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ABSTRACT

Choosing a subject is a difficult decision for a young person on the whole. Some
are pre determined but according to statistics most are confused when selecting
a subject. This crucial decision is usually made right after finishing high school.

This research refers to the possibility of applying a machine learning algorithm called
Naive Bayes in order to predict the subject area interest of a student.
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1
INTRODUCTION

Machine learning can be defined as a set of processes which can autonomously

capture patterns in data. Using these patterns, prediction on future data can

be carried out[1]. For instance, lets consider a simple weather prediction model

with attributes temperature, humidity and windy. Here, we would have to determine

whether outcome is rain or no rain. A set of training data with attribute values and

corresponding outcomes would be provided to the model. It would learn from the given

data and later it would predict the outcome for new attribute values.

In recent times, an increase in research interest in educational data mining has been

observed. Data mining in education is a new field which deals with developing methods

for knowledge discovery from data acquired from academic environments[2].

1.1 Motivation

Everyone has to make choices at different stages in their life. Some of the most crucial

relate to their education, in particular what subject to take for higher-level studies.

For most young people such choices take place at the age of 17 or 18. In general, they

are expected to make decisions on higher or further education program or their chosen

area of employment right about that age. Here, the question is how or on the basis of

what aspect do most young people make these decisions. Most students get confused

during enrolling themselves to universities based on these factors. Also, some people find

courses and curriculum unsuitable for them after enrollment in a particular department.
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CHAPTER 1. INTRODUCTION

Eventually they have to switch or start new, causing loss of money and time. Students

face problems taking decisions regarding which subject to take or which university to

study or whom to take advice from. Here, a system with education counseling abilities

can be of great help. An online student assessment system, analyzing the capability and

interest of the students and helping them determine their subject of interest can be built

here.

1.2 Goals

I plan to prepare a model which will predict the subject area interest of a student. My

main objective is to come up with a system which can be used to solve this crucial

problem. I plan to use Naive Bayes algorithm to design the predictive model.
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2
LITERATURE REVIEW

2.1 Related Work

Naive Bayes has been previously used to solve crucial diagnostic problems like Heart

disease prediction and Breast cancer detection [1]. And it has proven to be very efficient

in developing such diagnostic systems [2]. But it has not been used in educational

systems to solve problems as such. Different machine learning algorithms have been

applied on different educational problem sets like performance prediction of students,

prediction for military career choice, medical diagnosis like heart disease prediction and

breast cancer prediction[13].

Machine learning is sometimes conflated with data mining and in [3], it states that

application of data mining in higher education system would benefit all the participants

in the educational process. Therefore, I have chosen machine learning as a tool to solve

this problem.

3



CHAPTER 2. LITERATURE REVIEW

2.2 Introduction to Machine Learning

Machine learning is broadly divided into three categories-

• Supervised or predictive learning

• Unsupervised or descriptive learning

• Reinforcement learning

2.2.1 Supervised Learning

The most widely applied form of machine learning is supervised learning. It can be

defined as a method where the output variable is given. All necessary information to

make predictions are provided. The overall goal is to learn a general rule that maps

inputs to outputs[1].

2.2.2 Unsupervised Learning

In unsupervised learning, the outcome variable is unknown. In other words, the data

is not labeled, so the program will have to extract values and information from the

data given. Unsupervised learning algorithms can be used for reduction, clustering and

visualization, but in general it is not used for prediction. The main concern here is to

find interesting structure in the data which is also sometimes referred to as knowledge

discovery[1].

4
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3
METHODOLOGY

3.1 Data Collection

Data collection was the toughest part of the research. During the first phase of my

research time, I looked for ways to come around the problem. I searched for existing data

but was unable to find any. With the help of my supervisor and few other faculties I came

around the problem and soon was back in track of my research work.

At first, I selected the subjects that I would like to focus on. I went for four subjects which

are Business, Computer Science, Law and Electrical Engineering. Why these subjects?

BRAC University was the major data collection hub of my research. These four subjects

have plenty of students who can help me acquire sufficient amount of data for analysis. I

made questionnaires for each subject and got it verified by respective faculty members

of BRAC University. Later I proceeded to carrying out surveys. Data accumulated from

these surveys was to be used for training and testing purposes which I will be explaining

in details in the next chapter. For each subject, there were seven questions and the

number of questions was selected in such a way that would bring a balance between

prediction accuracy and user satisfaction. By user satisfaction it is meant there is a

limit to the number of questions that can be asked to a student. Answering say 20

or 30 questions per subject would surely discourage most to continue further. I made

the questionnaires into pre-filled links and conducted surveys in BRAC University via

different means of social media. Data collection period lasted for about four months.

5



CHAPTER 3. METHODOLOGY

The questions for each subject were gathered from different sources.I mainly followed

[14] while making questionnaires. During this time, I consulted with few faculty members

of BRAC University and later they verified the questions. The questionnaires became

the basis of my analysis. The verified questions are as follows.

FIGURE 3.1. Questions for Law

6



3.1. DATA COLLECTION

FIGURE 3.2. Questions for Electrical Engineering

7



CHAPTER 3. METHODOLOGY

FIGURE 3.3. Questions for Computer Science

8



3.1. DATA COLLECTION

FIGURE 3.4. Questions for Business

9



CHAPTER 3. METHODOLOGY

The diagram below shows structure of the data collected from survey.

FIGURE 3.5. Data Instances from Survey

3.2 Data Description

The data for all the subjects are similar in terms of rows and columns. The columns are

the attributes Q1, Q2, Q3, Q4, Q5, Q6, Q7 and Result. And the rows contain responses to

different attribute scenarios.

Attributes Attribute description Possible Values
Q1 Are you comfortable with numbers? 0,1,2
Q2 Do you like to interact with people? 0,1,2
Q3 Do you think outside the box? 0,1,2
Q4 Are you analytical and enjoy doing re-

search?
0,1,2

Q5 Are you a good listener? 0,1,2
Q6 Do you enjoy being the leader of a

group?
0,1,2

Q7 Do you have entrepreneurship drive? 0,1,2
Result Outcome based on the above seven at-

tributes
Yes,No

Table 3.1: Attributes for Business; where 2=Yes, 0=No, 1=To Some Extent.

10



3.2. DATA DESCRIPTION

Attributes Attribute description Possible Values
Q1 Are you happy working independently

for hours at a time?
0,1,2

Q2 Do you enjoy sitting at a desk and work-
ing on a computer?

0,1,2

Q3 Do you enjoy working with mathemat-
ics and science to fix a problem?

0,1,2

Q4 Would you like to develop new hard-
ware or software and further advances
made in technology?

0,1,2

Q5 Do you frequently help other people
with their computer problems?

0,1,2

Q6 Do you wonder how a software works,
why the designers made the choices
that they did and how to improve upon
those choices?

0,1,2

Q7 Do you easily get demotivated by fail-
ures?

0,1,2

Result Outcome based on the above seven at-
tributes

Yes,No

Table 3.2: Attributes for Computer Science; where 2=Yes, 0=No, 1=To Some Extent.

Attributes Attribute description Possible Values
Q1 Do you love maths and science? 0,1,2
Q2 Do you enjoy working out how things

work?
0,1,2

Q3 Do you love to solve puzzles and come
up with solutions to problems?

0,1,2

Q4 Are you always thinking up new and
better ways of doing things?

0,1,2

Q5 Are you curious about how certain elec-
tronics work?

0,1,2

Q6 Does designing new systems and mak-
ing repairs to old applications in order
to keep the world electrified excite you?

0,1,2

Q7 Are you up for studying how electricity
works, how it is generated and how it
is used?

0,1,2

Result Outcome based on the above seven at-
tributes

Yes,No

Table 3.3: Attributes for Electrical Engineering; where 2=Yes, 0=No, 1=To Some Extent.

11



CHAPTER 3. METHODOLOGY

Attributes Attribute description Possible Values
Q1 Can you think quickly and adapt to a

changing situation?
0,1,2

Q2 Can you work for long hours, looking
for loopholes and preparing a client‚Äôs
case?

0,1,2

Q3 Do you mind filling in repetitive paper-
work every single day?

0,1,2

Q4 Do you enjoy debating with other people
and analyzing their speeches, looking
for weaknesses in their statements?

0,1,2

Q5 Do you want to help people and work
for the community as a whole?

0,1,2

Q6 Are you interested in representing peo-
ple?

0,1,2

Q7 Are you good at remembering details? 0,1,2
Result Outcome based on the above seven at-

tributes
Yes,No

Table 3.4: Attributes for Law; where 2=Yes, 0=No, 1=To Some Extent.

3.3 Applying Naive Bayes

3.3.1 Introduction to Naive Bayes Classifier

The Naive Bayes classifier is a simple classifier which uses probability to make predic-

tions. It is mainly built on Bayes theorem. The presumptions it makes are strongly naive

but still it has been proven to perform quite well in many real world applications[8].

The classifier is also referred to as Idiot Bayes, Naive Bayes or Simple Bayes[9]. A more

descriptive term for the underlying probability model would be independent feature

model. In simple terms, a Naive Bayes classifier assumes that the presence or absence

of a particular feature of a class is unrelated to the presence or absence of any other

feature. For instance, an object may be considered to be a ball if it is round, bouncy, about

4 inches to 8 inches in diameter. Even if these features depend on each other or upon the

presence of other features, a Naive Bayes classifier considers all of these properties to

independently contribute to the probability that the object is a ball.

Depending on the precise nature of the probability model, Naive Bayes classifiers can

be trained very efficiently in a supervised learning setting. In many practical applications,

parameter estimation for Naive Bayes models uses the method of maximum likelihood;

12



3.3. APPLYING NAIVE BAYES

in other words, one can work with the Naive Bayes model without believing in Bayesian

probability or using any Bayesian methods.

In spite of their naive design and apparently over-simplified assumptions, Naive

Bayes classifiers have worked brilliantly in solving many complex problems. It is one

of the most effective and efficient learning algorithms for data mining and machine

learning[10].

FIGURE 3.6. Structure of Naive Bayes

3.3.2 Probabilistic Model

The discussion so far has derived the independent feature model, that is, the naive Bayes

probability model. The naive Bayes classifier combines this model with a decision rule.

One common rule is to pick the hypothesis that is most probable; this is known as MAP

decision rule.

13



CHAPTER 3. METHODOLOGY

3.3.3 Algorithm

In our proposed model, Naive Bayes assumes that all variables are mutually independent.

The attribute variables are Q1, Q2, Q3, Q4, Q5, Q6, Q7 and the result is the outcome

variable. Our model takes the seven attributes as input and firstly it calculates the prior

probabilities of outcome variables, then the conditional probabilities of the attribute

variables are calculated. Lastly, using the previous calculation, the posterior probabilities

of the outcome variables are calculated. Based on the posterior probabilities, prediction

of whether to study a particular subject or not to study a particular subject is made.

The steps are as follows-

14
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CHAPTER 3. METHODOLOGY

3.3.4 Solving Zero Frequency Problem

If one of the conditional probabilities is zero, then the entire expression becomes zero.

To solve this problem, quite a few techniques can be used. My first approach was to not

consider the ones with zero probabilities. I excluded them during calculation.

Another way to solve this problem is to use Laplace Smoothing. It is also referred

to as add-one smoothing. This technique adds one to every combination of category

and categorical variable. This helps since it prevents knocking out an entire class just

because of one variable. Since we add one to each cell, the proportions are essentially the

same. Usually, the more data there is, the smaller the impact the added one will have on

a Naive Bayes model[11].

3.4 Comparison with Logistic Regression

3.4.1 Introduction to Logistic Regression

Functions of the form P(Y|X) where Y is discrete valued and X can be either discrete

or continuous variables can be determined by Logistic Regression. It supposes a para-

metric form for the distribution P(Y|X), then directly deduces its parameters from the

training data[5]. Logistic regression is somewhat similar to linear regression but it uses

a binomial response variable. A model designed with logistic regression will represent

the likelihood of an outcome with respect to individual features[4]. As stated in [7],

logistic regression should be used when an outcome variable takes only two values such

as Yes/No or 0/1. Our proposed model has two outcome values which are Yes and No.

Therefore, we have chosen logistic regression for comparison purposes.

Logistic Regression estimates class probabilities directly[6]:

16



3.4. COMPARISON WITH LOGISTIC REGRESSION

Here, it chooses weights to maximize the log-likelihood[6]:

3.4.2 Relationship between Naive Bayes and Logistic
Regression

Naive Bayes is sometimes referred to as a generative classifier and Logistic Regression

is sometimes referred to as a discriminative classifier. The former directly estimates

for P(Y) and P(X|Y), whereas the latter directly estimates parameters of P(Y|X). A

variation of Naive Bayes classifier called Gaussian Naive Bayes classifier tends to be

similar to Logistic Regression when the number of training data reaches infinity. In

cases where training data is available, Logistic Regression outperforms GNB. But, GNB

outperforms Logistic Regression when the training data is scarce[5]. Overall, Logistic

Regression is a linear classifier over X. provided the Naive Bayes assumptions hold, the

classifiers produced by GNB and Logistic Regression are identical when the training

data is infinite. On the other hand, if these presumptions do not hold, the Naive Bayes

will perform less accurately than Logistic Regression. In other words, Naive Bayes is a

learning algorithm with greater bias, but lower variance, than Logistic Regression. If

this bias is appropriate given the actual data, Naive Bayes will be preferred. Otherwise,

Logistic Regression will be preferred[5].

17





C
H

A
P

T
E

R

4
EXPERIMENT AND RESULTS

4.1 Training phase

Our model was trained with BBA, CS, EEE and Law data sets. The number of training

data overall was not in abundance. This mainly lead to the selection of Naive Bayes

algorithm as it is known to perform well when training data is limited.

FIGURE 4.1. Classification

19



CHAPTER 4. EXPERIMENT AND RESULTS

The figure below shows the amount of training data for each data set.

FIGURE 4.2. Training data

The algorithm discussed in the previous chapter deals with the zero frequency prob-

lem in two ways. Below is the comparison of the two approaches.As the two approaches

result similar accuracy we can choose any one of them to proceed. However, we select the

Laplace Smoothing technique as it has been previously used in many scenarios as such.

FIGURE 4.3. Comparison of the two approaches to solve zero frequency problem

20



4.1. TRAINING PHASE

FIGURE 4.4. Probability distribution for BBA
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CHAPTER 4. EXPERIMENT AND RESULTS

FIGURE 4.5. Probability distribution for CS
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4.1. TRAINING PHASE

FIGURE 4.6. Probability distribution for EEE
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FIGURE 4.7. Probability distribution for Law

24



4.2. TESTING PHASE

4.2 Testing phase

Testing of this kind of model can be done in various ways. Some of the ways are cross-

validation, percentage spit and using a test set. For our model, we have used individual

test sets for the data sets. The test instances for each data set are as follows.

FIGURE 4.8. Test Data

4.3 Experimental Result

The observations and results are discussed in detail in this section. The figure below

shows the classified instances.

FIGURE 4.9. Classified Data

25



CHAPTER 4. EXPERIMENT AND RESULTS

The following are the confusion matrices for the four data sets.

Class = Yes Class = No
Class = Yes 103 12
Class = No 51 103

Table 4.1: Confusion matrix for BBA.

Class = Yes Class = No
Class = Yes 67 59
Class = No 15 216

Table 4.2: Confusion matrix for CS.

Class = Yes Class = No
Class = Yes 17 94
Class = No 3 223

Table 4.3: Confusion matrix for EEE.

Class = Yes Class = No
Class = Yes 61 26
Class = No 1 121

Table 4.4: Confusion matrix for Law.

26



4.3. EXPERIMENTAL RESULT

The prediction accuracy is displayed in the diagram below.

FIGURE 4.10. Accuracy with Naive Bayes

Our proposed Naive Bayes model is compared with Weka’s Logistic Regression.

FIGURE 4.11. Accuracy Comparison with Logistic Regression
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5
FUTURE WORK

5.1 Holland Codes

The Holland Code is a theory developed by the psychologist John L. Holland. The theory

states that Holland Occupational Themes or RIASEC is a model of careers and vocational

choice based on personality types. The RIASEC model is broken down as follows. The R

stands for Realistic or Doers, I equals Investigative or thinkers, A for Artistic or Creators,

S for Social or Helpers, E for Enterprising or Persuaders and lastly C for Conventional or

Organizers. Most of us do not fall under one Holland Code but under a combination of few.

Holland Codes by Subject for BRAC University-

Computer Science - IRE

Economics - ICE

Anthropology - IRE

Electrical and Electronic Engineering - RES

English and Humanities - SAI

Mathematics - ICA

Physics - IR

Business Administration - ECS

29



CHAPTER 5. FUTURE WORK

5.2 Project Proposal

With sufficient data and human expertise, a Subject Prediction System specific to an

institution can be built in the near future. A system can be made where initially a

student is expected to select Holland Codes according to his/her personality. List of

subjects will be filtered according to specific Holland Codes. Then, the student will need

to answer subject specific questions in random order from the filtered subject list. For

example, for Computer Science, the student is required to answer seven questions. Based

on the answers, probability of Yes and probability of No will be calculated by Naive Bayes

algorithm. Lastly, after answering for all the subjects only the ones with probability of

Yes will be displayed.
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6
CONCLUSION

In this paper, Naive Bayes Algorithm was used to make a probabilistic model. The

resulting model was compared with Logistic Regression. The observations indicate

that Naive Bayes outperforms Logistic Regression. Therefore, it can be concluded

that the proposed system successfully classifies the given data into respective categories.

Now, it can be determined whether a student is interested in a particular subject or not.

Here, a base model has been proposed. More work can be done here. This model can be

used in the back end of a system which would make predictions by asking questions. The

answers received would be analyzed and a decision can be made based on that.
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