows a pick very close to pc = ½. 
Compared to standard algorithms our algorithm 
requires much less relabeling.      

 
Figure 2: Number of relabeling required for different 
values of p in a 32x32 lattice.  
 
The speed of the algorithm is compared to other 
standard cluster labeling algorithms. We executed 

both algorithms in the same computer to have a 
relative estimation of the speed our algorithm. We 
see (Fig 3) the computational time increases 
linearly with the system size and slope of the curve 
corresponding the tree based algorithm is smaller 
that the Hoshen-Kopelman algorithm. 
 

VI. CONCLUSION 
 

The aim of the paper was to explain the main idea 
of our tree based cluster labeling algorithm. We 
have seen that the algorithm works quite better that 
the standard algorithm. Here, we have compared 
the algorithm with Hoshen-Kopelman algorithm in 
the same computer. From the results obtained from 
different papers we are convinced that our tree 
base algorithm, when applied with Monte Carlo 
Simulations, works at efficiency level comparable 
to the fastest available algorithm. 
 

 
 

Figure 3: Time taken for a single update of L = 
100, 200, 400, 600, 800, 1000 & 1200 systems. 
Here N = LxL. It is observed from the above graph, 
the computational time taken by our tree based 
algorithm increases almost linearly with the lattice 
size. The triangular points show the corresponding 
time taken by Hoshen-Kopelman algorithm.  
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