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ABSTRACT 

 

Cloud computing is a rapidly emerging field, services and applications are more or less 24/7. 

Resource dimensioning in this field is a great issue. Research is already going on to imply 

reinforcement learning to automate decision making process in case of addition, reduction, 

migration and maintenance of the Virtual Machines (VM) to balance the service level 

performance and VM management cost. Models have been proposed in this case based on Q 

learning, a very popular reinforcement learning technique that is used to find optimal action 

selection policy for any finite Markov Decision Process (MDP).In this thesis, we propose to work 

with the challenges like proper initialization of the early stages, designing the states, actions, 

transitions using Markov Decision Process (MDP) and solving the MDP with two popular 

reinforcement learning techniques, Q learning and SARSA (λ). 
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CHAPTER 1 

 

1. INTRODUCTION 

1.1Motivation 

Cloud computing is one kind of computing that provides sharing functionalities/computing 

resources rather than having dedicated servers. Resource dimensioning in this field is a great 

issue. There are some research works to imply reinforcement learning to automate decision 

making process in case of addition, reduction, migration and maintenance of the Virtual 

Machines (VM) to balance the service level performance and VM management cost. For giving 

an on demand network access to a shared pool of computing resources, cloud computing is a 

great emerging model where resources are configurable on different parameters. Resources 

include networks, servers, applications, storage, etc. There are three sorts of service models of 

cloud computing. They are namely IaaS, PaaS and SaaS. IaaS provides the fundamental building 

blocks of computing resources. SaaS is the top layer of cloud computing services. It is typically 

built on top of a platform as a service solution and provides software solution to the end users. 

Operating at the layer above raw computing hardware, whether physical or virtual, PaaS 

provides a method for programming languages to interact with services like databases, web 

servers and file storage [1]. IaaS takes the traditional physical computer hardware: such as 

servers, storage arrays and networking. It lets anyone build virtual infrastructure that mimics 

these resources but which can be configured, created, resized and removed within moments as a 

task requires it or the user wishes it [1]. Auto Scaling, another core feature of cloud computing 

that focuses on, on demand pulling and releasing of shared pool of available resources. It has a 

control loop monitor to decide if the system should grow or shrink. Our work mainly focuses on 

Virtual Machine management problem that can be used in IaaS and PaaS service models so that 

the system can perform auto scaling 
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1.2 Goal  

In this thesis, we propose to work with the challenges like proper initialization of the early 

stages, designing the states, actions, transitions using Markov Decision Process (MDP) and 

solving the MDP with two popular reinforcement learning techniques namely Q-learning and 

SARSA(λ). We also want to compare the convergence speed of these two techniques so that we 

may conclude about one of them to be better. 

1.3 Thesis Layout 

The rest of the thesis is organized as follows: 

Chapter 2 describes the Related work, Chapter 3 discusses about the fundamental concepts of 

cloud computing and virtualization technology, Chapter 4 describes architecture of HPE Helion 

Eucalyptus cloud, Chapter 5 talks about the proposed system model of ours, Chapter 6 enlightens 

the proposed method, Chapter 7 presents the experimental results and lastly Chapter 8 concludes 

the paper with a summary of our work and future works that can be accomplished on our work. 
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CHAPTER 2 

 

2. Related Works 

Adhoc manually determined policies like threshold based policies are used industrially to cope 

with the VM allocation problem. Low threshold on performance causes more allocation of 

Virtual machines and a high one causes the reduction of Virtual Machines. Providing good 

thresholds proved to be tricky and hard to automate to fit every application requirement 

[32Dutreih et al. also proposed to solve the VM management problem through machine learning 

but his action set was limited to only Adding and reducing VMs excluding VM migration and 

maintenance [2]. In 2015 Enda et al also tried to solve this same problem with reinforcement 

learning but the states they introduced did not have clarification of the whole cloud computing 

architecture [3]. Among the different works on threshold-based policies, Lim et al. propose 

proportional thresholding to adapt policy parameters at runtime [4]. It consists in modifying the 

range of thresholds in order to trigger more frequent decisions when necessary. This approach 

adapts very well to fast changing conditions and is directly integral into automated agents with 

stability mechanisms [2]. The mentioned paper gives elegant answers to remove latency but 

when the question comes about to take prompt and efficient decisions for the changing workload 

patterns it lacks in adaptation. Tesauro et al. explore the application of reinforcement learning in 

a sequential decision process [5]. The paper presents two novel ideas: the use of a predetermined 

policy for the initial period of the learning and the use of an approximation of the Q-function as a 

neural network [2]. The results are interesting, though dependent on the form of the reward 

function. Besides that, the initial learning with a predetermined policy appears less promising 

than an initialization using a pre computing of the Q function through the traditional value-

iteration algorithms in amodel-based learning approach [6]. Zhang et al. propose a pragmatic 

approach to resource allocation which consists in pre allocating enough resources to match up to 

95% of the observed workload and then allocates more resources on another cloud when this 
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threshold is passed [7]. This work greatly lacks in real time automatic control approach to 

outsmart instability. To tell the truth, authors cared about working with the controllers that 

focused on immediate reward but not stability of the entire system. Most researches that worked 

upon Q-learning lacks in one thing clearly. We clearly do not know if there are other 

reinforcement learning algorithms that work better than Q-learning. 
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CHAPTER3 

 

3. CLOUD COMPUTING 

3.1. General Concept: 

Cloud computing is a relatively new model in the computing world. According the definition of 

National Institute of  Standards and Technology, Cloud computing is a model for enabling 

ubiquitous, convenient, on-demand network access to a shared pool of configurable computing 

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service provider interaction. A 

cloud infrastructure is the collection of hardware and software that enables the five essential 

characteristics of cloud computing. The cloud infrastructure can be viewed as containing both a 

physical layer and an abstraction layer. The physical layer consists of the hardware resources that 

are necessary to support the cloud services being provided, and typically includes server, storage 

and network components. The abstraction layer consists of the software deployed across the 

physical layer, which manifests the essential cloud characteristics. Conceptually the abstraction 

layer sits above the physical layer [8].This cloud model is composed of five essential 

characteristics, three service models, and four deployment models. The essential characteristics 

are namelyOn-demand self-service, Broad network access, Resource pooling, Rapid elasticity 

and Measured service. 

On-demand self-service: 

A consumer can unilaterally provision computing capabilities, such as server time and network 

storage, as needed automatically without requiring human interaction with each service provider 

[8]. 

 

Broad network access: 
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Capabilities are available over the network and accessed through standard mechanisms that 

promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets, 

laptops, and workstations) [8].  

 

 

Resource pooling: 

The provider’s computing resources are pooled to serve multiple consumers using a multi-tenant 

model, with different physical and virtual resources dynamically assigned and reassigned 

according to consumer demand. There is a sense of location independence in that the customer 

generally has no control or knowledge over the exact location of the provided resources but may 

be able to specify location at a higher level of abstraction (e.g., country, state, or datacenter). 

Examples of resources include storage, processing, memory, and network bandwidth [8]. 

 

Rapid elasticity: 

Capabilities can be elastically provisioned and released, in some cases automatically, to scale 

rapidly outward and inward commensurate with demand. To the consumer, the capabilities 

available for provisioning often appear to be unlimited and can be appropriated in any quantity at 

any time [8]. 

 

Measured service: 

Cloud systems automatically control and optimize resource use by leveraging a metering 

capability at some level of abstraction appropriate to the type of service (e.g., storage, 

processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled, 

and reported, providing transparency for both the provider and consumer of the utilized service 

[8]. 

 

Once a cloud is established, the method of its cloud computing services deployment in terms of 

business models can differ depending on requirements. The primary service models being 

deployed are commonly known as: 

 

SAAS: 
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Software as a Service model is based on multi-tenant architecture. This model enables all 

customers (tenants) to use single version application with single configuration. To avoid 

conflicts and provide scalability, application is installed on multiple machines. In some cases, 

SaaS do not use multi-tenancy. They use other mechanisms such as virtualization where a large 

number of customers are managed in place of multi-tenancy. Some SaaS solutions do not use 

multi-tenancy, or use other mechanisms-such as virtualization-to cost-effectively manage a large 

number of customers in place of multi-tenancy. 

 

PAAS: 

Platform-as-a-Service provides a computing platform and solution stack as a service. In this 

model user or consumers creates software using tools or libraries from the providers. Consumer 

also controls software deployment and configuration settings. Main aim of provider is to provide 

networks, servers, storage and other services. PaaS offers deployment of applications by 

reducing the cost and complexity of buying and maintaining hardware and software and 

provisioning hosting capabilities. There are various types of PaaS vendors which offer 

application hosting and a deployment environment along with various integrated services. The 

services offer scalability and maintenance. 

 

IAAS: 

Infrastructure is the foundation of cloud computing. It provides delivery of computing as a 

shared service reducing the investment cost, operational and maintenance of hardware. 

Infrastructure should be reliable and flexible for easy implementation and operations of 

applications. Although the definitions vary widely, all share the common theme of programmatic 

access to the basic building blocks of IT: compute, storage and networking.  
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The following picture shows the pyramid hierarchy of different service models in cloud 

computing [9]: 

 

Fig 1: Pyramid view of service model stack of cloud computing 

 

Again, the following figure gives us the user views of different stacks in cloud computing service 

models [10]: 

 

Fig 2: Users of different service models 
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The four deployment models that is very common in the field of cloud computing are Private 

cloud, Community cloud, Public cloud and hybrid cloud.  

 

 

 

 

Private Cloud: 

The cloud infrastructure is provisioned for exclusive use by a single organization comprising 

multiple consumers (e.g., business units). It may be owned, managed, and operated by the 

organization, a third party, or some combination of them, and it may exist on or off premises.  

 

Community Cloud: 

The cloud infrastructure is provisioned for exclusive use by a specific communityof consumers 

from organizations that have shared concerns (e.g., mission, security requirements, policy, and 

compliance considerations). It may be owned, managed, and operated by one or more of the 

organizations in the community, a third party, or some combination of them, and it may exist on 

or off premises. 

 

Public Cloud: 

The cloud infrastructure is provisioned for open use by the general public. It may be owned, 

managed, and operated by a business, academic, or government organization, or some 

combination of them. It exists on the premises of the cloud provider.  

 

Hybrid Cloud: 

The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private, 

community, or public) that remain unique entities, but are bound together by standardized or 

proprietary technology that enables data and application portability (e.g., cloud bursting for load 

balancing between clouds) 
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The following diagram describes different service models, deployment models and essential 

characteristics together in cloud architecture [10]. 

 

 

Fig 3: Service models, Deployment models and Essential characteristics together in cloud 

architecture. 

 

 

 

3.2. CLOUD COMPUTING AND VIRTUALIZATION:  

Any discussion on cloud computing typically begins with virtualization. Virtualization relates the 

use of software and hardware for creating the idea that one or more entities related to computing 

resources exist although the entities in actually, are not physically present. Using virtualization 

we can take one server appear to be many, desktop computer appear to be running multiple 

operating system simultaneously or a vast amount of disk space or drives to be available [11]. 

The most common forms of virtualization include server virtualization, desktop virtualization, 

virtual networks, virtual storage, etc. Virtualization is mainly using computer resources to imitate 

other computer resources or whole computers. Judith Hurwitz, Robin Bloor, Marcia Kaufman 

and Fern Halper in their article “Characteristics of Virtualization in Cloud Computing” discussed 
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elaborately about the characteristics of Virtualization Technology in cloud computing. 

Virtualization has three characteristics that make it ideal for cloud computing:  

 Partitioning: In virtualization, many applications and operating systems (OSes) are 

supported in a single physical system by partitioning (separating) the available resources. 

 Isolation: Each virtual machine is isolated from its host physical system and other 

virtualized machines. Because of this isolation, if one virtual-instance crashes, it doesn’t 

affect the other virtual machines. In addition, data isn’t shared between one virtual 

container and another. 

 Encapsulation: A virtual machine can be represented (and even stored) as a single file, 

so you can identify it easily based on the service it provides. In essence, the encapsulated 

process could be a business service. This encapsulated virtual machine can be presented 

to an application as a complete entity. Therefore, encapsulation can protect each 

application so that it doesn’t interfere with another application. 

Virtualization can be applied broadly to just about everything that we could imagine:  

 Memory 

 Networks 

 Storage 

 Hardware  

 Operating systems  

 Applications 

What makes virtualization so important for the cloud is that it decouples the software from the 

hardware. Decoupling means that software is put in a separate container so that it’s isolated from 

operating systems. 

To understand how virtualization helps with cloud computing, we must understand its many 

forms. In essence, in all cases, a resource actually emulates or imitates another resource. Here are 

some examples: 

 Virtual memory: Disks have a lot more space than computer memory. Therefore, with 

virtual memory, the computer frees valuable memory space by placing information it 

doesn’t use often into disk space. PCs have virtual memory, which is a disk area that’s 
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used like memory. Although disks are very slow in comparison with memory, the user 

may never notice the difference, especially if the system does a good job of managing 

virtual memory. The substitution works surprisingly well. 

 Software: Companies have built software that can emulate a whole computer. That way, 

one computer can perform as though it were actually 20 computers. The application 

consolidation results can be quite significant. For example, you might be able to move 

from a data center with thousands of servers to one that supports as few as a couple of 

hundred. This reduction results in less money spent not only on computers, but also on 

power, air conditioning, maintenance, and floor space. 

3.3. Hypervisors: 

Bill Kleyman in his article “Hypervisor 101: Understanding the Virtualization Market” talks 

about the virtualization technology elaborately. The evolution of virtualization greatly revolves 

around one piece of very important software. This is the hypervisor. As an integral component, 

this software piece allows for physical devices to share their resources amongst virtual machines 

running as guests on to top of that physical hardware. To further clarify the technology, it’s 

important to analyze a few key definitions: 

 Type I Hypervisor. This type of hypervisor (pictured at the beginning of the article) is 

deployed as a bare-metal installation. This means that the first thing to be installed on a 

server as the operating system will be the hypervisor. The benefit of this software is that 

the hypervisor will communicate directly with the underlying physical server hardware. 

Those resources are then paravirtualized and delivered to the running VMs.This is the 

preferred method for many production systems. 

 Type II Hypervisor. This model (shown below) is also known as a hosted hypervisor. 

The software is not installed onto the bare-metal, but instead is loaded on top of an 

already live operating system. For example, a server running Windows Server 2008R2 

can have VMware Workstation 8 installed on top of that OS. Although there is an extra 

hop for the resources to take when they pass through to the VM – the latency is minimal 

and with today’s modern software enhancements, the hypervisor can still perform 

optimally. 
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 Guest Machine. A guest machine, also known as a virtual machine (VM) is the workload 

installed on top of the hypervisor. This can be a virtual appliance, operating system or 

other type of virtualization-ready workload. This guest machine will, for all intents and 

purposes, believe that it is its own unit with its own dedicated resources. So, instead of 

using a physical server for just one purpose, virtualization allows for multiple VMs to run 

on top of that physical host. All of this happens while resources are intelligently shared 

between other VMs. 

 Host Machine.  This is known as the physical host. Within virtualization, there may be 

several components – SAN, LAN, wiring, and so on. In this case, we are focusing on the 

resources located on the physical server. The resource can include RAM and CPU. These 

are then divided between VMs and distributed as the administrator sees fit. So, a machine 

needing more RAM (a domain controller) would receive that allocation, while a less 

important VM (a licensing server for example) would have fewer resources. With today’s 

hypervisor technologies, many of these resources can be dynamically allocated. 

 Paravirtualization Tools. After the guest VM is installed on top of the hypervisor, there 

usually is a set of tools which are installed into the guest VM. These tools provide a set of 

operations and drivers for the guest VM to run more optimally. For example, although 

natively installed drivers for a NIC will work, paravirtualized NIC drivers will 

communicate with the underlying physical layer much more efficiently. Furthermore, 

advanced networking configurations become a reality when paravirtualized NIC drivers 

are deployed. 

Modern computer systems are complex structures containing numerous closely interacting 

components in both software and hardware. Within this universe, virtualization acts as a type of 

interconnection technology [12]. Interjecting virtualizing software between abstraction layers 

near the HW/SW interface forms a virtual machine that allows otherwise incompatible 

subsystems to work together[12]. Further, replication by virtualization enables more flexible and 

efficient use of hardware resources. 
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CHAPTER 4 

 

4.HPE Helion Eucalyptus 

In our research, we intend to work with HPE Helion Eucalyptus an open solution for building 

private and hybrid clouds compatible with Amazon Web Services (AWS) APIs. It can 

dynamically scale up or down depending on application workloads and is well suited for 

enterprise clouds. The components that mainly from the Eucalyptus architecture are Cloud 

Controller, Cluster Controller, Node Controller, Storage Controller, etc. In our model we include 

cluster controller, cloud controller and node controller. Cloud Controller is the entry point into 

the cloud for administrators, project managers, developers or end users. The function of a CLC 

includes monitoring the availability of resources on various components of the cloud 

infrastructure, including hypervisor nodes that are used to actually provision the instances and 

the cluster controllers that manage the hypervisor nodes [13]. Resource arbitration–deciding 

which clusters will be used for provisioning the instances, monitoring the running instances. 

Again, Cluster Controller (CC) generally executes on a cluster front-end machine or any machine 

that has network connectivity to both the nodes running NCs and to the machine running the 

CLC [13]. CCs gather information about a set of VMs and schedules VM execution on specific 

NCs. The CC also manages the virtual instance network and participates in the enforcement of 

SLAs as directed by the CLC. All nodes served by a single CC must be in the same broadcast 

domain (Ethernet). Another component of our model is the Node Controller. Node Controller 

(NC) is executed on every node that is designated for hosting VM instances. The NC runs on 

each node and controls the life cycle of instances running on the node [13].  

The NC interacts with the OS and the hypervisor running on the node on one side and the CC on 

the other side. NC queries the operating system running on the node to discover the node’s 

physical resources – the number of cores, the size of memory, and the available disk space. It 

also learns about the state of VM instances running on the node and propagates this data up to 

the CC. The function of a node controller is to collect data related to the resource availability and 

utilization on the node and reporting the data to CC and Instance life cycle management. All 
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these components are necessary to be described as the system modeling as Markov Decision 

Process greatly depends on these components. The following figure describes the fundamental 

building blocks of Eucalyptus cloud architecture: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Eucalyptus Cloud architecture with basic components 
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To understand the hierarchical view of this architecture, we can have a glance at the following 

figure too: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig 5: Hierarchical view of Eucalyptus 
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Now, question arises how the deployment models are connected with the Eucalyptus 

components. The physical diagram given below shows us the required connectivity [14]:

 

 

 

Fig 6: The physical diagram of Eucalyptus cloud 
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CHAPTER 5 

 

5. Proposed System Model 

5.1. Markov Decision Process: 

If we consider the VM allocation problem as a decision making problem, it requires regular 

observance of workload, number of allocated VMs, amount of waiting time in seconds while 

processing a request. To generate sequential decision making policies for this problem of VM 

allocation we are to use Markov Decision Process (MDP) model and the computation is to be 

done by reinforcement learning. An MDP has a decision agent to repeatedly and continuously 

observe the current state of the system. After the close observation it takes a decision that is 

allowed to be taken in that state and then observes a transition to a new state. A reward 

influences the decisions of the agent. 

An MDP model contains: 

1. A set of possible states S 

2. A set of possible actions A 

3. A real valued reward function R(s, a) 

4. A description T of each action’s effects in each state. 

5. Stochastic actions: 

     T: S ×A → Prob(S), for each state and action we specify a new Probability distribution over 

next states. Representation of the distribution is P(s ′ |s, a). 

To solve our resource allocation problems in clouds, two types of works have drawn our 

attention recently that has been used to find the optimal policy. One is threshold based policies 

that trigger adaptations based on the upper bounds and lower bounds on the performance and 

another is sequential decision policies based on Markovian Decision Processes (MDP) models 
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computed using reinforcement learning algorithm [2]. To generate episodic decision making 

policies for our problem of Virtual Machine Management problem, we propose to use Markov 

Decision Process (MDP) model. Coarsely speaking, an MDP involves a decision agent that 

repeatedly observes the current states of the controlled system, takes a decision among the ones 

allowed in that state and then observes a transition to a new state s′ and a reward r that will drive 

its decisions [28]. The MDP that models our VM management problem is, 

M= {S, A, T, R, β} where:  

      S= {NC, CC, CLC, w, v, p, psla} 

 NC is the Node controller, CC is the Cluster Controller, CLC is the Cloud Controller, w is 

the Workload, v is the number of virtual machines, p is the performance and psla is the 

performance the cloud service provider committed to provide. 

 A is the action set that includes adding (a), reducing(r), maintaining(m) and migrating(mg) 

a virtual machine. Newly arrived VM requests are collected and allocated to physical 

resources that are not completely used by previously allocated VMs or were freed by the 

VMs that were de allocated because their life time expired or tasks completed. This action 

of allocation is regarded as action “a” in our MDP and on the contrary we consider the 

action of de-allocation of VMs as action “r” in our MDP. After launching an instance, it 

goes to a running state. Stopping the instance leads to a stopping state and then stopped 

state. Again, when an instance is started it goes to a pending state. Rebooting an instance is 

equivalent to rebooting an OS. The instance remains in the same host computer. An 

instance is scheduled to be retired when it is detected that the instance has got an 

irreparable failure of the underlying hardware hosting the instance. The instance can get 

terminated when it is when it is necessary or the user wishes to. Our third action “m” is 

dependent to these sub-actions. VM migration is of three types. Cold migration includes 

the operation of shutting down VM on a host and restarting it on a new host. Again warm 

migration includes suspending a VM on a host, copying it across RAM and CPU registers 

to continue on a new host. Lastly VM live migration includes copying a VM across RAM 

while VM continues to run. We denote the migration option in our system as “mg”.  
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 T is the probability distribution of going to a state “s′” from “s” by taking any random 

action “a”. 

 R is the cost function that expresses the reward if action “a” is taken at state s. 

 “β” is the discount factor, 0< β <1. 

The following diagram describes our MDP: 
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The starting state is NC and the goal state is Psla here. CLC can only go to “v” state by the 

actions a, r, m, mg. Other states can have transitions as directed through empty (ε) transitions. 
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CHAPTER 6 

 

6. PROPOSED METHOD 

6.1 Q-learning 

The reinforcement learning technique we used here is q-learning. Q-learning is a model free 

reinforcement learning technique. It works by learning an action value function that ultimately 

gives the expected utility of taking a given action in a given state and following the optimal 

policy thereafter. Our Q – learning algorithm is [15]: 

A. Q-learning 

1. (∀s ∈ S)(∀a ∈ A(s)); 

2.initialize Q(s , a) 
      3. s := the initial observed state 

4.loop 

       5. Choose a ∈ A(s) according to a policy derived from Q 

            6. Take action a and observe next state s ′  and reward  r 
      7. Q[s , a] := Q[s , a] + α(R[s,a] +  * maxa Q[s′ , a′ ] - Q[s, a]) 
      8. s := s′ 
9.end loop 
     10. return π (s) = argmaxa Q(s , a) 

 

Here, “α” is the learning rate. It determines to how much the old information will be wiped out 

by the newer one. Value of α being “0” will make the agent not to learn anything and on the 

contrary value of α being “1” would make it consider only the recent most information. In 

deterministic environments the value of α can be set to 1 and that is optimal. But our 

environment is stochastic and it is quite tough to determine the exact value. “” is the discount 

factor. It determines how important the future rewards can be. A value of “0” will make the 

agent short sighted and the agent will only consider the current rewards. 
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6.2 SARSA(λ) 

State-Action-Reward-State-Action (SARSA) is another reinforcement algorithm to solve MDP. 

The name simply reflects that the function that updates the Q value depends on the current state 

of “s”, the action “a”, the reward “r” that an agent gets by choosing the action a and the next state 

“s′”. When eligibility traces are added to SARSA algorithm, the algorithm is called SARSA (λ) 

algorithm [16]. Our SARSA (λ) algorithm is given below [15]: 

1. Initialize Q(s, a) arbitrarily 
2. Repeat (for each episode): 
3. Initialize s 
4. Choose a from s using policy derived from Q 
5. Repeat (for each episode): 
6. Take action a, observe r, s′ 
7. Choose a′  from s′  using policy derived from Q 

8. δ = r+  Q[s′ , a′ ] - Q[s, a] 
9. e(s, a) = e(s, a)+1 
10. For all (s , a): 
11. Q[s , a] = Q[s , a] + α δ e(s, a) 

12. e(s, a)  =  λe(s, a) 
13. s=s′ ;  a=a′   
14. until s is terminal 

 

Eligibility trace is a very important term in SARSA (λ) algorithm. There are two ways to view 

eligibility traces. The more theoretical view, which we emphasize here, is that they are a bridge 

from TD to Monte Carlo methods. When TD methods are augmented with eligibility traces, they 

produce a family of methods spanning a spectrum that has Monte Carlo methods at one end and 

one-step TD methods at the other. In between are intermediate methods that are often better than 

either extreme method. In this sense eligibility traces unify TD and Monte Carlo methods in a 

valuable and revealing way. 

The other way to view eligibility traces is more mechanistic. From this perspective, an eligibility 

trace is a temporary record of the occurrence of an event, such as the visiting of a state or the 

taking of an action. The trace marks the memory parameters associated with the event as eligible 

for undergoing learning changes. When a TD error occurs, only the eligible states or actions are 

assigned credit or blame for the error. Thus, eligibility traces Help Bridge the gap between 
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events and training information. Like TD methods themselves, eligibility traces are a basic 

mechanism for temporal credit assignment.  

6.3Reward Function 

To experiment with the Q-learning and SARSA (λ), we have defined the reward function that 

has been used is as follows:  

R=β (Cost) + (1-β) (Penalty) 

Where,  

   Cost =Cr × Va × (Cr ×V)                                                    (1) 

   Penalty=Pc × (1+ (Pd- Psla) / Psla)                         (2) 

 

In equation (1),  

Cr=the cost of the resources, the variable depending on the specific configuration and region. 

Va = the specific virtual machine to be added, reduced, maintained and migrated. 

V = total number of VMs in the system. 

In equation (2), 

Pc = penalty for the violation of SLA 

Pd = the performance displayed by the system randomly 

Psla = target performance   

Lastly, β is the balancing factor. 
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CHAPTER 7 

 

7. EXPERIMENTAL RESULTS 

7.1 Variant Beta (β) 

We varied the β in accordance with the cost and penalty we acquire in different training 

episodes and plot them in a graph while implying q-learning. We also did the same in case of 

SARSA (λ). The following table shows us the average (random 10 episodes) of the cost and 

penalties for different parameters of beta for Q-learning (see Figure 1, Table 1). 

  Table1. Cost and Penalty for variant beta(Q) 

Value of 
β 

      Cost     Penalty 

0.10 2.17 6.04 
0.25 
0.50 

3.34 
 4.84 

7.10 
6.90 

     0.75 
     0.90 

2.50 
5.31 

7.74 
5.25 

 

The graph below shows which value of β balances the cost and Penalty: 

 

Figure: 8 Cost Vs. Penalty Graph for beta in Q -learning 
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Again, the following table shows us the average (random 10 episodes) of the cost and 

penalties for different parameters of beta for SARSA (λ). 

Value of 
β 

      Cost     Penalty 

0.10 33.21 7.21 
0.25 
0.50 

71.08 
75.50 

6.00 
8.07 

     0.75 
     0.90 

81.61 
90.93 

6.39 
6.18 

 

 

The graph below shows which value of β balances the cost and Penalty for SARSA (λ): 

 

 

Fig 9:Cost Vs. Penalty Graph for beta in SARSA- λ 
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To compare the beta values of these two reinforcement learning techniques, we merged the 

graphs stated above and observed the versatile values of beta. The graph below shows us the 

comparison of the beta values for both of the learning techniques:  

 

 

Fig 10: Cost Vs. Penalty Graph for beta in Q and SARSA(λ) 
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7.2 Variant Lambda (λ) 

For SARSA (λ) algorithm, we also varied the values of lambda to see which value of lambda best 

balances the reverse condition between cost and penalty. The values of lambda taken on 

account are 0.1, 0.25, 0.5, 0.75, and 0.9.  It gave us the following result: 

Value of λ Cost Penalty 

0.1 60.01 5.69 

0.25 52.29 9.25 

0.5 97.98 7.0 

0.75 65.08 5.26 

0.9 51.29 7.53 

 

The values gave us the following result: 

 

 

Fig 11: Cost Vs. Penalty Graph for λ in SARSA(λ) 
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7.3 Variant Alpha (α) 

To decide up to what extent the newly acquired information will override the old information, 

learning rate was varied throughout the experiment while applying Q- learning. The values of 

alpha that we varied were 0.1, 0.25, 0.5, 0.75 and 0.9. These values generated variant results with 

rewards. Alpha was chosen as 0.1 because this is the only value of alpha in which the 

convergence took place. The following graph represents different values of alpha generating 

chunks of reward: 

 

 

 

Fig 12: Different values of alpha producing chunks of reward 
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 Learning rate was varied throughout the experiment while applying SARSA-lamda too. The 

values of alpha that we varied were 0.1, 0.25, 0.5, 0.75 and 0.9. These values generated variant 

results with rewards. Alpha was chosen as 0.1 because the is the only value of alpha in which the 

convergence took place. The following graph represents different values of alpha generating 

chunks of reward: 

 

 

 

 

Fig 13: Different values of alpha producing chunks of reward 
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7.4Convergence Comparison 

While implying both of the algorithms we found convergence in both cases. The values that we 

found and used to generate graphs for Q – learning are given below: 

Q-Learning  

Episodes Reward 

1 6.85 

2 7.39 

3 7.60 

4 7.91 

5 9.99 

6 10.17 

7 10.65 

8 10.80 

9 13.61 

10 15.26 

11 16.30 

12 17.7 

13 18.04 

14 18.61 

15 20.32 

16 20.46 

17 20.40 
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18 

19         

20.50 

20.15 

20 20.47 

21 20.46 

 

The values that we found and used to generate graphs for SARSA lambda algorithm are given 

below: 

SARSA Lambda Algorithm  

Episodes Reward 

1 6.18 

2 4.01 

3 2.59 

4 4.22 

5 6.75 

6 6.18 

7 8.85 

8 8.12 

9 10.76 

10 11.34 

11 10.35 

12 18.56 

13 19.21 

14 22.30 

15 23.45 

16 30.31 

17 31.32 

18 30.32 

19 30.04 
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20 30.29 

21 30.26 

 

The following figure shows us the early convergence of Q-learning. 

 

 

Fig 14: Early convergence of Q-learning 
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CHAPTER 8 

 

8. Conclusion and Future Work 

From different values of beta in case of Q-learning, we chose 0.1. It balances the reverse 

condition of cost and penalty best. Again, for SARSA(λ) value of beta was chosen 0.25 as it best 

balanced the contrary propositions of Cost and Penalty. In, SARSA (λ), λ is a very important 

parameter. It was fixed to 0.9. While comparing the convergence of this two reinforcement 

learning techniques, we were amazed to see that early convergence took place in case of Q 

learning and SARSA(λ) converged later. For our case scenario, Q-learning showed the better 

performance. 

We implemented the two reinforcement learning techniques namely Q –learning and 

SARSA(λ) in real-time Eucalyptus cloud architecture . Previous approaches towards automating 

Virtual Machine management does not enlighten us with the comparative study regarding which 

reinforcement learning technique is better to opt for. Currently we are working on to implement 

our model in two of the cloud simulators “CloudSim” and “ICanCloud”. Implementing our 

model with huge number of nodes will be a great challenge for us in future 
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