
1

Universal API for Managing Multiple
Cloud Platforms

 Department of Computer Science and Engineering
 School of Engineering and Computer Science
 BRAC University

 Advisor : Dr. Md. Haider Ali
 Co-advisor : Md. Abdur Rahman Adnan
 Co-advisor : Imran Hossain Shaon

 Syeda NoorJaha Azim 12101064
 Tajul Islam 12101067
 Abu Sufian 12101048

2

 DECLARATION

We hereby, declare that this work was carried out by us under the guidance

and Supervision of Professor Md. Haider Ali, Professor, Department of

Computer Science and Engineering, BRAC University and Md. Abdur

Rahman Adnan and Imran Hossain Shaon, Lecturer, Department of

Computer Science and Engineering, BRAC University. We declare that this

work has not been submitted anywhere else for the award of any other

degree.

Signature of Advisor Signature of Authors

______________________________ ____________________________
Dr. Md. Haider Ali Tajul Islam
Professor, Department of Computer ID: 12101067
Science and Engineering, tajulislam.glab@gmail.com
BRAC University
 _

Md. Abdur Rahman Adnan Abu Sufian
Lecturer, Department of Computer ID: 12101048
Science and Engineering, ynor7005326@gmail.com
BRAC University

Imran Hossain Shaon Syeda NoorJaha Azim
Lecturer, Department of Computer ID: 12101064
Science and Engineering, synjaz@gmail.com
BRAC University

mailto:synjaz@gmail.com

3

TABLE OF CONTENTS

Section Title Page

no.
 Abstract……………………………………………………. 5

 Acknowledgment………………………………………….. 6

Chapter
1

Introduction……………………………………………… 7

1.1 Motivation………………………………………………… 10

1.2 Key Features and Impact………………………………….. 10

Chapter
2

Background Study……………………………………….. 11

2.1 Cloud Computing Architecture……………………………. 12

2.2 Cloud computing deployment models…………………….. 13

2.3 Cloud computing and its services…………………………. 15

2.4 Different type of Cloud Computing Platform……………... 16

2.4.1 Eucalyptus…………………………………………………. 16

2.4.2 Open stack…………………………………………………. 20

2.5 Difference between Cloud Platform services……………... 23

2.6 Case Studies……………………………………………….. 27

2.6.1 Downtime brings huge debt……………………………….. 27

2.6.2 Lack of Security and Privacy can put an end to enterprises. 28

2.6.3 Cloud Computing Platform Dependencies………………... 29

2.7 Related Works…………………………………………….. 29

Chapter
3

System Design……………………………………………. 31

3.1 Methodology………………………………………………. 32

3.2 System Architecture……………………………………….. 33

3.3 Use case Diagram…………………………………………. 34

3.4 Data Flow Diagram………………………………………... 36

Chapter
4

System Implementation………………………………….. 38

4.1 Tool Used………………………………………………….. 38

4.2 Experimental Results……………………………………… 38

Chapter
5

Conclusion………………………………………………… 45

 Conclusion & Future work………………………………… 45

 References…………………………………………………. 46

 Appendix…………………………………………………… 47

4

ABSTRACT

Cloud computing emerged and acquired huge popularity. Many Cloud

Service Providers (CSPs) like, AWS, Rackspace, Azure and many more are

facilitating clients with common services (storage, computing, networking,

etc.) and thriving for more client by adding new features. So, Cloud

Consumer (CC) falls under critical situation to adapt new API and quickly

switch to CSP that best suits their business requirement. To solve this

perplexity of CC, we introduce a prototype which integrates different Cloud

API to an abstract API platform and developed a Proof of concept (PoC) for

our platform. Using our single point API CC can quickly switch and get

facilitated with the services of different CSP without individual API

knowledge.

5

 ACKNOWLEDGEMENT

We express our deep sense of gratitude to Chairperson of CSE dept. of

BRAC University, Dr. Md. Haider Ali, for encouraging research and

development. Also we would like to express our sincere thanks to Md.

Abdur Rahman Lecturer of CSE Dept. of BRAC University, for his precious

suggestions in refining the research work. We specially thank Md. Imran

Hossain Shaon, Lecturer of CSE Dept. of BRAC University, for tool related

support.

6

Chapter 1

1. Introduction

Cloud Computing is a model where all the resources are available in the

Internet. Just like cooked food, cloud services are prepared dish where all

the required ingredients are composed for you. There are three renowned

categories of cloud services- Software as a Service (SaaS), Infrastructure as

a Service (IaaS) and Platform as a Service (PaaS). SaaS allows accessing the

functionality of particular software without worrying about the storage or

other issues [1].

IaaS provides the networked computer, along with hardware and

virtualized Operating System (OS), running in a hosted environment. Some

well-known IaaS Cloud providers are Amazon EC2, Rackspace and Google

Computer Engine. PaaS is somewhere in the middle of the other two

services, it adds support for the development environment. Some examples

of the popular PaaS providers are: Amazon AWS Elastic Beantalk PaaS

(supports Java, PHP, Python, .Net and Node.js); Google App Engine

(supports a subset of common Java environments as well as Python and Go),

Cloud Foundry (supports Java, Ruby, Node.js and Scala), Engine Yard

7

(supports Ruby on Rails, PHP and Node.js) [2] What is supported by the

platform will obviously impact CCs decision on which platform to use.

All CSPs has its own cloud OS to provide the services, such as Eucalyptus

which is an open source project for cloud computing. The virtualized OS of

CSPs have common orchestration task like storage, compute and network for

configuration management; virtual machine (VM) and application instances

for provisioning; IT automation and DevOps, security and compliance

assessment, monitoring and reporting [3].

Though all the orchestration task of different CSP has same purpose,

still there are variations in the service’s feature that distinguish one CSP to

others. These differences in the services influence CC‟s choice of cloud

vendor. For example, some cloud vendors have non-negotiable contracts for

the CCs but there are certain features of the service provided by those cloud

vendors that are essential for the CCs business.

In this case the CC prefers to consume two or more cloud vendors‟

services at a time but there is no such platform where more than one cloud

vendor’s services can be operated. This paper introduces a prototype of an

API that provides an integrated common platform of multiple clouds API

from where CC can consume service from numerous CSPs; without being

distressed about maintaining many cloud computing vendors. Users of this

8

API are more relaxed and can put their full effort in leveraging the enterprise

goal. According to Steve Jobs “I’m convinced that about half of what

separates the successful entrepreneurs from the non-stressful one is pure

perseverance.” [4]. Therefore when all the cooked food is served on a single

table than it is more appropriate to give attention in eating the food

enjoyably.

9

1.1 Motivation

When we started our studies regarding cloud services we saw that

different cloud services have different features. There are few things which

are unique, say for example: Eucalyptus has AWS Compatibility, Scalable

Object Storage, and Network Options for growth and Cloud account

administration whereas OpenStack has ability to manage local area

networks, Role-based access control, VNC proxy through a Web browser,

Virtual machine image management. So if someone use Eucalyptus they do

not have the flexibility to use the features of OpenStack. Thus,

We took the initiative to develop a Universal API which will solve this issue

by using the request from Client and convert them as cloud specific requests.

So there will be flexibility for the user of using different cloud service

software at a time. Besides this will be beneficial for Cloud service model

because IaaS is related to PaaS and SaaS.

1.2 Key Features and Impact

 Don’t need to learn more API of different cloud platform

 Double authentication process which is more secured then before

 Dynamically switch platform

 User friendly tutorial to habituate the system

10

Chapter 2

2. Background Study

Cloud computing emerged and acquired huge popularity. Cloud Computing

is the delivery of on-demand computing resources everything from

applications to data centers over the Internet on a pay-for-use basis.

Cloud computing means storing and accessing data and programs over the

Internet instead of your computer's hard drive. When we store data on or run

programs from the hard drive, that's called local storage and computing.

When we store data or run programs over the internet, that’s called cloud

storage and cloud computing.

11

2.1 Cloud Computing Architecture

Figure 1: Cloud Computing Architecture

When we talk about cloud computing architecture, it comes the two

side front end and back end. They connect each other through internet. The

front end is the side the computer user, or client, sees. The back end is the

"cloud" section of the system.

12

2.2 Cloud computing deployment models

Cloud computing deployments models mainly distinguish based on

size and access. It tells about the purpose and the nature of the cloud. Most

of the organizations are willing to implement cloud as it reduces the capital

expenditure and controls operating cost.

Figure 2: Cloud Computing Deployment model

Public cloud: It is a type of cloud in which the cloud services are

delivered over a network which is open for public usage. The customers do

not have any control over the location of the infrastructure. For example

email public cloud is less secure because of its openness.

13

Private cloud: It is s also known as internal cloud; the platform for

cloud computing is implemented on a cloud-based secure environment.

Private cloud as it permits only the authorized users. It allows system and

service accessible within organization. It increased security because of its

private nature [5].

Hybrid cloud: It is a type of cloud computing which is integrated. It

can be an arrangement of two or more cloud servers, i.e. private, public or

community cloud .Consider an e-commerce website, which is hosted on a

private cloud that gives security and scalability, since security is not a prime

concern for their brochure site it is hosted on a public cloud which is more

economical as compared to a private cloud. Businesses that have more focus

on security and demand for their unique presence can implement hybrid

cloud as an effective business strategy [5].

Community Cloud: Community cloud is a type of cloud in which

setup is shared between many organizations that belong to a particular

community. The main intention of these communities is to achieve their

business related objectives. A community cloud may be internally managed

or it can be managed by a third party provider. It can be hosted externally or

internally. The cost is shared by the specific organizations within the

community, hence, community cloud has cost saving capacity [5].

14

2.3 Cloud Computing and Its Services

Cloud computing has grown in popularity. Each type of cloud service,

and deployment method, provides cloud consumers with different levels of

control, flexibility, and management system.

Infrastructure as a Service (IaaS): Infrastructure as a Service

provide access to networking features, computers (virtual or on dedicated

hardware), and data storage space. Infrastructure as a Service provides you

with the highest level of flexibility and management control over IT

resources and is most similar to existing IT resources that many IT

departments and developers are familiar with today. For example Amazon

Web service, Eucalyptus.

Platform as a Service (PaaS): platform as a service allow you to

focus on the deployment and management of your applications. You don’t

need to think about software maintenance or any other things that running on

your computer. It refers to the delivery of operating systems and associated

services over the Internet without downloads or installation. For example

google app engine.

Software as a Service (SaaS): Software as a Service provides

complete product that is run and managed by the service provider. In most

cases, people referring to Software as a Service are referring to end-user

15

applications. With a SaaS offering you do not have to think about how the

service is maintained or how the underlying infrastructure is managed; you

only need to think about how you will use that particular piece software. A

common example of a SaaS application is web-based email where you can

send and receive email without having to manage feature additions to the

email product or maintaining the servers and operating systems that the

email program is running on [6].

2.4 Different type of Cloud Computing Platform:

2.4.1 Eucalyptus

Eucalyptus is an open source software framework for cloud

computing that implements what is commonly referred to as Infrastructure

as a Service (IaaS). Eucalyptus software provides users with the ability to

run and control isolated collections of virtual machine instances with many

EC2/S3-compatible tools. Eucalyptus uses the Xen and KVM as the

hypervisor of choice for Virtualization.

Eucalyptus components: Logically the Eucalyptus cloud consists of

four components: the client, the cloud controller (clc or "cloud"), the cluster

controller (cc), and the node controller (NC). The client is solution

dependent, but may come in the form of a browser script, a user space

16

program, or even a kernel module. The cloud controller is the client's

interface into the cloud and provides the logic decision of the cloud. The

cloud controller runs services that authenticates the client, and then

translates the client requests into transactions. The cluster controller is a

collection of node controllers. It is responsible for state information and

interaction with the virtual machines availability. However, the nodes

themselves are responsible via the hypervisor (Xen or KVM) to online and

offline virtual machines. A node controller exists as a single instance on a

single machine; however, multiple node controllers make up the particular

cloud. The figure below shows these components and their hierarchy

relationship.

Figure 3: Eucalyptus Components

17

Cloud Controller (CLC): Cloud controller is responsible for entire

system management. It is the main entry point into the Eucalyptus cloud for

all type of clients. The CLC is responsible for passing requests to the right

component, collecting them, and sending the responses from the components

back to the client.

Functions:

1. Monitor the availability of resources on various components of the

cloud infrastructure, including hypervisor nodes that are used to

actually provision the instances and the cluster controllers that

manage the hypervisor nodes.

2. Resource arbitration – deciding which clusters will be used for

provisioning the instances.

3. Monitoring the running instances.

Cluster Controller (CC): Requests are communicated to the CC using

the SOAP or REST-based interface. The CC maintains all the information

about the Node Controllers. Cluster Controller decide which Node

Controller should be used to run instances.

Functions:

1. To receive requests from CLC to deploy instances.

2. To decide which NCs to use for deploying the instances on.

18

3. To control the virtual network available to the instances.

4. To collect information about the NCs registered with it and report it to

the CLC.

Node Controller (NC): It controls the host operating system and the

corresponding hypervisor. It controls life cycle of each instances. It interacts

with the OS and the hypervisor running on the node on one side and the CC

on the other side.

Functions:

1. Collection of data related to the resource availability and utilization on

the node and reporting the data to CC.

2. Instance life cycle management.

Storage Controller: Storage Controller (SC) implements block-accessed

network storage (e.g., Amazon Elastic Block Storage -- EBS) and is capable

of interfacing with various storage systems (NFS, iSCSI, etc.). An elastic

block store is a Linux block device that can be attached to a virtual machine

but sends disk traffic across the locally attached network to a remote storage

location.

Functions:

1. Creation of persistent EBS devices.

2. Allowing creation of snapshots of volumes.

19

Walrus (W)/Scalable Object Storage: It manages access to the storage

services within Eucalyptus. It allows users to store data, organized as

buckets and objects. It allows users to create, delete, list buckets, put, get,

and delete objects, and set access control policies. Walrus interface

compatible with Amazon’s S3, and it supports the Amazon Machine Image

(AMI) image-management interface, thus providing a mechanism for storing

and accessing both the virtual machine images and user data.

Management Platform: Management Platform provides an interface to

various Eucalyptus services and modules. These features can include VM

management, storage management, user/group management, accounting,

monitoring, SLA definition and enforcement, cloud-bursting, provisioning,

etc. [7].

OpenStack and its Services

OpenStack began in 2010 as a joint project of Rackspace Hosting and

of NASA. It is a free and open-source software platform for cloud-

computing, mostly deployed as an infrastructure-as-a-service (IaaS).

OpenStack software controls large pools of compute, storage, and

networking resources throughout a datacenter, managed through a dashboard

or via the OpenStack API.

https://en.wikipedia.org/wiki/Rackspace
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Software_platform
https://en.wikipedia.org/wiki/Cloud-computing
https://en.wikipedia.org/wiki/Cloud-computing
https://en.wikipedia.org/wiki/Cloud_computing#Infrastructure_as_a_service_.28IaaS.29
https://www.openstack.org/software/openstack-dashboard/
https://developer.openstack.org/

20

Figure 4: OpenStack Operating System

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a

variety of complemental services. Each service offers an application

programming interface (API) that facilitates this integration. The following

table provides a list of OpenStack services:

Dashboard: Through the project Horizon Openstack provides the

dashboard service. Horizon provides a web-based self-service portal to

interact with underlying OpenStack services, such as launching an instance,

assigning IP addresses and configuring access controls.

http://h
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html

21

Figure 5: OpenStack Dashboard

Compute: Nova project manages the lifecycle of compute instances

in an OpenStack environment. Responsibilities include spawning,

scheduling and decommissioning of virtual machines on demand.

Networking: Neutron project enables Network-Connectivity-as-a-

Service for other OpenStack services, such as, OpenStack Compute. Neutron

provides an API for users to define networks and the attachments into them.

Has a pluggable architecture that supports many popular networking vendors

and technologies.

Storage Service: OpenStack facilities with two type of Storage

services Swift for Object Storage and Cinder for Block Storage. Swift

project stores and retrieves arbitrary unstructured data objects via a

22

RESTful, HTTP based API. It is highly fault tolerant with its data replication

and scale out architecture. Its implementation is not like a file server with

mountable directories. On the other hand, Cinder project provides persistent

block storage to running instances. Its pluggable driver architecture

facilitates the creation and management of block storage devices.

Shared Services: Identity Service (Keystone) provides an

authentication and authorization service for other OpenStack services.

Keystone provides a catalog of endpoints for all OpenStack services.

Image Service (Glance) stores and retrieves virtual machine disk images.

OpenStack Compute makes use of this during instance provisioning.

Telemetry (Ceilometer) monitors and meters the OpenStack cloud for

billing, benchmarking, scalability, and statistical purposes [8].

2.5 Difference between Cloud Platform services

Eucalyptus and OpenStack both give many similar services but with

different features and facilities. Storage service is one of them. Storage

service is really a big concern for any cloud platform. There are possibilities

of giving the same storage service but in different process. Object storage is

one of the types of storage service. It keeps the data as object and it can store

unlimited object in bucket. For retrieving object there is unique developer

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html

23

assigned keys. Most important advantage of it to access objects from

anywhere of the bucket and secured from unauthorized access. For

maintaining unstructured data or flat structure, web content, documents,

sensor data, databases and log files Object storage is really a great option.

But for random access data or relational database could not possible in

Object storage which is one of its’ weak point. Instead of its Object storage

have scalable capacity as well as scalable performance. Even it is durable

with low cost and simplified management process.

On the other hand there is another storage service called Block storage.

Block storage is usable almost any kind of application including file storage,

database storage. Heavy random data access can easily be done in this

storage service. Block Storage is persistent storage organized into

unstructured "blocks", each the same length. An ordinary disk drive, RAID

array, or USB storage key are examples of locally attached "block storage".

In Block storage, files are split into evenly sized blocks of data, each with its

own address but with no additional information (metadata) to provide more

contexts for what that block of data is. In a nutshell, key phrases associated

with block storage are granularity, great performance, little or no metadata,

and local use. Even Block storage is ideal for databases, since a DB requires

consistent I/O performance and low-latency connectivity.

24

Both of these Storage service have some unique features and the

usability of the features varies from user to user. To select a cloud provider

or technology, user should understand their requirements in order to list the

needed features. All of the quality of storage services is not solely served by

either Eucalyptus or OpenStack. So problem arises when user wants to use

some combined feature which Eucalyptus or OpenStack won’t be able to

fulfill it individually. Previously Customers were not able to use cross

platform for multiple features but now through this Universal API there is a

possibility for manipulating any features for cross cloud platform which is

an undoubtedly a great innovation for upcoming cloud users as well as for

providers.

Customer end will always be beneficiated by using Universal API in

their application. They will use multiple features from multiple cloud

platforms with the same cost just like before.

 According to the Google Search trend the rate of Cloud platform

search rises steeply after 2011. Figure 6 below shows the graph of average

search of popular Cloud platforms. From the graph we can infer that

Amazon Web Service (AWS) search rate is consistently increasing as the

years goes by. Eucalyptus and Openstack are very competitive and after

2011 the graph shows Openstack has gain more reputation than Eucalyptus.

25

We know that all Cloud platforms provide same computing services but the

graph shows fluctuation, which means though they provide the same service

still there are certain difference in the service features which makes one

Cloud platform more favorable to a business case than other. Table 1 [8]

represents a Comparative study of IaaS solution („+‟ sign means better

solution).

Table 1: Comparative study of IaaS solution (‘+’ sign means better
solution)

Therefore companies prefer to run their business in multiple Cloud

platform to assure their resources are more secure having saved them on two

secure storage; moreover companies are facilitated with different flavor of

the same services and are not locked into one vendor.

26

Figure 6: Google Search Trend of Cloud platforms

2.6 Case Studies

2.6.1 Downtime brings huge debt

Any business depending on a Cloud computing cannot absorb

prolonged bout of frequent outages or slowdown. Though CSP is expected

to be immune to service outages still more than few times such incident

already happened. In 2014 Dropbox faced an outage for as long as two days

[5]. Thus all the applications running on internet dropped offline and the

business has to face huge debt. A backup Cloud platform for the online

applications could be a great help for Dropbox at that situation.

27

2.6.2 Lack of Security and Privacy can put an end to

enterprises

To rob a company it is not always necessary to break into an office

building late at night, demanding a ransom, and then throwing grenades into

the data center if the demands were not fulfilled. A company is under a

security threat when an attacker gets access to its only CSP‟s control panel

and removes all its precious resources stored in the server. Code Spaces is

the unfortunate company that has to close door because of an attacker. It was

a company that offered developers source code repositories and project

management services using Git or Subversion, among other options.

According to the information on the Code Space website, the company’s

AWS control panel was hacked by an attacker and demanded money in

exchange of giving control back to Code Space. When the Code Space tried

to regain the control, the attacker started deleting resources. Code Space

could not save all its EBS snapshots, S3 buckets, all AMIs and some EBS

instances. A seven year running company with no shortage of customer

would have survived if it had saved its treasured resources on any back up

Cloud platform without the burden of maintaining several cloud vendors.

28

2.6.3 Cloud Computing Platform Dependencies

The new breed of extremely lightweight company like Coupa is not

only totally run in the cloud, but also is a cloud based provider itself. Coupa

is a C2C business, acting as a broker of services assembled from offering

supported by third-party providers. It provides online procurement software

and services to the business community. For online services its servers are

provisioned at Amazon Web Services, while its customer relationship

management runs on Salesforce.com and Google handles its Email. [7] For

such companies that utilize cloud services from different providers, would

amplify its business growth if they could meet all the Cloud platforms on a

common platform.

2.7 Related Works

Cloud computing means storing and accessing data and programs over

the Internet instead of your computer's hard drive. When we store data on or

run programs from the hard drive, that's called local storage and computing.

When we store data or run programs over the internet, that’s called cloud

storage and cloud computing. In the recent years Right Scale have launched

a platform to manage different cloud platform. RightScale Cloud Portfolio

Management is an integrated software suite that includes Self-Service,

29

Cloud Management, and Cloud Analytics. Built on a Multi-Cloud Platform,

RightScale supports Infrastructure-as-a-Service resource pools across public

clouds, private clouds, and virtualization [10] .

30

Chapter 3

3. System Design

Our API is a specialized discipline that involves the design of an

interface for part of a system or an entire system. This API can be used by

another part of the system or our web service is an independent system to

facilitate communication between user and cloud platform. As we know

APIs are an integral part of modern software development so we developed

both API as well as Web service so anyone will be able to integrate our API

or they will be able to communicate via our Web service.

31

3.1 Methodology

After an immense study on the CSPs‟ services and research on the

issues raised by the organizations depending on Cloud Computing, we

developed a prototype of an API to resolve the problems by integrating all

the CSPs to a common platform. A standard and portable JAX-RS (Java API

for RESTful web service) API is designed in order to simplify its

development and their clients in Java. The API contains a resource class

which is a Java class annotated with JAX-RS annotation to represent a web

resource. There is also a root resource class called POJO (plain old Java

object) that is annotated with at least one @Path or a request method

designator such as @GET, @PUT, @POST, or @DELETE to handle

request on the corresponding resource.

Jersey (Sun's open source, production-quality reference

implementation for JAX-RS) and Apache CXF (Apache's Java API for

RESTful web services) REST frameworks are used for developing RESTful

services in Java. Among these two REST frameworks we preferred to

develop our Web Service by Jersey. Jersey RESTful Web Services

framework is open source, production quality framework for developing

RESTful Web Services in Java that provides support for JAXRS APIs and

serves as a JAX-RS (JSR 311 & JSR 339) Reference Implementation.

32

Apache CXF is an open source services framework. CXF helps you build

and develop services using frontend programming APIs, like JAX-WS and

JAX-RS. These services can speak a variety of protocols such as SOAP,

XML/HTTP, RESTful HTTP, or CORBA and work over a variety of

transports such as HTTP, JMS or JBI. [9] Figure 2 shows the use case

diagram of the API, where the user creates a secure account and login to the

web service. The web service allows the authenticate user to select a Cloud

platform and then select a services of that platform. It also allows the user to

shift between the services of different Cloud platforms.

3.2 System Architecture

Figure 7: System Architecture

33

3.3 Use case Diagram

Figure 2: Use case Diagram of the API

For the proof of concept of the model, we choose to use two cloud IaaS,

AWS for Eucalyptus and Trystack for Openstack, for testing the design.

Both AWS and Trystack provide a demo of the corresponding cloud IaaS to

the developers without having to commit to a full deployment. AWS is a

secure cloud services‟ platform, offering compute power, database storage,

34

content delivery and other functionality to help businesses scale and grow.

Explore how millions of customers are currently leveraging AWS cloud

products and solutions to build sophisticated applications with increased

flexibility, scalability and reliability [10]. TryStack is a free and easy way

for users to try out OpenStack, and set up their own cloud with networking,

storage, and computer instances [11]. At first we set up the environment for

Jersey framework by importing all the necessary packages to the RESTful

Web application. After that by implementing the APIs of the services (such

as Nova API, Swift API and Amazon S3) we integrate all the service

methods provided by AWS and Trystack. Figure 3 represents the Data flow

diagram of the model.

35

3.4 Data Flow Diagram

Figure: Data Flow Diagram

36

The whole process begins when the client sent Http @GET request to

the web service. After getting the confirmation of the valid credential from

the authentication module, the client gets access to the RESTful Web

Service. Our RESTful API gives access to the Cloud platforms that are

integrated into the Web Service. Client select a Cloud platform from the

Web Service and the Web Service then sent a @GET request to the selected

cloud platform’s account. After a proper authentication check from the cloud

account a decision parameter is forwarded to a process that decides on which

cloud service to access. The Client than have full access to all the services of

the chosen Cloud Platform.

37

Chapter 4

4.1 Tools Used:

 Eclipse Mars.1

 Apache cxf

 JAX-WS (Jersey)

 AWS

 TryStack

 PHP

 XAMPP

 Brackets(Text Editor for PHP)

 Bootstrap Framework

4.2 Experimental Result:

The demo API is tested by implementing it on a client web service.

The client web service sends a HTTP request to our API in the server, this

API then sends the Access Key and Secret Key to the cloud API to be

authenticated for the other service API in the cloud IaaS. The positive result

of the experiment proves that the API is implementable to any client service.

38

Storage service is an important cloud computing service and file uploading

from the client site to the server is a major feature, due to security issue the

browser do not allow to show the directory location of the file which brings

complexity in integrating the Cloud platform. In this case, a temporary

folder is created to transect the file from client service to the server.

This is the Homepage for Web Service where user can select Cloud

providers. After that user have to submit account credentials for login

purpose.

Diagram 1: Home page

Diagram 2: Login Form

Diagram 3: Sign up Form

41

If user does not have any account in our web service user has to sign

up for it. After registration user have to give account credentials for

particular cloud platform. Service Provider’s account credentials taken at the

early stage of account creation through which user can get access any of the

service of particular service provider’s.

Diagram 4: User Account Information form

41

Create container in the AWS Server for the Eucalyptus

Storage Service

Diagram 5: Client enters container
name

Diagram 6: Server response for creating

new container

Diagram 7: Container list in Sever

Diagram 8: List of container response
from server

42

Diagram 9: Client’s File Selection

Diagram 10: Response for File Upload

Diagram 11: File Uploaded in AWS
Server

Diagram 12: Delete Container from
AWS Server

43

Create container in the tryStack Server for the OpenStack

Storage Service

Diagram 13: Create Container in
OpenStack

Diagram 15: Server response for
OpenStack

Diagram 14: View Container in Server

Diagram 16: List of container in Server

Diagram 17: Upload file to OpenStack

Diagram 19: Server Response

44

Diagram 21: File Uploaded in
OpenStack Server

Diagram 18: Enter container name to be

deleted

Diagram 20: Server Response

Diagram 22: Container deleted from
Server

45

Chapter 5

5.1 Conclusion & Future Work

This paper introduces a prototype of an API that integrates multiple

Cloud platforms. Implementation of the API gives a better solution to the

problem faced by the organizations running on Cloud system. The API adds

an intermediate connection between the Cloud platforms which makes cloud

computing system more versatile. It brings a new scope of research on the

relationship between different Cloud platforms. Currently a demo API is

developed. Only Eucalyptus and OpenStack are merged but in future we will

enhance the API by add more Cloud platforms to the API. We hope to

introduce more features that would make this API more functional for the

client service.

45

Reference

[1] Cloud Computing. (n.d.). Retrieved March 22, 2016, from

http://www.hcltech.com/technology-qa/what-cloud-computing-what-are-services-offered

[2] News and Views - articles and case studies for better strategies. (n.d.).

Retrieved March 22, 2016, from http://www.bitheads.com/what-types-of-cloud-services-

are-available/

[3] Shackleford, D. (n.d.). Where The World Talks Security | RSA Conference.

Virtualization and Cloud: Orchestration, Automation, and Security Gaps. Retrieved from

http://www.rsaconference.com/writable/presentations/file_upload/csv-r02-virtualization-

and-cloud-orchestration-automation-and-security_gaps_v2.pdf

[4] S. D. (2016, February). How startups can yield benefits from cloud

technology? Retrieved March 22, 2016, from http://www.esds.co.in/blog/how-startups-

can-yield-benefits-from-cloud-technology/#sthash.kO0lMd7j.dpbs

[5] Lenk, A. (2015). Cloud Standby Deployment: A Model-Driven Deployment
Method for Disaster Recovery in the Cloud. 2015 IEEE 8th International Conference on
Cloud Computing. doi:10.1109/cloud.2015.127

[6] Types of Cloud Computing. (n.d.). Retrieved April 17, 2016, from
https://aws.amazon.com/types-of-cloud-computing/

 [7] Cloud platform comparison: CloudStack, Eucalyptus, vCloud Director and
OpenStack. (2012). Retrieved April 17, 2016, from
http://www.networkworld.com/article/2189981/tech-primers/cloud-platform-comparison-
-cloudstack--eucalyptus--vcloud-director-and-openstack.html

45

[8] Cloud services for your virtual infrastructure, Part 1: Infrastructure-as-a-
Service (IaaS) and Eucalyptus. (n.d.). Retrieved April 17, 2016, from
http://www.ibm.com/developerworks/library/os-cloud-virtual1/

[9] Welcome to OpenStack Documentation. (n.d.). Retrieved April 17, 2016,
from http://docs.openstack.org/

 [10] Product Overview. (n.d.). Retrieved April 17, 2016, from

http://www.rightscale.com/products-and-services/products

45

 Appendix
import java.io.File;
import java.util.Set;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import org.jclouds.ContextBuilder;
import org.jclouds.io.Payload;
import org.jclouds.io.Payloads;
import org.jclouds.logging.slf4j.config.SLF4JLoggingModule;
import org.jclouds.openstack.swift.v1.SwiftApi;
import org.jclouds.openstack.swift.v1.domain.Container;
import org.jclouds.openstack.swift.v1.domain.ObjectList;
import org.jclouds.openstack.swift.v1.domain.SwiftObject;
import org.jclouds.openstack.swift.v1.features.ContainerApi;
import org.jclouds.openstack.swift.v1.features.ObjectApi;
import org.jclouds.openstack.swift.v1.options.CreateContainerOptions;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.Bucket;
import com.amazonaws.services.s3.model.ListObjectsRequest;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.S3ObjectSummary;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.ImmutableSet;
import com.google.common.io.ByteSource;
import com.google.common.io.Files;
import com.google.inject.Module;

@Path("/main")
public class Main {

 public SwiftApi swiftApi;

 @Path("{a}/{s}")
 @GET
 @Produces("application/xml")
 public String eucacontainerlist(@PathParam("a") String a,@PathParam("s") String s) {
 AWSCredentials credentials = null;

45

 credentials = new BasicAWSCredentials(a, s);

 AmazonS3 s3 = new AmazonS3Client(credentials);
 Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 s3.setRegion(usWest2);

 String container="";
 for (Bucket bucket : s3.listBuckets()) {
 container=container +"\n"+ bucket.getName();
 }

 String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" +
container+"\n\n";
 return "<euca>" + "<create>" + container + "</create>" + "<output>" + result +
"</output>" + "</euca>";
 }

 @Path("{a}/{s}/{b}/{c}")
 @GET
 @Produces("application/xml")
 public String eucacontainercreate(@PathParam("a") String a,@PathParam("s") String
s,@PathParam("b") String b,@PathParam("c") String c){

 if(c.equals("create"))
 {
 AWSCredentials credentials = null;
 credentials = new BasicAWSCredentials(a, s);

 AmazonS3 s3 = new AmazonS3Client(credentials);
 Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 s3.setRegion(usWest2);
 String bucketName = b;

 s3.createBucket(bucketName);

 String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" +
bucketName+"\n\n";
 return "<euca>" + "<create>" + bucketName +" Create Successfully"+ "</create>" +
"<output>" + result + "</output>" + "</euca>";

 }else if(c.equals("delete")){

 AWSCredentials credentials = null;
 credentials = new BasicAWSCredentials(a, s);

 AmazonS3 s3 = new AmazonS3Client(credentials);

45

 Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 s3.setRegion(usWest2);
 String bucketName = b;

 ObjectListing objectListing = s3.listObjects(new
ListObjectsRequest().withBucketName(bucketName).withPrefix("aws"));
 for (S3ObjectSummary objectSummary : objectListing.getObjectSummaries()) {
 s3.deleteObject(bucketName, objectSummary.getKey());
 }
 s3.deleteBucket(bucketName);

 String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" +
bucketName+"\n\n";
 return "<euca>" + "<create>" + bucketName +" Delete Successfully"+ "</create>" +
"<output>" + result + "</output>" + "</euca>";
 }

 return null;
 }

 @Path("{i}/{c}/{b}/{o}/{e : http?://.*}")
 @GET
 @Produces("application/xml")
 public String openstackStrorage(@PathParam("i") String i,@PathParam("c") String
c,@PathParam("b") String b,
 @PathParam("o") String o,@PathParam("e") String e) {

 if(o.equals("create"))
 {
 String bucketName = b;

 Iterable<Module> modules = ImmutableSet.<Module>of(new
SLF4JLoggingModule());

 String provider = "openstack-swift";
 String identity = i;
 String credential = c;

 swiftApi = ContextBuilder.newBuilder(provider).endpoint(e).credentials(identity,
credential).modules(modules).buildApi(SwiftApi.class);

 ContainerApi containerApi = swiftApi.getContainerApi("RegionOne");
 CreateContainerOptions options =
CreateContainerOptions.Builder.metadata(ImmutableMap.of("key1", "value1","key2",
"value2"));

45

 containerApi.create(bucketName, options);

 String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" +
bucketName+"\n\n";
 return "<euca>" + "<create>" + bucketName +" Create Successfully"+ "</create>" +
"<output>" + result + "</output>" + "</euca>";

 }else if(o.equals("delete")){

 String bucketName = b;

 Iterable<Module> modules = ImmutableSet.<Module>of(new
SLF4JLoggingModule());

 String provider = "openstack-swift";
 String identity = i;
 String credential = c;

 swiftApi = ContextBuilder.newBuilder(provider).endpoint(e).credentials(identity,
credential).modules(modules).buildApi(SwiftApi.class);

 ContainerApi containerApi = swiftApi.getContainerApi("RegionOne");
 Set<Container> containers = containerApi.list().toSet();
 for (Container container : containers) {
 if((container.getName().equals(bucketName))){
 ObjectApi objectApi = swiftApi.getObjectApi("RegionOne",
container.getName());
 ObjectList objects = objectApi.list();
 for (SwiftObject object: objects) {
 objectApi.delete(object.getName());
 }
 swiftApi.getContainerApi("RegionOne").deleteIfEmpty(container.getName());
 }
 }

 String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" +
bucketName+"\n\n";
 return "<euca>" + "<create>" + bucketName +" delete Successfully"+ "</create>" +
"<output>" + result + "</output>" + "</euca>";
 }
 return null;
 }

 @Path("{i}/{c}/{e : http?://.*}")
 @GET

45

 @Produces("application/xml")
 public String openstackcontainerlist(@PathParam("i") String i,@PathParam("c") String
c,@PathParam("e") String e) {

 Iterable<Module> modules = ImmutableSet.<Module>of(new
SLF4JLoggingModule());

 String provider = "openstack-swift";
 String identity = i;
 String credential = c;

 swiftApi = ContextBuilder.newBuilder(provider).endpoint(e).credentials(identity,
credential).modules(modules).buildApi(SwiftApi.class);

 ContainerApi containerApi = swiftApi.getContainerApi("RegionOne");
 Set<Container> containers = containerApi.list().toSet();

 String list="";
 for (Container container : containers) {
 list=list+" " + container;
 }
 String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" +
list+"\n\n";
 return "<euca>" + "<create>" + list + "</create>" + "<output>" + result + "</output>"
+ "</euca>";
 }

 @Path("{x}/{y}/{b}/{ob}/{o}/{p : [a-zA-z]?:/.*}/{e : http?://.*}")
 @GET
 @Produces("application/xml")
 public String openstackfileupload(@PathParam("x") String x,@PathParam("y") String
y,@PathParam("b") String b, @PathParam("ob") String ob,@PathParam("o") String
o,@PathParam("p") String p ,@PathParam("e") String e) {

 if(o.equals("openstack"))
 {
 Iterable<Module> modules = ImmutableSet.<Module>of(new
SLF4JLoggingModule());

 String provider = "openstack-swift";
 String identity = x;
 String credential = y;

 swiftApi = ContextBuilder.newBuilder(provider).endpoint(e).credentials(identity,
credential).modules(modules).buildApi(SwiftApi.class);

45

 File file = new File(p);
 ByteSource byteSource = Files.asByteSource(file);
 Payload payload = Payloads.newByteSourcePayload(byteSource);
 swiftApi.getObjectApi("RegionOne", b).put(ob, payload);

 String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" +
ob+"\n\n";
 return "<euca>" + "<create>" +ob+ " upload Suceesfully" + "</create>" + "<output>"
+ result + "</output>" + "</euca>";
 }
 else if(o.equals("eucalyptus")){
 AWSCredentials credentials = null;
 credentials = new BasicAWSCredentials(x, y);

 AmazonS3 s3 = new AmazonS3Client(credentials);
 Region usWest2 = Region.getRegion(Regions.US_WEST_2);
 s3.setRegion(usWest2);

 String bucketName = b;
 String key="aws";
 File file = new File(p);
 s3.putObject(new PutObjectRequest(bucketName, key, file));

 String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" +
ob+"\n\n";
 return "<euca>" + "<create>" +ob+ "upload Suceesfully" + "</create>" + "<output>"
+ result + "</output>" + "</euca>";
 }
 return null;
 }
}

