
1

Reinforcement Learning based Autonomic

Virtual Machine Management in Clouds

School of Computer Science and Engineering, Dhaka

Bangladesh

By

Md. Arafat Habib

Under the supervision of

Dr. Md. Muhidul Islam Khan

2

Thesis Submitted in partial fulfillment of the requirement for the degree of

Bachelor of Science

In

 Computer Science and Engineering

Under the supervision of

Dr. Md. Muhidul Islam Khan

By

Md. Arafat Habib (ID: 12101056)

April, 2016

3

TABLE OF CONTENTS

CHAPTER PAGE

DECLARATION ..4

FINAL READING APPROVAL ..5

ACKNOWLEDGMENTS ..6

ABSTRACT ...7

LIST OF FIGURES ...8

CHAPTERS

CHAPTER 1 – Introduction...9

CHAPTER 2 – Related Works ..11

CHAPTER 3 – Cloud Computing..13

CHAPTER 4 – HPE Helion Eucalyptus ..22

CHAPTER 5 – Proposed System Model ...26

CHAPTER 6 – Proposed Method ..30

CHAPTER 7 – Experimental Results ..33

CHAPTER 8 – Conclusion and Future Work ..42

REFERENCES ..43

4

DECLARATION

eWdctdeWbWradcWd bWd e d eWd eWtitd i Wcd “ WiootbdWnWo daW boiordr tWcdme totnidd

tib e da deioWda o rWnWo diodo tect ” is submitted to the Department of Computer

Science and Engineering of BRAC University in partial fulfillment of the completion

of Bachelors of Science in Computer Science and Engineering. We hereby declare that

this thesis is based on results obtained from our own work. Due acknowledgement has

been made in the text to all other material used. This thesis, neither in whole nor in part

has been previously submitted to any University or Institute for the award of any

degree or diploma. The materials of work found by other researchers and sources are properly

acknowledged and mentioned by reference.

Dated: April 18, 2016

Signature of Supervisor Signature of Authors

_________________________ _____________________

rb.ac.aeeice dst ndie o Arafat Habib (12101056)

Assistant Professor

Department of Computer Science and Engineering,

BRAC University

Dhaka, Bangladesh

5

FINAL READING APPROVAL

Thesis Title:

 WiootbdWnWo daW boiordr tWcdme totniddtib e da deioWda o rWnWo diodo tect

Date of Submission: April 18, 2016

Signature of Supervisor

rb.ac. aeeice dst ndie o

Assistant professor

Department of Computer Science and Engineering

BRAC University

Dhaka, Bangladesh

6

Acknowledgement

Numerous people have supported us during the development of this dissertation. A few words’

mention here cannot adequately capture all my appreciation.

I am very thankful to my thesis coordinator rb.ac.aeeice d st nd ie o, Assistant Professor,

Department of Computer Science and Engineering, BRAC University for guiding me throughout

my thesis work. Without his key contributions, it would have been quite impossible to finish the

work.

I would also like to thank Mr. Kunuk Nykjær from IT University of Copenhagen for his

assistance.

Lastly, all the credits go to almighty for making us successful.

Date: April 18, 2016

 Md. Arafat Habib

7

ABSTRACT

Cloud computing is a rapidly emerging field, services and applications are more or less 24/7.

Resource dimensioning in this field is a great issue. Research is already going on to imply

reinforcement learning to automate decision making process in case of addition, reduction,

migration and maintenance of the Virtual Machines (VM) to balance the service level

performance and VM management cost. Models have been proposed in this case based on Q

learning, a very popular reinforcement learning technique that is used to find optimal action

selection policy for any finite Markov Decision Process (MDP).In this thesis, we propose to work

with the challenges like proper initialization of the early stages, designing the states, actions,

transitions using Markov Decision Process (MDP) and solving the MDP with two popular

reinforcement learning techniques, Q learning and SARSA (λ).

8

List of Figures

Figures Page

Fig 1: Pyramid view of service model stack of cloud computing…………………………16

Fig 2: Users of different service models…………………………………………………..16

Fig 3: Service models, Deployment models and Essential ……………………………….18

Characteristics together in cloud architecture

Fig 4: Eucalyptus Cloud architecture with basic components…………………………….23

Fig 5: Hierarchical view of Eucalyptus…………………………………………………...24

Fig 6: The physical diagram of Eucalyptus cloud………………………………………...25

Fig 7: State Diagram……………………………………………………………………....28

Fig 8: Cost Vs. Penalty Graph for beta in SARSA- λ……………………………………. 33

Fig 9: Cost Vs. Penalty Graph for beta in SARSA- λ……………………………………..34

Fig 10: Cost Vs. Penalty Graph for beta in Q and SARSA(λ)…………………………… 35

Fig 11: Cost Vs. Penalty Graph for λ in SARSA (λ)……………………………………...36

Fig 12: Different values of alpha producing chunks of reward…………………………...37

Fig 13: Different values of alpha producing chunks of reward…………………………...38

Fig 14: Early convergence of Q-learning………………………………………………….41

9

CHAPTER 1

1. INTRODUCTION

1.1Motivation

Cloud computing is one kind of computing that provides sharing functionalities/computing

resources rather than having dedicated servers. Resource dimensioning in this field is a great

issue. There are some research works to imply reinforcement learning to automate decision

making process in case of addition, reduction, migration and maintenance of the Virtual

Machines (VM) to balance the service level performance and VM management cost. For giving

an on demand network access to a shared pool of computing resources, cloud computing is a

great emerging model where resources are configurable on different parameters. Resources

include networks, servers, applications, storage, etc. There are three sorts of service models of

cloud computing. They are namely IaaS, PaaS and SaaS. IaaS provides the fundamental building

blocks of computing resources. SaaS is the top layer of cloud computing services. It is typically

built on top of a platform as a service solution and provides software solution to the end users.

Operating at the layer above raw computing hardware, whether physical or virtual, PaaS

provides a method for programming languages to interact with services like databases, web

servers and file storage [1]. IaaS takes the traditional physical computer hardware: such as

servers, storage arrays and networking. It lets anyone build virtual infrastructure that mimics

these resources but which can be configured, created, resized and removed within moments as a

task requires it or the user wishes it [1]. Auto Scaling, another core feature of cloud computing

that focuses on, on demand pulling and releasing of shared pool of available resources. It has a

control loop monitor to decide if the system should grow or shrink. Our work mainly focuses on

Virtual Machine management problem that can be used in IaaS and PaaS service models so that

the system can perform auto scaling

10

1.2 Goal

In this thesis, we propose to work with the challenges like proper initialization of the early

stages, designing the states, actions, transitions using Markov Decision Process (MDP) and

solving the MDP with two popular reinforcement learning techniques namely Q-learning and

SARSA(λ). We also want to compare the convergence speed of these two techniques so that we

may conclude about one of them to be better.

1.3 Thesis Layout

The rest of the thesis is organized as follows:

Chapter 2 describes the Related work, Chapter 3 discusses about the fundamental concepts of

cloud computing and virtualization technology, Chapter 4 describes architecture of HPE Helion

Eucalyptus cloud, Chapter 5 talks about the proposed system model of ours, Chapter 6 enlightens

the proposed method, Chapter 7 presents the experimental results and lastly Chapter 8 concludes

the paper with a summary of our work and future works that can be accomplished on our work.

11

CHAPTER 2

2. Related Works

Adhoc manually determined policies like threshold based policies are used industrially to cope

with the VM allocation problem. Low threshold on performance causes more allocation of

Virtual machines and a high one causes the reduction of Virtual Machines. Providing good

thresholds proved to be tricky and hard to automate to fit every application requirement

[32Dutreih et al. also proposed to solve the VM management problem through machine learning

but his action set was limited to only Adding and reducing VMs excluding VM migration and

maintenance [2]. In 2015 Enda et al also tried to solve this same problem with reinforcement

learning but the states they introduced did not have clarification of the whole cloud computing

architecture [3]. Among the different works on threshold-based policies, Lim et al. propose

proportional thresholding to adapt policy parameters at runtime [4]. It consists in modifying the

range of thresholds in order to trigger more frequent decisions when necessary. This approach

adapts very well to fast changing conditions and is directly integral into automated agents with

stability mechanisms [2]. The mentioned paper gives elegant answers to remove latency but

when the question comes about to take prompt and efficient decisions for the changing workload

patterns it lacks in adaptation. Tesauro et al. explore the application of reinforcement learning in

a sequential decision process [5]. The paper presents two novel ideas: the use of a predetermined

policy for the initial period of the learning and the use of an approximation of the Q-function as a

neural network [2]. The results are interesting, though dependent on the form of the reward

function. Besides that, the initial learning with a predetermined policy appears less promising

than an initialization using a pre computing of the Q function through the traditional value-

iteration algorithms in amodel-based learning approach [6]. Zhang et al. propose a pragmatic

approach to resource allocation which consists in pre allocating enough resources to match up to

95% of the observed workload and then allocates more resources on another cloud when this

12

threshold is passed [7]. This work greatly lacks in real time automatic control approach to

outsmart instability. To tell the truth, authors cared about working with the controllers that

focused on immediate reward but not stability of the entire system. Most researches that worked

upon Q-learning lacks in one thing clearly. We clearly do not know if there are other

reinforcement learning algorithms that work better than Q-learning.

13

CHAPTER3

3. CLOUD COMPUTING

3.1. General Concept:

Cloud computing is a relatively new model in the computing world. According the definition of

National Institute of Standards and Technology, Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider interaction. A

cloud infrastructure is the collection of hardware and software that enables the five essential

characteristics of cloud computing. The cloud infrastructure can be viewed as containing both a

physical layer and an abstraction layer. The physical layer consists of the hardware resources that

are necessary to support the cloud services being provided, and typically includes server, storage

and network components. The abstraction layer consists of the software deployed across the

physical layer, which manifests the essential cloud characteristics. Conceptually the abstraction

layer sits above the physical layer [8].This cloud model is composed of five essential

characteristics, three service models, and four deployment models. The essential characteristics

are namelyOn-demand self-service, Broad network access, Resource pooling, Rapid elasticity

and Measured service.

On-demand self-service:

A consumer can unilaterally provision computing capabilities, such as server time and network

storage, as needed automatically without requiring human interaction with each service provider

[8].

Broad network access:

14

Capabilities are available over the network and accessed through standard mechanisms that

promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets,

laptops, and workstations) [8].

Resource pooling:

The provider’s computing resources are pooled to serve multiple consumers using a multi-tenant

model, with different physical and virtual resources dynamically assigned and reassigned

according to consumer demand. There is a sense of location independence in that the customer

generally has no control or knowledge over the exact location of the provided resources but may

be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter).

Examples of resources include storage, processing, memory, and network bandwidth [8].

Rapid elasticity:

Capabilities can be elastically provisioned and released, in some cases automatically, to scale

rapidly outward and inward commensurate with demand. To the consumer, the capabilities

available for provisioning often appear to be unlimited and can be appropriated in any quantity at

any time [8].

Measured service:

Cloud systems automatically control and optimize resource use by leveraging a metering

capability at some level of abstraction appropriate to the type of service (e.g., storage,

processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled,

and reported, providing transparency for both the provider and consumer of the utilized service

[8].

Once a cloud is established, the method of its cloud computing services deployment in terms of

business models can differ depending on requirements. The primary service models being

deployed are commonly known as:

SAAS:

15

Software as a Service model is based on multi-tenant architecture. This model enables all

customers (tenants) to use single version application with single configuration. To avoid

conflicts and provide scalability, application is installed on multiple machines. In some cases,

SaaS do not use multi-tenancy. They use other mechanisms such as virtualization where a large

number of customers are managed in place of multi-tenancy. Some SaaS solutions do not use

multi-tenancy, or use other mechanisms-such as virtualization-to cost-effectively manage a large

number of customers in place of multi-tenancy.

PAAS:

Platform-as-a-Service provides a computing platform and solution stack as a service. In this

model user or consumers creates software using tools or libraries from the providers. Consumer

also controls software deployment and configuration settings. Main aim of provider is to provide

networks, servers, storage and other services. PaaS offers deployment of applications by

reducing the cost and complexity of buying and maintaining hardware and software and

provisioning hosting capabilities. There are various types of PaaS vendors which offer

application hosting and a deployment environment along with various integrated services. The

services offer scalability and maintenance.

IAAS:

Infrastructure is the foundation of cloud computing. It provides delivery of computing as a

shared service reducing the investment cost, operational and maintenance of hardware.

Infrastructure should be reliable and flexible for easy implementation and operations of

applications. Although the definitions vary widely, all share the common theme of programmatic

access to the basic building blocks of IT: compute, storage and networking.

16

The following picture shows the pyramid hierarchy of different service models in cloud

computing [9]:

Fig 1: Pyramid view of service model stack of cloud computing

Again, the following figure gives us the user views of different stacks in cloud computing service

models [10]:

Fig 2: Users of different service models

17

The four deployment models that is very common in the field of cloud computing are Private

cloud, Community cloud, Public cloud and hybrid cloud.

Private Cloud:

The cloud infrastructure is provisioned for exclusive use by a single organization comprising

multiple consumers (e.g., business units). It may be owned, managed, and operated by the

organization, a third party, or some combination of them, and it may exist on or off premises.

Community Cloud:

The cloud infrastructure is provisioned for exclusive use by a specific communityof consumers

from organizations that have shared concerns (e.g., mission, security requirements, policy, and

compliance considerations). It may be owned, managed, and operated by one or more of the

organizations in the community, a third party, or some combination of them, and it may exist on

or off premises.

Public Cloud:

The cloud infrastructure is provisioned for open use by the general public. It may be owned,

managed, and operated by a business, academic, or government organization, or some

combination of them. It exists on the premises of the cloud provider.

Hybrid Cloud:

The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private,

community, or public) that remain unique entities, but are bound together by standardized or

proprietary technology that enables data and application portability (e.g., cloud bursting for load

balancing between clouds)

18

The following diagram describes different service models, deployment models and essential

characteristics together in cloud architecture [10].

Fig 3: Service models, Deployment models and Essential characteristics together in cloud

architecture.

3.2. CLOUD COMPUTING AND VIRTUALIZATION:

Any discussion on cloud computing typically begins with virtualization. Virtualization relates the

use of software and hardware for creating the idea that one or more entities related to computing

resources exist although the entities in actually, are not physically present. Using virtualization

we can take one server appear to be many, desktop computer appear to be running multiple

operating system simultaneously or a vast amount of disk space or drives to be available [11].

The most common forms of virtualization include server virtualization, desktop virtualization,

virtual networks, virtual storage, etc. Virtualization is mainly using computer resources to imitate

other computer resources or whole computers. Judith Hurwitz, Robin Bloor, Marcia Kaufman

and Fern Halper in their article “Characteristics of Virtualization in Cloud Computing” discussed

19

elaborately about the characteristics of Virtualization Technology in cloud computing.

Virtualization has three characteristics that make it ideal for cloud computing:

 Partitioning: In virtualization, many applications and operating systems (OSes) are

supported in a single physical system by partitioning (separating) the available resources.

 Isolation: Each virtual machine is isolated from its host physical system and other

virtualized machines. Because of this isolation, if one virtual-instance crashes, it doesn’t

affect the other virtual machines. In addition, data isn’t shared between one virtual

container and another.

 Encapsulation: A virtual machine can be represented (and even stored) as a single file,

so you can identify it easily based on the service it provides. In essence, the encapsulated

process could be a business service. This encapsulated virtual machine can be presented

to an application as a complete entity. Therefore, encapsulation can protect each

application so that it doesn’t interfere with another application.

Virtualization can be applied broadly to just about everything that we could imagine:

 Memory

 Networks

 Storage

 Hardware

 Operating systems

 Applications

What makes virtualization so important for the cloud is that it decouples the software from the

hardware. Decoupling means that software is put in a separate container so that it’s isolated from

operating systems.

To understand how virtualization helps with cloud computing, we must understand its many

forms. In essence, in all cases, a resource actually emulates or imitates another resource. Here are

some examples:

 Virtual memory: Disks have a lot more space than computer memory. Therefore, with

virtual memory, the computer frees valuable memory space by placing information it

doesn’t use often into disk space. PCs have virtual memory, which is a disk area that’s

20

used like memory. Although disks are very slow in comparison with memory, the user

may never notice the difference, especially if the system does a good job of managing

virtual memory. The substitution works surprisingly well.

 Software: Companies have built software that can emulate a whole computer. That way,

one computer can perform as though it were actually 20 computers. The application

consolidation results can be quite significant. For example, you might be able to move

from a data center with thousands of servers to one that supports as few as a couple of

hundred. This reduction results in less money spent not only on computers, but also on

power, air conditioning, maintenance, and floor space.

3.3. Hypervisors:

Bill Kleyman in his article “Hypervisor 101: Understanding the Virtualization Market” talks

about the virtualization technology elaborately. The evolution of virtualization greatly revolves

around one piece of very important software. This is the hypervisor. As an integral component,

this software piece allows for physical devices to share their resources amongst virtual machines

running as guests on to top of that physical hardware. To further clarify the technology, it’s

important to analyze a few key definitions:

 Type I Hypervisor. This type of hypervisor (pictured at the beginning of the article) is

deployed as a bare-metal installation. This means that the first thing to be installed on a

server as the operating system will be the hypervisor. The benefit of this software is that

the hypervisor will communicate directly with the underlying physical server hardware.

Those resources are then paravirtualized and delivered to the running VMs.This is the

preferred method for many production systems.

 Type II Hypervisor. This model (shown below) is also known as a hosted hypervisor.

The software is not installed onto the bare-metal, but instead is loaded on top of an

already live operating system. For example, a server running Windows Server 2008R2

can have VMware Workstation 8 installed on top of that OS. Although there is an extra

hop for the resources to take when they pass through to the VM – the latency is minimal

and with today’s modern software enhancements, the hypervisor can still perform

optimally.

21

 Guest Machine. A guest machine, also known as a virtual machine (VM) is the workload

installed on top of the hypervisor. This can be a virtual appliance, operating system or

other type of virtualization-ready workload. This guest machine will, for all intents and

purposes, believe that it is its own unit with its own dedicated resources. So, instead of

using a physical server for just one purpose, virtualization allows for multiple VMs to run

on top of that physical host. All of this happens while resources are intelligently shared

between other VMs.

 Host Machine. This is known as the physical host. Within virtualization, there may be

several components – SAN, LAN, wiring, and so on. In this case, we are focusing on the

resources located on the physical server. The resource can include RAM and CPU. These

are then divided between VMs and distributed as the administrator sees fit. So, a machine

needing more RAM (a domain controller) would receive that allocation, while a less

important VM (a licensing server for example) would have fewer resources. With today’s

hypervisor technologies, many of these resources can be dynamically allocated.

 Paravirtualization Tools. After the guest VM is installed on top of the hypervisor, there

usually is a set of tools which are installed into the guest VM. These tools provide a set of

operations and drivers for the guest VM to run more optimally. For example, although

natively installed drivers for a NIC will work, paravirtualized NIC drivers will

communicate with the underlying physical layer much more efficiently. Furthermore,

advanced networking configurations become a reality when paravirtualized NIC drivers

are deployed.

Modern computer systems are complex structures containing numerous closely interacting

components in both software and hardware. Within this universe, virtualization acts as a type of

interconnection technology [12]. Interjecting virtualizing software between abstraction layers

near the HW/SW interface forms a virtual machine that allows otherwise incompatible

subsystems to work together[12]. Further, replication by virtualization enables more flexible and

efficient use of hardware resources.

22

CHAPTER 4

4.HPE Helion Eucalyptus

In our research, we intend to work with HPE Helion Eucalyptus an open solution for building

private and hybrid clouds compatible with Amazon Web Services (AWS) APIs. It can

dynamically scale up or down depending on application workloads and is well suited for

enterprise clouds. The components that mainly from the Eucalyptus architecture are Cloud

Controller, Cluster Controller, Node Controller, Storage Controller, etc. In our model we include

cluster controller, cloud controller and node controller. Cloud Controller is the entry point into

the cloud for administrators, project managers, developers or end users. The function of a CLC

includes monitoring the availability of resources on various components of the cloud

infrastructure, including hypervisor nodes that are used to actually provision the instances and

the cluster controllers that manage the hypervisor nodes [13]. Resource arbitration–deciding

which clusters will be used for provisioning the instances, monitoring the running instances.

Again, Cluster Controller (CC) generally executes on a cluster front-end machine or any machine

that has network connectivity to both the nodes running NCs and to the machine running the

CLC [13]. CCs gather information about a set of VMs and schedules VM execution on specific

NCs. The CC also manages the virtual instance network and participates in the enforcement of

SLAs as directed by the CLC. All nodes served by a single CC must be in the same broadcast

domain (Ethernet). Another component of our model is the Node Controller. Node Controller

(NC) is executed on every node that is designated for hosting VM instances. The NC runs on

each node and controls the life cycle of instances running on the node [13].

The NC interacts with the OS and the hypervisor running on the node on one side and the CC on

the other side. NC queries the operating system running on the node to discover the node’s

physical resources – the number of cores, the size of memory, and the available disk space. It

also learns about the state of VM instances running on the node and propagates this data up to

the CC. The function of a node controller is to collect data related to the resource availability and

utilization on the node and reporting the data to CC and Instance life cycle management. All

23

these components are necessary to be described as the system modeling as Markov Decision

Process greatly depends on these components. The following figure describes the fundamental

building blocks of Eucalyptus cloud architecture:

Fig 4: Eucalyptus Cloud architecture with basic components

 Cloud Controller
 Walrus

Cluster Controller Storage Controller

Node Controller

Node Controller

Node Controller

Cluster Controller Storage Controller

Node Controller

Node Controller

Node Controller

Web Browser SOAP-based tools
REST- based tools

24

To understand the hierarchical view of this architecture, we can have a glance at the following

figure too:

Fig 5: Hierarchical view of Eucalyptus

Cloud

CLOUD

CONTROLLER

(CLC)

 WALRUS

Cluster

CLUSTER

CONTROLLER

(CC)

STORAGE

CONTROLLER

(SC)

Nodes

Node Controller Node Controller

Node Controller

VM VM VM VM VM

VM

25

Now, question arises how the deployment models are connected with the Eucalyptus

components. The physical diagram given below shows us the required connectivity [14]:

Fig 6: The physical diagram of Eucalyptus cloud

26

CHAPTER 5

5. Proposed System Model

5.1. Markov Decision Process:

If we consider the VM allocation problem as a decision making problem, it requires regular

observance of workload, number of allocated VMs, amount of waiting time in seconds while

processing a request. To generate sequential decision making policies for this problem of VM

allocation we are to use Markov Decision Process (MDP) model and the computation is to be

done by reinforcement learning. An MDP has a decision agent to repeatedly and continuously

observe the current state of the system. After the close observation it takes a decision that is

allowed to be taken in that state and then observes a transition to a new state. A reward

influences the decisions of the agent.

An MDP model contains:

1. A set of possible states S

2. A set of possible actions A

3. A real valued reward function R(s, a)

4. A description T of each action’s effects in each state.

5. Stochastic actions:

 T: S ×A → Prob(S), for each state and action we specify a new Probability distribution over

next states. Representation of the distribution is P(s ′ |s, a).

To solve our resource allocation problems in clouds, two types of works have drawn our

attention recently that has been used to find the optimal policy. One is threshold based policies

that trigger adaptations based on the upper bounds and lower bounds on the performance and

another is sequential decision policies based on Markovian Decision Processes (MDP) models

27

computed using reinforcement learning algorithm [2]. To generate episodic decision making

policies for our problem of Virtual Machine Management problem, we propose to use Markov

Decision Process (MDP) model. Coarsely speaking, an MDP involves a decision agent that

repeatedly observes the current states of the controlled system, takes a decision among the ones

allowed in that state and then observes a transition to a new state s′ and a reward r that will drive

its decisions [28]. The MDP that models our VM management problem is,

M= {S, A, T, R, β} where:

 S= {NC, CC, CLC, w, v, p, psla}

 NC is the Node controller, CC is the Cluster Controller, CLC is the Cloud Controller, w is

the Workload, v is the number of virtual machines, p is the performance and psla is the

performance the cloud service provider committed to provide.

 A is the action set that includes adding (a), reducing(r), maintaining(m) and migrating(mg)

a virtual machine. Newly arrived VM requests are collected and allocated to physical

resources that are not completely used by previously allocated VMs or were freed by the

VMs that were de allocated because their life time expired or tasks completed. This action

of allocation is regarded as action “a” in our MDP and on the contrary we consider the

action of de-allocation of VMs as action “r” in our MDP. After launching an instance, it

goes to a running state. Stopping the instance leads to a stopping state and then stopped

state. Again, when an instance is started it goes to a pending state. Rebooting an instance is

equivalent to rebooting an OS. The instance remains in the same host computer. An

instance is scheduled to be retired when it is detected that the instance has got an

irreparable failure of the underlying hardware hosting the instance. The instance can get

terminated when it is when it is necessary or the user wishes to. Our third action “m” is

dependent to these sub-actions. VM migration is of three types. Cold migration includes

the operation of shutting down VM on a host and restarting it on a new host. Again warm

migration includes suspending a VM on a host, copying it across RAM and CPU registers

to continue on a new host. Lastly VM live migration includes copying a VM across RAM

while VM continues to run. We denote the migration option in our system as “mg”.

28

 T is the probability distribution of going to a state “s′” from “s” by taking any random

action “a”.

 R is the cost function that expresses the reward if action “a” is taken at state s.

 “β” is the discount factor, 0< β <1.

The following diagram describes our MDP:

Fig7: State Diagram

NC

CC

W

CLC

V

P

Psla

29

The starting state is NC and the goal state is Psla here. CLC can only go to “v” state by the

actions a, r, m, mg. Other states can have transitions as directed through empty (ε) transitions.

30

CHAPTER 6

6. PROPOSED METHOD

6.1 Q-learning

The reinforcement learning technique we used here is q-learning. Q-learning is a model free

reinforcement learning technique. It works by learning an action value function that ultimately

gives the expected utility of taking a given action in a given state and following the optimal

policy thereafter. Our Q – learning algorithm is [15]:

A. Q-learning

1. (∀s ∈ S)(∀a ∈ A(s));

2.initialize Q(s , a)
 3. s := the initial observed state

4.loop

 5. Choose a ∈ A(s) according to a policy derived from Q

 6. Take action a and observe next state s ′ and reward r
 7. Q[s , a] := Q[s , a] + α(R[s,a] +  * maxa Q[s′ , a′] - Q[s, a])
 8. s := s′
9.end loop
 10. return π (s) = argmaxa Q(s , a)

Here, “α” is the learning rate. It determines to how much the old information will be wiped out

by the newer one. Value of α being “0” will make the agent not to learn anything and on the

contrary value of α being “1” would make it consider only the recent most information. In

deterministic environments the value of α can be set to 1 and that is optimal. But our

environment is stochastic and it is quite tough to determine the exact value. “” is the discount

factor. It determines how important the future rewards can be. A value of “0” will make the

agent short sighted and the agent will only consider the current rewards.

31

6.2 SARSA(λ)

State-Action-Reward-State-Action (SARSA) is another reinforcement algorithm to solve MDP.

The name simply reflects that the function that updates the Q value depends on the current state

of “s”, the action “a”, the reward “r” that an agent gets by choosing the action a and the next state

“s′”. When eligibility traces are added to SARSA algorithm, the algorithm is called SARSA (λ)

algorithm [16]. Our SARSA (λ) algorithm is given below [15]:

1. Initialize Q(s, a) arbitrarily
2. Repeat (for each episode):
3. Initialize s
4. Choose a from s using policy derived from Q
5. Repeat (for each episode):
6. Take action a, observe r, s′
7. Choose a′ from s′ using policy derived from Q

8. δ = r+  Q[s′ , a′] - Q[s, a]
9. e(s, a) = e(s, a)+1
10. For all (s , a):
11. Q[s , a] = Q[s , a] + α δ e(s, a)

12. e(s, a) =  λe(s, a)
13. s=s′ ; a=a′
14. until s is terminal

Eligibility trace is a very important term in SARSA (λ) algorithm. There are two ways to view

eligibility traces. The more theoretical view, which we emphasize here, is that they are a bridge

from TD to Monte Carlo methods. When TD methods are augmented with eligibility traces, they

produce a family of methods spanning a spectrum that has Monte Carlo methods at one end and

one-step TD methods at the other. In between are intermediate methods that are often better than

either extreme method. In this sense eligibility traces unify TD and Monte Carlo methods in a

valuable and revealing way.

The other way to view eligibility traces is more mechanistic. From this perspective, an eligibility

trace is a temporary record of the occurrence of an event, such as the visiting of a state or the

taking of an action. The trace marks the memory parameters associated with the event as eligible

for undergoing learning changes. When a TD error occurs, only the eligible states or actions are

assigned credit or blame for the error. Thus, eligibility traces Help Bridge the gap between

32

events and training information. Like TD methods themselves, eligibility traces are a basic

mechanism for temporal credit assignment.

6.3Reward Function

To experiment with the Q-learning and SARSA (λ), we have defined the reward function that

has been used is as follows:

R=β (Cost) + (1-β) (Penalty)

Where,

 Cost =Cr × Va × (Cr ×V) (1)

 Penalty=Pc × (1+ (Pd- Psla) / Psla) (2)

In equation (1),

Cr=the cost of the resources, the variable depending on the specific configuration and region.

Va = the specific virtual machine to be added, reduced, maintained and migrated.

V = total number of VMs in the system.

In equation (2),

Pc = penalty for the violation of SLA

Pd = the performance displayed by the system randomly

Psla = target performance

Lastly, β is the balancing factor.

33

CHAPTER 7

7. EXPERIMENTAL RESULTS

7.1 Variant Beta (β)

We varied the β in accordance with the cost and penalty we acquire in different training

episodes and plot them in a graph while implying q-learning. We also did the same in case of

SARSA (λ). The following table shows us the average (random 10 episodes) of the cost and

penalties for different parameters of beta for Q-learning (see Figure 1, Table 1).

 Table1. Cost and Penalty for variant beta(Q)

Value of
β

 Cost Penalty

0.10 2.17 6.04
0.25
0.50

3.34
 4.84

7.10
6.90

 0.75
 0.90

2.50
5.31

7.74
5.25

The graph below shows which value of β balances the cost and Penalty:

Figure: 8 Cost Vs. Penalty Graph for beta in Q -learning

34

Again, the following table shows us the average (random 10 episodes) of the cost and

penalties for different parameters of beta for SARSA (λ).

Value of
β

 Cost Penalty

0.10 33.21 7.21
0.25
0.50

71.08
75.50

6.00
8.07

 0.75
 0.90

81.61
90.93

6.39
6.18

The graph below shows which value of β balances the cost and Penalty for SARSA (λ):

Fig 9:Cost Vs. Penalty Graph for beta in SARSA- λ

35

To compare the beta values of these two reinforcement learning techniques, we merged the

graphs stated above and observed the versatile values of beta. The graph below shows us the

comparison of the beta values for both of the learning techniques:

Fig 10: Cost Vs. Penalty Graph for beta in Q and SARSA(λ)

36

7.2 Variant Lambda (λ)

For SARSA (λ) algorithm, we also varied the values of lambda to see which value of lambda best

balances the reverse condition between cost and penalty. The values of lambda taken on

account are 0.1, 0.25, 0.5, 0.75, and 0.9. It gave us the following result:

Value of λ Cost Penalty

0.1 60.01 5.69

0.25 52.29 9.25

0.5 97.98 7.0

0.75 65.08 5.26

0.9 51.29 7.53

The values gave us the following result:

Fig 11: Cost Vs. Penalty Graph for λ in SARSA(λ)

37

7.3 Variant Alpha (α)

To decide up to what extent the newly acquired information will override the old information,

learning rate was varied throughout the experiment while applying Q- learning. The values of

alpha that we varied were 0.1, 0.25, 0.5, 0.75 and 0.9. These values generated variant results with

rewards. Alpha was chosen as 0.1 because this is the only value of alpha in which the

convergence took place. The following graph represents different values of alpha generating

chunks of reward:

Fig 12: Different values of alpha producing chunks of reward

38

 Learning rate was varied throughout the experiment while applying SARSA-lamda too. The

values of alpha that we varied were 0.1, 0.25, 0.5, 0.75 and 0.9. These values generated variant

results with rewards. Alpha was chosen as 0.1 because the is the only value of alpha in which the

convergence took place. The following graph represents different values of alpha generating

chunks of reward:

Fig 13: Different values of alpha producing chunks of reward

39

7.4Convergence Comparison

While implying both of the algorithms we found convergence in both cases. The values that we

found and used to generate graphs for Q – learning are given below:

Q-Learning

Episodes Reward

1 6.85

2 7.39

3 7.60

4 7.91

5 9.99

6 10.17

7 10.65

8 10.80

9 13.61

10 15.26

11 16.30

12 17.7

13 18.04

14 18.61

15 20.32

16 20.46

17 20.40

40

18

19

20.50

20.15

20 20.47

21 20.46

The values that we found and used to generate graphs for SARSA lambda algorithm are given

below:

SARSA Lambda Algorithm

Episodes Reward

1 6.18

2 4.01

3 2.59

4 4.22

5 6.75

6 6.18

7 8.85

8 8.12

9 10.76

10 11.34

11 10.35

12 18.56

13 19.21

14 22.30

15 23.45

16 30.31

17 31.32

18 30.32

19 30.04

41

20 30.29

21 30.26

The following figure shows us the early convergence of Q-learning.

Fig 14: Early convergence of Q-learning

42

CHAPTER 8

8. Conclusion and Future Work

From different values of beta in case of Q-learning, we chose 0.1. It balances the reverse

condition of cost and penalty best. Again, for SARSA(λ) value of beta was chosen 0.25 as it best

balanced the contrary propositions of Cost and Penalty. In, SARSA (λ), λ is a very important

parameter. It was fixed to 0.9. While comparing the convergence of this two reinforcement

learning techniques, we were amazed to see that early convergence took place in case of Q

learning and SARSA(λ) converged later. For our case scenario, Q-learning showed the better

performance.

We implemented the two reinforcement learning techniques namely Q –learning and

SARSA(λ) in real-time Eucalyptus cloud architecture . Previous approaches towards automating

Virtual Machine management does not enlighten us with the comparative study regarding which

reinforcement learning technique is better to opt for. Currently we are working on to implement

our model in two of the cloud simulators “CloudSim” and “ICanCloud”. Implementing our

model with huge number of nodes will be a great challenge for us in future

43

References

[1] E. Leith. "What Are Basic Differences between IAAS, PAAS and SAAS?"Quora, n.d. Web.

25 Mar. 2016. <https://www.quora.com/What-are-basic-differences-between-IAAS-PAAS-

and-SAAS>.

[2] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck, “From Data Center Resource

Allocation to Control Theory and Back,” inProc. of the 3rd IEEE Int. Conf. on Cloud

Computing, CLOUD 2010, application and industry track. IEEE, 2010, pp. 410–417.

[3] E.Barrett, E.Howley, and J.Duggan. "Applying Reinforcement Learning Towards

Automating Resource Allocation and Application Scalability in the Cloud." Applying

Reinforcement Learning Towards Automating Resource Allocation and Application

Scalability in the Cloud(2011): 1-18. Web. 12 June 2015.

[4] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic storage,” in Proc. of the

7th Int. Conf. on Autonomic computing (ICAC). ACM, 2010, pp. 1–10.

[5] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A Hybrid Reinforcement Learning

Approach to Autonomic Resource Allocation,” in Proc. of the 2006 IEEE Int. Conf. on

Autonomic Computing (ICAC). IEEE Computer Society, 2006, pp. 65–73.

[6] M. L. Littman, “Algorithms for Sequential Decision Making,” Ph.D. dissertation, Dep. of

Computer Science, Brown U., mars 1996.

[7] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Resilient workload manager:

taming bursty workload of scaling internet applications,” in Proc. of the 6th Int. Conf.

industry session on Autonomic computing and communications. ACM, 2009, pp. 19–28.

[8] P. Mell and T.Grance, "The NIST Definition of Cloud Computing." (2011): 2-3. National

Institute of Standards and Technology. Web.

[9] G.Haynes. "IaaS, PaaS, SaaS, & the Cloud 101." (2014): n. pag. Web. 11 Mar. 2015.

<https://www.linkedin.com/pulse/20140907071547-305726885-iaas-pass-saas-the-cloud-

101>.

[10] <http://marketrealist.com/2014/07/must-know-cloud-computing-services-and-models/>

[11] K.C.Gauda, A.Patro, D.Dwivedi, and N.Bhatt. "Virtualization Approaches in Cloud

Computing." 12.4 (2014): n. pag. Print.

44

[12] S.James and R.Nair, "The Architecture of Virtual Machines." (2005): n. pag. Web. 11 Mar.

2016.

[13] Y.Wadia, "The Eucalyptus Open-Source Private Cloud." Www.cloudbook.net. CloudBook,

n.d. Web. 25 Mar. 2016. <http://www.cloudbook.net/resources/stories/the-eucalyptus-open-

source-private-cloud>.

[14] <https://eucalyptus.atlassian.net/wiki/display/DS/Dev-test%3A+large-vmware >

[15] R.S.Sutton and A.G.Barto. Reinforcement Learning: An Introduction. TheMIT Press,

Cambridge, Massachusetts, England, 2002

[16] K.Gupta, "Performance Comparison of Sarsa(λ) and Watkin’s Q(λ) Algorithms." (n.d.): n.

pag. Print.

