
Comparative Analysis of Protein Alignment

algorithms in Parallel environment using CUDA

BLAST verses Smith-Waterman

Supervisor: Dr. JiaUddin

Shadman Fahim-12301011

GulshanJubaed Prince-12301014

Shehabul Hossain-12301005

BRAC University

Submitted on: 18thApril 2016

1

Comparative Analysis of Protein Alignment

algorithms in Parallel environment using CUDA

A THESIS

Submitted to the School of Computer Science and Engineering BRAC University Bangladesh.

In partial fulfillment of the requirements for the Bachelor’s degree in Computer Science and

Engineering

Signature of Supervisor

Dr. JiaUddin

Signatures of Author

ShadmanFahim

GulshanJubaed Prince

ShehabulHossain

2

DEDICATION

Wewouldliketodedicate (atthehighestlevel) thisthesistoAllah, theOmnipotent,

theOmniscient, themostExalted, themostBeneficent, themostMerciful.

We would also like to mention the name of Prophet Muhammad (peace and blessings be

upon him), who is our inspiration in every rightly guided things we do and every rightly guided

choice we make as a role model of our entire life.

While writing this section, we can’t forget our parents who are the most precious family

members to us. Furthermore, we keep in mind the rightly guided servants of Allah the Exalted,

who assist us to be guided to the Path journeyed by; they are the reason we are here at all and

made us who we are today.

3

ACKNOWLEDGEMENT

This thesis is an expedition that could not be completed without the wish and blessings of

the almighty Allah, the most Exalted. We seek repentance from Allah for every mistake, we

made, of course, during the period of writing this thesis.

Our journey towards the BSc. degree would not have been possible without the help of

many people. It is our great pleasure to take this opportunity to thank them for the support and

advice that we received over the past years.

We would like to express our sincere gratitude to our advisor, Dr. JiaUddin, for his

support, encouragement, and guidance throughout this research. He has directed this research

with competence, instilling his enthusiasm, providing support in uncountable occasions. This

work would not have been completed without his help, support, and practically infinite supply of

comments and ideas. It has been a great honor to work with him during our stay at the BRAC

University.

Furthermore, we keep in mind the rightly guided servants of Allah the Exalted, who assist

us to be guided to the Path journeyed by those whom Allah the Exalted showered blessings; they

are the reason we are here at all and made us who we are today.

Finally, we would like to share a great deal of my achievement with our parents, our

family, and our friends, who always support and encourage us in our life.

4

Contents
DEDICATION... 3

ACKNOWLEDGEMENT .. 4

ABSTRACT ... 9

CHAPTER 1 .. 10

Introduction ... 10

1.1 Overview ... 10

1.2 Objective and Goals ... 11

1.3 Motivation ... 12

1.4 Thesis Outline ... 12

CHAPTER 2 .. 13

Background Study .. 13

2.1 Nvidia Gpu .. 13

2.2 CUDA .. 16

2.3 Blast Algorithm .. 19

2.4 Smith-Waterman Algorithm ... 23

CHAPTER 3 .. 27

EXPERIMENTAL SETUP .. 27

3.1 CUDA Toolkit... 27

5

3.2 GeForce GTX 660 GPU card .. 28

3.3 BLAST CUDA .. 30

3.4 Smith-Waterman CUDA ... 33

CHAPTER 4 .. 35

EXPERIMENTAL RESULT ANALYSIS .. 35

CHAPTER 5 .. 42

Conclusion and Future Work .. 42

REFERENCE .. 44

6

LIST OF TABLES

Figure 1. A general GPU architecture... 14

Figure 2. Parallel computation between the host and the device .. 17

Figure 3. A CUDA code sample. .. 18

Figure 4. The scoring matrix; Blosum 62. .. 20

Figure 5. Un-gapped extension. .. 21

Figure 6. An overview of BLAST. ... 21

Figure 7. Another BLASTP example. ... 22

Figure 8. The experimental setup of BLAST algorithm. .. 31

Figure 9. Kernel call. .. 32

Figure 10. The experimental setup of Smith-Waterman algorithm. ... 34

Figure 11. Comparison of execution time varying block and thread sizes. 35

Figure 12. Comparison of runtimes achieved by both the algorithm using Table 9. 37

Figure 13. Comparison of runtimes achieved by both the algorithm using Table 10. 38

Figure 14. Results comparison of BLAST and Smith-Waterman. ... 39

Figure 15. Comparison of runtimes achieved by CPU and GPU using Table 11. 41

7

LIST OF TABLES
TABLE 1. GPU ENGINE SPECIFICATIONS .. 28

TABLE 2. MEMORY SPECIFICATIONS .. 28

TABLE 3. FEATURE SUPPORT .. 29

TABLE 4. DISPLAY SUPPORT ... 29

TABLE 5. STANDARD GRPAHCIS CARD DIMENSIONS .. 30

TABLE 6. THERMAL AND POWER SPECIFICATIONS .. 30

TABLE 7. THERMAL AND POWER SPECIFICATIONS .. 30

TABLE 8. EXECUTION TIME OF UBP6P PROTEIN IN BLASTP. THREAD SIZE IS

VARIED WITH BLOCK SIZE. ... 36

TABLE 9. RUNTIME IN SECONDS FOR BOTH THE ALGORITHMS USING 256 GPU

BLOCKS AND 128 THREADS. .. 37

TABLE 10. RUNTIME IN SECONDS FOR BOTH THE ALGORITHMS USING 256 GPU

BLOCKS AND 256 THREADS. .. 38

TABLE 11. RUNTIME OF BLASTP IN SECONDS FOR CPU AND GPU. 40

8

ABSTRACT

In bioinformatics to identify evolutionary relationships two sequences are matched to

find similarity. Smith Waterman, a dynamic algorithm, is a common choice to carry out this

alignment process. However, with the exponential growth of protein databases this algorithm’s

time complexity increases. The demand of bioinformatics for their tasks to speed up is very high.

Even a slight seed up in computation would be very helpful in the field of bioinformatics. Thus,

for a lot of the scientists this algorithm might not be the first choice. In today’s world the most

popular and used bioinformatics tool is the BLAST (Basic Local Alignment Tool). BLAST,

similar to Smith Waterman algorithm, is an alignment algorithm for scanning proteins from

protein databases. This thesis analyzes both the algorithms in a parallel environment with the

help of NVIDIA GPU. For our experiments we utilized a GeForce GTX 660 NVIDIA GPU to

execute both the algorithms. Experimental results show that BLAST is on average is 2.5 times

faster than Smith-Waterman.

9

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Basic Local Alignment Search Tool (BLAST) is the most popular alignment algorithm in

the world of science today. The algorithm uses dynamic programing which utilizes well defined

mutation scores. This method is more than an order of magnitude faster than the existing heuristic

algorithms [1]. It has been cited over 25,000 [2] and over 21,000 [3]. For such popularity US

National Center for Biotechnology Information (NCBI) plays the most important role. The reason

for this is because NCBI provided a platform over the internet for everyone’s reach. Now any

general person can go on the website of NCBI and get results for their queries. It is noted that

hundreds and thousands of queries are being processed every now and then using the platform

provided by NCBI. This results in the increase of BLAST’s usage by 2 to 3 times [4].

On the contrary, Smith Waterman is also a dynamic algorithm but isn’t used as much as

BLAST. This algorithm generates more accurate results than what BLAST produces. However,

its accuracy is maintained at the expense of computation time and computer power [5].

Computation speed is the burning topic in today’s world. How fast a task can be processed is the

main challenge. One of such other challenges is searching through long detailed databases. With

the exponential growth of protein databases demand to accelerate searching through such huge

databases is very high. NCBI is having tremendous breakthroughs in this particular field.

However, NCBI uses sequential search for the queries. With the availability of Graphics

Processing Units (GPUs) it can be assumed that using its parallel techniques BLAST algorithm

can have a faster processing time. An implementation of BLASTP algorithm is handled by GPU

using Compute Unified Device Architecture (CUDA), CUDA-BLASTP. It is claimed that in

CUDA architecture they have managed to achieve speedups of 10 times compared to sequential

NCBI BLAST 2.2.22 on a GeForce GTX 295. It is also 3-4 times faster than multithreaded

NCBI BLAST on an Intel Quad-Core processor [4]. Similarly, mpiBLAST is an open-

sourcesequence tool that parallelizes the NCBI BLAST toolkit. It uses the database segmentation

10

approach and the master-worker style. It achieves significant speedups in small or moderate

number of processes [6]. On the other hand researchers started to implement Smith-Waterman in

GPUs as well. CUDASW++ 2.0 has managed to achieve an average performance of 9.509

GCUPS on single-GPU version and an average performance of 14.484 GCUPS on dual-GPU

version [5]. A lotof efforts have been made to parallelize this computationon high-performance

computing architectures rangingfrom loosely-coupled to tightly-coupled ones. Architecture

examples include clouds [7], clusters [7] and accelerators [5]. Forfield programmable gate arrays

(FPGAs), some approaches based on linear systolic arrays and custom instructions have been

proposed. Oliver et al. [8] constructed a linear systolic array on a standard Virtex II FPGA board

to perform the SW algorithm with affine gap penalties. Li et al. [9] designed custom instructions

to support massively parallel computing of the SW algorithm on an Altera Stratix EP1S40

FPGA.

1.2 OBJECTIVE AND GOALS

There are scopes to speed-up the process and meet the demand of accelerating it. This

thesis demonstrates both the alignment algorithms. Also, it illustrates how this task is handled by

a GPU using CUDA. CUDA by NVIDIA, a parallel computing architecture uses parallel

compute engine in NVIDIA GPUs to solve many computationally intensive problems in a more

efficient way than on Central Processing Unit (CPU) [10]. Using its parallel techniques we

demonstrate how computation can speed-up. The database used in this research is taken from the

NCBI website [11]. Smith-Waterman algorithm is overshadowed by the widespread use of

BLAST algorithm. Thus, this thesis focuses on the algorithms and their implementation on GPU.

Later few factors are compared to see if the domination of BLAST is justified or not. Also, the

purpose is to bring back Smith-Waterman if its performance is not too exhaustive.

11

1.3 MOTIVATION

 In today’s world it is all about speed. How fast you can do something is the challenge!

For example you want to watch a movie that takes 1 hour to download. If that movie is

downloaded within 30 minutes then you feel a sense of happiness. Similarly, for bioinformatics if

they can perform their task with accurate results in a short time then they will be ecstatic. Thus,

being computer engineers we want to be part of this evolutionary change in speed. We wanted to

showcase that we can take a real life task and make it happen faster. Also, parallel computing

seems very astonishing. Being able to lay our hand on parallel computing to implement an

algorithm is what motivated us the most. Looking at all the work being done using GPU is just

mind boggling. Three of the top 5 super computer is powered by GPU.

1.4 THESIS OUTLINE

Orientation of this thesis is as below:

 Chapter 2 displays the architecture of a NVIDIA GPU, features of CUDA, Smith-

Waterman algorithm and BLAST algorithm.

 Chapter 3 provides a detailed explanation of the implementation of the algorithms.

 The results of the experiments carried out and their analysis are included in

chapter 4.

Finally chapter 5 concludes and discusses about our future work.

12

CHAPTER 2

BACKGROUND STUDY

A simple way to understand the difference between a CPU and GPU is to compare how

they process tasks. A CPU consists of a few cores optimized for sequential serial processing

while a GPU has a massively parallel architecture consisting of thousands of smaller, more

efficient cores designed for handling multiple tasks simultaneously.

At the start of multicore CPUs and GPUs the processor chips have become parallel

systems. But speed of the program will be increased if software exploits parallelism provided by

the underlying multiprocessor architecture. Hence there is a big need to design and develop the

software so that it uses multithreading, each thread running concurrently on a processor,

potentially increasing the speed of the program dramatically. To develop such a scalable parallel

applications, a parallel programming model is required that supports parallel multicore

programming environment.

NVIDIA is focusing on professional visualization, Data centers, gaming and Auto are the

four markets where NVIDIA from 2014. The researchers and scientists are given the capability

of parallel processing by NVIDIA. Thus the applications which need high performance can be

run efficiently using NVIDIA GPUs. This NVIDIA GPU power millions of devices like

desktops, notebooks, workstations and supercomputer all over the world.

2.1 NVIDIA GPU

NVIDIA Corporation began as an American technology company based in Santa Clara,

California. NVIDIA designs graphics processing units (GPUs) for the gaming market, as well

as system on chip units (SOCs) for the mobile computing and automotive market. NVIDIA's

primary GPU product line, labeled "GeForce", is in direct competition with Advanced Micro

Devices' (AMD) "Radeon" products. NVIDIA expanded its presence in the gaming industry with

its handheld SHIELD Portable, SHIELD Tablet, and SHIELD Android TV. In addition to GPU

13

https://en.wikipedia.org/wiki/Technology_company
https://en.wikipedia.org/wiki/Santa_Clara,_California
https://en.wikipedia.org/wiki/Santa_Clara,_California
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/GeForce
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Radeon
https://en.wikipedia.org/wiki/Shield_Portable
https://en.wikipedia.org/wiki/Shield_Tablet
https://en.wikipedia.org/wiki/Shield_Android_TV

manufacturing, NVIDIA provides parallel processing capabilities to researchers and scientists that

allow them to efficiently run high-performance applications. They are deployed

in supercomputing sites around the world [12].

When we consider a processor that is more power efficient and have a better performance,

GPU comes in top of that list. Comparing to a CPU, a GPU provides a better performance

because it offers a higher peak GFLOPS (Giga floating-point operations per second) [13]. The

GPU that we used for the experimentations is GeForce GTX 660. Generally a GPU device has

several multiprocessors with several processors inside each of them. The Figure 1 enlightens it.

There are mainly two types of memory in GPU. One is on-chip memory and the other is off-chip

memory. The on-chip memory has low access latency but a relatively small size. On the other

hand the off-chip memory has larger size and also higher access latency [14]. Moreover, these

microprocessors contain the shared memory and caches, along with registers.

Figure 1.A general GPU architecture.

14

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Supercomputing

The following fields explains about the GPU,

 Model - The marketing name for the processor assigned by NVIDIA.

 Launch - Date of release for the processor.

 Code name - The internal engineering codename for the processor (typically designated

by an NVXY name and later GXY where X is the series number and Y is the schedule of

the project for that generation).

 Fab - Fabrication process. Average feature size of components of the processor.

 Bus interface - Bus by which the graphics processor is attached to the system (typically

an expansion slot, such as PCI, AGP, or PCI-Express).

 Memory - The amount of graphics memory available to the processor.

 SM Count - Number of streaming multiprocessors.

 Core clock - The factory core clock frequency (while some manufacturers adjust clocks

lower and higher, this number will always be the reference clocks used by NVIDIA).

 Memory clock - The factory effective memory clock frequency (while some

manufacturers adjust clocks lower and higher, this number will always be the reference

clocks used by NVIDIA). All DDR/GDDR memories operate at half this frequency,

except for GDDR5, which operates at one quarter of this frequency.

 Core configuration - The layout of the graphics pipeline, in terms of functional units.

Over time the number, type, and variety of functional units in the GPU core has changed

significantly; before each section in the list there is an explanation as to what functional

units are present in each generation of processors. In later models, shaders are integrated

into a unified shader architecture, where any one shader can perform any of the functions

listed.

 Fill rate - Maximum theoretical fillrate in textured pixels per second. This number is

generally used as a "maximum throughput number" for the GPU and generally, a higher

fillrate corresponds to a more powerful (and faster) GPU.

 Memory subsection

o Bandwidth - Maximum theoretical bandwidth for the processor at factory clock

with factory bus width. GB=10^9 bytes.

o Bus type - Type of memory bus or buses utilized.

15

https://en.wikipedia.org/wiki/Semiconductor_device_fabrication
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/Fillrate

o Bus width - Maximum bit width of the memory bus or buses utilized. This will

always be a factory bus width.

 API support section

o Direct3D - Maximum version of Direct3D fully supported.

o OpenGL - Maximum version of OpenGL fully supported.

 Features - Additional features that are not standard as a part of the two graphics libraries.

2.2 CUDA

CUDA introduced by NVIDIA is a general purpose parallel computing platform and

programming model [15]. It enables dramatic increases in computing performance by harnessing

the power of the graphics processing unit (GPU). The CUDA platform is a software layer that

gives direct access to the GPU's virtual instruction set and parallel computational elements, for

the execution of compute kernels. The CUDA platform is designed to work with programming

languages such as C, C++ and Fortran. This accessibility makes it easier for specialists in parallel

programming to utilize GPU resources, as opposed to previous API solutions like Direct3D and

OpenGL, which required advanced skills in graphics programming. Also, CUDA supports

programming frameworks such as OpenACC and OpenCL The figure 2 below shows how host

and device communicate with each other.

One of the main advantages of CUDA is shared memory. CUDA exposes a fast shared

memory region that can be shared amongst threads. This can be used as a user-managed cache,

enabling higher bandwidth than is possible using texture lookups [16]. CUDA C extends C by allowing

the programmer to define C functions, called kernels. Unlike C functions that run only once this

kernel runs N times in parallel by N different CUDA threads. Each thread that executes the kernel

is given a unique thread ID.The threads are organized in a hierarchy consisting of blocks and

grids. When calling a kernel function the size of the blocks and the number of threads per block

are specified. An example of the function to call kernels is presented as:

kernel<<<numBlocks, numThreads>>>(parameter’s list).

16

https://en.wikipedia.org/wiki/Direct3D
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Compute_kernels
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Direct3D
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenACC
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
https://en.wikipedia.org/wiki/Scratchpad_RAM
https://en.wikipedia.org/wiki/Scratchpad_RAM

Figure 2. Parallel computation between the host and the device

With millions of CUDA-enabled GPUs sold to date, software developers, scientists and

researchers are finding broad-ranging uses for GPU computing with CUDA. Here are a few

examples:

1. Identify hidden plaque in arteries

Heart attacks are the leading cause of death worldwide. Harvard Engineering, Harvard Medical

School and Brigham & Women's Hospital have teamed up to use GPUs to simulate blood flow

and identify hidden arterial plaque without invasive imaging techniques or exploratory surgery.

2. Analyze air traffic flow

The National Airspace System manages the nationwide coordination of air traffic flow.

Computer models help identify new ways to alleviate congestion and keep airplane traffic

17

moving efficiently. Using the computational power of GPUs, a team at NASA obtained a large

performance gain, reducing analysis time from ten minutes to three seconds.

3. Visualize molecules

A molecular simulation called NAMD (nanoscale molecular dynamics) gets a large performance

boost with GPUs. The speed-up is a result of the parallel architecture of GPUs, which enables

NAMD developers to port compute-intensive portions of the application to the GPU using the

CUDA Toolkit.

Figure 3 compares a standard C code with CUDA code.

Figure 3.A CUDA code sample.

18

2.3 BLAST ALGORITHM

Before BLAST, FASTA was developed by David J. Lipman and William R. Pearson in

1985 [17]. Besides fast algorithms like BLAST and FASTA, Smith-Waterman algorithm was

used to search protein databases which guarantee the optimal alignments of the query and

database sequences unlike BLAST and FASTA. However, the heuristic approach of BLAST

algorithm is overall a lot faster. So, due to such highly populated protein databases Smith-

Waterman search is both time consuming and computer power intensive. The actual alignment

part of the algorithm which is performed for every database sequence has a very different

complexity. To find the seeds, each of the words in the database sequence must be compared to

hash table created for the neighbors of the query sequence words, and thus we must perform M

lookups. The end product of the M lookups is on the order of N seeds total, because there are

only N–w+1 words in the query. Each of these seeds starts an alignment, and the maximum

length of the alignment is the length of the query sequence, M, assuming M<N. Since calculating

λ must only be done once, and calculating the statistical significance of each HSP is a constant

time operation, these have a complexity of O(1).The time complexity of this particular algorithm

is [18]:

O(M) + O(MN) + O(1) = O(MN).

We must first take into consideration the hash table. The table contains 20wrows, one for

every possible word of length w. The rows contain the locations for each of the words, and the

total number of positions is on the order of N. Thus, there should on the order of N seeds which

can each lead to a local alignment of a maximum of length M. The total space complexity is [18],

O(20w)+O(N)+O(MN)=O(20w+MN)

Thus, the space complexity is slightly higher than the other algorithms, however the

actual space used may not be significantly larger than the dynamic programming algorithms.

This is because many of the local alignments will be discarded because they do not meet the

threshold, and also because the alignments which do meet the threshold will significantly shorter

than length M.

So as mentioned earlier BLAST is the most popular heuristic search algorithm for protein

scanning. Unlike Smith-Waterman algorithm where the entire sequence is compared BLAST

locate high scoring short matches between the query sequence and the subject sequence [14].

19

Due to this the accuracy of BLAST decreases to some extent but then the processing speed

increases exceptionally than Smith-Waterman. The Blast Algorithm mainly has four stages [19],

such as in the first stage the query sequence is matched with the subject sequence in order to find

matches. For this the query sequence is broken down to similar size world lengths (W). For our

experiment W is 3. For example a query sequence is ARNDCQEGHFPYVWTSKMLI. This

sequence is extracted to three letters word; i.e. ARN, RND, NDC, DCQ, CQE and so on. Later

these extracted words are matched with the subject query one by one to identify matches known

as hits. This process is called the hit detection. The hits are then scored using the blosum62

scoring matrix. A sample snap shot of blossom62 is presented in Figure 4. The hits are not

necessary to be exact matches similar matches is also accepted as long as the score of that hit is

greater than a certain threshold (T). Otherwise the hits that do not overcome the threshold are

filtered out. For example, we obtain a score of 15 and 12 by comparing PQG with PEG and

PQA, respectively. Let’s assume that T is 13. As a result PEG is kept and PQA is cut off.

Figure 4.The scoring matrix; Blosum 62.

20

In stage 2, the remaining hits are now sent to this stage for further processing. The hits

are extended in both directions and as long as the accumulated score is increasing the extension

is carried on. As soon as the score starts to decrease we stop. This is called un-gapped extension.

The result is HSPs (highest scoring pairs). A sample of un-gapped extension is presented in

Figure 5.

Figure 5.Un-gapped extension.

Consequently in stage 3, the HSPs sent to this stage are then extended further. However,

unlike the last stage here gaps are allowed. With each gap there is a penalty. This is called the

gapped extension. Finally in stage 4, scores all the alignments again from the previous stage.

Once done scoring it produces the top scores. This is called the gapped alignment with trace-

back. The entire BLASTP algorithm is enlightened in Figure 6.

Figure 6.An overview of BLAST.

21

In Figure 6, the query sequence and the subject sequence is compared. We can see there

is an exact match in the sequence AAL. This is the stage one where the hit is detected. In the

next stage the un-gapped extension is performed on pairs of high-scoring segment pairs (HSPs).

Here, the initial match in extended in both directions until there the overall accumulated score

starts to decrease. In stage 3, the un-gapped extension is extended using a gapped alignment [20].

To determine the level of the alignment a scoring matrix and a threshold value is used. Finally, in

the last stage a trace-back algorithm is used to produce and score the alignments.

The figure 7 below provides more details of the process [21]. In stage 1, short, matches

areidentified(black lines in the left figure). In stage 2, matches along the same diagonal are

extended (non-gapped) ifthe resulting score exceeds a specified threshold. The extensions are

shown as grey lines in the leftfigure. Next, stage 3 extends (typically using Smith-Waterman) the

non-gapped sequences using gappedalignment, as shown by the grey line in the right figure.

Finally, stage 4 generates and scores thesequence for the end user using alignment traceback

algorithms.

Figure 7.Another BLASTP example.

22

2.4 SMITH-WATERMAN ALGORITHM

In 1981 before BLAST or FASTA were written Smith and Waterman suggested Smith-

Waterman algorithm [22]. Later in 1982 Gotoh improved the algorithm [24]. This is a local

alignment algorithm. Thus it matches the highest similarities between two proteins instead of the

aligning the entire two proteins. Instead of aligning the entire length of two protein sequences,

this algorithm finds the region of highest similarity between two proteins. This is potentially

more biologically relevant due to the fact that the ends of proteins tend to be less highly

conserved than the middle portions, leading to higher mutation, deletion, and insertion rates at

the ends of the protein. The Smith-Waterman algorithm allows us to align proteins more

accurately without having to align the ends of related protein which may be highly different.

Assuming two query sequences S1 and S2 having lengths l1 and l2. The two sequences are

arranged in a matrix form with l1 + 1 row and l2 + 1 column. Initially the first row and column

are set to 0. Then the similarity matrix is computed for 1<= i <= l1, 1<= j <= l2 using the formula

as shown below. At last the trace back is performed to calculate the final overall score.There are

mainly three steps to run this algorithm, they are:

1. Initialization.

H (0, j) = 0;

H (i, 0) = 0; //where H is the similarity score matrix

2. Filling the matrix, H.

23

Where:

• a, b = Strings over the alphabet

• m = length (a)

• n = length (b)

• s(a, b) is a similarity function on the alphabet

• H (i, j) – is the maximum similarity score between a suffix of [1..i] and a suffix of b [1..j]

• Wiis the gap-scoring scheme

3. Trace back the sequences for a suitable alignment.

F = max {H(i, j)};

traceback(F);

The complexity of the Smith-Waterman algorithm can also be computed. The time

complexity of the initialization is O(M+N) because we need to initialize row 0 and column 0. In

filling the matrix, we traverse each cell of the matrix and perform a constant number of

operations in each cell, and thus the time complexity for this part is O(MN). However, in the

traceback, the algorithm requires the maximum cell be found, and this must be done by

traversing the entire matrix, making the time complexity for the traceback O(MN). It is also

possible to keep track of the largest cell during the matrix filling segment of the algorithm,

although this will not change the overall complexity.

The time complexity of this algorithm is [18],

O(M+N) + O(MN) + O(MN) = O(MN).

Before Smith Waterman algorithm the Needleman-Wunsch algorithm [24], published in

1970, provides a method of finding theoptimal global alignment of two sequences by

maximizing the number of amino acid matches andminimizing the number of gaps necessary to

align the two sequences. Because the Needleman-Wunsch algorithm finds the optimal alignment

of the entire sequence of both proteins, it is a globalalignment technique, and cannot be used to

find local regions of high similarity.

24

The space complexity of the Smith-Waterman algorithm is also unchanged from

theNeedleman-Wunsch algorithm. This is due to the fact that the same matrix is used and the

sameamount of space is needed for the traceback. Thus, there is no definite space or time

advantage of onealgorithm over the other. However, the Smith-Waterman algorithm tends to

model protein homologybetter because it ignores misalignments at the ends of the proteins which

are often not highlyconserved. Thus, database searches are usually done with the Smith-

Waterman algorithm over theNeedleman-Wunsch algorithm which tends to model homology

better in distantly related proteins.The Needleman-Wunsch algorithm will tend to be better for

proteins which are closely related, withfewer mutations because the ends of the protein in closely

related sequences will not be changed significantly. Since Smith Waterman algorithm fills a

single matrix of size MN and stores at most N positions for the traceback,the total space

complexity of this algorithm is given below [18],

O(MN)+O(N)=O(MN).

An example of Smith Waterman algorithm,

• Sequence 1 = ACACACTA

• Sequence 2 = AGCACACA

• s(a, b) = +2 if a = b (match), -1 if a ≠ b (mismatch)

• Wi = -1

The following matrices are computed using the values above.

25

To obtain the optimum local alignment, start with the highest value in the matrix (i,j).

Then, go backwards to one of positions (i − 1,j), (i, j − 1), and (i − 1, j − 1) depending on the

direction of movement used to construct the matrix. This methodology is maintained until a

matrix cell with zero value is reached.In the example, the highest value corresponds to the cell in

position (8,8). The walk back corresponds to (8,8), (7,7), (7,6), (6,5), (5,4), (4,3), (3,2), (2,1),

(1,1), and (0,0). Once finished, the alignment is reconstructed as follows: Starting with the last

value, reach (i,j) using the previously calculated path. A diagonal jump implies there is an

alignment (either a match or a mismatch). A top-down jump implies there is a deletion. A left-

right jump implies there is an insertion.

The results are:

• Sequence 1 = A-CACACTA

• Sequence 2 = AGCACAC-A

26

CHAPTER 3

EXPERIMENTAL SETUP

For our experiments CUDA Toolkit 7.5 is used and NVIDIA GeForce GTX 660. All the

experiments are conducted in a personal computer (PC) with the configuration Intel(R) Core i3-

4160 CPU @ 3.6 GHz, 8GB RAM, running Ubuntu 14.04.

3.1 CUDA TOOLKIT

The NVIDIA CUDA Toolkit provides a comprehensive development environment for C

and C++ developers building GPU-accelerated applications. The CUDA Toolkit includes a

compiler for NVIDIA GPUs, math libraries, and tools for debugging and optimizing the

performance of your applications. You’ll also find programming guides, user manuals, API

reference, and other documentation to help you get started quickly accelerating your application

with GPUs.The new features of CUDA 7.5 are,

1. 16-bit floating point (FP16) data format

• Store up to 2x larger datasets in GPU memory.

• Reduce memory bandwidth requirements by up to 2x.

• New mixed precision cublasSgemmEX() routine supports 2x larger matrices.

2. New cuSPARSE GEMVI routines

• Optimized dense matrix x sparse vector routines - ideal for Natural Language Processing.

3. Instruction-level profiling helps pinpoint performance bottlenecks

• Quickly identify the specific lines of source code limiting the performance of GPU code.

• Apply advanced performance optimizations more easily.

27

3.2 GEFORCE GTX 660 GPU CARD

For our experiment this is the only GPU available to us. The specification of this GPU

care is displayed.

TABLE 1. GPU ENGINE SPECIFICATIONS

CUDA Cores 960

Base Clock (MHz) 980

Boost Clock (MHz) 1033

Texture fill rate (billion/sec) 78.4

TABLE 2. MEMORY SPECIFICATIONS

Memory speed 6.0 Gbps

Standard memory configuration 2048 MB

Memory interface GDDR5

Memory interface width 192-bit GDDR5

Memory bandwidth

(GB/sec)

144.2

28

TABLE 3. FEATURE SUPPORT

Important technologies GPU Boost, PhysX, TXAA, NVIDIA G-

SYNC-ready

Other supported technologies 3D vision, CUDA, Adaptive VSync, FXAA,

3D Vision Surround, SLI

OpenGL 4.3

Microsoft directX 12 API

Bus support PCI express 3.0

Certified for windows 7, 8, vista, XP Yes

3D vision ready Yes

TABLE 4. DISPLAY SUPPORT

Maximum digital resolution 4096 x 2160

Maximum VGA resolution 2048 x 1536

Standard Display Connectors One dual link DVI-I, one dual link DVI-D,

one HDMI, one display port

Multi monitors 4 displays

HDCP Yes

HDMI Yes

Audio input for HDMI Internal

29

TABLE 5. STANDARD GRPAHCIS CARD DIMENSIONS

Height 4.376 inches

Length 9.5 inches

Width Dual-slot

TABLE 6. THERMAL AND POWER SPECIFICATIONS

Maximum GPU temperature (in C) 97 C

Graphics card power (W) 140 W

Minimum recommended system power (W) 450 W

Supplementary power connectors One 6 pin

TABLE 7. THERMAL AND POWER SPECIFICATIONS

3D Blu-Ray Yes

3D Gaming Yes

3D Photos Yes

3.3 BLAST CUDA

Figure 8 demonstrates a detailed implementation of BLASTP algorithm. It brings light to

what part of the code is sent to GPU for execution. Stages 1 and 2 of BLAST algorithm are

processed in GPU namely hit detection stage and un-gapped extension. First and foremost the

CPU takes the query sequences. Then it sorts the database according to the number of subject

sequences it contains. This helps in balancing the load among the threads. So, no threads in the

30

same wrap (cluster of threads that can execute in parallel) work on subject sequences with large

length difference. Later, the database is sent to kernel for calculating the HSP pairs. Once done,

High Scoring Alignments (HSAs) are computed out in the CPU using gapped extension. At last

final calculations are made and the results identical to NCBI-BLAST are displayed.

3.3.1 Input

The three main inputs of BLAST are the query sequence, database where the subject

sequences are stored, threshold value at which an alignment must score to avoid being cut off.

Figure 8.The experimental setup of BLAST algorithm.

3.3.2 Kernel Call

Stage 1 and stage 2 are mainly performed in this kernel. At first the query sequence inputted is

broken down to several words of length 3. The protein database is stored in the global memory

31

ofthe GPU. Kernel is then called and the 3 letter words are sent to corresponding threads with a

batch of the database. There each word is matched with the subject sequence. Whenever a match

is confirmed un-gapped extension is carried out. This generates HSPs. Finally, the HSPs are read

back to the host (CPU) for further processing. An overview of the first kernel is portrayed in

figure 9.

3.3.3 CPU Readback

The HSPs are read backed to the CPU. Here the later part which is the gapped extension is

processed. The results of gapped extension are HSAs. HSAs are filtered if they fail to overcome

the threshold value. Finally, after trace backing the final results are outputted on the display.

Figure 9.Kernel call.

32

3.4 SMITH-WATERMAN CUDA

This algorithm is very time consuming as matrices are generated against every subject

sequence from the database. Thus running this algorithm in GPUs is preferable as GPUs are

designed to compute matrices. The implementation of smith-waterman algorithm is illustrated in

Figure 10.

The operations in doted blocks are carried out by GPU and the rest of the blocks are

performed by CPU. Similar to the BLAST CUDA implementation the database is sorted so no

threads on the same cluster work on subject sequences with large length difference. Each thread

in the GPU is assigned to fill in the similarity matrix against one sequence from the database.

Once done matching the similarity between the sequences the matrix is saved in the local

memory. Then the third step of the algorithm is performed which is trace back. First the thread

figures out the maximum value in the matrix and starts tracing back till it reaches zero. At last

along the line of the trace back the alignment found is scored. Then the alignments with scores

are read back to CPU where it organizes the results and displays it.

33

Figure 10.The experimental setup of Smith-Waterman algorithm.

34

CHAPTER 4

EXPERIMENTAL RESULT ANALYSIS

The env_nr database we used is of 1.5 GB. Our input query sequences are of yeast and

that too retrieved from the NCBI website. The database has a total of 6,891,928 sequences;

1,364,236,057 letters. We varied the query length sequence from 26 to 1002.

At first we carried out a test to figure out the optimal block and thread size to carry out

our experiments. Firstly, we kept block size constant and varied the thread size. Then we

changed the block size and completed the task again.

Figure 11. Comparison of execution time varying block and thread sizes.

0

10

20

30

40

50

60

32 64 128 256 512 1024

E
xe

cu
tio

n
tim

e
in

 se
co

nd
s

No. of threads

256 512

35

To find the optimal thread and block sizes we used the Ubp6p protein sequence which is

of length 499. The graph generated is shown in figure 11. For the last value which is marked as

X, the GPU we used runs out of global memory to finish the task. GeForce GTX 660 has a

memory space of 2 GB. Thus a GPU with a higher global memory will give the result. Similarly

when we tried the same job with a larger sequence of length 1002 any thread size greater than

256 shows the unavailability of memory space. Finally, we conclude to complete the

experiments with keeping the block size constant at 256 while changing the thread size twice 128

and 256.

TABLE 8.EXECUTION TIME OF UBP6P PROTEIN IN BLASTP. THREAD SIZE IS

VARIED WITH BLOCK SIZE.

Thread size

Time for block size 256

Time for block size 512

32 48.709 43.422

64 16.131 13.495

128 9.538 9.141

256 9.235 9.154

512 9.201 9.133

1024 5.505 X

36

Figure 12.Comparison of runtimes achieved by both the algorithm using Table 9.

TABLE 9.RUNTIME IN SECONDS FOR BOTH THE ALGORITHMS USING 256 GPU
BLOCKS AND 128 THREADS.

Query Sequence
Length

GPU blocks GPU threads BLAST
CUDA

SW CUDA

26 (SCY_4187) 256 128 2.432 11.615

499 (Ubp6p) 256 128 9.699 28.482

752 (Gcn20p) 256

128 22.370 36.799

1002 (SAP155) 256 128 24.585 45.749

0

5

10

15

20

25

30

35

40

45

50

26 499 752 1002

E
xe

cu
tio

n
tim

e
in

 se
co

nd
s

Query Length

BLAST Smith-Waterman

37

Figure 13.Comparison of runtimes achieved by both the algorithm using Table 10.

TABLE 10.RUNTIME IN SECONDS FOR BOTH THE ALGORITHMS USING 256 GPU
BLOCKS AND 256 THREADS.

Query Sequence
Length

GPU blocks GPU threads BLAST
CUDA

SW CUDA

26 (SCY_4187) 256 256 2.446 11.531

499 (Ubp6p) 256 256 9.185 28.420

752 (Gcn20p) 256

256 21.963 25.764

1002 (SAP155) 256 256 23.773 34.821

0

5

10

15

20

25

30

35

40

26 499 752 1002

E
xe

cu
tio

n
tim

e
in

 se
co

nd
s

Query Length

BLAST Smith-Waterman

38

The figure 14 shows the snap of some top few of the results obtained by both the algorithms. It

can clearly be seen that the results vary. Smith-Waterman produces more results that BLAST

cannot even compute. Even though BLAST is fast Smith-Waterman is accurate.

Figure 14.Results comparison of BLAST and Smith-Waterman.

39

According to our results BLAST performs much faster than smith-waterman algorithm.

When using 256 block size and 128 number of threads on each block BLAST is around 2-5 times

faster than smith-waterman shown in figure 12. On the other hand in figure 13 when the block and

thread sizes are changed to 256 and 256 respectively BLAST performs better with a speed of 1.5-

4.5 times faster.

TABLE 11.RUNTIME OF BLASTP IN SECONDS FOR CPU AND GPU.

Query Sequence
Length

BLAST 128 BLAST 256 BLAST CPU

26 (SCY_4187) 2.432 2.446 4.189

499 (Ubp6p) 9.699 9.185 27.474

752 (Gcn20p) 22.370 21.963 45.494

1002 (SAP155) 24.585 23.773 54.652

40

Figure 15.Comparison of runtimes achieved by CPU and GPU using Table 11.

Since BLAST is the most used algorithm we did more experimenting with it. We ran the

entire algorithm in CPU and compared the results with that obtained using GPU. The results are

portrayed in figure 15. BLAST 128 means block size 256 and thread size 128. While BLAST 256

means block size 256 and thread size 256.

0

10

20

30

40

50

60

26 499 752 1002

E
xe

cu
tio

n
Ti

m
e

in
 se

co
nd

s

Query Length

128 256 CPU

41

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

This thesis examined how much BLASTP algorithm and Smith-Waterman varies from

each other in computation time using the parallel techniques of CUDA. We have collected the

database of protein from NCBI and CUDA Tool kit 7.5 is used. It is on average 2.5 times faster

than the BLAST. Smith-Waterman being a very exhaustive algorithm while performing in CPU is

being handled pretty well in GPU. It gives a tough fight to BLAST CUDA. However, falls short

in execution time. On the bright side, smith-waterman gives more accurate results than BLAST.

Thus, while choosing which algorithm for their alignment task one has to decide based on

accuracy or execution time. We hope our results will motivate others to work on GPUs because in

today’s world being fast is important. Also, GPU is providing a faster execution of BLAST

CUDA than CPU we believe in the coming years with more upgrades and improvements GPU

will be a force to reckon with. All in all, the next generation of GPUs will have even a better

performance of BLASTP algorithm and so will Smith-Waterman.

5.2FUTURE WORKS

While doing our thesis we faced a lot of problems. To start off was to code in CUDA. We

learned as much as we could but still a long way to go. Secondly, we carried our thesis on not so

powerful of a GPU. It had a memory of around 2 GB, which wasn’t enough. We worked with

massive databases. Most of the time we exceeded the memory capacity of GPU and got error in

our experimental results. Thus we had to narrow our inputs as well. Thus, in the future we hope

to work on better and powerful GPUs. The more we could vary our inputs the more we can

gather knowledge and move forward on GPU and CUDA.

42

Also, in the coming years we would like to pursue our journey towards parallel

computing. When the first time we executed a CUDA code and ran the same code for CPU we

were so amazed. As for the first time we managed to speed up a code by 5 seconds. That joy is

what still motivates us to have a better understanding of this topic. Moreover, we have plans to

use BLAST algorithm to use it as whatever alignment algorithm Google uses for its

autocomplete when we search the web.

43

REFERENCE
[1] S. Altschul, “Basic Local Alignment Search Tool,” J. of Molecular Biology, vol. 215, no. 3,

pp. 403-410, 1990.

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, “Basic Local Alignment

Search Tool,” J. Molecular Biology, vol. 215, pp. 403-410, 1990.

[3] S.F. Altschul, T.L. Madden, A.A. Scha¨ffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman,

“Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search

Programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389-3402, 1997.

[4] L. Weiguo, B. Schmidt, and W. Muller-Wittig, “CUDA-BLASTP: Accelerating BLASTP on

CUDA-Enabled Graphics Hardware,” IEEE/ACM Transactions on Computational Biology

and Bioinformatics, vol. 8, no. 6, pp. 1678-1684, Nov.-Dec. 2011.

[5] L. Yongchao, L.M. Douglas, and S. Bertil, “CUDASW++ optimizing Smith-Waterman

sequence database searches for CUDA-enabled graphics processing units,” BMC Reseach

Notes, vol. 2, no. 73, 2009.

[6] Lin, Heshan et al. “Coordinating Computation And I/O In Massively Parallel Sequence

Search,” in IEEE Transactions on Parallel Distributed Systems, vol. 22, no. 4, pp. 529-543,

2011.

[7] J. Qui, J. Ekanayake, T. Gunarathne, J. Y.Choi, S.H. Bae, H. Li, B. Zhang, T. L. Wu, Y.

Ruan, S. Ekanayake, A. Hughes, G. Fox, “Hybrid cloud and cluster computing paradigms for

life science applications,” BMC Bioinformatics, vol. l12, no.11, 2010.

[8] T. Oliver, B. Schmidt, and D. L., “Maskell : Reconfigurable architectures for bio sequence

database scanning on FPGAs,” vol. 52, pp. 851–855,2005.

[9] T. I. Li , W. Shum, K. Truong, “160-fold acceleration of the Smith-Waterman algorithm

using a field programmable gate array (FPGA),” vol. 8, pp. 185, 2007.

[10] Cheng, John, Max Grossman, and Ty KcKercher. Professional CUDA C Programming.

Indianapolis: Wrox, 2014. Print.

[11] Database Env_nr retrieved from ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/env_nr_gz.

[12] Clark, Don, "J.P. Morgan Shows Benefits from Chip Change". WSJ Digits Blog, 2011.

Retrieved February 14, 2016.

44

ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/env_nr_gz
http://blogs.wsj.com/digits/2011/08/04/j-p-morgan-shows-benefits-from-chip-change/?mod=google_news_blog

[13] NVIDIA GTX 680 Whitepaper. Retrived December 30,2015 from

http://www.nvidia.es/content/PDF/product-

specifications/GeForce_GTX_60_Whitepaper_FINAL.pdf .

[14] Z. Jing, W. Hao, L. Heshan, and F. Wu-chun, “cuBLASTP: Fine-Grained Parallelization of

Protein Sequence Search on a GPU,” in Parallel and Distributed Processing Symposium,

2014 IEEE 28th International , vol., no., pp.251-260, 2014.

[15] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, 2015. Version 7.0.

[16] Silberstein, Mark, Schuster, Assaf, Geiger, Dan, Patney, Anjul, Owens, D. John, “Efficient

computation of sum-products on GPUs through software-managed cache,” 2008, pp. 309–

318.

[17] DJ Lipman, and WR Pearson, “Rapid and sensitive protein similarity search,” vol. 227, pp.

1435-41.

[18] A. Chan, “An analysis of pairwise sequence alignment algorithm complexities: Needleman-

wunsch, smith-waterman, fasta, blast and gapped blast,” 2007, [online]:

http://biochem218.stanford.edu/Projects%202004/Chan.pdf.

[19] S. Xiao, H. Lin, and W. Feng, “Accelerating Protein Sequence Search in a Heterogeneous

Computing System,” 2011 IEEE International Parallel & Distributed Processing Symposium,

IPDPS, pp. 1212 - 1222.

[20] A. David, “An Analysis of BLASTP Implementation on NVIDIA GPUs,” 2012, [online]:

http://cmgm.stanford.edu/biochem218/Projects%202012/Glasco.pdf.

[21] M.Cameron, H.E.Williams, and A.Cannane “A deterministic finite automaton for faster

protein hit detection in BLAST,” vol. 13, pp. 965-78, 2007.

[22] T.F. Smith, and M.S. Waterman, “Identification of common molecular subsequences,” J.

Mol. Biol, vol.147, pp.195-197, 1981.

[23] O. Gotoh, “An improved algorithm for matching biological sequences,” J. Mol. Biol, vol.

162, pp. 705-708, 1982.

[24] S. B. Needleman, and C. D. Wunsch, “A general method applicable to the search for

similarities in the amino acid sequence of two proteins,” J. Mol. Biol., Vol. 48, pp. 443-453,

1970.

45

https://en.wikipedia.org/wiki/Assaf_Schuster

	DEDICATION
	ACKNOWLEDGEMENT
	ABSTRACT
	CHAPTER 1
	Introduction
	Overview
	Objective and Goals
	Motivation
	Thesis Outline
	CHAPTER 2
	Background Study
	Nvidia Gpu
	CUDA
	Blast Algorithm
	Smith-Waterman Algorithm
	CHAPTER 3
	EXPERIMENTAL SETUP
	CUDA Toolkit
	GeForce GTX 660 GPU card
	BLAST CUDA
	Input
	Kernel Call
	CPU Readback

	Smith-Waterman CUDA
	CHAPTER 4
	EXPERIMENTAL RESULT ANALYSIS
	CHAPTER 5
	Conclusion and Future Work
	REFERENCE

