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ABSTRACT 
 
In this paper geometric space, super space, supermanifold, superconnection, the torsion and the 
curvature tensors are studied and some new notions of local forms of the torsion and curvature 
tensors are established, for deriving certain constraints in classical case called the super Bianchi 
identities. 

 
1. INTRODUCTION 

 
Ringed spaces give a way to describe essential 
features of geometry, expressed in the language of 
sheaf theory [7]. Using such methods, an 
alternative but equivalent definition of a manifold 
can be given and similar ideas will be used to 
define the notion of a supermanifold. Throughout 
this paper all rings are assumed to have an identity, 
and R will denote a commutative ring. Further, we 
assume that for any ring morphism SR →:φ  

where S is a ring, SR 1)1( =φ . 
 
Definition 1.1 A ringed space over R is a pair (R, 
OX) where X is a topological space and OX is a 
sheaf of R-algebras over X. 
 
Often we say X is a ringed space and call OX the 
structure sheaf. It can be shown that the direct limit 
of a system of R-algebras is again an R-algebra. 
Hence the stalk OX, x [8] is an R-algebra  

Xx∈∀ . 
 
Example 1. Let X be any topological space and set 
OX =ÙX, the constant sheaf of integers. Then (X, 
OX) is a ringed space over ÙX. 
 
Since the conception of supersymmetry, 
supergeometry has come to play an increasingly 
important role in theoretical physics [4] and is an 
essential part of almost every attempt to go beyond 
the standard model in particle physics [5]. The aim 
of this paper is to give a definition of a 
supermanifold and some associated basic theory on 
the torsion and curvature tensors in supermanifold 

for deriving certain constraints in classical case 
which is the super Bianchi identities. We use the 
definition similar to that given in [1], an equivalent 
definition is given in [3]. Throughout, we denote 
Ù/2Ù by Ù2 = }1~,0~{ . 
 
2. GEOMETRIC SPACES AND MANIFOLDS 
 
Definition 2.1 A subring RL ≤  is called local if 
it has a unique maximal ideal. 
 
Definition 2.2 Let RL ≤  and SM ≤  be local. 
A morphism ML →:φ is called a local 
morphism of local rings if ML ⊂)(φ . 
 
Definition 2.3 A ringed space over R is called 
geometric space over R if all the stalks OX, x are 
local rings. 
 
Definition 2.4 Let (M, OM) be a geometric space 
over a ring R which, we refer to as a model space. 
Another geometric space (X, OX) over R is locally 
isomorphic to (M, OM) if Xx∈∀  ∃  open 

XU ⊆ with Ux∈ and an open MV ⊆ such 
that  

(U, OX|U) ≅  (V, OM|V), 
as geometric spaces. 
 
Definition 2.5 Let M be a class of model spaces 
and let X be a second countable Hausdorff space. 
A geometric space (X, OX) is a manifold of type M 
over R if X has an open covering U such that, 

∈∀U  U  (U, OX|U) is locally isomorphic to (M, OM)  
for some (M, OM)∈  M. 
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Definition 2.6 A morphism of manifolds is a 
morphism of the underlying geometric spaces.  
 
Example 2. Let ∈n Í and set M = {(Ñn, ∞C )}, 
where ∞C  is the sheaf of smooth functions over 
Ñn. Substituting this into the definition above 2.5, 
we obtain the notion of smooth real manifold of 
dimension n. Similarly, for ∈n Í and M = {( nC , 
holomorphic functions)}, we obtain the notion of 
smooth complex manifolds of dimension n. 
 

3. Ù2- GRADED GROUPS AND RINGS 
 
Definition 3.1 An Abelian group A is called Ù2 - 
graded if it is the direct sum of two subgroups 

1~0~ AAA ⊕= . We call elements of 1~0~ AA ⊕  

homogeneous, elements of 0~A even and elements 

of 1~A odd. 
Definition 3.2 The parity function ~ 
: →∪ 1~0~ AA  Ù2 is defined by 







∈

∈
=

1~

0~

,1~
,0~~

Ax

Ax
xx a  

 If A, B are Ù2-graded Abelian groups, then the 
Abelian group Hom(A,B) is the direct sum,  
Hom (A,B) = Hom ( 0~0~ , BA ) ⊕  Hom ( 1~0~ , BA ) 

⊕  Hom ( 0~1~ , BA ) ⊕  Hom ( 1~1~ , BA ) 
which we rewrite in the following way, 

Hom (A,B) = Hom 0~),( BA  ⊕  Hom 1~),( BA  

where Hom 0~),( BA = Hom ( 0~0~ , BA ) ⊕  Hom 

( 1~1~ , BA ) even homomorphisms, and Hom 

1~),( BA = Hom ( 1~0~ , BA ) ⊕  Hom ( 0~1~ , BA ) 
odd homomorphisms. Thus Hom(A,B) is naturally 
Ù2-graded. For ∈φ  Hom 0~),( BA  and for 

1~~)(~
+= xxφ . 

 
Definition 3.3 A ring R is called Ù2 -graded if, 
i) The underlying Abelian group is Ù2-graded. 
ii) The set of homogeneous elements is closed 

under multiplication. 
iii) The parity function satisfies 

baba ~~~
+= ∈∀ ba, 1~0~ RR ∪ . 

4. SUPERSPACES AND SUPERMANIFOLDS 
 
Definition 4.1 An R-superalgebra is a Ù2-graded 
ring S together with an even ring morphism 

)(: SZR →α . When S is supercommutative 
we say that S is a supercommutative R-
superalgebra. 
 
Definition 4.2 A ringed superspace over R is a pair 
(X, OX) where X is a topological space and OX is a 
sheaf of R-superalgebras. A morphism of ringed 
superspaces over R is a pair ),( ψφ  where 

YX →:φ  is a continuous mapping and :ψ  OY  

→  ∗φ OX is even. 
 
Definition 4.3 Let M be a class of model 
superspaces and let X be a second countable 
Hausdorff space. A superspace (X, OX)  is a 
supermanifold of type M over R if X has an open 
covering W such that,       

∈∀W  W  (W, OX|W) is locally isomorphic to 
(M, OM),  

for some (M, OM)∈  M. 
 
Example 3. If we set M = {(Ñp, Op q)} = Ñp|q, for 
some p, q ∈  Í , we obtain the notion of a smooth 
real supermanifold of dimension p|q. In particular 
Ñp|q is a smooth supermanifold. 
 
5. DIFFERENTIATION IN SUPERDOMAIN 

 
As with algebra, many of the principles of calculus 
can be carried over to the Ù2-graded case. 
 
Definition 5.1 Let R denote a superalgebra. A 
linear operator )(REndD∈  is called a 

derivation of R if Rrr ∈∀ 21,  the following 
holds, 

)()1()()( 21
~

2121
1 rDrrrDrrD Dr−+=  

and we denote the set of all derivations of R by 
Der(R). 
 
Let U be a superdomain in Ñm|n and 

),...,,,...,(),( 11 nmxxx ηηη = be a local 
coordinate system. 
 
Definition 5.2 We define even partial derivatives  

∞

∂
∂ C
xi

: (U) ∞→ C (U) 
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such that 
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where ∞∈Cf
nνν ...1

(U). 
 
Definition 5.3 We define odd partial derivatives  

∞

∂
∂ C
xi

: (U) ∞→ C (U) 

such that 
nii

n

in

n niii
i

ff νννν
νν

νννν
νν ηηηηνηη

η
1111

1

111

1 111...
...

21... ...)1()...( +−−
+−

++−=
∂
∂  

where ∞∈Cf
nνν ...1

(U). 

Proposition 1. Let 
u∂
∂

be an arbitrary 

homogeneous partial derivative. Then 
u∂
∂

satisfies 

the super-Leibnitz rule,  

u
gfg

u
ffg

u
f

u

∂
∂

−+
∂
∂

=
∂
∂ ∂

∂ ~~

)1()(  for ∞∈Cgf , (U) 1~ . 

 
Definition 5.4 Let M denote a (p|q)-dimensional 
supermanifold. It can be shown [5] that Der(OM) is 
a locally free sheaf of rank (p|q). We call this sheaf 
the tangent sheaf of M and denote it by TM. Also, 
in a superdomain U with local coordinates 

),...,,,...,( 11 qpxx ηη the sheaf TM is generated 

by its sections ),...,,...,,...,(
11 qpxx ηη ∂

∂
∂
∂

∂
∂

∂
∂

. 

Further we define the tangent bundle of M to be 
the set of all sections of the sheaf TM.. 
 
Definition 5.5 Let M denote a (p|q)-dimensional 
supermanifold. We define the cotangent sheaf of 
M to be the sheaf of even morphisms TM* = 
Hom OM (TM, OM ) and define the cotangent 
bundle denoted by ΩM to be the set of sections 
of TM*. 
 

6. SUPERCONNECTIONS 
 
As in the classical case, we now introduce a way to 
differentiate vectors and higher order objects in a 
suitable way. This leads to the following 
definition. 
 

Definition 6.1 Let M be a supermanifold. A 
superconnection on M is an even map, 

:∇  TM ⊗  TM →  TM  
satisfying the following conditions for 

∈2121 ,,, YYXX  TM and ∈f  OM , 

(i) TM linearity in the first variable,  
)()())(( 1211121 YXYXYXX ⊗∇+⊗∇=⊗+∇  

(ii) TM  linearity in the second variable, 
)()())(( 2111211 YXYXYYX ⊗∇+⊗∇=⊗⊗∇  

(iii) OM linearity in the first variable,  
)()( 1111 YXfYfX ⊗∇=⊗∇  

(iv) and OM satisfies the super-Leibnitz rule in the 
second variable, 

).()1()()( 11

~~

11
1 YXYfXfYX Xf ⊗∇−+=⊗∇  

 
As in the classical case ∇ is not a tensor, however, 
as we shall now see, important tensors may be 
constructed from it in sections 7 and 8. 

 
7. THE TORSION TENSOR 

 
Definition 7.1 Let∇ be a superconnection and 
define  

TMTMTMT →⊗∇ :   

],[)1(
~~

YXXYYX Y
XY

X −∇−−∇⊗ a  
 
We call ∇T the torsion of∇ . Often we simply 
denote ∇T by T when there is no confusion about 
which superconnection we are considering. 
 
There is an alternative way of defining the torsion 
of a superconnection in the abstract index 
formalism. An in depth discussion on this 
approach can be found in [6]. 
 
Definition 7.2 In the abstract index formalism the 
torsion of a superconnection is defined in the 
following way,  

fTf C
C

ABBA ∇−=∇∇ ],[  

where ∈f OM . 
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Proposition 2. Let ∇ be a superconnection. Its torsion T is a tensor. 
 
Proof. First notice that,  

],[)1()(
~~

YXXYYXT Y
XY

X −∇−−∇=⊗  

= ],[)1()1(
~~~~

XYXY XY
Y

XY
X −−∇−−∇  

= ]),[)1(()1(
~~~~

XYYX X
XY

Y
XY −∇−−∇−−  

= XY ~~
)1(− )( XYT ⊗  

Now, 
],[)1()(

~~
YfXfXYYfXT Y

XfY
fX −∇−−∇=⊗                     

= XfYYXfXfXfYYf XfY
Y

fYXfYXfY
X )()1(],[)1()()1(

~~~~~~~~
−+−∇−−−−∇ +  

= ]),[)1(
~~

YXfXfYf Y
XY

X −∇−−∇  
= )( YXfT ⊗  

Also,  
)()1()(

~~
XfYTfYXT XYf ⊗−−=⊗  

                    )()1(
~~

XYfTXYf ⊗−−=  

            )()1(
~~~~

YXfTXfYXYf ⊗−−= +  

                  )()1(
~~

YXfTfX ⊗−−=  
Thus T is a tensor.  
 
Note. The torsion can also be interpreted as a section of the bundle ,2 ∗Λ⊗ TMTM  

i.e., ).,( 2 ∗Λ⊗Γ∈ TMTMMT  
 

8. THE CURVATURE TENSOR 
 
Definition 8.1 Let ∇  be a superconnection and define 
 

TMTMTMTMR →⊗⊗∇ :   
        ZZZZYX YXXY

YX
YX ],[

~~
)1( ∇−∇∇−−∇∇⊗⊗ a  

We call ∇R the curvature of∇ . Often we simply denote ∇R by R when there is no confusion about which 
superconnection we are considering. 
 
Again we may define the curvature of a superconnection ∇  in terms of abstract indices. 
  
Definition 8.2 In the abstract index formalism the curvature of a superconnection is defined in the 
following way,  

D
D
ABCCD

D
ABCBA VRVTV −∇−=∇∇ ],[  

where MVC Ω∈ . 
 
Proposition 3. Let ∇  be a superconnection and let TMV E ∈ . Then 

.)1(],[
~)~~( CE

ABC
VECE

C
C

AB
E

BA VRXTV
C+−+∇−=∇∇  
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Proof. Let MWC Ω∈ , therefore the contraction ∈E

EWV OM  and by definition,   

)()](,[ E
E

C
C

ABE
E

BA WVTWV ∇−=∇∇  

        = EC
C

AB
EVBA

E
E

C
C

AB WTVWVT
E

∇−−∇− + ~)~~()1()(  
Also, by the Leibnitz rule, 

EBA
EVBA

E
E

BAE
E

BA WVWVWV
E

],[)1(}],{[)](,[
~)~~( ∇∇−+∇∇=∇∇ +  

       C
C
ABE

EVBA
EC

C
AB

EVBA
E

E
BA WRVWTVWV

EE ~)~~(~)~~( )1()1(}],{[ ++ −−∇−−∇∇=        
Now, equating these two expressions gives the required result. 
 
Proposition 4. Let ∇ be a superconnection. Its curvature R is a tensor. 
 
Proof. First notice that,  

ZZZZYXT YXXY
YX

YX ],[

~~
)1()( ∇−∇∇−−∇∇=⊗⊗  

ZZZ XY
YX

XY
YX

YX ],[

~~~~
)1()1( ∇−+∇∇−−∇∇=

))1(()1( ],[

~~~~
ZZZ XYYX

YX
YX

YX ∇−∇∇−−∇∇−−=  

                 = XY ~~
)1(−− )( ZXYR ⊗⊗  

 
Now, 

ZZZZYfXT YfXfXY
YXf

YfX ],[

~~~
)1()( ∇−∇∇−−∇∇=⊗⊗  

  ZfYZfZfZf X
YXf

YXXY
YXf

YX ∇−+∇−∇∇−−∇∇= )()1()()1(
~~~

],[

~~~
      

ZfZfYZf XY
YfYXf

X
YXf

YX ∇∇−−∇−−∇∇= + ~~~~~~~~
)1()()1(        

    ZfYZf X
YXf

XY ∇−+∇− )()1(
~~~

],[  

))1(( ],[

~~
ZZZf XYXY

YX
YX ∇−∇∇−−∇∇=  

                = )( ZYXfR ⊗⊗  
 
Therefore,  

)()1()(
~~~

ZXfYRZfYXR YfX ⊗⊗−−=⊗⊗  

  )()1(
~~~

ZXYfRYfX ⊗⊗−−=  

        )()1(
~~~~~

ZYXfRYXYfX ⊗⊗−−= +  

 )()1(
~~

ZYXfRXf ⊗⊗−−=  
Finally 

fZfZfZfZYXT YXXY
YX

YX ],[

~~
)1()( ∇−∇∇−−∇∇=⊗⊗  

  ))(()1())1()((
~~~~

ZfXZfZfY Y
YX

Y
Yf

X ∇−−∇−+∇=       

ZfZfYZf XY
YfYXf

X
YXf

YX ∇∇−−∇−−∇∇= + ~~~~~~~~
)1()()1(        

    ZfZfYX YX
YXf

],[
]~,~[~

)1()](,[ ∇−−−  
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ZfZfXZfYZfXY YX
XfYf

Y
Yf

X
fYX ∇∇−+∇−+∇−+= + ~~~~~~)~(~~

)1()()1()()1()(  

        ZfYZfXZfYX X
XfYX

Y
YfYX ∇−−∇−−−− + )()1()()1()()1(

~~~~~~~~
 

        ZfZfYXZf YX
YfXf

XY
YfXfYX

],[

~~~~~~~~~~
)1()](,[)1( ∇−−−∇∇−− +++  

    ))1(()1( ],[

~~~~~~
ZZZf YXXY

YX
YX

YfXf ∇−∇∇−−∇∇−= +                  

      = )()1(
~~~~

ZYXfRYfXf ⊗⊗− +  
So R is a tensor.  
 
Note. Like the torsion the curvature can also be viewed as a section of an appropriate bundle. In this case 

).,( 2 ∗∗ Λ⊗⊗Γ∈ TMTMTMMR  
 

9. LOCAL FORM OF THE TORSION AND CURVATURE TENSORS 
 
Proposition 5. In a local coordinate system (xA) the torsion tensor T may be written as,  

C
C

AB
BAY TYXYXT A

B

∂−=⊗ ∂
~~

)1()(  
where,  

.)1(
~~ C

BA
C
AB

C
AB

BAT Γ−−Γ= ∂∂  

Proof. Let X, Y be vector fields, thus they can be written as, A
AXX ∂=  and B

BYY ∂= . So, as the 
torsion is a tensor,  

)()( B
B

A
A YXTYXT ∂⊗∂=⊗  

         )()1(
~~

BA
BAY TYXA

B

∂⊗∂−−= ∂  
But,  

)( BAT ∂⊗∂ ],[)1(
~~

BAAB B

B
B

A
∂∂−∂∇−−∂∇= ∂

∂∂
∂  

         C
C
BA

C
AB

BA ∂Γ−−Γ= ∂∂ ))1((
~~

 
Hence the proof is completed. 
 
Proposition 6. In a local coordinate system (xA) the curvature tensor R may be written as,  

E
E
ABC

CBAZZY RZYXZYXR B
C

A
CB

∂−=⊗⊗ ∂+∂+
~~~)~~()1()(  

where,  

−ΓΓ−+Γ∂−−Γ∂= ∂+∂∂+∂+∂∂∂ G
BC

E
AG

C
BAB

E
BCA

E
ABC

GEGCBBAR ()1()()1()( )~~)(~~~(~~
 

            ))1( )~~)(~~(~~ G
AC

E
BG

GEBABA ΓΓ− ∂+∂∂+∂+∂∂  

Proof. Let X, Y and Z be three vector fields, thus they can be written as, A
AXX ∂= , B

BYY ∂=  and 

C
CZZ ∂= . So, as the curvature is a tensor,  

)()( C
C

B
B

A
A ZYXRZYXR ∂⊗∂⊗∂=⊗⊗  

     )()1(
~~~)~~(

CBA
CBAZZY RZYXB

C
A

CB

∂⊗∂⊗∂−= ∂+∂+  
But,  

CCCCBA BAAB

BA

BA
R ∂∇−∂∇∇−−∂∇∇=∂⊗∂⊗∂ ∂∂∂∂

∂∂
∂∂ ],[

~~
)1()(  

                                E
E
AG

G
BCE

E
ACBE

E
BCA

G
BCABA ∂ΓΓ−+∂Γ∂−−∂Γ∂= Γ∂∂∂ ~~~~

)1()()1()(  

        E
E
BG

G
AC

G
ACBBA ∂ΓΓ−− Γ∂+∂∂ ~~~~

)1(  
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By reversing the order of the Γ 's in the third and fourth terms we can write them as, 
 

E
G
AC

E
BG

G
BC

E
AG

B
E
BG

G
ACA

E
AG

G
BCBAA

E
AG

G
BC ∂ΓΓ−−ΓΓ− ∂ΓΓ+∂ΓΓ+∂∂∂ΓΓ ))1(()1( )~~~~~~~~(~~~

 

Now, using the identity CBA
C
AB ∂+∂+∂=Γ

~~~~
, we get the required form. 

  
10. THE SUPER-BIANCHI IDENTITIES 

 
As in the classical case, it is possible to derive certain constraints that the curvature and torsion tensors of a 
superconnection must satisfy. In analogy with classical case, we call these the super-Bianchi identities. 
 
Theorem 1. Let ∇ be a superconnection on a supermanifold M with torsion T and curvature R. The 
curvature tensor satisfies the following, 

E
CD

D
AB

E
BCA

E
ABC TTTR ]||[][][ +∇=  

which we call the 1st super-Bianchi identity. 
 
Proof. Using the abstract index definition of the curvature and torsion,  

.)1(
~~

fRfTff C
E
ABCCE

E
ABCAB

BA
CBA ∇−∇∇=∇∇∇−−∇∇∇  

Also, by definition,  

.)1(
~~

fTff D
D

ECEC
CE

CE ∇−∇∇−=∇∇  
Thus, by substituting this into the previous expression we obtain, 

.)1(2
~~

][ fRfTTfTf E
E
ABCD

D
EC

E
ABEC

E
AB

CE
CBA ∇−∇+∇∇−−=∇∇∇  

Further,  

fTfTfT E
E

ABC
CBA

E
E

ABC
CBA

EC
E

AB
CE ∇∇−−∇∇−=∇∇− )()1()()1()1(

~~~~~~~~
 

       fTf E
E

ABC
CBA

EBAC
CBA ∇∇−−∇∇∇∇−= )()1()2()1(

~~~

][

~~~
 

Again, substituting this into the previous expression we obtain the following, 

fRfTTfTff E
E
ABCE

E
DC

D
ABE

E
ABC

CBA
BAC

CBA
CBA ∇−∇+∇∇−+∇∇∇−=∇∇∇ )()1()1(22

~~~

][

~~~

][  
Now, antisymmetrising in A, B and C gives the stated result. 
 
Theorem 2. Let ∇ be a superconnection on a supermanifold M with torsion T and curvature R. The 
curvature tensor satisfies the following, 

E
DCF

E
AB

E
DBCA RTR ]||[][ −=∇  

which we call the 2nd super-Bianchi identity. 
 
Proof. By definition, 

E
CBACBA V]][[][ 22 ∇∇∇=∇∇∇  

          })1({ ]

~)~~(
][

DE
DBC

VEDE
D

D
BCA VRVT

D+−+∇−∇=  

                      C
D

AB
DCDE

DBCA
VEDE

D
D

BCA TVRVT
D

∇−−∇−+∇−∇= + ~~

][

~)~~(
][ )1{(

3
1)()1()(  

             E
DB

D
CA

DBCBCA
A

D
BC

DACABA VTT ∇∇−+∇−+ ++++ })1()1(
~~~~~~~~~~~~

    

   A
E
BCD

EABACABA
C

E
ABD

ECDCVED RR
D

∇−+∇−−+ +++++ ~~~~~~~~~~~~~)~~( )1()1{()1(
3
1

 

             D
D

E
CAD

EDDBCBCA VR })1(
~~~~~~~~

∇−+ +++  
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Also  
E

CBACBA V]][[][ 22 ∇∇∇=∇∇∇  

          C
E
ABD

ECDCVEDE
D

D
ABC

E
CD

D
AB RVRVT

D

∇−−+∇−∇∇−= ++ )~~~~(~)~~(
][]||[ )1{()1(

3
1

 

                          D
D

E
CAD

EDDBCBCA
A

E
BCD

EABACABA VRR })1()1(
~~~~~~~~~~~~~~~~

∇−+∇−+ ++++++     
Using the 1st Bianchi identity and the definition of the curvature we find that,  

C
D

AB
DCFE

FCD
D
AB

FEVE
F

F
CD

D
AB

E
CBA TVRTVTTV

F

∇−−−−∇=∇∇∇ + ~~

]||[
)~~(~

]||[][ )1{(
3
1)1(2  

                  E
D

D
BCA

E
DB

D
CA

CBCADB
A

D
BC

CABADA VTVTT ∇∇−∇∇−+∇−+ ++++ )(})1()1( ][

~~~~~~~~~~~~
 

                  C
E
ABD

ECDCVEDE
F

F
CD

D
AB RVTT

D

∇−−+∇− ++ ~~~~~)~~(
]||[ )1{()1(

3
1

    

                 A
E
BCD

EABACABA R ∇−+ +++ ~~~~~~~~
)1( D

D
E
CAD

EDDBCBCA VR })1(
~~~~~~~~

∇−+ +++  
 
Now, equating the two expressions for 

E
CBA V][2 ∇∇∇ we get the stated result. 

 
Finally we conclude that the 1st and 2nd super-
Bianchi identities are the two constraints which are 
new approach in supermanifolds. 
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