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ABSTRACT 

In bioinformatics to identify evolutionary relationships two sequences are matched to 

find similarity. Smith Waterman, a dynamic algorithm, is a common choice to carry out this 

alignment process. However, with the exponential growth of protein databases this algorithm’s 

time complexity increases. The demand of bioinformatics for their tasks to speed up is very high. 

Even a slight seed up in computation would be very helpful in the field of bioinformatics. Thus, 

for a lot of the scientists this algorithm might not be the first choice. In today’s world the most 

popular and used bioinformatics tool is the BLAST (Basic Local Alignment Tool). BLAST, 

similar to Smith Waterman algorithm, is an alignment algorithm for scanning proteins from 

protein databases. This thesis analyzes both the algorithms in a parallel environment with the 

help of NVIDIA GPU. For our experiments we utilized a GeForce GTX 660 NVIDIA GPU to 

execute both the algorithms. Experimental results show that BLAST is on average is 2.5 times 

faster than Smith-Waterman. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

Basic Local Alignment Search Tool (BLAST) is the most popular alignment algorithm in 

the world of science today. The algorithm uses dynamic programing which utilizes well defined 

mutation scores. This method is more than an order of magnitude faster than the existing heuristic 

algorithms [1]. It has been cited over 25,000 [2] and over 21,000 [3]. For such popularity US 

National Center for Biotechnology Information (NCBI) plays the most important role. The reason 

for this is because NCBI provided a platform over the internet for everyone’s reach. Now any 

general person can go on the website of NCBI and get results for their queries. It is noted that 

hundreds and thousands of queries are being processed every now and then using the platform 

provided by NCBI. This results in the increase of BLAST’s usage by 2 to 3 times [4]. 

On the contrary, Smith Waterman is also a dynamic algorithm but isn’t used as much as 

BLAST. This algorithm generates more accurate results than what BLAST produces. However, 

its accuracy is maintained at the expense of computation time and computer power [5]. 

Computation speed is the burning topic in today’s world. How fast a task can be processed is the 

main challenge. One of such other challenges is searching through long detailed databases. With 

the exponential growth of protein databases demand to accelerate searching through such huge 

databases is very high. NCBI is having tremendous breakthroughs in this particular field. 

However, NCBI uses sequential search for the queries. With the availability of Graphics 

Processing Units (GPUs) it can be assumed that using its parallel techniques BLAST algorithm 

can have a faster processing time. An implementation of BLASTP algorithm is handled by GPU 

using Compute Unified Device Architecture (CUDA), CUDA-BLASTP. It is claimed that in 

CUDA architecture they have managed to achieve speedups of 10 times compared to sequential 

NCBI BLAST 2.2.22 on a GeForce GTX 295. It is also 3-4 times faster than multithreaded 

NCBI BLAST on an Intel Quad-Core processor [4]. Similarly, mpiBLAST is an open-

sourcesequence tool that parallelizes the NCBI BLAST toolkit. It uses the database segmentation 
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approach and the master-worker style. It achieves significant speedups in small or moderate 

number of processes [6]. On the other hand researchers started to implement Smith-Waterman in 

GPUs as well. CUDASW++ 2.0 has managed to achieve an average performance of 9.509 

GCUPS on single-GPU version and an average performance of 14.484 GCUPS on dual-GPU 

version [5]. A lotof efforts have been made to parallelize this computationon high-performance 

computing architectures rangingfrom loosely-coupled to tightly-coupled ones. Architecture 

examples include clouds [7], clusters [7] and accelerators [5]. Forfield programmable gate arrays 

(FPGAs), some approaches based on linear systolic arrays and custom instructions have been 

proposed. Oliver et al. [8] constructed a linear systolic array on a standard Virtex II FPGA board 

to perform the SW algorithm with affine gap penalties. Li et al. [9] designed custom instructions 

to support massively parallel computing of the SW algorithm on an Altera Stratix EP1S40 

FPGA. 

 

1.2 OBJECTIVE AND GOALS 

There are scopes to speed-up the process and meet the demand of accelerating it. This 

thesis demonstrates both the alignment algorithms. Also, it illustrates how this task is handled by 

a GPU using CUDA. CUDA by NVIDIA, a parallel computing architecture uses parallel 

compute engine in NVIDIA GPUs to solve many computationally intensive problems in a more 

efficient way than on Central Processing Unit (CPU) [10]. Using its parallel techniques we 

demonstrate how computation can speed-up. The database used  in this research is taken from the 

NCBI website [11]. Smith-Waterman algorithm is overshadowed by the widespread use of 

BLAST algorithm. Thus, this thesis focuses on the algorithms and their implementation on GPU. 

Later few factors are compared to see if the domination of BLAST is justified or not. Also, the 

purpose is to bring back Smith-Waterman if its performance is not too exhaustive. 
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1.3 MOTIVATION 

 In today’s world it is all about speed. How fast you can do something is the challenge! 

For example you want to watch a movie that takes 1 hour to download. If that movie is 

downloaded within 30 minutes then you feel a sense of happiness. Similarly, for bioinformatics if 

they can perform their task with accurate results in a short time then they will be ecstatic. Thus, 

being computer engineers we want to be part of this evolutionary change in speed. We wanted to 

showcase that we can take a real life task and make it happen faster. Also, parallel computing 

seems very astonishing. Being able to lay our hand on parallel computing to implement an 

algorithm is what motivated us the most. Looking at all the work being done using GPU is just 

mind boggling. Three of the top 5 super computer is powered by GPU. 

 

1.4 THESIS OUTLINE 

Orientation of this thesis is as below: 

 Chapter 2 displays the architecture of a NVIDIA GPU, features of CUDA, Smith-

Waterman algorithm and BLAST algorithm.  

 Chapter 3 provides a detailed explanation of the implementation of the algorithms.  

 The results of the experiments carried out and their analysis are included in  

chapter 4.  

Finally chapter 5 concludes and discusses about our future work. 
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CHAPTER 2 

BACKGROUND STUDY 

A simple way to understand the difference between a CPU and GPU is to compare how 

they process tasks. A CPU consists of a few cores optimized for sequential serial processing 

while a GPU has a massively parallel architecture consisting of thousands of smaller, more 

efficient cores designed for handling multiple tasks simultaneously.  

At the start of multicore CPUs and GPUs the processor chips have become parallel 

systems. But speed of the program will be increased if software exploits parallelism provided by 

the underlying multiprocessor architecture. Hence there is a big need to design and develop the 

software so that it uses multithreading, each thread running concurrently on a processor, 

potentially increasing the speed of the program dramatically. To develop such a scalable parallel 

applications, a parallel programming model is required that supports parallel multicore 

programming environment. 

NVIDIA is focusing on professional visualization, Data centers, gaming and Auto are the 

four markets where NVIDIA from 2014. The researchers and scientists are given the capability 

of parallel processing by NVIDIA. Thus the applications which need high performance can be 

run efficiently using NVIDIA GPUs. This NVIDIA GPU power millions of devices like 

desktops, notebooks, workstations and supercomputer all over the world. 

 

2.1 NVIDIA GPU 

NVIDIA Corporation began as an American technology company based in Santa Clara, 

California. NVIDIA designs graphics processing units (GPUs) for the gaming market, as well 

as system on chip units (SOCs) for the mobile computing and automotive market. NVIDIA's 

primary GPU product line, labeled "GeForce", is in direct competition with Advanced Micro 

Devices' (AMD) "Radeon" products. NVIDIA expanded its presence in the gaming industry with 

its handheld SHIELD Portable, SHIELD Tablet, and SHIELD Android TV. In addition to GPU 
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manufacturing, NVIDIA provides parallel processing capabilities to researchers and scientists that 

allow them to efficiently run high-performance applications. They are deployed 

in supercomputing sites around the world [12]. 

When we consider a processor that is more power efficient and have a better performance, 

GPU comes in top of that list. Comparing to a CPU, a GPU provides a better performance 

because it offers a higher peak GFLOPS (Giga floating-point operations per second) [13]. The 

GPU that we used for the experimentations is GeForce GTX 660. Generally a GPU device has 

several multiprocessors with several processors inside each of them. The Figure 1 enlightens it. 

There are mainly two types of memory in GPU. One is on-chip memory and the other is off-chip 

memory. The on-chip memory has low access latency but a relatively small size. On the other 

hand the off-chip memory has larger size and also higher access latency [14]. Moreover, these 

microprocessors contain the shared memory and caches, along with registers. 

 

Figure 1.A general GPU architecture. 
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The following fields explains about the GPU,  

 Model - The marketing name for the processor assigned by NVIDIA. 

 Launch - Date of release for the processor. 

 Code name - The internal engineering codename for the processor (typically designated 

by an NVXY name and later GXY where X is the series number and Y is the schedule of 

the project for that generation). 

 Fab - Fabrication process. Average feature size of components of the processor. 

 Bus interface - Bus by which the graphics processor is attached to the system (typically 

an expansion slot, such as PCI, AGP, or PCI-Express). 

 Memory - The amount of graphics memory available to the processor. 

 SM Count - Number of streaming multiprocessors.  

 Core clock - The factory core clock frequency (while some manufacturers adjust clocks 

lower and higher, this number will always be the reference clocks used by NVIDIA). 

 Memory clock - The factory effective memory clock frequency (while some 

manufacturers adjust clocks lower and higher, this number will always be the reference 

clocks used by NVIDIA). All DDR/GDDR memories operate at half this frequency, 

except for GDDR5, which operates at one quarter of this frequency. 

 Core configuration - The layout of the graphics pipeline, in terms of functional units. 

Over time the number, type, and variety of functional units in the GPU core has changed 

significantly; before each section in the list there is an explanation as to what functional 

units are present in each generation of processors. In later models, shaders are integrated 

into a unified shader architecture, where any one shader can perform any of the functions 

listed. 

 Fill rate - Maximum theoretical fillrate in textured pixels per second. This number is 

generally used as a "maximum throughput number" for the GPU and generally, a higher 

fillrate corresponds to a more powerful (and faster) GPU. 

 Memory subsection 

o Bandwidth - Maximum theoretical bandwidth for the processor at factory clock 

with factory bus width. GB=10^9 bytes. 

o Bus type - Type of memory bus or buses utilized. 
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o Bus width - Maximum bit width of the memory bus or buses utilized. This will 

always be a factory bus width. 

 API support section 

o Direct3D - Maximum version of Direct3D fully supported. 

o OpenGL - Maximum version of OpenGL fully supported. 

 Features - Additional features that are not standard as a part of the two graphics libraries. 

 

2.2 CUDA 

CUDA introduced by NVIDIA is a general purpose parallel computing platform and 

programming model [15]. It enables dramatic increases in computing performance by harnessing 

the power of the graphics processing unit (GPU). The CUDA platform is a software layer that 

gives direct access to the GPU's virtual instruction set and parallel computational elements, for 

the execution of compute kernels. The CUDA platform is designed to work with programming 

languages such as C, C++ and Fortran. This accessibility makes it easier for specialists in parallel 

programming to utilize GPU resources, as opposed to previous API solutions like Direct3D and 

OpenGL, which required advanced skills in graphics programming. Also, CUDA supports 

programming frameworks such as OpenACC and OpenCL The figure 2 below shows how host 

and device communicate with each other. 

One of the main advantages of CUDA is shared memory. CUDA exposes a fast shared 

memory region that can be shared amongst threads. This can be used as a user-managed cache, 

enabling higher bandwidth than is possible using texture lookups [16]. CUDA C extends C by allowing 

the programmer to define C functions, called kernels. Unlike C functions that run only once this 

kernel runs N times in parallel by N different CUDA threads. Each thread that executes the kernel 

is given a unique thread ID.The threads are organized in a hierarchy consisting of blocks and 

grids. When calling a kernel function the size of the blocks and the number of threads per block 

are specified. An example of the function to call kernels is presented as:  

kernel<<<numBlocks, numThreads>>>(parameter’s list). 

 

16 
 

https://en.wikipedia.org/wiki/Direct3D
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Compute_kernels
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Direct3D
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenACC
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
https://en.wikipedia.org/wiki/Scratchpad_RAM
https://en.wikipedia.org/wiki/Scratchpad_RAM


 

Figure 2. Parallel computation between the host and the device 

 

With millions of CUDA-enabled GPUs sold to date, software developers, scientists and 

researchers are finding broad-ranging uses for GPU computing with CUDA. Here are a few 

examples: 

 

1. Identify hidden plaque in arteries 

Heart attacks are the leading cause of death worldwide. Harvard Engineering, Harvard Medical 

School and Brigham & Women's Hospital have teamed up to use GPUs to simulate blood flow 

and identify hidden arterial plaque without invasive imaging techniques or exploratory surgery. 

 

 

2. Analyze air traffic flow 

The National Airspace System manages the nationwide coordination of air traffic flow. 

Computer models help identify new ways to alleviate congestion and keep airplane traffic 
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moving efficiently. Using the computational power of GPUs, a team at NASA obtained a large 

performance gain, reducing analysis time from ten minutes to three seconds. 

 

3. Visualize molecules 

A molecular simulation called NAMD (nanoscale molecular dynamics) gets a large performance 

boost with GPUs. The speed-up is a result of the parallel architecture of GPUs, which enables 

NAMD developers to port compute-intensive portions of the application to the GPU using the 

CUDA Toolkit. 

 

Figure 3 compares a standard C code with CUDA code. 

 

Figure 3.A CUDA code sample. 
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2.3 BLAST ALGORITHM 

Before BLAST, FASTA was developed by David J. Lipman and William R. Pearson in 

1985 [17]. Besides fast algorithms like BLAST and FASTA, Smith-Waterman algorithm was 

used to search protein databases which guarantee the optimal alignments of the query and 

database sequences unlike BLAST and FASTA. However, the heuristic approach of BLAST 

algorithm is overall a lot faster. So, due to such highly populated protein databases Smith-

Waterman search is both time consuming and computer power intensive. The actual alignment 

part of the algorithm which is performed for every database sequence has a very different 

complexity. To find the seeds, each of the words in the database sequence must be compared to 

hash table created for the neighbors of the query sequence words, and thus we must perform M 

lookups. The end product of the M lookups is on the order of N seeds total, because there are 

only N–w+1 words in the query. Each of these seeds starts an alignment, and the maximum 

length of the alignment is the length of the query sequence, M, assuming M<N. Since calculating 

λ must only be done once, and calculating the statistical significance of each HSP is a constant 

time operation, these have a complexity of O(1).The time complexity of this particular algorithm 

is [18]: 

O(M) + O(MN) + O(1) = O(MN). 

We must first take into consideration the hash table. The table contains 20wrows, one for 

every possible word of length w. The rows contain the locations for each of the words, and the 

total number of positions is on the order of N. Thus, there should on the order of N seeds which 

can each lead to a local alignment of a maximum of length M. The total space complexity is [18], 

O(20w)+O(N)+O(MN)=O(20w+MN) 

Thus, the space complexity is slightly higher than the other algorithms, however the 

actual space used may not be significantly larger than the dynamic programming algorithms. 

This is because many of the local alignments will be discarded because they do not meet the 

threshold, and also because the alignments which do meet the threshold will significantly shorter 

than length M. 

So as mentioned earlier BLAST is the most popular heuristic search algorithm for protein 

scanning. Unlike Smith-Waterman algorithm where the entire sequence is compared BLAST 

locate high scoring short matches between the query sequence and the subject sequence [14]. 
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Due to this the accuracy of BLAST decreases to some extent but then the processing speed 

increases exceptionally than Smith-Waterman. The Blast Algorithm mainly has four stages [19], 

such as in the first stage the query sequence is matched with the subject sequence in order to find 

matches. For this the query sequence is broken down to similar size world lengths (W). For our 

experiment W is 3. For example a query sequence is ARNDCQEGHFPYVWTSKMLI. This 

sequence is extracted to three letters word; i.e. ARN, RND, NDC, DCQ, CQE and so on. Later 

these extracted words are matched with the subject query one by one to identify matches known 

as hits. This process is called the hit detection. The hits are then scored using the blosum62 

scoring matrix. A sample snap shot of blossom62 is presented in Figure 4. The hits are not 

necessary to be exact matches similar matches is also accepted as long as the score of that hit is 

greater than a certain threshold (T). Otherwise the hits that do not overcome the threshold are 

filtered out. For example, we obtain a score of 15 and 12 by comparing PQG with PEG and 

PQA, respectively. Let’s assume that T is 13. As a result PEG is kept and PQA is cut off. 

 

Figure 4.The scoring matrix; Blosum 62. 
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In stage 2, the remaining hits are now sent to this stage for further processing. The hits 

are extended in both directions and as long as the accumulated score is increasing the extension 

is carried on. As soon as the score starts to decrease we stop. This is called un-gapped extension. 

The result is HSPs (highest scoring pairs). A sample of un-gapped extension is presented in 

Figure 5. 

 

Figure 5.Un-gapped extension. 

Consequently in stage 3, the HSPs sent to this stage are then extended further. However, 

unlike the last stage here gaps are allowed. With each gap there is a penalty. This is called the 

gapped extension. Finally in stage 4, scores all the alignments again from the previous stage. 

Once done scoring it produces the top scores. This is called the gapped alignment with trace-

back. The entire BLASTP algorithm is enlightened in Figure 6. 

 

Figure 6.An overview of BLAST. 
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In Figure 6, the query sequence and the subject sequence is compared. We can see there 

is an exact match in the sequence AAL. This is the stage one where the hit is detected. In the 

next stage the un-gapped extension is performed on pairs of high-scoring segment pairs (HSPs). 

Here, the initial match in extended in both directions until there the overall accumulated score 

starts to decrease. In stage 3, the un-gapped extension is extended using a gapped alignment [20]. 

To determine the level of the alignment a scoring matrix and a threshold value is used. Finally, in 

the last stage a trace-back algorithm is used to produce and score the alignments. 

The figure 7 below provides more details of the process [21]. In stage 1, short, matches 

areidentified(black lines in the left figure). In stage 2, matches along the same diagonal are 

extended (non-gapped) ifthe resulting score exceeds a specified threshold. The extensions are 

shown as grey lines in the leftfigure. Next, stage 3 extends (typically using Smith-Waterman) the 

non-gapped sequences using gappedalignment, as shown by the grey line in the right figure. 

Finally, stage 4 generates and scores thesequence for the end user using alignment traceback 

algorithms. 

 

 

Figure 7.Another BLASTP example. 
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2.4 SMITH-WATERMAN ALGORITHM 

In 1981 before BLAST or FASTA were written Smith and Waterman suggested Smith-

Waterman algorithm [22]. Later in 1982 Gotoh improved the algorithm [24]. This is a local 

alignment algorithm. Thus it matches the highest similarities between two proteins instead of the 

aligning the entire two proteins. Instead of aligning the entire length of two protein sequences, 

this algorithm finds the region of highest similarity between two proteins. This is potentially 

more biologically relevant due to the fact that the ends of proteins tend to be less highly 

conserved than the middle portions, leading to higher mutation, deletion, and insertion rates at 

the ends of the protein. The Smith-Waterman algorithm allows us to align proteins more 

accurately without having to align the ends of related protein which may be highly different. 

Assuming two query sequences S1 and S2 having lengths l1 and l2. The two sequences are 

arranged in a matrix form with l1 + 1 row and l2 + 1 column. Initially the first row and column 

are set to 0. Then the similarity matrix is computed for 1<= i <= l1, 1<= j <= l2 using the formula 

as shown below. At last the trace back is performed to calculate the final overall score.There are 

mainly three steps to run this algorithm, they are: 

 

 

1. Initialization.  

H (0, j) = 0; 

H (i, 0) = 0; //where H is the similarity score matrix 

 

2. Filling the matrix, H. 
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Where: 

• a, b = Strings over the alphabet 

• m = length (a) 

• n = length (b) 

• s(a, b) is a similarity function on the alphabet 

• H (i, j) – is the maximum similarity score between a suffix of [1..i] and a suffix of b [1..j] 

• Wiis the gap-scoring scheme 

 

3. Trace back the sequences for a suitable alignment. 

F = max {H(i, j)}; 

traceback(F); 

The complexity of the Smith-Waterman algorithm can also be computed. The time 

complexity of the initialization is O(M+N) because we need to initialize row 0 and column 0. In 

filling the matrix, we traverse each cell of the matrix and perform a constant number of 

operations in each cell, and thus the time complexity for this part is O(MN). However, in the 

traceback, the algorithm requires the maximum cell be found, and this must be done by 

traversing the entire matrix, making the time complexity for the traceback O(MN). It is also 

possible to keep track of the largest cell during the matrix filling segment of the algorithm, 

although this will not change the overall complexity.  

The time complexity of this algorithm is [18], 

O(M+N) + O(MN) + O(MN) = O(MN). 

Before Smith Waterman algorithm the Needleman-Wunsch algorithm [24], published in 

1970, provides a method of finding theoptimal global alignment of two sequences by 

maximizing the number of amino acid matches andminimizing the number of gaps necessary to 

align the two sequences. Because the Needleman-Wunsch algorithm finds the optimal alignment 

of the entire sequence of both proteins, it is a globalalignment technique, and cannot be used to 

find local regions of high similarity. 

24 
 



The space complexity of the Smith-Waterman algorithm is also unchanged from 

theNeedleman-Wunsch algorithm. This is due to the fact that the same matrix is used and the 

sameamount of space is needed for the traceback. Thus, there is no definite space or time 

advantage of onealgorithm over the other. However, the Smith-Waterman algorithm tends to 

model protein homologybetter because it ignores misalignments at the ends of the proteins which 

are often not highlyconserved. Thus, database searches are usually done with the Smith-

Waterman algorithm over theNeedleman-Wunsch algorithm which tends to model homology 

better in distantly related proteins.The Needleman-Wunsch algorithm will tend to be better for 

proteins which are closely related, withfewer mutations because the ends of the protein in closely 

related sequences will not be changed significantly. Since Smith Waterman algorithm fills a 

single matrix of size MN and stores at most N positions for the traceback,the total space 

complexity of this algorithm is given below [18], 

O(MN)+O(N)=O(MN). 

 

An example of Smith Waterman algorithm,  

• Sequence 1 = ACACACTA 

• Sequence 2 = AGCACACA 

• s(a, b) = +2 if a = b (match), -1 if a ≠ b (mismatch) 

• Wi = -1 

The following matrices are computed using the values above. 
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To obtain the optimum local alignment, start with the highest value in the matrix (i,j). 

Then, go backwards to one of positions (i − 1,j), (i, j − 1), and (i − 1, j − 1) depending on the 

direction of movement used to construct the matrix. This methodology is maintained until a 

matrix cell with zero value is reached.In the example, the highest value corresponds to the cell in 

position (8,8). The walk back corresponds to (8,8), (7,7), (7,6), (6,5), (5,4), (4,3), (3,2), (2,1), 

(1,1), and (0,0). Once finished, the alignment is reconstructed as follows: Starting with the last 

value, reach (i,j) using the previously calculated path. A diagonal jump implies there is an 

alignment (either a match or a mismatch). A top-down jump implies there is a deletion. A left-

right jump implies there is an insertion. 

 

The results are: 

• Sequence 1 = A-CACACTA 

• Sequence 2 = AGCACAC-A 
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CHAPTER 3 

EXPERIMENTAL SETUP 

For our experiments CUDA Toolkit 7.5 is used and NVIDIA GeForce GTX 660. All the 

experiments are conducted in a personal computer (PC) with the configuration Intel(R) Core i3-

4160 CPU @ 3.6 GHz, 8GB RAM, running Ubuntu 14.04. 

3.1 CUDA TOOLKIT 

The NVIDIA CUDA Toolkit provides a comprehensive development environment for C 

and C++ developers building GPU-accelerated applications. The CUDA Toolkit includes a 

compiler for NVIDIA GPUs, math libraries, and tools for debugging and optimizing the 

performance of your applications. You’ll also find programming guides, user manuals, API 

reference, and other documentation to help you get started quickly accelerating your application 

with GPUs.The new features of CUDA 7.5 are, 

1. 16-bit floating point (FP16) data format 

• Store up to 2x larger datasets in GPU memory. 

• Reduce memory bandwidth requirements by up to 2x. 

• New mixed precision cublasSgemmEX() routine supports 2x larger matrices. 

2. New cuSPARSE GEMVI routines 

• Optimized dense matrix x sparse vector routines - ideal for Natural Language Processing. 

3. Instruction-level profiling helps pinpoint performance bottlenecks 

• Quickly identify the specific lines of source code limiting the performance of GPU code. 

• Apply advanced performance optimizations more easily. 
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3.2 GEFORCE GTX 660 GPU CARD 

For our experiment this is the only GPU available to us. The specification of this GPU 

care is displayed. 

 

TABLE 1. GPU ENGINE SPECIFICATIONS 

CUDA Cores 960 

Base Clock (MHz) 980 

Boost Clock (MHz) 1033 

Texture fill rate (billion/sec) 78.4 

 

TABLE 2. MEMORY SPECIFICATIONS 

Memory speed 6.0 Gbps 

Standard memory configuration 2048 MB 

Memory interface GDDR5 

Memory interface width 192-bit GDDR5 

Memory bandwidth 

(GB/sec) 

144.2 
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TABLE 3. FEATURE SUPPORT 

Important technologies GPU Boost, PhysX, TXAA, NVIDIA G-

SYNC-ready 

Other supported technologies 3D vision, CUDA, Adaptive VSync, FXAA, 

3D Vision Surround, SLI 

OpenGL 4.3 

Microsoft directX 12 API 

Bus support PCI express 3.0 

Certified for windows 7, 8, vista, XP Yes 

3D vision ready Yes 

 

TABLE 4. DISPLAY SUPPORT 

Maximum digital resolution 4096 x 2160 

Maximum VGA resolution 2048 x 1536 

Standard Display Connectors One dual link DVI-I, one dual link DVI-D, 

one HDMI, one display port 

Multi monitors 4 displays 

HDCP Yes 

HDMI Yes 

Audio input for HDMI Internal 
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TABLE 5. STANDARD GRPAHCIS CARD DIMENSIONS 

Height 4.376 inches 

Length 9.5 inches 

Width Dual-slot 

 

TABLE 6. THERMAL AND POWER SPECIFICATIONS 

Maximum GPU temperature (in C) 97 C 

Graphics card power (W) 140 W 

Minimum recommended system power (W) 450 W 

Supplementary power connectors One 6 pin 

 

TABLE 7. THERMAL AND POWER SPECIFICATIONS 

3D Blu-Ray Yes 

3D Gaming Yes 

3D Photos Yes 

 

 

3.3 BLAST CUDA 

Figure 8 demonstrates a detailed implementation of BLASTP algorithm. It brings light to 

what part of the code is sent to GPU for execution. Stages 1 and 2 of BLAST algorithm are 

processed in GPU namely hit detection stage and un-gapped extension. First and foremost the 

CPU takes the query sequences. Then it sorts the database according to the number of subject 

sequences it contains. This helps in balancing the load among the threads. So, no threads in the 
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same wrap (cluster of threads that can execute in parallel) work on subject sequences with large 

length difference. Later, the database is sent to kernel for calculating the HSP pairs. Once done, 

High Scoring Alignments (HSAs) are computed out in the CPU using gapped extension. At last 

final calculations are made and the results identical to NCBI-BLAST are displayed. 

 

3.3.1 Input 

The three main inputs of BLAST are the query sequence, database where the subject 

sequences are stored, threshold value at which an alignment must score to avoid being cut off. 

 

 

Figure 8.The experimental setup of BLAST algorithm. 

 

3.3.2 Kernel Call 

Stage 1 and stage 2 are mainly performed in this kernel. At first the query sequence inputted is 

broken down to several words of length 3. The protein database is stored in the global memory 
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ofthe GPU. Kernel is then called and the 3 letter words are sent to corresponding threads with a 

batch of the database. There each word is matched with the subject sequence. Whenever a match 

is confirmed un-gapped extension is carried out. This generates HSPs. Finally, the HSPs are read 

back to the host (CPU) for further processing. An overview of the first kernel is portrayed in 

figure 9. 

 

3.3.3 CPU Readback 

The HSPs are read backed to the CPU. Here the later part which is the gapped extension is 

processed. The results of gapped extension are HSAs. HSAs are filtered if they fail to overcome 

the threshold value. Finally, after trace backing the final results are outputted on the display. 

 

 

Figure 9.Kernel call. 
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3.4 SMITH-WATERMAN CUDA 

This algorithm is very time consuming as matrices are generated against every subject 

sequence from the database. Thus running this algorithm in GPUs is preferable as GPUs are 

designed to compute matrices. The implementation of smith-waterman algorithm is illustrated in 

Figure 10.  

The operations in doted blocks are carried out by GPU and the rest of the blocks are 

performed by CPU. Similar to the BLAST CUDA implementation the database is sorted so no 

threads on the same cluster work on subject sequences with large length difference. Each thread 

in the GPU is assigned to fill in the similarity matrix against one sequence from the database. 

Once done matching the similarity between the sequences the matrix is saved in the local 

memory. Then the third step of the algorithm is performed which is trace back. First the thread 

figures out the maximum value in the matrix and starts tracing back till it reaches zero. At last 

along the line of the trace back the alignment found is scored. Then the alignments with scores 

are read back to CPU where it organizes the results and displays it. 
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Figure 10.The experimental setup of Smith-Waterman algorithm. 
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CHAPTER 4 

EXPERIMENTAL RESULT ANALYSIS 

The env_nr database we used is of 1.5 GB. Our input query sequences are of yeast and 

that too retrieved from the NCBI website. The database has a total of 6,891,928 sequences; 

1,364,236,057 letters. We varied the query length sequence from 26 to 1002.  

At first we carried out a test to figure out the optimal block and thread size to carry out 

our experiments. Firstly, we kept block size constant and varied the thread size. Then we 

changed the block size and completed the task again. 

 

 

Figure 11. Comparison of execution time varying block and thread sizes. 
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To find the optimal thread and block sizes we used the Ubp6p protein sequence which is 

of length 499. The graph generated is shown in figure 11. For the last value which is marked as 

X, the GPU we used runs out of global memory to finish the task. GeForce GTX 660 has a 

memory space of 2 GB. Thus a GPU with a higher global memory will give the result. Similarly 

when we tried the same job with a larger sequence of length 1002 any thread size greater than 

256 shows the unavailability of memory space. Finally, we conclude to complete the 

experiments with keeping the block size constant at 256 while changing the thread size twice 128 

and 256. 

TABLE 8.EXECUTION TIME OF UBP6P PROTEIN IN BLASTP. THREAD SIZE IS 

VARIED WITH BLOCK SIZE. 

 

Thread size 

 

Time for block size 256 

 

Time for block size 512 

32 48.709 43.422 

64 16.131 13.495 

128 9.538 9.141 

256 9.235 9.154 

512 9.201 9.133 

1024 5.505 X 
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Figure 12.Comparison of runtimes achieved by both the algorithm using Table 9. 

 

TABLE 9.RUNTIME IN SECONDS FOR BOTH THE ALGORITHMS USING 256 GPU 
BLOCKS AND 128 THREADS. 

Query Sequence 
Length 

GPU blocks GPU threads BLAST 
CUDA 

SW CUDA 

26 (SCY_4187) 256 128 2.432 11.615 

499 (Ubp6p) 256 128 9.699 28.482 

752 (Gcn20p) 256 
 

128 22.370 36.799 

1002 (SAP155) 256 128 24.585 45.749 
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Figure 13.Comparison of runtimes achieved by both the algorithm using Table 10. 

 

TABLE 10.RUNTIME IN SECONDS FOR BOTH THE ALGORITHMS USING 256 GPU 
BLOCKS AND 256 THREADS. 

Query Sequence 
Length 

GPU blocks GPU threads BLAST 
CUDA 

SW CUDA 

26 (SCY_4187) 256 256 2.446 11.531 

499 (Ubp6p) 256 256 9.185 28.420 

752 (Gcn20p) 256 
 

256 21.963 25.764 

1002 (SAP155) 256 256 23.773 34.821 
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The figure 14 shows the snap of some top few of the results obtained by both the algorithms. It 

can clearly be seen that the results vary. Smith-Waterman produces more results that BLAST 

cannot even compute. Even though BLAST is fast Smith-Waterman is accurate.  

 

 

Figure 14.Results comparison of BLAST and Smith-Waterman. 
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According to our results BLAST performs much faster than smith-waterman algorithm. 

When using 256 block size and 128 number of threads on each block BLAST is around 2-5 times 

faster than smith-waterman shown in figure 12. On the other hand in figure 13 when the block and 

thread sizes are changed to 256 and 256 respectively BLAST performs better with a speed of 1.5-

4.5 times faster.   

 

TABLE 11.RUNTIME OF BLASTP IN SECONDS FOR CPU AND GPU. 

 

Query Sequence 
Length 

BLAST 128 BLAST 256 BLAST CPU 

26 (SCY_4187) 2.432 2.446 4.189 

499 (Ubp6p) 9.699 9.185 27.474 

752 (Gcn20p) 22.370 21.963 45.494 

1002 (SAP155) 24.585 23.773 54.652 

 

40 
 



 

Figure 15.Comparison of runtimes achieved by CPU and GPU using Table 11. 

Since BLAST is the most used algorithm we did more experimenting with it. We ran the 

entire algorithm in CPU and compared the results with that obtained using GPU. The results are 

portrayed in figure 15. BLAST 128 means block size 256 and thread size 128. While BLAST 256 

means block size 256 and thread size 256. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION 

This thesis examined how much BLASTP algorithm and Smith-Waterman varies from 

each other in computation time using the parallel techniques of CUDA. We have collected the 

database of protein from NCBI and CUDA Tool kit 7.5 is used.  It is on average 2.5 times faster 

than the BLAST. Smith-Waterman being a very exhaustive algorithm while performing in CPU is 

being handled pretty well in GPU. It gives a tough fight to BLAST CUDA. However, falls short 

in execution time. On the bright side, smith-waterman gives more accurate results than BLAST. 

Thus, while choosing which algorithm for their alignment task one has to decide based on 

accuracy or execution time. We hope our results will motivate others to work on GPUs because in 

today’s world being fast is important. Also, GPU is providing a faster execution of BLAST 

CUDA than CPU we believe in the coming years with more upgrades and improvements GPU 

will be a force to reckon with. All in all, the next generation of GPUs will have even a better 

performance of BLASTP algorithm and so will Smith-Waterman. 

 

5.2FUTURE WORKS 

While doing our thesis we faced a lot of problems. To start off was to code in CUDA. We 

learned as much as we could but still a long way to go. Secondly, we carried our thesis on not so 

powerful of a GPU. It had a memory of around 2 GB, which wasn’t enough. We worked with 

massive databases. Most of the time we exceeded the memory capacity of GPU and got error in 

our experimental results. Thus we had to narrow our inputs as well. Thus, in the future we hope 

to work on better and powerful GPUs. The more we could vary our inputs the more we can 

gather knowledge and move forward on GPU and CUDA.    
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Also, in the coming years we would like to pursue our journey towards parallel 

computing. When the first time we executed a CUDA code and ran the same code for CPU we 

were so amazed. As for the first time we managed to speed up a code by 5 seconds. That joy is 

what still motivates us to have a better understanding of this topic. Moreover, we have plans to 

use BLAST algorithm to use it as whatever alignment algorithm Google uses for its 

autocomplete when we search the web.   
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