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Abstract

Electrical conduction is the flow of electron due to a force applied by an
electric field. In bulk material, conduction process obeys Ohm’s law. The
law states that current is proportional to applied voltage. But nano-sized ob-
jects behave differently. At these range quantum effects modify the electronic
conduction properties and exhibit a staircase-like conduction. This is also
known as Coulomb staircase. In our work, electronic properties of a quantum
dot was investigated in transistor geometry. As a device a simplified Single
Electron Transistors (SET’s) model has been considered, which is made of a
quantum dot connected through two tunneling junctions to a source and a
drain electrode, and capacitively coupled to a gate electrode. Single-Electron
Transistors are often discussed as elements of nanometer scale electronic cir-
cuits because they can be made very small and they can detect the motion
of individual electrons. A Python program has been developed based on rate
equations and IvsV characteristic graph as a function of temperature has
been obtained using numerical calculation. Then radius of the quantum dot
has been determined at a temperature when the QD is shifted away form
quantum regime and falls into classical regime.
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Chapter 1

Electrical Conductivity of
Metals

The electrical conductivity is the ability of a substance to conduct an electric
current and has the properties of inverse of resistivity. When an electrical
potential V is applied across a piece of material, a current of magnitude I
flows. In most metal, at very low values of V ,under same physical conditions
the current is proportional to V and can be described by Ohm’s Law.

I =
V

R

Where R is the electrical resistance. R depends on the geometry of the
materials and on the intrinsic resistivity of the material.

Current is a continuous flow of a charged particle that implies either
ion or electrons which get involved in this motion. In most materials, current
is carried by the electron. In ionic crystals, charge carriers are ions. Only in
liquids, both of these types of particle take part in electrical conduction.

In 1900, P.Drude first proposed a model that explains how elec-
tronic transportation happens inside a metal. That model was constructed
based on the kinetic theory of gases. He used the concepts of ideal gases to
visualize the properties of electron movements inside a solid bulk material.
Electrons are constantly moving within the boundary of bulk material’s vol-
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ume and bouncing on and off inside the metal wall in a way very similar to
“the ball bouncing in pinball machine arcade game ”.

1.1 Drude’s Model

The assumptions Drude’s model is based on are stated below :

1. We are considering electron ion interaction as instantaneous, uncorre-
lated events.

2. An electron will travel in a straight line from one point to another point
with respect to time.

3. We assume the interval in between two consecutive collision is τ . Proba-
bility of collision in a given time dt is denoted by dt

τ
. τ does not depends

on electrons position and momentum.

4. The temperature will remain conserved throughout the process.

When electrons move inside a bulk material and since we are eliminating all
other interaction except collision, we will trivially observe change in momen-
tum after a collision. Let us assume at a time t the momentum of electron
is ~ρ(t) and at a time t+ dt momentum becomes ~ρ(t+ dt).

By third assumption, we could write the probability of collision as
Pc = dt

τ
, assuming that we are calling probability of collision as Pc.

~ρc(t+ dt) = 0, if there is no collision occurred at a time (t+ dt).

Since the probability should add up to 1 we could write Pc+Pnc = 1
where Pnc is probability of no collision.

So we can write :
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Pnc = (1− Pc)

Pnc = (1− dt

τ
) ∵ Pc =

dt

τ

In case of no collision, after at time (t + dt), the momentum of an
electron would be :

~ρ(t+ dt) = ~ρ(Pc + Pnc)(t+ dt)

= Pc~ρc(t+ dt) + Pnc~ρnc(t+ dt)

= (1− dt

τ
)(~ρ(t) + Fdt)

By taking the time derivative of ρ(t+ dt) at (t+ dt) we can write :

~ρ(t)

dt
=
~ρ(t+ dt)− ~ρ(t)

dt

=
~ρ(t)− ~ρ(t)dt

τ
+ ~Fdt− ~F dt2

τ

dt

Neglecting second order derivative dt2 terms we can write :

~ρ(t)

dt
= −~ρ(t)

τ
+ ~F (t)

Drude’s model qualitively explains the phenomenon of electrical
resistance and gives reliable values for the conductivity.

Despite the successes of Drude’s theory, there are some features of
electrical conductivity that could not be understood using Drude’s Model.
For instance, Drude’s model fails to explain why different metal has differ-
ent conductivities and why electron’s movements varies from one metal to
another or in alloys?
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1.2 Bloch’s Theorem

After 25 years of Drude’s model, F.Bloch solved the quantum mechanical
equation for an electron in a perfect crystal lattice. We have been treating
electron as totally free. Now we introduce a periodic potential V(r). A period-
icity appears because ions are arranged inside a material with a periodicity
of their Bravais lattice. The underlying translational periodicity(T )of the
lattice is defined by the primitive lattice translational vector.

~T = n1 ~a1 + n2 ~a2 + n3 ~a3

Where n1, n2, n3 are integers and ~a1, ~a2, ~a3 are three non coplanar vectors.

Now V (r) must be periodic.

~V (r + T ) = ~V (r)

The periodic nature of ~V (r) also implies that the potential might be expressed
as Fourier’s series.[9]

~V (r) =
∑
G

VGe
i ~G.~r

Where G is a set of vectors and VG is Fourier’s coefficient.

From above equation and taking the periodicity in consideration we
can set the condition as

ei
~G.~T = 1, ~G.~T = 2pπ

Where p is an integer. As T = n1 ~a1 + n2 ~a2 + n3 ~a3 implies that

~G = m1
~A1 +m2

~A2 +m3
~A3

Where the mj are integers, and the Aj are three non coplanar vectors defined
by

~aj ~Al = 2πδjl

Using very simple reasoning we have shown that the existence of
a lattice in r-space automatically implies the existence of lattice in k space.
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The vectors ~G define the reciprocal lattice and the ~Aj represents the primi-
tive translational vector. However periodicity in the k-space symmetry also
implies that the all information will be contained in the primitive unit cell of
reciprocal lattice, known as the first Brillouin zone. The first Brillouin has
the k-space volume.

~Vk3 = ~A1 · ~A2 × ~A3

Now we need to derive a suitable set of functions with which we
can describe the motion of electrons through a periodic potential. These
functions should reflect the translational symmetry properties of the lattice;
and to do this we use Bornvon Karman periodic boundary conditions. We
choose a plane wave

φ(~r) = e(
~k·~r−ωt)

Which is subject to boundary conditions and also include the sym-
metry of the crystal

φ(~r +Nj
~Aj) = φ(~r)

Where j = 1, 2, 3 and N = N1, N2, N3 are the number of primitive
unit cells in the crystal. Nj is the number of unit cells in the jth direction.

The boundary condition also implies that

eiNj
~k· ~Aj = 1

For j = 1, 2, 3. Comparing this with previous Equation suggests
that the allowed wave vectors are

~k =
3∑
j=1

mj

Nj

~Aj

Each time mj changes by one, we generate a new state.
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Therefore, the volume of k-space occupied by one state

~A1

N1

.
~A2

N2

×
~A3

N3

=
1

N
~A1 · ~A2 × ~A3

Comparing this with last equation shows that the Brillouin zone always con-
tains the same number of k-states as the number of primitive unit cells in
the crystal.

This fact has immense importance, it is the key factor in determin-
ing whether a material is an insulator, semiconductor or metal.

The Schrodinger equation for a particle of mass m in the periodic
potential V (r) may be written as :

Hψ = {−~2∇2

2m
+ V (r)}ψ = Eψ

As before, we write the potential as a Fourier series

~V (r) =
∑
G

~VGe
i ~G·~r

Where G is the reciprocal lattice vectors. We are at liberty to set
the origin of potential energy Wherever we like; as a convenience for later
derivations we set the uniform background potential to be zero, i.e

V0 ≡ 0

We can write the wave function ψ as a sum of plane waves obeying
the Bornvon Karman boundary conditions

ψ(r) =
∑
~k

C~ke
i~k.~r

This ensures that ψ also obeys the Born-von Karman boundary
conditions. We can now substitute the wave function and the potential into
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the Schrodinger equation to give∑
~k

~2k2

2m
C~ke

i~k·~r + {
∑
~G

V ~Ge
i ~G·~r}{

∑
~k

C~ke
i~k·~r} = E

∑
~k

C~ke
i~k.~r

The potential energy term can be rewritten as

~V (r)ψ =
∑
~G,~k

V ~GCke
i ~G+~k~r

Where the sum on the right-hand side is over all ~G and ~k. As the
sum is over all possible values of ~G and ~k, it can be rewritten as

~V (r)ψ =
∑
~G,~k

V ~GC~k− ~Ge
i~k.~r

Therefore, the Schrodinger equation becomes∑
~k

ei
~k.~r{(~

2∇2

2m
− E)C~k +

∑
~G

V ~GC~k− ~G} = 0

It is going to be convenient to solve Schrodinger equation for first
Brillouin zone and apply Bornvon Karman boundary conditions to see that
only Ck coefficient is needed to explain the wave function. Here k is the
allowed wave vectors by Bornvon Karman boundary conditions.

Now we define ~k such way that ~k = ~q − ~G where ~q lies inside the
first Brillouin zone and ~G is general reciprocal vectors. Substituting this new
value withψk we could find wave function for each distinct value of ~q.

ψq(~r) =
∑
~G

C~q− ~Ge
i(~q− ~G).~r

= ei~q.~r
∑
~G

C~q− ~Ge
i ~G.~r

= ei~q.~ruj,~q
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This uj,q term represents the periodicity of lattice which produces
a set of electron states with a particular character. This is the basis of our
idea of an electronic band.

The number of possible wave functions in this band is given by the
number of distinct q, i.e. the number of Born-von Karman wave vectors in
the first Brillouin zone.

Therefore, the number of electron states in each band are just
2×(the number of primitive cells in the crystal), where the factor two has
come from spin-degeneracy.

This leads us to Blochs theorem. “The eigenstates ψ of a one-
electron Hamiltonian H = ~2∇2

2m
+V (r) where V (r+T ) = V (r) for all Bravais

lattice translation vectors T can be chosen to be a plane wave times a function
with the periodicity of the Bravais lattice. ”

The ground state of a system of Bloch electrons can be constructed
by filling up energy levels just as in the free electron case. To count each level
only once, k needs to be limited to a single primitive cell of the reciprocal
lattice, typically the first Brillouin zone. The allowed k values are still spaced
discretely, even though εn(k) are continuous functions of k. Since the volume
of the Brillouin zone is 8π3

υc
and ∇k = 8π3

V
, the number of levels per band is

V
υc

. Which gives 2N electron states per band.

Depending on the number of valence electrons Z per cell υc and
the band structure εc(k), one may obtain completely filled or partially filled
bands. The Fermi surface is obtained from the condition that

εn(k) = εF

If some bands are completely filled and all others remain empty, the gap
between the highest occupied level and the lowest unoccupied level is called
the band gap. In this case, there is no Fermi surface. This may happen -
but does not need to happen - if Z is even. If Z is odd, there are always
partially filled bands and a Fermi surface is formed. If the material has a
Fermi surface, it also has metallic properties.

Now, in order to obtain both qualitative and quantitative result
then we need to consider the different energy levels of an electron. To begin
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with, let us remind ourselves of the restriction which governs the energy levels
of an isolated atom. This can be summarized by the following statements :

1. Four parameters are used to explain the properties of electrons in an
atom, which are denoted by n, l, ml, and ms. Where n is principle
quantum number, l takes the integer values from 1 to (n − 1), ml is
allowed integer values from −l and +l and ms can be -1/2 to +1/2.

2. The electrons are only allowed to occupy certain discrete energy levels,
which we label using the quantum numbers n and l .

3. The occupancy of these levels are determined by the Pauli’s exclusion
principle which states that each electron must possess a unique set of
quantum numbers.

If we apply this rule to any atom, we will find that electrons are arranged
according to their shell numbers. However in a solid, atoms are not isolated.
In fact they are closely attached to a large number of atoms. Therefore the
electrons are not remained as a property of an atom, instead they share their
outer shell electrons to create a covalent bond with other atoms and creates
energy band. The energy band structure plays much the same role as the
atomic energy orbital level does for an atom.

As we know from “aufbau principle ” the electrons tends to remain
in lowest energy level. The highest energy level, partially filled lowest en-
ergy level and the gap between them determines the tendency of electrons
movement in solid bulk materials as well as clarifies the concept about why
different metal and alloys inherits different conductivity. In case of partially
filled energy band, we know electrons tend to occupy lowest available energy
level. So if there are N electrons in a band we can assume N

2
lowest energy

levels are occupied. In this case, consideration of a statistical distribution
is necessary and the distribution was first determined by Enrico Fermi and
Paul Dirac in 1926.
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1.3 Fermi-Dirac Distribution Function

To derive the Fermi-Dirac distribution function, we start from a series of
possible energies, labeled Ei. At each energy, we can have gi possible states
and the number of states that are occupied equals gifi, where fi is the prob-
ability of occupying a state at energy Ei. We also assume that the number
of possible states is very large, so that the discrete nature of the states can
be ignored. The number of possible ways- called configurations- to fit gifi
electrons in gi states, given the restriction that only one electron can occupy
each state, equals:

Wi =
gi!

(gi − gifi)!gifi!

This equation is obtained by numbering the individual states and exchanging
the states rather than the electrons. This yields a total number of gi! possible
configurations. However since the empty states are all identical, we need
to divide by the number of permutations between the empty states, as all
permutations cannot be distinguished from each other and can therefore only
be counted once. In addition, all the filled states are indistinguishable from
each other, so we need to divide also by all permutations between the filled
states, namely gifi.

The number of possible ways to fit the electrons in the number of
available states is called the multiplicity function. The multiplicity function
for the whole system is the product of the multiplicity functions for each
energy Ei:

W =
∏
i

Wi =
∏
i

gi!

(gi − gifi)!gifi!

Using Stirling’s approximation, one can eliminate the factorial signs, yielding:

lnW =
∑
i

lnWi =
∑
i

[gi ln gi − gi(1− fi) ln(gi − gifi)− gifi ln gifi]

The total number of electrons in the system equals N and the total
energy of those N electrons equals U . These system parameters are related
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to the number of states at each energy gi, and the probability of occupancy
of each state fi, by :

N =
∑
i

gifi

U =
∑
i

Eigifi

According to the basic assumption of statistical thermodynamics, all possible
configurations are equally probable. The multiplicity function provides the
number of configurations for a specific set of occupancy probabilities fi. The
multiplicity function sharply peaks at the thermal equilibrium distribution
since this is the most likely distribution of the system and must therefore
be associated with the largest number of “equally probable ” configurations.
The occupancy probability in thermal equilibrium is therefore obtained by
finding the maximum of the multiplicity function W , while keeping the total
energy and the number of electrons constant.

For convenience, we maximize the logarithm of the multiplicity
function instead of the multiplicity function itself. According to the La-
grange method of undetermined multipliers, we must maximize the following
function :

lnW − a
∑
j

gjfj − b
∑
j

Eigifi

Where a and b need to be determined. The maximum of the multiplicity
function W is obtained by :

∂

∂gifi

[
lnW − a

∑
j

gjfj − b
∑
j

Eigifi

]
= 0

Which can be solved, yielding :

ln
gi − gifi
gifi

− a− bEi = 0

Or

fi = fFD(Ei) =
1

1 + exp(a+ bEi)

14



Which can be written in the following form

fFD(Ei) =
1

1 +
Ei−Ef
β

With β = 1
b

and Ef = −a
b

. The symbol Ef was chosen since this constant
has units of energy and will be the constant associated with this probability
distribution. Taking the derivative of the total energy, one obtains:

dU =
∑
i

Eid(gifi) +
∑
i

gifidEi

Using Lagrange equation this can be rewritten as

dU = βdB(lnW ) +
∑
i

gifidEi + Ei

Any variation in the Ei can only be caused by a change in volume, so that
the middle term can be linked to a volume variation dV .

dU = βdB(lnW ) +
[∑

i

gifidEi + EfdN
]
dv + EfdN

Comparing this to the thermodynamic identity:

dU = TdS − PdV + νdN

One finds that b = kT and S = k lnW , where k is a constant that must be
determined. The energy, Ef , equals the energy associated with the particles,
namely the electro-chemical potential, m. The comparison also identifies the
entropy S, as being proportional to the logarithm of the multiplicity function,
W . The proportionality constant, k is known as Boltzmann’s constant. The
Fermi-Dirac distribution function then becomes:

fFD =
1

1 +
E−Ef
kT

The Fermi-Dirac distribution is also known as the “Fermi factor ”. Note that
in proper quantum terms, it gives the probability that a state is occupied by
an electron.
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Chapter 2

Nanoparticles and Quantum
Dots

2.1 Nanoparticles

Nanoparticles are the rudimentary component in the invention of nanostruc-
ture. The size of objects that we usually interact in real life is far larger than
nano scale object. Their physical properties remain persistent regardless of
their size and all could be explained using Newton’s laws of motion. As
we approach to smaller scale regions, to understand how things act beyond
our naked eye with the help of microscopic view, we perceive that physical
properties depend on sizes and shapes.

Quantum confinement in semiconductor particles, surface plasmon
resonance in some metal particles and super magnetism in magnetic materials
become apparent because of size dependencies.[5]

Nanotechnology might be a finding of modern science, but nanopar-
ticles have quite long history. The optical properties of nanoparticle fasci-
nates artisans and have been used from time immemorial for building radiant
sculpture and shiny pottery. Lycurgus cup was one of the oldest specimen
made by using dichoric glass which contains metal crystals of Ag and Au (size
of 70nm). These crystal gives unique color properties. The history of the
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nanoparticle from ancient times to the Middle Ages has been summarized by
Daniel and Astruc. At that time physician used soluble gold as a portion to
cure various human disease. Nanotechnology is easily conspicuous in various
old churches painting. From after middle ages to early twentieth century
scientist did experiment and researched with ultra fine gold particles, but
due to lack of advanced technology proper understanding about ultra fine
particle was not easier. At 1937 Scanning electron microscope ( SEM ) was
invented by M. Von Ardenne. Twenty two years later Richard P. Feynman,
a physicist at CalTech, forecasted the advent of nanomaterials. In one of
his lectures he said, qThere is plenty of room at the bottom and suggested
that scaling down to nano level and starting from the bottom was the key to
future technology and advancement.[6]

As the field of nanotechnology advanced, noble nanomaterials be-
come apparent having different properties as compared to their larger coun-
terparts. Many physical properties of materials, especially the melting point,
change when the physical size of the material approaches the micro and nano
scales.[12]

Interesting magnetic properties have also been observed in small
clusters. In a cluster the magnetic moment of each atom will interact with
the moments of the other atoms, and can force all the moments to align in one
direction with respect to some symmetry axis of the cluster the cluster will
have a net magnetic moment, it will be magnetized. As cluster size decreases
it therefore becomes easier for them to exhibit ferromagnetic behaviour. In
some cases, even clusters made up of nonmagnetic atoms can have a net
magnetic moment. For instance rhenium clusters show a pronounced increase
in their magnetic moment when they contain less than 20 atoms. For clusters
with less than 15 atoms these moments are fairly large.

One of the most fascinating and useful aspects of nanomaterials is
their optical properties. Applications based on optical properties of nano-
materials include optical detector, laser, sensor, imaging, phosphor, display,
solar cell, photocatalysis, photoelectrochemistry and biomedicine. The opti-
cal properties of nanomaterials depend on parameters such as feature size,
shape, surface characteristics, and other variables including doping and inter-
action with the surrounding environment or other nanostructures. Likewise,
shape can have dramatic influence on optical properties of metal nanostruc-
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tures.

In general nanoparticles are particles with at least one dimension
from 1nm to 100nm in size. [10] These can include, e.g. fullerens, metal
clusters (agglomerates of metal atoms), large molecules, such as proteins, and
even hydrogen-bonded assemblies of water molecules, which exist in water
at ambient temperatures. Nanoparticles represent a state of matter in the
transition region between bulk solid and single molecule.

Nanomaterials can be nano scale in one dimension (e.g. surface
films), two dimensions (e.g. strands or fibers), or three dimensions (e.g.
particles).[2] They can exist in single, fused, aggregated or agglomerated
forms with spherical, tubular, and irregular shapes.[1] Common types of
nanomaterials include nanotubes, dendrimers, quantum dots and fullerenes.
According to Richard W.Siegel, Nanostructured materials are classified as
Zero dimensional, one dimensional, two dimensional, three dimensional nanos-
tructures.

Zero dimensional nanomaterials have nano-dimension in all three
directions. Metalic nanoparticles including gold and silver nanoparticles and
semi conductor such as quantum dots are the perfect example of this kind of
nanoparticles. Most of these nanoparticles are spherical in size and diameter
of these particles will be in the 1− 50nm range.

In one dimensional nanostructure, one dimension of the nano struc-
ture will be outside of nano meter range. These include nanowires, nanorods
and nanotubes. These nanomaterials are long but with diameter of only a
few nanometer. Nanowire and nanotubes of metals, oxides are few example
of this kind of materials.

In two dimensional nanostructure, two dimensions are outside the
nanometer range. These include different kind of nano films such as coatings
and thin film multilayer, nano sheets or nano walls. The area of the nano
films can be large, but thickness is always in nano scale range.

All dimensions of three dimensional nanostructure are outside of
nanometer range. These includes bulk materials composed of individual
blocks which are in the nanometer scale.
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Fig-2.1[15] illustrates the conductance of different sizes nanoparti-
cles. As we see quantum dot belongs to zero dimensional nanoparticle and
it has discrete conductance peak which results in discrete current flow.

Figure 2.1: Spatial confinement of semiconductor structures and correspond-
ing electronic states

2.2 Quantum Dots

“Quantum dots are man-made “droplets ”of charge that can contain any-
thing from a single electron to a collection of several thousand. By confining
electrons in three dimensions inside semiconductors, quantum dots can recre-
ate many of the phenomena observed in atoms and nuclei, making it possible
to explore new physics in regimes that cannot otherwise be accessed in the
laboratory. ”[11]

As we have already discussed, nanoparticles have larger surface-to-
volume ratio and the number of surface atoms may be similar to or higher
than those located in the crystalline lattice core, therefore the surface prop-
erties are no longer negligible. When no other molecules are adsorbed onto
the nanocrystallites, the surface atoms are highly unsaturated and their elec-
tronic contribution to the behaviour of the particles is totally different from
that of the inner atoms. These effects may be even more marked when the
surface atoms are tightly bound. This leads to different electronic transport
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and catalytic properties of the nanocrystalline particles.

Another phenomenon, which occurs in metal and semiconductor
nanoparticles, is totally an electronic effect. The band structure gradually
evolves with increasing particle size, i.e. molecular orbital convert into delo-
calized band states. In a metal, the quasi-continuous density of states in the
valence and the conduction bands splits into discrete electronic levels, the
spacing between these levels and the band gap increasing with decreasing
particle size.

In the case of semiconductors, the phenomenon is slightly different,
since a band gap already exists in the bulk state. However, this band gap also
increases when the particle size is decreased and the energy bands gradually
convert into discrete molecular electronic levels.[16] If the particle size is less
than the De Broglie wavelength of the electrons, the charge carriers may be
treated quantum mechanically as qparticles in a box, where the size of the
box is given by the dimensions of the crystallites.[13] In semiconductors, the
quantization effect that enhances the optical gap is routinely observed for
clusters ranging from 1nm to almost 10nm. Metal particles consisting of
50 to 100 atoms with a diameter between 1nm and 2nm start to lose their
metallic behaviour and tend to become semiconductors.

Particles that show this size quantization effect are sometimes called
Q-particles or quantum dots. QD’s are often also called mesoscopic atoms
or artificial atoms to indicate that the scale of electron states in QD’s is
larger than the lattice constant of a crystal. However, there is no rigorous
lower limit to the size of a QD, and therefore even macromolecules and single
impurity atoms in a crystal can be called QDs.[7]

The analysis and understanding of the electronic properties that
lead to these applications involve quantum confinement effects of the carriers,
which crucially requires the accurate determination and characterization of
the electron and hole energy levels.

The conduction band and valance band in a quantum dot are de-
scribed by an effective Schrdinger equation :

−~2∆2

2m0m∗
ψ(r) + V (r)ψ = Eψ(r)
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Where the effective mass m∗ and the confining potential V (r) depend on
the material and the band of interest. m0 is the free electron mass and h̄ is
the reduced Planck constant. ψ is called the envelope function and E is the
energy of the state measured relative to relevant band edge. In the simplest
model, the potential V is given by the band edge discontinuity between the
QD and the surrounding material.

QD’s are small compare to the bulk excitation of Bohr radius,
the Coulomb interaction may be treated perturbatively. The commonly
used first-order perturbation theory gives an electron-hole binding energy
of 1.786e2εR where e is the elementary charge and ε is the dielectric constant
responsible for screening of the Coulomb interaction. The above considera-
tions lead to a simple expression for the ground state energy of a confined
electron-hole pair in spherical QD’s :

Eexc = Eg +
~2π2

2m0R2
(

1

me

+
1

mh

)− 1.786e2

εR

This simple theory very well captures the qualitative effects of con-
finement, viz., discrete nature of excitation energies, a blue shift of the ab-
sorption edge that increases as the size of the QD is reduced, and the en-
hancement of the Coulomb interaction with decreasing QD size. This model
has also been generalized to two-electron states including the electrostatic
potential of image charges. However, its quantitative validity is extremely
limited because of two major shortcomings. First, the effective mass picture
is valid only close to the band edges where the bands are parabolic. However,
particularly in small QD’s, where the confinement energy is larger, the en-
ergy levels are pushed deep into the bulk bands where non parabolicity effects
are important. Second, in most semiconductors of interest, the valence band
edge is degenerate leading to mixing of bands by the confinement potential.
Proper treatment of band-mixing is important even for a qualitatively correct
description of the electronic wave functions, as well as for several important
properties such as oscillator strengths for optical absorption.
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Chapter 3

Transistors

We have already discussed briefly about conduction in metals. Based on
how good a material can conduct current, we can divide them into three
groups i.e. conductor, semiconductor, insulator. Semiconductors are kind of
materials that inherits some characteristics of metal and some characteristic
of insulator.

Conductor type metal has one or two electron per atom. Generally
these electrons moves towards opposite direction if we apply electric field.
Insulators also have many electrons in them, but the electrons cannot move.
Some of them are trapped in individual atoms and can’t get away from them.
Others are nominally free to move about, but are locked in place by qgridlock.

“Energy gap ”, which means the gap between valance band and
conduction band, is zero in good conductor and gap is large in insulator. It
is impossible for an electron to jump from valance band to conduction band
in insulator.

The resistivity and resistance of most conductor increases with tem-
perature, but semiconductor like silicon resistance goes down. When an elec-
tron make this jump to conduction band, the parent atom becomes deficient,
and most text book refers them as hole because it can be filled by another
electron. When current flows in a semiconductor, an electron can migrate
from atom to atom. So these holes appears to migrate opposite direction to

22



the electron and these constitutes a current as well.

Natural semiconductor are called intrinsic semiconductor. When
they are modified by manufacturing process to give them enhanced proper-
ties, they are then called extrinsic. Extrinsic semiconductor are produced by
doping them to enhance their conductivity. The conductivity of semiconduc-
tor, like silicon can be increased by adding small amount of impurities that
have roughly same atomic size, but more or fewer electron than semiconduc-
tor. This process is known as doping. If adding impurity in semiconductor
makes the material positively charged then materials become p-type semi-
conductor and while negatively charged makes n-type semiconductor.

So p-type semiconductor has hole surpluses and n-type semicon-
ductor has electron surpluses. As a result if n-type and p-type were brought
together to create junction then the current can only flow one direction from
n-type to p-type. Flow cannot go reverse direction. This type of combined
semiconductor is called diode.

Now if we add another semiconductor material to a diode to cre-
ate one more junction, then as a whole the combination is called transistor.
Transistor either can be n-p-n or p-n-p. The formation of this kind of se-
quence based on their function is dubbed as emitter-source-collector or in
our case source-gate-drain. In operation drain is reverse biased relative to
base so that no current flows even if the voltage is large. On the other hand
if the source is forward biased, then current can flow even in relatively small
voltage.

Before the invention of transistor, electron tubes were a basic com-
ponent for electronics throughout the first half of the twentieth century. Elec-
tron tube was larger than transistor and required to heat up to work properly.
It was used largely by the radio, television, radar, telephone company. It was
only after 1956 appeared that transistor would immediately revolutionized
the electronics industry, because large demand for new electronic devices
and whole productions was difficult to overcome using old devices. After
that electrical industry has seriously turned to this modern age technology.

Another interesting thing about transistor is that we can make the
size of gate very thin. It could be scaled down to nanometre range. By
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scaling down, we could make island small enough to create quantum dot so
that single electron can only stay in this island. A quantum dot with single
electron shows negative charge. As a result if another electron tries to come
to that place, it will feel repulsion force due to electric field created by single
electron. The repulsion force is effectively measured by the equation:

E =
e2

2C

From above equation it is clearly visible if capacitance becomes very small
the charging energy will be high. So electron movement from source will be
restricted by the charging energy which works like a barrier for an electron.
Thus current flow might become quantized and electrons cannot jump into
quantum dot unless it releases electron to drain. It’s worth mentioning here
that two conditions must not be ignored for this process that coulomb energy
must be greater than thermal fluctuations and electron should be localized
only on the island.

3.1 Single Electron Transfer

Charge flow in metal and semiconductor is a continuous process because
conduction electron are not localized in a specified location. Electrons are
spread over the whole surface area which forms quantum fluid that can be
shifted by arbitrary small amount. The small variations of the charge Q on
a capacitor with potential difference U = Q

C
illustrates this property. The

charge can be any fraction of ε of the charge quanta e.

There exists however a solid state device which can transfer elec-
trons in discrete manner. It consist of two metallic electrodes, as named as
source and drain, separated by an insulating layer so thin that can traverse
electron by quantum tunneling.[14] Tunneling can be all or nothing process
because electron could not spend much time in insulating layer. If one ap-
plies a voltage V to such a tunnel junction then electron will tunnel across
the insulator at a rate give by V

eRt
. Here Rt is the tunnel resistance depends

on the thickness and area of the insulating barrier. It is important to stress
that the transport of an electron in tunnel junction and in a metallic resistor
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are fundamentally different, even though the current-voltage characteristic
is linear in both cases. Charge flows continuously align the resistor whereas
it flows across the junction in packets of e. It is obvious a tunnel junction
provides the means to extract electrons one at a time from an electrode.

However, the stochastic nature of tunneling makes it difficult to
control electron transport from upstream electrode to downstream electrode.
To gain more control over this nature, we usually add another gate electrodes
in between source and drain electrodes. We can call such isolated electrode,
in which electrons can enter and leave only by tunneling, an island. The
island is coupled electrostatically to the rest of the device.

Suppose furthermore, that the island dimensions are small enough
that the electrostatic energy Ec = e2

2C∑ of one excess electron on the island

is much larger than the characteristic energy kbT of thermal fluctuation. At
temperatures below 1K, no current can pass through the island with low bias
voltage. This effect is known as the Coulomb blockade, which is the result of
the repulsive electronelectron interactions on the island. Coulomb blockade
is the repelling energy of previous electron present in the island to the next
electron coming towards the island. The concept of Coulomb blockade refers
to the phenomenon that tunneling through an island may be inhibited at low
temperatures and small applied voltage. The reason is that the addition of
a single electron to such a system requires an electrostatic charging energy.

In metals, the Coulomb-blockade oscillations are essentially a clas-
sical phenomenon, since the energy spectrum of the confined region may
be treated as a continuum. However, this is not the case in semiconductor
nanostructures which have dimensions comparable to the Fermi wave length.

3.2 Single Electron Transistor

Single electron devices (SEDs) are based on the controllable single electron
transfer between small conducting islands. The single-electron transistor
describes a single electron transport through a quantum dot. A quantum
dot is a semiconducting nanoparticle whose electrons are confined in all three
spatial dimensions. There are many variations to the structure of the single-
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electron transistor. The main components of the single- electron structure
are shown in fig-3.1.[3]

Figure 3.1: Single Electron Transistor

The island is the quantum dot which is connected to the drain
and source terminals. Electron exchange occurs only with the drain and
source terminals, which are connected to current and voltage meters. The
gate terminal provides electrostatic or capacitive coupling. When there is no
coupling to the source and drain, there is an integer number N of electrons
in the quantum dot(island). The total charge on the island is quantized and
equal to qN . Since tunneling is a discrete process, the electric charge that
flows through the tunnel junction flows in multiples of the charge of electrons
e.

The formulation of the Coulomb blockade model is only valid, if
electron states are localized on islands. In a classical picture it is clear, that
an electron is either on an island or not. That is the localization is implicit
assumed in a classical treatment.

However a more precise quantum mechanical analyses describes the
number of electrons localized on an island N in terms of an average value,
< N > which is not necessarily an integer. The Coulomb blockade model
requires.
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|N− < N > |2 � 1

Clearly, if the tunnel barriers are not present, or are insufficiently opaque,
one can not speak of charging an island or localizing electrons on a quantum
dot, because nothing will constrain an electron to be confined within a cer-
tain volume.[4] If tunneling is allowed between the island, drain, and source
terminals, then the number of electrons N adjusts itself until the energy of
the total system is minimized. The tunneling junctions (barriers) are made
thick enough so that the electrons exist in the island, source, or drain, such
that the quantum fluctuation in the number N due to tunneling through the
barrier is much smaller than one. The electrostatically influenced electrons
travelling between the source and the drain terminals need to tunnel through
two junctions (barriers).

The island is charged and discharged as the electrons cross it, and
the relative energies of the island containing zero or one extra electron de-
pends on the gate voltage. Thus, the charge of the island changes by a
quantized amount q. The change in the Coulomb energy associated with
adding or removing an electron from the island is usually expressed in terms
of the island capacitance C. The charging energy Ec can be expressed as

Ec =
q2

C

This charging energy becomes important when it exceeds the thermal energy
kBT . The time δt needed to charge or discharge the island can be expressed
as

∆t = RtC

Where Rt is the lower-bound tunnel resistance. From the Heisenberg uncer-
tainty principle we have, Rt >

~
q2 . The quantity ~

q2 = 25.813k is called the

quantum resistance or quantum conductance (G = 38.74S).

Thus, two conditions must be met to observe the charge quantiza-
tion:

27



Rt �
~
q2

q2

c
� kbT

The capacitance can be made small by reducing the quantum dot size since
C = 4πεsR for a sphere and C = 8πεsR for a flat disc, where R is the radius
and s is the permittivity of the material. The gate voltage Vg is applied to
change the island electrostatic energy in a continuous manner. The total gate
voltage-induced charge on the island is expressed as q = CgVg. This charge
is considered continuous. By sweeping the gate voltage, the build up of
induced charge will be compensated in a periodic interval due to the tunneling
of discrete charges. The competition between the induced charges and the
discrete compensation leads to so-called Coulomb oscillations. Consider that
the gate voltage is fixed for the single-electron transistor while the drain-
source voltage is varied. The current-voltage results exhibit a staircase-like
behaviour known as a Coulomb stair-case.
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Chapter 4

Fabrication

Experiment designers have already developed various kinds of experiment
technique for wiring up a quantum dots inside transistor geometry. Scanning
Probe Microscopy (SPM), two unconventional technique (e.g The Electro-
deposition Technique, The nano constriction technique) and mostly popular
technique the electro-migration technique.

We would like to mention briefly about all these popular and effec-
tive procedures here.

The scanning probe microscopy : This technique allows us to actu-
ally see molecule before measuring them but it requires high level instrumen-
tation and many expertise to perform the experiments. Another drawbacks
of this method which is against our purpose because of the reason that it does
not have gate electrode. Therefore measuring gate voltage is not possible.
In this methods a continuous metallic electrodes brought into a flexible sub-
strate level and bend to extent until it breaks. In this way we could brought
electrode length into pm level.

The electro-deposition technique : Morpurgo, A.F., C.M. Marcus,
and D.B. Robinson first explains the unconventional process by positioning
two electrodes together on an insulating substrate and then two electrodes
are brought nearer until separation become smaller. The separation between
this electrodes could be as small as 1nm. This process combines both elec-
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trochemical and lithographic process.

The naonoconstriction technique : A small hole is created with the
size of a molecule in a thin small silicon nitrate membrane and two electrodes
brought together around the hole to make tunnel barriers. Another process
is currently done in which a molecule is pushed into a electrodes using a
needle.

The electro-migration technique : The process we will follow in our
work is electro-migration. This process is kind of a combination of scanning
probe microscopy technique and lithography.

A continuous wire is fabricated using standard e-beam lithography.
Applying large voltage (0.5 to 1)υ, we create a small gap typically 1 to 2nm
in length. This small gap works as a place for gate electrode. Usually when
a metallic wire kept under large density of current for over a long period of
time, the ongoing process finally breaks down the wire. It creates problem
for uninterrupted current. In bulk metal, atoms are closely connected to each
other. Their formations are not tightly bound. Defects on their structure
provides impurities, dislocations and grain boundaries.

Current flow through this structure changes electron’s directions.
As a result collision and scattering happens. It transfers momentum to scat-
terer, thus exerts a force on it. This force can cause the scatterer to move
out of it’s original position. Larger current density increases the number of
relocation events. It will be also accelerated at higher temperature because
lattice phonon will help atoms move out of their original position. This mass
transport process caused by a large electric current density (electron winds)
is called electro-migration.

The formation of the gap can be seen by SEM technique. In between
this gap we put a molecule or quantum dots. Electronic level of these dots
is controlled by gate electrodes. As a gate electrode we choose thinner,
smaller and stronger electrode. We know that electrochemical potential of
a quantum dot can be controlled by gate electrode. That’s why we place
gate electrodes as close as possible to gate electrodes(less than 50nm). The
relation between the gate capacitance and the thickness of the gate insulator
will vary depending on the local device geometry and electrostatics. We are
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using compound of oxide as gate electrodes.

In reality, the oxide usually fails well below 30V and in some cases
electric current flows between the gate and the source/drain electrodes even
at very low biases. This premature gate failure and gate leakage is caused
by impurities and pin-holes present in the gate oxide.

To minimize this annoying possibility, one can reduce the overlap
area between the gate and the source/drain electrodes.

Again, it is not a good idea to make the whole electrode structure
(typical total area 0.1 cm2) on top of a 30nm gate oxide. Instead, one can
reduce the premature gate failure and gate leakage by defining two regions
with different gate thickness; a small region with a thin gate oxide and all
other areas with a thicker (> 200nm) field oxide.
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Chapter 5

Simulation

5.1 Counting The Electron

Counting statistics in sequential tunneling is the mathematical process that
counts the average number of electrons flows from source to drain via quan-
tum dot island. Since it is a flow of electron, the rate equation comes to
as an very handy tool in quantum electronics. Rate equation provides the
statistical information about the system.

In case of quantum scenario, where energy and time has very close
connection, rate equation can be expanded to gather statistical information
about the distribution of energy amongst the particles. From the distribution
of energy states one can demonstrate that electrons are placed over potential
µ according to Boltzmann distribution.

n = Ne exp
µ
kbT

No particular assumption was made in rate equation other than the
fact that the particles are conserved in a phase, so that energy would be
conserved automatically.
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Consider then, a set of particles ni that can exist any of Ni range
which are all at energy Ei. An arbitrary range of values of integer i denotes
the different energies. One can simply argue that there are Ni states available
for ni electrons. This assumption can later be contrasted with the assumption
of quantum particles. The whole system supposed to be closed system with
no energy lost or gained from external source. It is assumed that particles
interact with only other particles at any one instant of time.

Now let us assume that there are three more energy range Ej, Ek, El
where (i < j < k < l) and situated particles are nj, nk, nl respectively.
Suppose then one of nj particle exchanges its energy with similar particle
of nk at range Nk whose energy is Ek. The j particle scattered or changes
state to become a l particle in one of Nl range at energy El. The k particle
with which j particle interacted now needs to change it’s state in order to
conserve its energy. So the k particle moves to level i whose energy state is
Ei. The initial energy equals to the final energy for this interaction requiring
that

Ej + Ek = Ei + El

The probability of a Ej energy level particle jumping to a El energy
level particle is proportional to the number of particle available to move and
to the number of states at energy level El available to receive the particle.
So that

dn

dt j→l
∝ njNl

The movement of Ej energy level particle to a states at energy level El has to
be linked, through energy conservation, by allowing the particle movement
from k to i. This is also proportional to the number of available particle nk
and to the number of available states Ei. So

dn

dt k→i
∝ nkNi

Now combining the two rate equations and summing over all the
possible states at k and i we can write
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dn

dt j→l
=
∑
k,i

{Ajk,il njnkNlNi}

Ajk,il is the probability of a change per single particle at j to a single
available state at l accompanied by the movement of single particle at k to
a single available state i. As the same way, we can show that Ail,jk is the
probability of a change per single particle at i to a single available state at
k accompanied by the movement of single particle at j to a single available
state l.

Ajk,il = Ail,jk

Ail,jk is the exactly opposite motion of Ajk,il and it is believed that
two outcome has the same probability. This justification is made by what
happens by reversing time for a cloud of interacting particles where all energy
accounted for in the system and no energy takes away from the system. It
is supposed to be true that this “time reversal ” properties carries over into
all types of interaction.[8] Scattering into j is then formed similar way to
scattering out. So to give the total scattering into and out as :

dnj
dt

=
∑
i,k,l

{Ajk,il NjNkninl − njnkNiNl}

=
∑
i,k,l

{
Ajk,il njnkninl

[
Nj

nj

Nk

nk
− Ni

ni

Nl

nl

]}

In equilibrium
dnj
dt

= 0 over ensemble of system. The detailed bal-

ance that is required to bring the system in equilibrium regardless mechanism
of interaction is given by(

Nj

nj

)(
Nk

nk

)
=

(
Ni

ni

)(
Nl

nl

)
ln

(
Nj

nj

)
+ ln

(
Nk

nk

)
= ln

(
Ni

ni

)
+ ln

(
Nl

nl

)
= f
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By comparing above equation with the energy conversion law we can con-
firmed that the f must be the function of f(E), with f(E) and E both
conserved in collision. The functional dependences of nj over Ej gives us

ln

(
Nj

nj

)
= b (Ej − El)

This hold for all i, j, k, l. Here b and El are independent of state
j. Then we can expect that the occupation of an energy state averaged over
the number of ensemble given by

nj = Nj exp[−b(Ej−El)]

The rate equation do not, in general give the constant value which are used,
and this constant have to be determined from experiment or comparing with
other theories. Comparison with ideal perfect gas gives

b =
1

kbT

where kb is the Boltzmann constant and T is the temperature. The constant
El is determined from the total number of N .

N =
∑
j

nj =
∑
j

Nj exp[−b(Ej−El)]

El = kbT ln


N[∑

j Nj exp
Ej
kbT

]


The energy El provides a reference energy determined by the states
and the number of particles. Above equations determine the definite value
for El when N is known. Typically the N is fixed for metal, in that case the
energy is called Fermi energy.

Now we restrict particles movement by considering Pauli’s quan-
tum restriction. In this case the available states at certain energy level is
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(Nm − nm) where m = i, j, k, l. Therefore the new probability of the move-
ment happening for just one particle at j and k with one vacancy at i and l
is given by

dn

dt j→l
=
∑
k,i

{Ajk,il njnk (Nl − nl) (Ni − ni)}

So that the total scattering both into and out of j is given by

dnj
dt

=
∑
i,k,l

{Ajk,il (Nj − nj) (Nk − nk)ninl − njnk (Ni − ni) (Nl − nl)〉

Here the system is also a closed system, with no energy being lost to or gained
from any external source. All interaction in this closed system is considered
to be the function of energy. So we can write

ln

(
(Nj − nj)

nj

)
= b (Ej − El)

ln

(
Nj

nj
− 1

)
= b (Ej − El)

The final result for the distribution with energy is then given as the Fermi-
Dirac distribution

F (E) =
nj
Nj

=
1

1 + exp
(Ej−El)
kbT

We are basically solving the rate equation for one level quantum dot
provided by the Fermi-Dirac probability distribution function to simulate
electronic transportation in nano particle at increasing temperature. The
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complete set of equation for source and drain could be derived as bellow :

fD =
1

1 + exp
(
µ(N+1)−µD

kbT
)

=
1

1 + exp
(
µ(N+1)
kbT

)

fS =
1

1 + exp
(
µ(N+1)−µS

kbT
)

=
1

1 + exp
(
µ(N+1)+|e|V

kbT
)

µ(N+1) = E0 − |e|
CGVG + CSV

Ctotal
= − |e| CGVG + CSV

Ctotal

Then the current I will be ,

I

|e|
= −P0Γsfs + P1Γs(1− fs) =

ΓSΓD
ΓS + ΓD

(fD − fS) ≡ Γ(fD − fS)

5.2 Atomistic Simulation

There are various methods to do atomistic simulation. Among all of them I
wish to review some popular methods that are related to our work such as
: Empirical methods, Quantum Mechanical methods, Molecular Dynamics
methods, Metropolis Monte Carlo methods.

Empirical Methods is one of the most simplest and idealistic case for
simulation. This methods involves simple equations that gives a reasonable
description about the system. This model assumes that ion are fixed as
a result they can not move. In this methods the existence of usable and
appropriate function is the only part of an issue but the greater challenge is
whether the parameter in the function can be tuned to appropriate values.
Formally this procedure is carried out by adjusting the parameter in the
model until it agrees with the experimental data. A more refined approach
is to incorporate real data.

Quantum mechanical methods holds out the possibility to perform
a simulation that can provide reliable results without the prior need of tun-
ing parameters . This computational methods solve such equations for which
there is no exact solution. Finding solution is a big challenge in this model.
The wave function properly describe a particle in this system. So we heavily
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use wave equation to simulate a particle in quantum mechanical methods.
However in case of particle-particle interaction the wave function we achieve
could not be assigned to individual particle. Another methods that is mostly
used in today’s world simulation is density functional theory. It is based on
number of electron passing thorough per unit area rather than wave equa-
tion. Density functional theory describes motions of electron containing per
unit area and then build the model based on that whereas wave function
describes a single particle and then build the model by taking product of
every participle in the system.

The molecular dynamics is simple in concept. The idea in which
molecular dynamics is based on is the link between acceleration and force in
Newtonian mechanics. It uses Empirical or Quantum mechanical methods to
calculate the force of a particle and then convert the force into acceleration.
Acceleration could be derived further using a time interval to measure ve-
locities and positions.There are actually several algorithms in common use,
giving the level of stability and accuracy required by the specific application.
The result of a simulation is the evolution of the positions and velocities
of an ensemble of atoms through time. It is possible to extend the set of
equations to include additional dynamical variables that enable the simula-
tions to correspond to constant temperature (variable energy) and constant
pressure/stress (variable sample volume and shape).

The Monte-Carlo methods is the one that is common use in com-
putational science, requires an algorithm for generating a new configuration
by changing a previous configuration. Any change in the configuration or
atomic ensemble will give a change in energy. If the energy change ∆E is
negative, leading to a lowering of the energy, the change is automatically
accepted. On the other hand, if the energy change is positive, the configura-

tion is only accepted with probability exp
(−∆E
kbT

)
. This procedure is repeated

for a large number of steps, leading to an evolution of the ensemble through
the multidimensional phase space. This approach ensures that the sampling
procedure is consistent with thermodynamics; for example, states with any

energy E occur with the relative probability exp
(−∆E
kbT

)
. The complete set of

configurations, including duplicated configurations, can be analyzed to give
averaged quantities that have the correct thermodynamic weighting auto-
matically ensured. For example, it is possible to calculate the average energy
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as a function of temperature, and the variance of the energy will yield the
heat capacity using the standard formulation based on fluctuations.

5.3 Why Python?

It was the first task to choose a well-structured and object-orientated pro-
gramming language for our simulation. Now a days, there are lots of pro-
gramming language that can do calculation what we need. i.e. C, C++,
Java, FORTRAN, Python etc. Among all of them I used python for evalu-
ating Fermi-Dirac equation because it seems to me comparatively easier to
understand than other language and it demands less amount of hand writ-
ten code for execution. There are some programming structural advantages
unlike other language provides.

Simulation program usually needs to calculate large number of data.
To handle large number of data, I store them into a Numpy array rather than
normal python list.I found normal array as less precise and took large amount
of time to store data and to call them whenever I need.

A NumPy array is basically described by a metadata (number of
dimensions, shape, data type) and the actual data. The data is stored in
a homogeneous and contiguous block of memory, at a particular address in
system memory (Random Access Memory, or RAM). This block of memory
is called the data buffer. This is the main difference with a pure Python
structure, like a list, where the items are scattered across the system memory.
This aspect is the critical feature that makes NumPy arrays so efficient.

Array computations can be written very efficiently in a low-level
language like C (and a large part of NumPy is actually written in C). Knowing
the address of the memory block and the data type, it is just simple arithmetic
to loop over all items, for example. There would be a significant overhead to
do that in Python with a list.

Spatial locality in memory access patterns results in significant per-
formance gains, notably thanks to the CPU cache. Indeed, the cache loads
bytes in chunks from RAM to the CPU registers. Adjacent items are then
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loaded very efficiently (sequential locality, or locality of reference).

Data elements are stored contiguously in memory, so that NumPy
can take advantage of vectorized instructions on modern CPU’s, like Intel’s
SSE and AVX, AMD’s XOP, and so on. For example, multiple consecutive
floating point numbers can be loaded in 128, 256 or 512 bits registers for
vectorized arithmetical computations implemented as CPU instructions.

Additionally, let’s mention the fact that NumPy can be linked to
highly optimized linear algebra libraries like BLAS and LAPACK, for ex-
ample through the Intel Math Kernel Library (MKL). A few specific matrix
computations may also be multi threaded, taking advantage of the power of
modern multi core processors.

Our simulation also required some very well-known physical con-
stant. For that reason, we took help from Scipy library, where all the well-
known constants are available. We also use Mathlibrary to get the natural
epsilon value.

We created a python class which acts like a volt-meter that inputs
voltage at very small interval. This class basically is our virtual volt-meter
for source and drain. To apply voltage at very small rate we build a function
that tells the volt-meter how small a step could be.For every voltage, we
calculated chemical potential. Later we declared two separate function that
can determine Fermi state for source and drain. Then we ran the whole
function for several times based on the number of voltage input. The result
that is produced by the Fermi-Dirac function are stored in another Numpy
array so that we could use them to calculate current. The difference between
two Fermi state times the intrinsic broadening value produces the desired
current. Python also provides a class called Pyplot which has a subclass
called mathplotlib.py. We used this library to plot the numeric values.

In conclusion,I used Python because storing data in a contiguous
block of memory ensures that the architecture of modern CPUs is used op-
timally, in terms of memory access patterns, CPU cache, and vectorized
instructions.
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Figure 5.1: Flow diagram of python program used to calculate current
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5.4 Sample Code

import matp lo t l i b . pyplot as p l t
import math
import numpy as np
import s c ipy . cons tant s as con
from numpy import exp

#This array s t o r e s e l e c t r o ch em i ca l p o t e n t i a l
ecm=[ ]
ecm1 =[ ]
ecm2 =[ ]

############

#This array s o t r e s Fermi energy f o r Drain E l ec t rode
va lue fd 1 =[ ]
va lu e fd 2 =[ ]
va lu e fd 3 =[ ] # Main Programme has more arrays . Here the item s i z e
. . . . . . . . . . . . . # i s reduced f o r space consumption ,

# but the ba s i c idea i s same .
. . . . . . . . . . . .

#############

#This array s o t r e s Fermi energy f o r Source E l ec t rode
value1 =[ ]
v a l u e f s 1 =[ ]
v a l u e f s 2 =[ ]
v a l u e f s 3 =[ ]

. . . . . . . . . . . . # Main Programme has more arrays . Here the item s i z e

. . . . . . . . . . . . # i s reduced f o r space consumption ,
# but the ba s i c idea i s same .

#######
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# This array s o t r e s Ca l cu la t ed current f o r i n d i v i d u a l s cenar io
cur r ent =[ ]
. . . . . . . . . . .
. . . . . . . . . . . .
# Main Programme has more arrays . Here the item s i z e
# i s reduced f o r space consumption , but the ba s i c idea i s same .

#########

# This s t o r e s the input v o l t a g e
vo l tage =[ ]

# I n i t i a l charg ing Vol tage
c h a r g i n g v o l t a g e=0

# Gate v o l t a g e connected to the i s l a nd
g a t e v o l t a g e 1=2
g a t e v o l t a g e 2=2
g a t e v o l t a g e 3=2

# Pre−as s i gned Capacitance f o r Source , Drain , and Gate .
ga t e capac i t anc e =5∗10∗∗−18
s o u r c e c a p a c i t a n c e =57∗10∗∗−18
d r a in ca pac i t a nc e =38∗10∗∗−18

# Sum of th r ee Capacitance
t o t a l c a p a c i t a n c e = ga t e capac i t anc e + s o u r c e c a p a c i t a n c e + dr a in ca pac i t a nc e

# Inputs Boltzmann Constant from sc i py . cons tan t s
boltzman constant =con . p h y s i c a l c o n s t a n t s [ ”Boltzmann constant ” ]

#Inputs Charge o f an Elec t ron from sc i py . cons tan t s
c h a r g e o f a n e l e c t r o n = con . e

# Assigns Temperature in Kelv in
temperature =1
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. . . . . . . . . . .

. . . . . . . . . . . .
# Main Programme has more arrays . Here the item s i z e
# i s reduced f o r space consumption , but the ba s i c idea i s same .
##############

# Ca l cu l a t e s $k {b} t$
thermal energy =temperature∗boltzman constant [ 0 ]

. . . . . . . . . . .

. . . . . . . . . . . .
# Main Programme has more arrays . Here the item s i z e
# i s reduced f o r space consumption , but the ba s i c idea i s same .
##############

# This works as v i r t u a l Voltmeter . I t g i v e s va l u e s f o r c e r t a i n i n t e r v a l .
def v o l t a g e ( low , high , s tep ) :

while low <=high :
y i e l d low
low = low + step

for x in v o l t a g e ( ( −1 ) , ( 1 ) , 0 . 00001 ) :
vo l tage . append ( x )

##############

# This func t i on c a l c u l a t e s the p o t e n t i a l

def ecmOfqdots ( vo l t age ) :
for y in range (0 , len ( vo l t age ) ) :

ecm . append ( f loat ( (− ( ( ( ( ga te vo l tage1−c h a r g i n g v o l t a g e )
∗( ga t e capac i t anc e ))+(( s o u r c e c a p a c i t a n c e )∗ ( vo l tage [ y ] ) ) )
/ t o t a l c a p a c i t a n c e )∗ ( c h a r g e o f a n e l e c t r o n ) ) ) )
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# This methods c a l l s the p o t e n t i a l f unc t i on and
# c a l c u l a t e the p o t e n t i a l based on the input Vol tage

ecmOfqdots ( vo l t age )

#t h i s loop c a l c u l a t e s fermi s t a t e f o r source
# and s t o r e i t s va lue to a numpy l i s t

for x in range (0 , len (ecm ) ) :
va lue . append ((1+(np . exp ( ( ecm [ x ] / thermal energy ))))∗∗ −1)

#t h i s loop c a l c u l a t e s fermi s t a t e f o r drain
# and s t o r e i t s va lue to a numpy l i s t

for x in range (0 , len (ecm ) ) :
va lue1 . append ((1+(np . exp ( ( ( ecm [ x]+
( c h a r g e o f a n e l e c t r o n ∗ vo l tage [ x ] ) ) / thermal energy ))))∗∗ −1)

#t h i s loop c a l c u l a t e s curren t

for i in range (0 , len (ecm ) ) :
cur r ent . append ( ( c h a r g e o f a n e l e c t r o n ∗ 10∗∗9)
∗( va lue [ i ]−value1 [ i ] ) )

print ( ”\∗∗∗∗∗ Elec t rochemica l p o t e n t i a l f o r n+1 e l e c t r o n ∗∗∗∗∗∗∗∗∗” )
#pr in t ecm
print ( ”\∗∗∗∗∗∗∗ Calcu lated Fermi va lue f o r source e l e c t r o d e ∗∗∗∗∗∗∗” )
#pr in t va lue
print ( ”\∗∗∗∗∗∗∗ Calcu lated Fermi va lue f o r dra in e l e c t r o d e ∗∗∗∗∗∗∗” )
#pr in t va lue1
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print ( ”\∗∗∗∗∗∗∗ Current ∗∗∗∗∗∗∗” )
#pr in t curren t

### Codes f o r Tuning , Shaping , L e v e l l i n g The main Graph

p l t . hold ( True )
p l t . p l o t ( vo l tage , current , ’b− ’ )
dpi = 800 .0
xp ixe l s , y p i x e l s = 1200 , 1200
p l t . x l a b e l ( ’ Voltage ( v ) ’ )
p l t . y l a b e l ( ’ Current ( I ) ’ )
p l t . t ex t (−0.2 ,10∗∗−10 , r ’$T=0 \ to 10 k$ ’ )
p l t . t ex t (−0.2 ,0.8∗10∗∗−10 , r ’$V = −5 m\ ups i l on \ to 5m\ ups i l on $ ’ )
p l t . g r i d ( True , lw = 0 . 7 , l s = ’− ’ , c = ’ . 75 ’ )
p l t . show ( )
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Chapter 6

Results

The ground state of Fermi-Dirac equation corresponds to absolute zero tem-
perature. This section has a look at what happens to the system when the
temperature becomes greater than zero. For non-zero temperature, the av-
erage number of fermions per single-particle state can be found from the
so-called :

fFD =
1

1 +
E−Ef
kbT

This distribution is derived in chapter 1.3 and again in chapter 5.1
from different approach. Like the Bose-Einstein distribution for bosons, it
depends on the energy E of the single-particle state, the absolute temperature
T , the Boltzmann constant kb = 1.38×1023J/K, and a chemical potential µ.
In fact, the mathematical difference between the two distributions is merely
that the Fermi-Dirac distribution has a plus sign in the denominator where
the Bose-Einstein one has a minus sign. Still, that small change makes for
very different statistics. The biggest difference is that fFD is always less than
one: the Fermi-Dirac distribution can never have more than one fermion in
a given single-particle state. That follows from the fact that the exponential
in the denominator of the distribution is always greater than zero, making
the denominator greater than one.

It reflects the exclusion principle: there cannot be more than one

47



fermion in a given state, so the average per state cannot exceed one either.
The Bose-Einstein distribution can have many bosons in a single state, es-
pecially in the presence of Bose-Einstein condensation.

Note incidentally that both the Fermi-Dirac and Bose-Einstein dis-
tributions count the different spin versions of a given spatial state as separate
states. In particular for electrons, the spin-up and spin-down versions of a
spatial state count as two separate states. Each can hold one electron.

Consider now the system ground state, that is predicted by the
Fermi-Dirac distribution. In the limit that the temperature becomes zero,
single-particle states end up with either exactly one electron or exactly zero
electrons. The states that end up with one electron are the ones with energies
E below the chemical potential µ. Similarly the states that end up empty
are the ones with E above µ.

To see why, note that for E−Ef<0, in the limit T the argument of
the exponential in the Fermi-Dirac distribution becomes minus infinity. That
makes the exponential zero, and fFD is then equal to one. Conversely, for
E−Ef>0, in the limit T the argument of the exponential in the Fermi-Dirac
distribution becomes positive infinity. That makes the exponential infinite,
and fFD is then zero.

The correct ground state, has one electron per state below the Fermi
energy Ef and zero electrons per state above the Fermi energy. The Fermi-
Dirac ground state can only agree with this if the chemical potential at
absolute zero temperature is the same as the Fermi energy.

Next consider what happens if the absolute temperature is not zero
but a bit larger than that. The story given above for zero temperature
does not change significantly unless the value of E − Ef is comparable to
kbT . Only in a energy range of order kbT around the Fermi energy does the
average number of particles in a state change from its value at absolute zero
temperature.

In physical terms, some electrons just below the Fermi energy pick
up some thermal energy, which gives them an energy just above the Fermi
energy. The affected energy range, and also the typical energy that the
electrons in this range pick up, is comparable to kbT . To good approximation,
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the electrons always remain like they were in their ground state at 0K.

One of the mysteries of physics before quantum mechanics was why
the valence electrons in metals do not contribute to the heat capacity. At
room temperature, the atoms in typical metals were known to have picked
up an amount of thermal energy comparable to kbT per atom. Classical
physics predicted that the valence electrons, which could obviously move
independently of the atoms, should pick up a similar amount of energy per
electron. That should increase the heat capacity of metals. However, no such
increase was observed.

The Fermi-Dirac distribution explains why only the electrons within
a distance comparable to kbT of the Fermi energy pick up the additional kbT
of thermal energy. This is only a very small fraction of the total number of
electrons, so the contribution to the heat capacity is usually negligible. While
classically the electrons may seem to move freely, in quantum mechanics they
are constrained by the exclusion principle. Electrons cannot move to higher
energy states if there are already electrons in these states.

6.1 Generated Current-Voltage Graph

Our simulation program assumes that we are using nano particle as source,
drain and gate for transistor geometry. The temperature T we are taking
is very below room temperature as nearly as absolute zero. For the sake of
our observation we are keeping all the variable fixed, except gate voltage. The
conditions we applied are T = 1mK,E0 = 0 (Vc = 0) , (CD : CS : CG = 38 : 57 : 5).

From Fermi-Dirac distribution we can tell if T → 0, e
E−Ef
kbT terms approaches

to ∞ if E < Ef and approaches to zero if E < Ef .

For T = 0:

f(e) =

{
0 if E > Ef

1, if E < Ef
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We are applying this distribution function for our source and drain.
Our program at very low temperature (T = 1mK) delivers us the result
how current flows at different gate(Vg = 1mV, 2mV, 3mV ) voltage and within
certain range of bias voltage. We plot current vs voltage graph it shows the
result as below.
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Figure 6.1: Three I-V taken at different Vgs. They show a conductance
suppressed region near zero bias followed by a current step.

50



−1.0 −0.5 0.0 0.5 1.0

Voltage (mV)

0

1

2

3

4

5
C

ur
re

nt
 (
µ
S)

1e−7

T=1mK

V=−1mV→1mV

Vgate=(0,2,4)mV

Figure 6.2:
dI

dV
as a function of V. They show peaks corresponding to current

steps in fig- 6.1

51



6.2 Maximum Size and Temperature

Since our simulation program can show the variance in current with respect
to increasing voltage, we extend our program such a way so that we can
add temperature as an variable. It shows us, as we assumed that the in-
creasing temperature breaks the discreteness nature of current flow. We ob-
served that at 2.5K(approximately) the discreteness nature of current flow
started to vanish and gradually it falls into classical regime. However at 7K
the curve becomes so continuous it appeared as well-known Ohm’s current-
voltage curve and discreteness completely vanishes. From that speculation,
using the Schrodinger equation for spherical dot and the condition for charge
addition energy ∆E � kbT we tried to calculate the maximum size of the
quantum dot. Another very important point we should keep in mind is that
we assumed very simplified model in order to calculate the radius of quantum
dot such as our quantum dot is qhighly symmetrical cubic box and we only
calculate the energy from ground level to the first excitation level. We ignore
other excitation level but in our simulation we allow all possible level. Now
let us assume that the box has edge-length L and occupies the the region
0 < x, y, z < L. We assume the box walls are smooth. So particles exerts
forces only perpendicular to the surface.
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Figure 6.3: IvsV graph at increasing temperature

Now for the sake of simplicity and to be remain in the safe side
we took 2.5K as the breaking point at which the discreteness or Coulomb
staircase completely disappear. So the energy of ground state would be as
below :

E111 =
3π2~2

2mL2

=
3h2

8mL2

Since first excitation level has three possible states we can write
energy for first excitation level:

53



E112 = E121 = E211 =
6π2~2

2mL2

=
6h2

8mL2

Now ∆E would be the difference of two state which is :

∆E =
6h2

8mL2
− 3h2

8mL2

=
3h2

8mL2

=
3× (6.2607× 10−34)

2

8× (9.11× 10−31)× L2

Again using the charging condition we can write ∆E > kbT . There-
fore :

kbt <
3× (6.2607× 10−34)

2

8× (9.11× 10−31)× L2

L <

√
3× (6.2607× 10−34)2

8× (9.11× 10−31)× kbT

<

√
3× (6.2607× 10−34)2

8× (9.11× 10−31)× (1.380× 10−23)× 2.5

< 68.38640× 10−9m

So this L is the maximum edge-length of our simplified and highly
symmetric cubic quantum dot.

54



Chapter 7

Conclusions and Further
Research

Now a days smiluating a physics problem or experimenting a well defined
physical theory using a computer is easier and less costly than doing it in
a Laboratory. Accuracy in computer measurement could be better than the
real experiment if we could design model of the problem by taking in con-
sideration all the variables that take part in real life experiment. Finding all
the variable that governs the model of the problem including those imposed
by environment itself and understanding them how it connect all the con-
ceptual dots in order to visualize them into a computer program has been
remained as incomplete in my thesis. On the other hand computational speed
of my computer against large data handling was quite into downward direc-
tion .Therefore I have to, sadly neglect all the minor variables and consider
a very ideal scenario while modelling the system. It would be more accurate
while calculating current for a bulk material if we could virtually construct
a real bulk metal consisting every atom. We might be able to build an atom
with all the electron inside it and then bind those atom according to their
atomic structure.This virtual metal would not contain any defects like real
metal but it could act like a real metal and hopefully provide us very good
result. So at first we badly wanted to design such model but in reality we saw
that using a normal home desktop pc it was quite impossible. It could not
be possible for me since the unavailability of such platform. Therefore our
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future plan is to build a cluster computer with multiple processor and then
develop a complete solution for nano particles so that we could construct a
nearly complete model of electronic transportation in nano particles at very
low temperature using well tuned parameter. In our simulation due to com-
putational speed and lack of prerequisite knowledge we sometimes ignored
real data although we did not want to. In the next step our main concern
would be not to arise these kind of scenarios and also wish to minimize the
lack of prerequisite knowledge.
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