
1 
 

 

Universal API for Managing Multiple  
Cloud Platforms 

 
 

 
 
                      Department of Computer Science and Engineering  
                        School of Engineering and Computer Science 
                                                BRAC University 

  
 
                                 Advisor       : Dr. Md. Haider Ali  
                             Co-advisor      : Md. Abdur Rahman Adnan 
                             Co-advisor      : Imran Hossain Shaon 
 
                          
                            
                       Syeda NoorJaha Azim           12101064 
                                         Tajul Islam            12101067                       
                                         Abu Sufian            12101048                           
                         
 
 
 
 
 



2 
 

                                              DECLARATION  
   
We hereby, declare that this work was carried out by us under the guidance 

and Supervision of Professor Md. Haider Ali, Professor, Department of 

Computer Science and Engineering, BRAC University and Md. Abdur 

Rahman Adnan and Imran Hossain Shaon, Lecturer, Department of 

Computer Science and Engineering, BRAC University. We declare that this 

work has not been submitted anywhere else for the award of any other 

degree.                    

Signature of Advisor                                                Signature of Authors                    
                                                                                                       
______________________________       ____________________________ 
Dr. Md. Haider Ali                                                         Tajul Islam 
Professor, Department of Computer                           ID: 12101067 
Science and Engineering,                                 tajulislam.glab@gmail.com 
BRAC University 
                                                                  _  
                                                                   __________________________ 
Md. Abdur Rahman Adnan                                            Abu Sufian 
Lecturer, Department of Computer                             ID: 12101048 
Science and Engineering,                                     ynor7005326@gmail.com 
BRAC University 
                                                                  ____________________________ 
Imran Hossain Shaon                                             Syeda NoorJaha Azim 
Lecturer, Department of Computer                              ID: 12101064 
Science and Engineering,                                          synjaz@gmail.com 
BRAC University 
                                           
  
 
 
 

mailto:synjaz@gmail.com


3 
 

TABLE OF CONTENTS 
                                       
Section Title Page 

no. 
 Abstract……………………………………………………. 5 

 Acknowledgment………………………………………….. 6 

Chapter 
1 

Introduction……………………………………………… 7 

1.1                      Motivation………………………………………………… 10 

1.2                       Key Features and Impact………………………………….. 10 

Chapter 
2 

Background Study……………………………………….. 11 

2.1                     Cloud Computing Architecture……………………………. 12 

2.2                     Cloud computing deployment models…………………….. 13 

2.3 Cloud computing and its services…………………………. 15 

2.4 Different type of Cloud Computing Platform……………... 16 

2.4.1 Eucalyptus…………………………………………………. 16 

2.4.2 Open stack…………………………………………………. 20 

2.5 Difference between Cloud Platform services……………... 23 

2.6 Case Studies……………………………………………….. 27 

2.6.1 Downtime brings huge debt……………………………….. 27 

2.6.2 Lack of Security and Privacy can put an end to enterprises. 28 

2.6.3 Cloud Computing Platform Dependencies………………... 29 

2.7 Related Works…………………………………………….. 29 

Chapter 
3 

System Design……………………………………………. 31 

3.1 Methodology………………………………………………. 32 

3.2 System Architecture……………………………………….. 33 

3.3 Use case Diagram…………………………………………. 34 

3.4 Data Flow Diagram………………………………………... 36 

Chapter 
4 

System Implementation………………………………….. 38 

4.1 Tool Used………………………………………………….. 38 

4.2 Experimental Results……………………………………… 38 

Chapter 
5 

Conclusion………………………………………………… 45 

 Conclusion & Future work………………………………… 45 

 References…………………………………………………. 46 

 Appendix…………………………………………………… 47 

 



4 
 

ABSTRACT 
 
Cloud computing emerged and acquired huge popularity. Many Cloud 

Service Providers (CSPs) like, AWS, Rackspace, Azure and many more are 

facilitating clients with common services (storage, computing, networking, 

etc.) and thriving for more client by adding new features. So, Cloud 

Consumer (CC) falls under critical situation to adapt new API and quickly 

switch to CSP that best suits their business requirement. To solve this 

perplexity of CC, we introduce a prototype which integrates different Cloud 

API to an abstract API platform and developed a Proof of concept (PoC) for 

our platform. Using our single point API CC can quickly switch and get 

facilitated with the services of different CSP without individual API 

knowledge. 
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Chapter 1 

1. Introduction 

Cloud Computing is a model where all the resources are available in the 

Internet. Just like cooked food, cloud services are prepared dish where all 

the required ingredients are composed for you. There are three renowned 

categories of cloud services- Software as a Service (SaaS), Infrastructure as 

a Service (IaaS) and Platform as a Service (PaaS). SaaS allows accessing the 

functionality of particular software without worrying about the storage or 

other issues [1].  

IaaS provides the networked computer, along with hardware and 

virtualized Operating System (OS), running in a hosted environment. Some 

well-known IaaS Cloud providers are Amazon EC2, Rackspace and Google 

Computer Engine. PaaS is somewhere in the middle of the other two 

services, it adds support for the development environment. Some examples 

of the popular PaaS providers are: Amazon AWS Elastic Beantalk PaaS 

(supports Java, PHP, Python, .Net and Node.js); Google App Engine 

(supports a subset of common Java environments as well as Python and Go), 

Cloud Foundry (supports Java, Ruby, Node.js and Scala), Engine Yard 
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(supports Ruby on Rails, PHP and Node.js) [2] What is supported by the 

platform will obviously impact CCs decision on which platform to use. 

All CSPs has its own cloud OS to provide the services, such as Eucalyptus 

which is an open source project for cloud computing. The virtualized OS of 

CSPs have common orchestration task like storage, compute and network for 

configuration management; virtual machine (VM) and application instances 

for provisioning; IT automation and DevOps, security and compliance 

assessment, monitoring and reporting [3].  

Though all the orchestration task of different CSP has same purpose, 

still there are variations in the service’s feature that distinguish one CSP to 

others. These differences in the services influence CC‟s choice of cloud 

vendor. For example, some cloud vendors have non-negotiable contracts for 

the CCs but there are certain features of the service provided by those cloud 

vendors that are essential for the CCs business.  

In this case the CC prefers to consume two or more cloud vendors‟ 

services at a time but there is no such platform where more than one cloud 

vendor’s services can be operated. This paper introduces a prototype of an 

API that provides an integrated common platform of multiple clouds API 

from where CC can consume service from numerous CSPs; without being 

distressed about maintaining many cloud computing vendors. Users of this 
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API are more relaxed and can put their full effort in leveraging the enterprise 

goal. According to Steve Jobs “I’m convinced that about half of what 

separates the successful entrepreneurs from the non-stressful one is pure 

perseverance.” [4]. Therefore when all the cooked food is served on a single 

table than it is more appropriate to give attention in eating the food 

enjoyably. 
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1.1 Motivation 

When we started our studies regarding cloud services we saw that 

different cloud services have different features. There are few things which 

are unique, say for example: Eucalyptus has AWS Compatibility, Scalable 

Object Storage, and Network Options for growth and Cloud account 

administration whereas OpenStack has ability to manage local area 

networks, Role-based access control, VNC proxy through a Web browser, 

Virtual machine image management. So if someone use Eucalyptus they do 

not have the flexibility to use the features of OpenStack. Thus, 

We took the initiative to develop a Universal API which will solve this issue 

by using the request from Client and convert them as cloud specific requests. 

So there will be flexibility for the user of using different cloud service 

software at a time. Besides this will be beneficial for Cloud service model 

because IaaS is related to PaaS and SaaS. 

1.2 Key Features and Impact 

 Don’t need to learn more API of different cloud platform 

 Double authentication process which is more secured then before 

 Dynamically switch platform 

 User friendly tutorial to habituate the system  
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Chapter 2 

2. Background Study 

Cloud computing emerged and acquired huge popularity. Cloud Computing 

is the delivery of on-demand computing resources everything from 

applications to data centers over the Internet on a pay-for-use basis. 

Cloud computing means storing and accessing data and programs over the 

Internet instead of your computer's hard drive. When we store data on or run 

programs from the hard drive, that's called local storage and computing. 

When we store data or run programs over the internet, that’s called cloud 

storage and cloud computing. 
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2.1 Cloud Computing Architecture 

           

 
Figure 1: Cloud Computing Architecture 

 

When we talk about cloud computing architecture, it comes the two 

side front end and back end. They connect each other through internet.  The 

front end is the side the computer user, or client, sees. The back end is the 

"cloud" section of the system. 
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2.2   Cloud computing deployment models 

Cloud computing deployments models mainly distinguish based on 

size and access.  It tells about the purpose and the nature of the cloud. Most 

of the organizations are willing to implement cloud as it reduces the capital 

expenditure and controls operating cost. 

             
 

 
 

Figure 2: Cloud Computing Deployment model 

 

Public cloud:  It is a type of cloud in which the cloud services are 

delivered over a network which is open for public usage. The customers do 

not have any control over the location of the infrastructure. For example 

email public cloud is less secure because of its openness. 
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Private cloud: It is s also known as internal cloud; the platform for 

cloud computing is implemented on a cloud-based secure environment. 

Private cloud as it permits only the authorized users. It allows system and 

service accessible within organization. It increased security because of its 

private nature [5]. 

Hybrid cloud:  It is a type of cloud computing which is integrated. It 

can be an arrangement of two or more cloud servers, i.e. private, public or 

community cloud .Consider an e-commerce website, which is hosted on a 

private cloud that gives security and scalability, since security is not a prime 

concern for their brochure site it is hosted on a public cloud which is more 

economical as compared to a private cloud. Businesses that have more focus 

on security and demand for their unique presence can implement hybrid 

cloud as an effective business strategy [5]. 

Community Cloud: Community cloud is a type of cloud in which 

setup is shared between many organizations that belong to a particular 

community. The main intention of these communities is to achieve their 

business related objectives. A community cloud may be internally managed 

or it can be managed by a third party provider. It can be hosted externally or 

internally. The cost is shared by the specific organizations within the 

community, hence, community cloud has cost saving capacity [5]. 
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2.3 Cloud Computing and Its Services 

Cloud computing has grown in popularity. Each type of cloud service, 

and deployment method, provides cloud consumers with different levels of 

control, flexibility, and management system.  

Infrastructure as a Service (IaaS): Infrastructure as a Service 

provide access to networking features, computers (virtual or on dedicated 

hardware), and data storage space. Infrastructure as a Service provides you 

with the highest level of flexibility and management control over IT 

resources and is most similar to existing IT resources that many IT 

departments and developers are familiar with today. For example Amazon 

Web service, Eucalyptus. 

Platform as a Service (PaaS): platform as a service allow you to 

focus on the deployment and management of your applications. You don’t 

need to think about software maintenance or any other things that running on 

your computer. It refers to the delivery of operating systems and associated 

services over the Internet without downloads or installation. For example 

google app engine. 

Software as a Service (SaaS): Software as a Service provides 

complete product that is run and managed by the service provider. In most 

cases, people referring to Software as a Service are referring to end-user 
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applications. With a SaaS offering you do not have to think about how the 

service is maintained or how the underlying infrastructure is managed; you 

only need to think about how you will use that particular piece software. A 

common example of a SaaS application is web-based email where you can 

send and receive email without having to manage feature additions to the 

email product or maintaining the servers and operating systems that the 

email program is running on [6]. 

 
 
2.4    Different type of Cloud Computing Platform: 
 
2.4.1 Eucalyptus 

Eucalyptus is an open source software framework for cloud 

computing that implements what is commonly referred to as Infrastructure 

as a Service (IaaS). Eucalyptus software provides users with the ability to 

run and control isolated collections of virtual machine instances with many 

EC2/S3-compatible tools. Eucalyptus uses the Xen and KVM as the 

hypervisor of choice for Virtualization. 

Eucalyptus components: Logically the Eucalyptus cloud consists of 

four components: the client, the cloud controller (clc or "cloud"), the cluster 

controller (cc), and the node controller (NC). The client is solution 

dependent, but may come in the form of a browser script, a user space 



16 
 

program, or even a kernel module. The cloud controller is the client's 

interface into the cloud and provides the logic decision of the cloud. The 

cloud controller runs services that authenticates the client, and then 

translates the client requests into transactions. The cluster controller is a 

collection of node controllers. It is responsible for state information and 

interaction with the virtual machines availability. However, the nodes 

themselves are responsible via the hypervisor (Xen or KVM) to online and 

offline virtual machines. A node controller exists as a single instance on a 

single machine; however, multiple node controllers make up the particular 

cloud. The figure below shows these components and their hierarchy 

relationship. 

 
Figure 3: Eucalyptus Components 
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Cloud Controller (CLC): Cloud controller is responsible for entire 

system management. It is the main entry point into the Eucalyptus cloud for 

all type of clients. The CLC is responsible for passing requests to the right 

component, collecting them, and sending the responses from the components 

back to the client.  

Functions: 

1. Monitor the availability of resources on various components of the 

cloud infrastructure, including hypervisor nodes that are used to 

actually provision the instances and the cluster controllers that 

manage the hypervisor nodes. 

2. Resource arbitration – deciding which clusters will be used for 

provisioning the instances. 

3. Monitoring the running instances. 

Cluster Controller (CC): Requests are communicated to the CC using 

the SOAP or REST-based interface. The CC maintains all the information 

about the Node Controllers. Cluster Controller decide which Node 

Controller should be used to run instances. 

Functions: 

1. To receive requests from CLC to deploy instances. 

2. To decide which NCs to use for deploying the instances on. 



18 
 

3. To control the virtual network available to the instances. 

4. To collect information about the NCs registered with it and report it to 

the CLC. 

Node Controller (NC): It controls the host operating system and the 

corresponding hypervisor. It controls life cycle of each instances. It interacts 

with the OS and the hypervisor running on the node on one side and the CC 

on the other side. 

Functions: 

1. Collection of data related to the resource availability and utilization on 

the node and reporting the data to CC. 

2. Instance life cycle management. 

Storage Controller: Storage Controller (SC) implements block-accessed 

network storage (e.g., Amazon Elastic Block Storage -- EBS) and is capable 

of interfacing with various storage systems (NFS, iSCSI, etc.). An elastic 

block store is a Linux block device that can be attached to a virtual machine 

but sends disk traffic across the locally attached network to a remote storage 

location. 

Functions: 

1. Creation of persistent EBS devices. 

2. Allowing creation of snapshots of volumes. 
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Walrus (W)/Scalable Object Storage: It manages access to the storage 

services within Eucalyptus. It allows users to store data, organized as 

buckets and objects. It allows users to create, delete, list buckets, put, get, 

and delete objects, and set access control policies. Walrus interface 

compatible with Amazon’s S3, and it supports the Amazon Machine Image 

(AMI) image-management interface, thus providing a mechanism for storing 

and accessing both the virtual machine images and user data.  

Management Platform: Management Platform provides an interface to 

various Eucalyptus services and modules. These features can include VM 

management, storage management, user/group management, accounting, 

monitoring, SLA definition and enforcement, cloud-bursting, provisioning, 

etc. [7]. 

OpenStack and its Services 

OpenStack began in 2010 as a joint project of Rackspace Hosting and 

of NASA. It is a free and open-source software platform for cloud-

computing, mostly deployed as an infrastructure-as-a-service (IaaS). 

OpenStack software controls large pools of compute, storage, and 

networking resources throughout a datacenter, managed through a dashboard 

or via the OpenStack API.  

 

https://en.wikipedia.org/wiki/Rackspace
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Software_platform
https://en.wikipedia.org/wiki/Cloud-computing
https://en.wikipedia.org/wiki/Cloud-computing
https://en.wikipedia.org/wiki/Cloud_computing#Infrastructure_as_a_service_.28IaaS.29
https://www.openstack.org/software/openstack-dashboard/
https://developer.openstack.org/
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Figure 4: OpenStack Operating System 
 

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a 

variety of complemental services. Each service offers an application 

programming interface (API) that facilitates this integration. The following 

table provides a list of OpenStack services: 

Dashboard: Through the project Horizon Openstack provides the 

dashboard service. Horizon provides a web-based self-service portal to 

interact with underlying OpenStack services, such as launching an instance, 

assigning IP addresses and configuring access controls. 

http://h
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
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Figure 5: OpenStack Dashboard 

Compute: Nova project manages the lifecycle of compute instances 

in an OpenStack environment. Responsibilities include spawning, 

scheduling and decommissioning of virtual machines on demand. 

Networking: Neutron project enables Network-Connectivity-as-a-

Service for other OpenStack services, such as, OpenStack Compute. Neutron 

provides an API for users to define networks and the attachments into them. 

Has a pluggable architecture that supports many popular networking vendors 

and technologies. 

Storage Service: OpenStack facilities with two type of Storage 

services Swift for Object Storage and Cinder for Block Storage. Swift 

project stores and retrieves arbitrary unstructured data objects via a 
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RESTful, HTTP based API. It is highly fault tolerant with its data replication 

and scale out architecture. Its implementation is not like a file server with 

mountable directories. On the other hand, Cinder project provides persistent 

block storage to running instances. Its pluggable driver architecture 

facilitates the creation and management of block storage devices. 

Shared Services: Identity Service (Keystone) provides an 

authentication and authorization service for other OpenStack services. 

Keystone provides a catalog of endpoints for all OpenStack services. 

Image Service (Glance) stores and retrieves virtual machine disk images. 

OpenStack Compute makes use of this during instance provisioning. 

Telemetry (Ceilometer) monitors and meters the OpenStack cloud for 

billing, benchmarking, scalability, and statistical purposes [8]. 

 

2.5 Difference between Cloud Platform services 

Eucalyptus and OpenStack both give many similar services but with 

different features and facilities. Storage service is one of them. Storage 

service is really a big concern for any cloud platform. There are possibilities 

of giving the same storage service but in different process. Object storage is 

one of the types of storage service. It keeps the data as object and it can store 

unlimited object in bucket. For retrieving object there is unique developer 

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
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assigned keys. Most important advantage of it to access objects from 

anywhere of the bucket and secured from unauthorized access. For 

maintaining unstructured data or flat structure, web content, documents, 

sensor data, databases and log files Object storage is really a great option. 

But for random access data or relational database could not possible in 

Object storage which is one of its’ weak point. Instead of its Object storage 

have scalable capacity as well as scalable performance. Even it is durable 

with low cost and simplified management process. 

On the other hand there is another storage service called Block storage. 

Block storage is usable almost any kind of application including file storage, 

database storage. Heavy random data access can easily be done in this 

storage service. Block Storage is persistent storage organized into 

unstructured "blocks", each the same length. An ordinary disk drive, RAID 

array, or USB storage key are examples of locally attached "block storage". 

In Block storage, files are split into evenly sized blocks of data, each with its 

own address but with no additional information (metadata) to provide more 

contexts for what that block of data is. In a nutshell, key phrases associated 

with block storage are granularity, great performance, little or no metadata, 

and local use. Even Block storage is ideal for databases, since a DB requires 

consistent I/O performance and low-latency connectivity. 
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Both of these Storage service have some unique features and the 

usability of the features varies from user to user. To select a cloud provider 

or technology, user should understand their requirements in order to list the 

needed features. All of the quality of storage services is not solely served by 

either Eucalyptus or OpenStack. So problem arises when user wants to use 

some combined feature which Eucalyptus or OpenStack won’t be able to 

fulfill it individually. Previously Customers were not able to use cross 

platform for multiple features but now through this Universal API there is a 

possibility for manipulating any features for cross cloud platform which is 

an undoubtedly a great innovation for upcoming cloud users as well as for 

providers. 

Customer end will always be beneficiated by using Universal API in 

their application. They will use multiple features from multiple cloud 

platforms with the same cost just like before.  

       According to the Google Search trend the rate of Cloud platform 

search rises steeply after 2011. Figure 6 below shows the graph of average 

search of popular Cloud platforms. From the graph we can infer that 

Amazon Web Service (AWS) search rate is consistently increasing as the 

years goes by. Eucalyptus and Openstack are very competitive and after 

2011 the graph shows Openstack has gain more reputation than Eucalyptus. 
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We know that all Cloud platforms provide same computing services but the 

graph shows fluctuation, which means though they provide the same service 

still there are certain difference in the service features which makes one 

Cloud platform more favorable to a business case than other. Table 1 [8] 

represents a Comparative study of IaaS solution („+‟ sign means better 

solution).   

Table 1: Comparative study of IaaS solution (‘+’ sign means better 
solution)    
 

 
 

Therefore companies prefer to run their business in multiple Cloud 

platform to assure their resources are more secure having saved them on two 

secure storage; moreover companies are facilitated with different flavor of 

the same services and are not locked into one vendor.    
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Figure 6: Google Search Trend of Cloud platforms 

2.6      Case Studies 
 
2.6.1 Downtime brings huge debt  

Any business depending on a Cloud computing cannot absorb 

prolonged bout of frequent outages or slowdown. Though CSP is expected 

to be immune to service outages still more than few times such incident 

already happened. In 2014 Dropbox faced an outage for as long as two days 

[5]. Thus all the applications running on internet dropped offline and the 

business has to face huge debt. A backup Cloud platform for the online 

applications could be a great help for Dropbox at that situation. 
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2.6.2 Lack of Security and Privacy can put an end to 

enterprises 

To rob a company it is not always necessary to break into an office 

building late at night, demanding a ransom, and then throwing grenades into 

the data center if the demands were not fulfilled. A company is under a 

security threat when an attacker gets access to its only CSP‟s control panel 

and removes all its precious resources stored in the server. Code Spaces is 

the unfortunate company that has to close door because of an attacker. It was 

a company that offered developers source code repositories and project 

management services using Git or Subversion, among other options. 

According to the information on the Code Space website, the company’s 

AWS control panel was hacked by an attacker and demanded money in 

exchange of giving control back to Code Space. When the Code Space tried 

to regain the control, the attacker started deleting resources. Code Space 

could not save all its EBS snapshots, S3 buckets, all AMIs and some EBS 

instances. A seven year running company with no shortage of customer 

would have survived if it had saved its treasured resources on any back up 

Cloud platform without the burden of maintaining several cloud vendors. 
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2.6.3 Cloud Computing Platform Dependencies 

The new breed of extremely lightweight company like Coupa is not 

only totally run in the cloud, but also is a cloud based provider itself. Coupa 

is a C2C business, acting as a broker of services assembled from offering 

supported by third-party providers. It provides online procurement software 

and services to the business community. For online services its servers are 

provisioned at Amazon Web Services, while its customer relationship 

management runs on Salesforce.com and Google handles its Email. [7] For 

such companies that utilize cloud services from different providers, would 

amplify its business growth if they could meet all the Cloud platforms on a 

common platform.   

 
2.7     Related Works 

 

Cloud computing means storing and accessing data and programs over 

the Internet instead of your computer's hard drive. When we store data on or 

run programs from the hard drive, that's called local storage and computing. 

When we store data or run programs over the internet, that’s called cloud 

storage and cloud computing. In the recent years Right Scale have launched 

a platform to manage different cloud platform. RightScale Cloud Portfolio 

Management is an integrated software suite that includes Self-Service, 
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Cloud Management, and Cloud Analytics. Built on a Multi-Cloud Platform, 

RightScale supports Infrastructure-as-a-Service resource pools across public 

clouds, private clouds, and virtualization [10] .  
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Chapter 3 
 

3. System Design 
 

Our API is a specialized discipline that involves the design of an 

interface for part of a system or an entire system. This API can be used by 

another part of the system or our web service is an independent system to 

facilitate communication between user and cloud platform. As we know 

APIs are an integral part of modern software development so we developed 

both API as well as Web service so anyone will be able to integrate our API 

or they will be able to communicate via our Web service. 
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3.1 Methodology 
 

After an immense study on the CSPs‟ services and research on the 

issues raised by the organizations depending on Cloud Computing, we 

developed a prototype of an API to resolve the problems by integrating all 

the CSPs to a common platform. A standard and portable JAX-RS (Java API 

for RESTful web service) API is designed in order to simplify its 

development and their clients in Java. The API contains a resource class 

which is a Java class annotated with JAX-RS annotation to represent a web 

resource. There is also a root resource class called POJO (plain old Java 

object) that is annotated with at least one @Path or a request method 

designator such as @GET, @PUT, @POST, or @DELETE to handle 

request on the corresponding resource.   

Jersey (Sun's open source, production-quality reference 

implementation for JAX-RS) and Apache CXF (Apache's Java API for 

RESTful web services) REST frameworks are used for developing RESTful 

services in Java. Among these two REST frameworks we preferred to 

develop our Web Service by Jersey. Jersey RESTful Web Services 

framework is open source, production quality framework for developing 

RESTful Web Services in Java that provides support for JAXRS APIs and 

serves as a JAX-RS (JSR 311 & JSR 339) Reference Implementation. 
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Apache CXF is an open source services framework. CXF helps you build 

and develop services using frontend programming APIs, like JAX-WS and 

JAX-RS. These services can speak a variety of protocols such as SOAP, 

XML/HTTP, RESTful HTTP, or CORBA and work over a variety of 

transports such as HTTP, JMS or JBI. [9]      Figure 2 shows the use case 

diagram of the API, where the user creates a secure account and login to the 

web service. The web service allows the authenticate user to select a Cloud 

platform and then select a services of that platform. It also allows the user to 

shift between the services of different Cloud platforms. 

3.2 System Architecture 

 

Figure 7: System Architecture 
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3.3 Use case Diagram 

Figure 2: Use case Diagram of the API 

For the proof of concept of the model, we choose to use two cloud IaaS, 

AWS for Eucalyptus and Trystack for Openstack, for testing the design. 

Both AWS and Trystack provide a demo of the corresponding cloud IaaS to 

the developers without having to commit to a full deployment. AWS is a 

secure cloud services‟ platform, offering compute power, database storage, 
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content delivery and other functionality to help businesses scale and grow. 

Explore how millions of customers are currently leveraging AWS cloud 

products and solutions to build sophisticated applications with increased 

flexibility, scalability and reliability [10]. TryStack is a free and easy way 

for users to try out OpenStack, and set up their own cloud with networking, 

storage, and computer instances [11]. At first we set up the environment for 

Jersey framework by importing all the necessary packages to the RESTful 

Web application. After that by implementing the APIs of the services (such 

as Nova API, Swift API and Amazon S3) we integrate all the service 

methods provided by AWS and Trystack. Figure 3 represents the Data flow 

diagram of the model.    
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3.4 Data Flow Diagram 

 

Figure: Data Flow Diagram 
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The whole process begins when the client sent Http @GET request to 

the web service. After getting the confirmation of the valid credential from 

the authentication module, the client gets access to the RESTful Web 

Service. Our RESTful API gives access to the Cloud platforms that are 

integrated into the Web Service. Client select a Cloud platform from the 

Web Service and the Web Service then sent a @GET request to the selected 

cloud platform’s account. After a proper authentication check from the cloud 

account a decision parameter is forwarded to a process that decides on which 

cloud service to access. The Client than have full access to all the services of 

the chosen Cloud Platform.    
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Chapter 4 

 

4.1 Tools Used: 

 Eclipse Mars.1 

 Apache cxf 

 JAX-WS (Jersey) 

 AWS 

 TryStack 

 PHP 

 XAMPP 

 Brackets(Text Editor for PHP) 

 Bootstrap Framework 

 

4.2 Experimental Result: 

The demo API is tested by implementing it on a client web service. 

The client web service sends a HTTP request to our API in the server, this 

API then sends the Access Key and Secret Key to the cloud API to be 

authenticated for the other service API in the cloud IaaS. The positive result 

of the experiment proves that the API is implementable to any client service. 
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Storage service is an important cloud computing service and file uploading 

from the client site to the server is a major feature, due to security issue the 

browser do not allow to show the directory location of the file which brings 

complexity in integrating the Cloud platform. In this case, a temporary 

folder is created to transect the file from client service to the server. 

This is the Homepage for Web Service where user can select Cloud 

providers. After that user have to submit account credentials for login 

purpose. 

 

 
 

Diagram 1: Home page 
 
 

 
 

Diagram 2: Login Form 

 

Diagram 3: Sign up Form 
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If user does not have any account in our web service user has to sign 

up for it. After registration user have to give account credentials for 

particular cloud platform. Service Provider’s account credentials taken at the 

early stage of account creation through which user can get access any of the 

service of particular service provider’s. 

 

Diagram 4: User Account Information form 
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Create container in the AWS Server for the Eucalyptus 

Storage Service 

 

 
 

Diagram 5: Client enters container 
name 

 
 
Diagram 6: Server response for creating 

new container 
 

 
 
Diagram 7: Container list in Sever 

 
 

Diagram 8: List of container response 
from server 
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Diagram 9: Client’s File Selection
 

Diagram 10: Response for File Upload 
 
 

 
 

Diagram 11: File Uploaded in AWS 
Server 

 

 
 

Diagram 12: Delete Container from 
AWS Server 
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Create container in the tryStack Server for the OpenStack 

Storage Service
 
 

 
 

Diagram 13: Create Container in 
OpenStack 

 

 
 

Diagram 15: Server response for 
OpenStack 

 

 
 
Diagram 14: View Container in Server 

 

 
 
Diagram 16: List of container in Server 
 

 

Diagram 17: Upload file to OpenStack 
 

 
  

Diagram 19: Server Response 
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Diagram 21: File Uploaded in 
OpenStack Server 

 

 
 
Diagram 18: Enter container name to be 

deleted 
 

 
 

Diagram 20: Server Response 
 

 
 
 

Diagram 22: Container deleted from 
Server 
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Chapter 5 

5.1 Conclusion & Future Work 

This paper introduces a prototype of an API that integrates multiple 

Cloud platforms. Implementation of the API gives a better solution to the 

problem faced by the organizations running on Cloud system. The API adds 

an intermediate connection between the Cloud platforms which makes cloud 

computing system more versatile. It brings a new scope of research on the 

relationship between different Cloud platforms. Currently a demo API is 

developed. Only Eucalyptus and OpenStack are merged but in future we will 

enhance the API by add more Cloud platforms to the API. We hope to 

introduce more features that would make this API more functional for the 

client service.  
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                                                   Appendix 
import java.io.File; 
import java.util.Set; 
import javax.ws.rs.GET; 
import javax.ws.rs.Path; 
import javax.ws.rs.PathParam; 
import javax.ws.rs.Produces; 
import org.jclouds.ContextBuilder; 
import org.jclouds.io.Payload; 
import org.jclouds.io.Payloads; 
import org.jclouds.logging.slf4j.config.SLF4JLoggingModule; 
import org.jclouds.openstack.swift.v1.SwiftApi; 
import org.jclouds.openstack.swift.v1.domain.Container; 
import org.jclouds.openstack.swift.v1.domain.ObjectList; 
import org.jclouds.openstack.swift.v1.domain.SwiftObject; 
import org.jclouds.openstack.swift.v1.features.ContainerApi; 
import org.jclouds.openstack.swift.v1.features.ObjectApi; 
import org.jclouds.openstack.swift.v1.options.CreateContainerOptions; 
import com.amazonaws.auth.AWSCredentials; 
import com.amazonaws.auth.BasicAWSCredentials; 
import com.amazonaws.regions.Region; 
import com.amazonaws.regions.Regions; 
import com.amazonaws.services.s3.AmazonS3; 
import com.amazonaws.services.s3.AmazonS3Client; 
import com.amazonaws.services.s3.model.Bucket; 
import com.amazonaws.services.s3.model.ListObjectsRequest; 
import com.amazonaws.services.s3.model.ObjectListing; 
import com.amazonaws.services.s3.model.PutObjectRequest; 
import com.amazonaws.services.s3.model.S3ObjectSummary; 
import com.google.common.collect.ImmutableMap; 
import com.google.common.collect.ImmutableSet; 
import com.google.common.io.ByteSource; 
import com.google.common.io.Files; 
import com.google.inject.Module; 
 
 
@Path("/main") 
public class Main { 
   
  public SwiftApi swiftApi; 
   
  @Path("{a}/{s}") 
  @GET 
  @Produces("application/xml") 
  public String eucacontainerlist(@PathParam("a") String a,@PathParam("s") String s) { 
    AWSCredentials credentials = null; 
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    credentials = new BasicAWSCredentials(a, s); 
     
    AmazonS3 s3 = new AmazonS3Client(credentials); 
    Region usWest2 = Region.getRegion(Regions.US_WEST_2); 
    s3.setRegion(usWest2); 
     
    String container=""; 
    for (Bucket bucket : s3.listBuckets()) { 
      container=container +"\n"+ bucket.getName(); 
    } 
     
    String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" + 
container+"\n\n"; 
    return "<euca>" + "<create>" + container + "</create>" + "<output>" + result + 
"</output>" + "</euca>"; 
  } 
   
  @Path("{a}/{s}/{b}/{c}") 
  @GET 
  @Produces("application/xml") 
  public String eucacontainercreate(@PathParam("a") String a,@PathParam("s") String 
s,@PathParam("b") String b,@PathParam("c") String c){ 
     
    if(c.equals("create")) 
    { 
      AWSCredentials credentials = null; 
      credentials = new BasicAWSCredentials(a, s); 
       
      AmazonS3 s3 = new AmazonS3Client(credentials); 
      Region usWest2 = Region.getRegion(Regions.US_WEST_2); 
      s3.setRegion(usWest2); 
      String bucketName = b; 
       
      s3.createBucket(bucketName); 
       
      String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" + 
bucketName+"\n\n"; 
      return "<euca>" + "<create>" + bucketName +" Create Successfully"+ "</create>" + 
"<output>" + result + "</output>" + "</euca>"; 
       
    }else if(c.equals("delete")){ 
       
      AWSCredentials credentials = null; 
      credentials = new BasicAWSCredentials(a, s); 
       
      AmazonS3 s3 = new AmazonS3Client(credentials); 
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      Region usWest2 = Region.getRegion(Regions.US_WEST_2); 
      s3.setRegion(usWest2); 
      String bucketName = b; 
       
      ObjectListing objectListing = s3.listObjects(new 
ListObjectsRequest().withBucketName(bucketName).withPrefix("aws")); 
      for (S3ObjectSummary objectSummary : objectListing.getObjectSummaries()) { 
        s3.deleteObject(bucketName, objectSummary.getKey()); 
      } 
      s3.deleteBucket(bucketName); 
       
      String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" + 
bucketName+"\n\n"; 
      return "<euca>" + "<create>" + bucketName +" Delete Successfully"+ "</create>" + 
"<output>" + result + "</output>" + "</euca>";  
    } 
     
    return null; 
  } 
   
   
  @Path("{i}/{c}/{b}/{o}/{e : http?://.*}") 
  @GET 
  @Produces("application/xml") 
  public String openstackStrorage(@PathParam("i") String i,@PathParam("c") String 
c,@PathParam("b") String b, 
                                  @PathParam("o") String o,@PathParam("e") String e) { 
     
    if(o.equals("create")) 
    { 
      String bucketName = b; 
       
      Iterable<Module> modules = ImmutableSet.<Module>of(new 
SLF4JLoggingModule()); 
       
      String provider = "openstack-swift"; 
      String identity = i; 
      String credential = c; 
       
      swiftApi = ContextBuilder.newBuilder(provider).endpoint(e).credentials(identity, 
credential).modules(modules).buildApi(SwiftApi.class); 
       
      ContainerApi containerApi = swiftApi.getContainerApi("RegionOne"); 
      CreateContainerOptions options = 
CreateContainerOptions.Builder.metadata(ImmutableMap.of("key1", "value1","key2", 
"value2")); 
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      containerApi.create(bucketName, options); 
       
      String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" + 
bucketName+"\n\n"; 
      return "<euca>" + "<create>" + bucketName +" Create Successfully"+ "</create>" + 
"<output>" + result + "</output>" + "</euca>"; 
       
    }else if(o.equals("delete")){ 
       
      String bucketName = b; 
       
      Iterable<Module> modules = ImmutableSet.<Module>of(new 
SLF4JLoggingModule()); 
       
      String provider = "openstack-swift"; 
      String identity = i; 
      String credential = c; 
       
      swiftApi = ContextBuilder.newBuilder(provider).endpoint(e).credentials(identity, 
credential).modules(modules).buildApi(SwiftApi.class); 
       
      ContainerApi containerApi = swiftApi.getContainerApi("RegionOne"); 
      Set<Container> containers = containerApi.list().toSet(); 
      for (Container container : containers) { 
        if((container.getName().equals(bucketName))){ 
          ObjectApi objectApi = swiftApi.getObjectApi("RegionOne", 
container.getName()); 
          ObjectList objects = objectApi.list(); 
          for (SwiftObject object: objects) { 
            objectApi.delete(object.getName()); 
          } 
          swiftApi.getContainerApi("RegionOne").deleteIfEmpty(container.getName());  
        } 
      } 
       
      String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" + 
bucketName+"\n\n"; 
      return "<euca>" + "<create>" + bucketName +" delete Successfully"+ "</create>" + 
"<output>" + result + "</output>" + "</euca>"; 
    } 
    return null; 
  } 
   
  @Path("{i}/{c}/{e : http?://.*}") 
  @GET 
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  @Produces("application/xml") 
  public String openstackcontainerlist(@PathParam("i") String i,@PathParam("c") String 
c,@PathParam("e") String e) { 
     
    Iterable<Module> modules = ImmutableSet.<Module>of(new 
SLF4JLoggingModule()); 
     
    String provider = "openstack-swift"; 
    String identity = i; 
    String credential = c; 
     
    swiftApi = ContextBuilder.newBuilder(provider).endpoint(e).credentials(identity, 
credential).modules(modules).buildApi(SwiftApi.class); 
     
    ContainerApi containerApi = swiftApi.getContainerApi("RegionOne"); 
    Set<Container> containers = containerApi.list().toSet(); 
     
    String list=""; 
    for (Container container : containers) { 
      list=list+"  " + container; 
    } 
    String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" + 
list+"\n\n"; 
    return "<euca>" + "<create>" + list + "</create>" + "<output>" + result + "</output>" 
+ "</euca>"; 
  } 
   
  @Path("{x}/{y}/{b}/{ob}/{o}/{p : [a-zA-z]?:/.*}/{e : http?://.*}") 
  @GET 
  @Produces("application/xml") 
  public String openstackfileupload(@PathParam("x") String x,@PathParam("y") String 
y,@PathParam("b") String b, @PathParam("ob") String ob,@PathParam("o") String 
o,@PathParam("p") String p ,@PathParam("e") String e) { 
     
    if(o.equals("openstack")) 
    { 
      Iterable<Module> modules = ImmutableSet.<Module>of(new 
SLF4JLoggingModule()); 
       
      String provider = "openstack-swift"; 
      String identity = x; 
      String credential = y; 
       
      swiftApi = ContextBuilder.newBuilder(provider).endpoint(e).credentials(identity, 
credential).modules(modules).buildApi(SwiftApi.class); 
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      File file = new File(p); 
      ByteSource byteSource = Files.asByteSource(file); 
      Payload payload = Payloads.newByteSourcePayload(byteSource); 
      swiftApi.getObjectApi("RegionOne", b).put(ob, payload); 
       
      String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" + 
ob+"\n\n"; 
      return "<euca>" + "<create>" +ob+ " upload Suceesfully" + "</create>" + "<output>" 
+ result + "</output>" + "</euca>"; 
    } 
    else if(o.equals("eucalyptus")){ 
      AWSCredentials credentials = null; 
      credentials = new BasicAWSCredentials(x, y); 
       
      AmazonS3 s3 = new AmazonS3Client(credentials); 
      Region usWest2 = Region.getRegion(Regions.US_WEST_2); 
      s3.setRegion(usWest2); 
       
      String bucketName = b;   
      String key="aws"; 
      File file = new File(p); 
      s3.putObject(new PutObjectRequest(bucketName, key, file)); 
       
      String result = "@Produces(\"application/xml\") Output: \n\nbucketname:" + 
ob+"\n\n"; 
      return "<euca>" + "<create>" +ob+ "upload Suceesfully" + "</create>" + "<output>" 
+ result + "</output>" + "</euca>";   
    } 
    return null; 
  } 
} 
   

 


