
 Consensus Algorithm in

 Distributed Network

 By

 Rajkin Hossain (ID: 12101043)

 Under the Supervision

 Of

 Dr.Md.Muhidul Islam Khan

 Department of Computer Science & Engineering

 School of Engineering & Computer Science

 BRAC University

Consensus Algorithm in

 Distributed Network

Thesis submitted in partial fulfillment of the requirement for

the degree of

 Bachelor of Science

 In

 Computer Science and Engineering

 Under the Supervision

 Of

 Dr.Md.Muhidul Islam Khan

 By

 Rajkin Hossain (ID: 12101043)

 April 2016

 DECLARATION

We do hereby declare that the thesis title “Consensus Algorithms in a

Distributed Network” is submitted to the Department of Computer Science and Engineering of BRAC

University in partial fulfillment of the completion of Bachelors of Science in Computer Science and

Engineering. We hereby declare that this thesis is based on results obtained from our own work. Due

acknowledgement has been made in the text to all other material used. This thesis, neither in whole

nor in part has been previously submitted to any University or Institute for the award of any degree or

diploma. The materials of work found by other researchers and sources are properly acknowledge and

mentioned by reference.

Dated: 21 April 2016

Signature of Supervisor Signature of Author

 ______________________ ________________
Dr.Md.Muhidul Islam Khan Rajkin Hossain(12101043)

Assistant Professor

Department of Computer Science and Engineering

BRAC University

Dhaka, Bangladesh

Final Reading Approval

Thesis Title:

Consensus Algorithms in a Distributed Network.

Date of Submission: 21th April, 2016

The final report is satisfactory and it's all materials are also acceptable and ready for the submission to

the Department of Computer Science and Engineering, BRAC University.

Signature of Supervisor

Dr. Md. Muhidul Islam Khan

Assistant Professor

Department of Computer Science and Engineering

BRAC University

Dhaka,Bangladesh

CONTENTS

CHAPTER 1

1.1 Introduction………………………………………………………………………………1

1.2 Related Works…………………………………………………………………………..3

1.3 Network Model………………………………………………………………………...4

CHAPTER 2

2.1 Binary Consensus with Updating Protocols………………………….……7

2.2 Average Consensus with Updating Protocol………………………………9

CHAPTER 3

3.1 Energy and Faulty Nodes……………………………………………………..…11

3.2 Definition of edge and Creating Weighted Graph…………………..11

3.3 Creating Edge Array and Edge Graph……………………………………..12

CHAPTER 4

4.1 Segment Tree…………………………………………………………………………15

4.2 Edge Energy Weight….……………………………………………………………17

4.3 Build Segment Tree (Binary Consensus)……………………..……..…..17

4.4 Binary Consensus Algorithm……………….……………………………….…19

4.5 Build Segment Tree (Average Consensus)…………….…………….…..23

4.6 Average Consensus Algorithm…………………………………………..…...24

CHAPTER 5

5. Result and Analysis………………………………………………………………….…..29

5.1 C topology………………………………………..……………………………………..…29

5.2 D topology………………………………………………………………………………….30

5.3 O topology……………………………………………………………………………….…32

5.4 H topology……………………………………………………………………………...….34

5.5 I topology……………………………………………………………………………………36

5.6 Random topology………………………..…………………………………………..…38

References…………………………………………………………………………………………………….41

ABSTRACT

One of the challenging issues in a distributed computing system is to reach on a decision with

the presence of so many faulty nodes. These faulty nodes may update the wrong information,

provide misleading results and may be nodes with the depleted battery power. Consensus

algorithms help to reach on a decision even with the faulty nodes. Every correct node decides

some values by a consensus algorithm. If all correct nodes propose the same value then all the

nodes decide on that. Every correct nodes must agree on the same value. Faulty nodes do not

reach on the decision that correct nodes agreed on. Binary consensus algorithm and average

consensus algorithm are the most widely used consensus algorithm in a distributed system.

We apply binary consensus and average consensus algorithm in a distributed sensor network

with the presence of some faulty nodes. We evaluate these algorithms for better convergence

rate and error rate.

Index Terms: Wireless sensor networks; Consensus algorithm, Distributed systems,

Convergence Rate, Faulty Node Tracking, Binary consensus, Average consensus.

1| Page

 CHAPTER 1

1.1 Introduction

The advancement of radio equipped modules and miniaturization of electronic components

motivate the development of wireless sensor network (WSN) in which numerous distributed
sensor nodes are usually deployed to perform a wide variety of applications, such as
monitoring, surveillance, security, health care, and load balancing [1,2]. Nodes are usually
deployed randomly in an ad hoc manner, and for certain tasks, the detection values at
different nodes are conditionally independent. Conventionally, tasks are executed in a
centralized manner that is straightforward to implement. However, it is not scalable for an
increasing number of nodes and sometimes it is expensive and impossible to deploy and

maintain such a central controller [3]. Thus, the management technique and distributed

decision-making algorithm that organize these multiple distributed agents to carry out a task
cooperatively have been extensively studied in recent years. Individual detection by one node
in the distributed dynamic WSN system is not sufficient to perform decision making without

knowledge of the global network. A consistent decision must be reached among these
geographically dispersed sensor nodes through some type of information exchange
mechanism. This decision, based on common interests, is referred to as reaching consensus

using the detection values of the sensor nodes.

Although the consensus algorithm has been thoroughly studied in the control area, it is of vital
important in the distributed sensor network. It is acted as a way to achieve globally optimal
decision in a totally decentralized way, without sending all the sensors data to a fusion center
[4]. Recently, the most attractive consensus algorithm is the gossip algorithm [5], where pairs
of nodes are selected at random to exchange and update their values. Compared with routing

algorithm, it is robust and easily implemented. It is not necessary to put much effort on route
discovery and route maintenance, and it is a distributed iterative information exchange

scheme. However, random information exchange between neighbors also leads to overhead
and increases the time to reach consensus in the network. In addition, the connectivity of the
network affects the accuracy of the final consensus value.

Lots of research has worked on improving the convergence rate of gossip algorithm.

Geographic gossip, which combined the gossip algorithm with geographic routing, was
recently proposed [7]. This algorithm increases the diversity of the pairwise gossip operation
by randomly choosing pairwise gossip nodes within the entire network rather than selecting
them from adjacent nodes. The improved approach of geographic gossip was path averaging
[8], where the average was performed at each node along the route between the exchanging
pair nodes. However, in these two mechanisms, the probability of packet loss increased when

2|Page

sending messages along longer routes. Additionally, as the distance between pairwise nodes
that are exchanging information increases, extra energy is consumed to set up and maintain
the two-way route between them. The broadcast gossip algorithm which takes advantage of
the broadcast characteristic of the wireless medium was proposed [9]. This scheme enables all
the neighbors of the wake-up node to listen to the data transmission and perform updates.

The other approach that makes use of the broadcast characteristic of wireless medium was
the eavesdropping gossip [10], where each node can overhear the data broadcasted by its
neighbors and the exchange pair of one node is optimally based on all the data that it
received. Subsequently, cluster-based gossip algorithm has been proposed [3, 11, 12]. In [3],
each node had a timer which was decremented by 1 at each time and the cluster head was
chosen as one node’s timer expires. This cluster formation method is simple and easy to
implement and to distribute. However, it is impractical in reality because some of the nodes

may not have chance to join a cluster. In [11], an algorithm that combines cluster and
geographic routing was proposed for a large-scale sensor network. The network is firstly
divided into grid clusters, and then the standard gossip algorithm is executed to reach a local
consensus in each cluster area. A representative node is subsequently chosen in each cluster,
and pairwise gossip is executed among these representative nodes via multihop routing until
the consensus goal is reached. However, in the cluster stage, the nodes are divided into
groups according to their locations. Thus, an imbalance in node numbers in different cluster

slows the convergence rate for reaching consensus. In [12], the authors analyzed the data
transmission scheme in the cluster, based wireless network, but they did not mention how to
form a cluster, and if the cluster head is collapses, the whole network can no longer reach
consensus.

Referring to cluster mechanisms, different cluster algorithms are proposed. For example, the
Lowest Identifier (LID) [13] which chooses the node with the lowest ID as a cluster head is a

simple clustering method. Its cluster formation method is similar to [3] and its cluster head

chosen method is similar to [11]. Highest-Connectivity Degree Algorithm (HCDA) [14] is a
connectivity-based cluster formation algorithm which is based on the neighbor number of a

node. In HCDA, there is no restriction on the number of nodes in a cluster. When the number
of nodes in one cluster is too large, the burden of the cluster head becomes too heavy which
may lead to communication bottleneck. The lifetime of the whole network is short because of
the imbalance of the network load. There are also some other algorithms, such as distributed

clustering algorithm [15], distributed mobility adaptive clustering [16], and weighted
clustering algorithm [17] which introduce weight on the selection of a cluster head. All of
these above algorithms have not considered the impacts of the number of nodes in one
cluster on the network capacity and throughput. Therefore, in this paper, we introduce a
throughput/capacity aware cluster mechanism for the gossip algorithm and evaluate its
convergence performance.

The contributions of this paper are the following.

3|Page

(i) We applied our own Binary Consensus Algorithm.
(ii) We applied our own Average Consensus Algorithm.

(iii) An irregular sensor model is introduced to evaluate the robustness of the algorithm.
(iv) We involved segment tree data structures to reach consensus decisions in the

fasten time.
(v) We used random graphs and plot out for both binary and average consensus for

nodes vs iterations, nodes vs faulty nodes, nodes vs error-rate. AS binary consensus
has no error rate so we ignored error-rate for binary consensus.

(vi) We used various topologies like: C,D,O,I,H

Actually we are applying our own binary consensus and average consensus algorithm in a

distributed network for reaching a consensus decision. Our algorithm runs for huge network.

Initially we don’t have any idea of the whole network besides there can be many faulty nodes.

Our mail goal is to reach consensus decision as fast as possible but in few cases may be

random choose will run faster but we are ignoring random choices because random choices

might get huge amount time to reach a consensus decisions. So we can claim that the

probability of our algorithm run faster than random choice based algorithm like gossip

algorithm.

1.2 Related Works

In a centralized networked system, where there are central base stations to process the works

for sensor nodes, it is easy to reach on a decision after gathering all the information from the

nodes [6]. But in a distributed network with a huge number of sensor nodes it is difficult to

process the information without the central base station. Sensor nodes work cooperatively to

reach a particular decision. Consensus algorithms help to achieve that. The widely used

consensus algorithm to reach a decision in a distributed environment is gossip algorithm [7]. In

gossip algorithm, pair of nodes are chosen randomly to exchange information and update

their values. Comparing with other routing algorithms, it does not need any route discovery

and route maintenance. It is easy to implement. But the random information exchange creates

more overhead in the network and it takes more time to reach consensus. Connectivity

between nodes also affect the consensus value for the gossip algorithm.

4| Page

Another widely used consensus algorithm is binary majority consensus [18]. Binary majority

consensus algorithms generally agrees on binary values selected from the range defined as {0,

1} or {1, 1}. The agreed state should be the value that the majority has been agreed. This

algorithm terminates after a particular amount of time even the consensus is reached or not.

Time limitation leads to lower efficiency and higher sensitivity to disturbances. The average

consensus algorithm [8] helps to reach the consensus by updating their local values using

average values of their neighbors’ values. This consensus algorithm does not provide

guaranteed consensus for the additive noise in the network. We apply binary consensus and

average consensus in a distributed sensor network. We compare their convergence rate to

find out the faulty nodes in a network. We use advanced data structure for making the

consensus algorithms faster.

1.3 Network Model

The given network model is undirected and may be disconnected excluding cluster heads. The

model might have many faulty nodes but we don’t know which nodes are faulty initially and

every connected component of that model had cluster head. Neighbors of each node define as

under a certain radius the existing nodes. Cluster head also work as normal nodes but

additional characteristics of them are they can’t be faulty and every connected components

cluster head make a complete graph which means they can communicate to each other’s

which also means including cluster head the whole network is connected. Figure 1 defines a

sample of network model. Figure 2 is the graph representation of this network model. In both

figures cluster head is 5 which has enough energy and can communicate to any other node

under its radios also can communicate to other cluster heads. Figure 3 is a sample overview

what we described here. Each node of the sensor network hold 3 values.

5| Page

1) Energy

2) Binary States

3) Average States

As we are working on both binary and average consensus we need to use it. When a node

energy become zero or less than it become a faulty node and can not communicate

throughout the network. But if a node need a few energy to communicate we assume it can

take energy from its cluster head but just can only one time. For the next time its denoted as

faulty node. In out proposed algorithms we actually work on edges. We greedily chooses

edges

and update their states individually for both binary and average states. Their updating rules

are also different. So by updating their states we reach a consensus decision.

6| Page

7| Page

 CHAPTER 2

2.1 Binary Consensus with Updating Protocols

When we try to reach a consensus decision based on a network. Every nodes of the network

can hold initially one of the two values: zero and one. When two nodes communicate and run

the updating protocols, they compare their current state and then each assume a new state

based on what they have seen. When binary consensus algorithm is running a node may be in

one of the four states which can be described informally as:

1] 0 - The node believes the majority opinion is most likely false.

2] 1 - The node believes the majority opinion is most likely true.

3] e0 - The node believes the majority opinion might be false.

4] e1 - The node believes the majority opinion might be true.

Convergence occurs when all nodes have states ∈ {0,e0} or {1,e1}

We know for binary consensus every node will have value either 1 or 0. So if we want to reach

consensus we have to update through node to node communication. For updating we have to

follow updating protocols. The protocols are given below with an example:

Those Protocols are from [18].

1] (0,e0) -> (e0,0)

2] (0,e1) -> (eo,0)

3] (0,1) -> (e1,e0)

4] (e0,e1) -> (e1,e0)

5] (e0,1) -> (1,e1)

8| Page

6] (e1,1) -> (1,e1)

8| Page

7] (s,s) -> (s,s) , for s = 0,1,e0,e1

8] (s,F) -> (s,F) here F indicates faulty node

We must give priority to these protocols. Priority based on highest number. Figure 4 describes

Protocols information as a table based. Let’s describe this situation in Figure 5. First B and C

stats run updating protocol the states will become e0 and e1. Then A and B starts run updating

protocol; their states will become e1 and 1. Now consensus has reached because all the states

∈ {1,e1}.

Actually in Figure 5 we didn’t consider any cluster head or faulty node we just tried to show

how updating protocols are used for binary consensus.

Note: Protocol number 8 is proposed by ourselves. F only defines faulty, it can have above 4

states but when any node is define faulty it will must follow protocol number 8.

9| Page

2.2 Average Consensus with Updating Protocols

Assume that 𝑛 static sensor nodes are independently deployed in a unit square area and that

the network topology is represented as 𝐺 = (𝑉, 𝑟, 𝐸), where 𝑉 = {1, 2, 3, . . . , 𝑛} represents the

set of nodes and 𝑟 is the connectivity radius. A pair of nodes (𝑖, 𝑗)is connected and can directly

communicate with each other if their Euclidean distance is smaller than 𝑟. The edge set is

saved in 𝐸 and the set of node’s neighbors in one hop is denoted by (𝑖) = {𝑗 ∈ 𝑉; (𝑖, 𝑗) ∈ 𝐸}. The

degree of this node, which is equal to its number of neighbors, can be defined as 𝑑𝑖 = |(𝑖)|

[20]. Each node 𝑖 in the network has an initial value (0), representing an observation of some

type. The initial value vector of all these nodes can be defined as (0) = [𝑥1(0), 𝑥2(0), . . . ,

𝑥𝑛(0)]. In this paper, we deal with the average consensus which means that the consensus

equilibrium value is equal to the average value of the initial value held by each node. It has

been reported that the average consensus is reached for the case in which the communication

topology is fixed and connected [21]. A connected network is one in which a path exists

between every pair of nodes [20]. The average of these values is 𝑥 = (1/𝑛) ∑𝑛 𝑖=1 (0) [21]. At

𝑘th iteration, each node 𝑖 maintains an estimation (𝑘) that is generally different from that of

other nodes. A vector (𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝑛(𝑘)] is used to define the values of all the

nodes. Suppose the network is connected and the communication relationship is symmetric;

that is, node 𝑖 and node 𝑗 can receive the information from each other correctly based on the

wireless link between them for a given time slot. The ultimate goal of consensus is to drive the

estimated vector value (𝑘) infinitely close to the average vector 𝑋 = [𝑥, 𝑥, . . . , 𝑥]with a

minimal amount of information exchange. To match the distributed nature of WSN, an

asynchronous time model is adopted by the average consensus algorithm to trigger the node

wake up and execute the average consensus algorithm. The clock in each node is assumed to

have a tick rate based on the Poisson process. During the average algorithm updating works

according to the following equation:

10| Page

 𝑥𝑖 (𝑘) = 𝑥𝑗 (𝑘) = [𝑥𝑖 (𝑘−1) + 𝑥𝑗 (𝑘−1)] /2 …. (1)

The metric proposed in [20] is used to evaluate the convergence rate of reaching consensus.

This metric defines the normalization of difference between consensus value and the real

average value.

11 | Page

 CHAPTER 3

3.1 Energy and Faulty Nodes

But in wireless sensor networks energy consumption is a big issue. We know that every sensor
node have some energy to hold. By processing those energy is reduced and when any sensor
node energy become zero then that sensor node become a faulty node. We apply our

consensus algorithms on the present of faulty nodes also. When a sensor node becomes a
faulty node it can’t participate to reach a consensus decision.

3.2 Definition of Edge and Creating Weighted Graph

In our main graph which edge have many characteristics. That particular edge hold many

values which are Binary states, Average states, Binary protocols weight/priority, Average

weight, two end pointer energy, distance from peer to peer nodes, unique id, node id of two

end pointer. So we should make another weighted from Figure 2 graph but here edge

represents not only physical distances but also above described characteristics. Here actually

Figure 9 and 12

12| Page

are same graphs. To make it clear we drawn two graph to view the edges for binary and

average consensus individually. We collected the edge information from Figure 6 sensor node

information and link information from Figure 2.Note: Figure 6 is a sample information.

3.3 Creating Edge Array and Edge Graph

Now we have to make an array which stores edges with its information. In edge graph we

have neighbor edges [hashed unique id] to every node. Figure 7 and 8 defines edge array and

edge graph [table based] of new weighted graph. Algorithm 1 is based on creating Edge graph.

13| Page

Algorithm 1: Creating Edge Array

Model the network graph(G)

Initialize Edge Array(EA)

Initialize Edge-ID Array(Edge-ID)

id = 1

for Each edge u,v ∈ G

 EA[id]=EDGE(u,v,id,BstateU,BstateV,AstateU,AstateV,Bweight,Aweight)

 Edge-ID[Hashed-Value(u,v)] = id

 id = id + 1

end for

14| Page

Algorithm 2: Creating Edge Graph

Model the network graph(G)

Initialize edge graph(EG)

for Each node u ∈ G

 for Each node v ∈ G.adj[u]

 EG[u].add(Edge-ID[Hashed-Value(u,v)])

 end for

end for

15| Page

 CHAPTER 4

4.1 Segment Tree

In Computer Science, a segment tree is a tree data structure for storing intervals, or
segments. It allows querying which of the stored segments contain a given point. It is,
in principle, a static structure: that is, its structure cannot be modified once it is built.
[Wikipedia]

The node of a segment tree takes a given priority based value from a specific range.
It’s almost all methods generally use recursive process. Segment tree has a single
root/top node and every node of a segment tree except leaves has 2 children which
are left and right. Left child’s id is TreeNodeID*2 and right child’s id is
TreeNodeID*2+1. As segment tree generally works in recursive process so every node
except leaves go to its both left and right child recursively. The base case of recursive
process is stopped when calling reaches leaf nodes. Generally a segment tree has 3
methods which are build, query and update. The depth of a segment tree is
log(number of nodes). The general 3 methods of a segment tree described below. To
describe below part we considered the segment tree of Figure 10 and set priority as
taking MaxValue and n defines number of nodes.

16| Page

 Build: We can build a segment tree from the given set of elements in an array.
For example the given array is [4, -9, 3, 7]. The segment tree for that array is
given in Figure 10. While building it will start from top node which starts from 1
and it takes the max value of the ranges among 1 to 7. It’s actually top-down
processing. So from top node 1 to leave nodes 4, 5, 6, 7 it goes when it’s
reached leaves node it’s save the corresponding array value. For example leave
node 7 which take the maximum value of ranges [4-4] saves array value of 4
number index which is 7. Then it goes the parent node by backtracking as
generally segment tree processes are recursive. Besides segment tree every
node parent can be found by divide its id by 2 except the root node as root node
has no parent exist. When a node is not a leaf node it considers its both left and
right child value which also can got from backtracking. So from its left and
rightchild’s value it takes the maximum among them as both left and right child
value are computed when we ready to save value to that node. For example:
Tree node id 1 will save value 7 because its left child has 4 and right child has 7
so it takes the maximum. That’s how Segment tree build process works. The
complexity of build process is O(nlog(n)) as we updated every leaf nodes
individually.

 Query: Its query process is just like searching from it. For example: What is the
max value from array index 2 to 4? The process is we start from root node if we
see a nodes ranges is set under required query then we will go to its left and
right child node. For example: When we are in root node its range is [1 – 4] and
required range is [2 – 4] that means required ranges set under root node. We
should divide the root node to left and right child. Then we can see that the right
child total range sets under query range so instead of divide it by left and right
child we should take that node value which is 7. On the other hand root node 1
left child take ranges [1-2] which set under query range but not totally so we
again devide it by left and right child which are node id 4[1-1] and 5[2-2] where
node id 5 sets under totally to the queried range so we will take its value which
is 4 but node id 4[1-1] is out of the queried range so we need to just ignore that
node. At last the required answer is max value of 7 and 4 which is 7. Time
Complexity is O(log(n)).

 Update: Its update operating is almost like its query operation. After searching
the required range its update that leaf node because we assume given range for
update operation is like [i-i] so we will got to that leaf node by recursively and
update it from there. For example: Lets update 3 number index of that array and
change it to 10. So by recursively when we will reach to the leaf node of 6[3-3]

17| Page

we will change it to 10. By backtracking we will reach tree node id 3 now the
max value will be 10 instead of 7. At last we will reach to the root node max
value will be 10 instead of 7. That’s how segment treeupdate process works.
Besides if the given range of update operation is [i-j] where i != j then another
process can be applied which we call lazy propagation. In our problem its node
needed. So we just skipped it. Time complexity is O(log(n)).

Note: In our problem for update process we implemented faster bottom-up
process instead of recursive top-down process.

4.2 Edge Energy Weight: (Binary and Average Consensus)

A = Energy[u] – distance

B = Energy[v] - distance

Edge(u,v)weight = A + B if A > 0 and B > 0

Otherwise

Edge(u,v)weight = 0 which means u or v or both don’t have enough energy to communicate

each other.

4.3 Build Segment Tree for the Edge Array (Binary Consensus)

Now we have to make a segment tree for the whole part of the edge array. Here in every node

of the segment tree can take 4 elements which are main-Edge, dummy-Edge, weight and size.

Here dummy edge used just for make sure this node has more than single edge and size will

be at range 1 to 2 if a node of a segment tree has null in dummy edge then size will be 1

otherwise 2. To build a segment tree as it goes from top to bottom so when we reach the leaf

nodes of the segment tree we mapped the leaf node number to its corresponding edge to

STreeNode-Array[have to do it for future purposes] and while considering the left child and

18| Page

right child for the upper nodes in segment tree we will choose the highest priority based edge

as main-Edge and dummy-Edge will be NULL but here if highest priority based edge exist more

than one and all of them follow protocol id [1 and 6 both] then we take two edge one edge

saved in main-Edge another edge saved in dummy-Edge. Besides if all of their weights follow

same protocol [1 or 6 not both] then we will save any single edge to tree nodes main-Edge and

dummy-Edge will be NULL.

Figure 11 is the build segment tree for the Figure 7 edge array and Algorithm 4 is based on

Build segment tree for the edge array for Binary Consensus. Figure 9 graph is actually for

Binary Consensus.

Note: Here we take highest priority edge based on binary updating protocols.

19| Page

4.4 Binary Consensus Algorithm

This algorithm runs for edges and implemented in Segment tree data structure. For every time

we will consider the top node from the segment tree and as initially we have highest priority

edges based on binary updating protocols in the top node. If the top node has many edges we

will take any node from it and change it two endpoints value and update its priority according

to the updating protocols. Here we might have to change many edges priority and their end

points value according to updating protocols. Because if the edges end points connected to

another edges then we have to change their information also. For example see the Figure

11[top node id 1]. When we will work on edge [4-6] we should make change edge [4-5] and [6-

5] information’s also. While updating we have to make change their information inside the

segment tree by the help of Edge graph and as we track down in STreeNode-array the leaf

nodes index of the segment tree so we can directly go to that node and update it from there

and by doing bottom up processing we make changes until we reach to the root. While doing

bottom up processing we will do the same thing what we did for building the segment tree.

When we can see that there is only one edge [mainEdge] in the top node of the segment tree

and its priority is 3rd lowest priority which is 3[updating protocol number 1 and 6] so that

means the other nodes in the segment tree are as same as top node or other nodes contain

faulty nodes or having 2nd lowest or 1st lowest priority edges so we don’t need to consider

those nodes in this time. But if segment trees topNode contains faulty nodes of the network

then as it follows lowest priority based updating protocols so consensus will never occur we

can claim that easily. Figure 6 is the Segment tree for Binary Consensus Algorithm.

Note: While updating we must also minimizes energy from that edge two pointer node.

Besides Binary consensus has zero percent error rate.

Algorithm 3: Tracking Highest Priority Node (Binary Consensus)

HIGHEST(SNode l, SNode r)

Initialize a SNode (Node) which keep a mainEdge, dummyEdge and weight of them which is

same.

if(r.Bweight == l.Bweight) then

 if(r and l main.BPId 1 or 6 and different than each other) then

 Node.mainEdge = HighEnergyRemain(r,l)

20| Page

 Node.dummyEdge = LowEnergyRemain(r,l)

 end if

else if(r.Bweight>l.Bweight) then

 Node = r

else

 Node = l

end if

return Node

Algorithm 4: Building Segment Tree (Binary Consensus)

Initialize Segment Tree(STree)

BUILD-TREE(node-id,i,j)

if(i == j) then

 STree[i].mainEdge = E[i]

 STree[i].dummyEdge = NULL

 STreeNode[i] = node-id

end if

Left = node * 2

Right = Left + 1

Mid = (i+j)/2

BUILD-TREE (Left,i,Mid)

BUILD-TREE (Right,Mid+1,j)

STree[node-id] = HIGHEST(STree[Left],STree[Right])

21| Page

Algorithm 5: Updating Segment Tree (Binary Consensus)

UPDATE(node-id)

i = node-id

while((i = i >> 1) != 0)

 Left = i * 2

 Right = left + 1

 STree[i] = HIGHEST(STree[Left],STree[Right])

end while

Algorithm 6: Binary Consensus Algorithm

END (id)

if(id == 1 or id == 6) return true

 return false

end if

Binary Consensus Algorithm ()

Energy of all sensor nodes stores in Energy Array(Energy)

BUILD-TREE(1,1,edgeSize)

topnode = 1

 while(true)

 edge = STree[topnode].mainEdge

 if(STree[topnode].dummyEdge == NULL and END(STree[topnode].BPId)) then

22| Page

 Binary Consensus Reached….. break

 else if(edge.Bweight == 1) then

 Binary Consensus Reached….. break

 else-if(edge.Bweight == 0) then

 Binary Consensus Will Never Reach…. break

 else

 EnergyU = Energy[edge.u]-distance(edge.u,edge.v)

 EnergyV = Energy[edge.v]-distance(edge.u,edge.v)

 if(EnergyU<0 or EnergyV<0) then

 Make STree[STreeNode[edge.id]] //as a faulty edge.

 UPDATE(STreeNode[edge.id]) // follow binary updating protocol.

 else

 Energy[edge.u] = EnergyU

 Energy[edge.v] = EnergyV

 UPDATE(STreeNode[edge.id]) // follow binary updating protocol.

 for Each edge e ∈ EG.Adj[edge.u]

 if(e.u == edge.u and e.v != edge.v) then

 STree[e.id].mainEdge.BstateU = edge.BstateU

 //Change STree[STreeNode[e.id]] information of edge-weight and protocol id

 UPDATE(STreeNode[e.id])

 else if(e.v == edge.u and e.u != edge.v) then

 STree[e.id].mainEdge.BstateV = edge.BstateU

 //Change STree[STreeNode[e.id]] information of edge-weight and protocol id

23| Page

 UPDATE(STreeNode[e.id])

 end if

 end for

 for Each edge e ∈ EG.Adj[edge.v]

 if(e.u == edge.v and e.v != edge.u) then

 STree[e.id].mainEdge.BstateU = edge.BstateV

 //Change STree[STreeNode[e.id]] information of edge-weight and protocol id

 UPDATE(STreeNode[e.id])

 else if(e.v == edge.v and e.u != edge.u) then

 STree[e.id].mainEdge.BstateV = edge.BstateV

 //Change STree[STreeNode[e.id]] information of edge-weight and protocol id

 UPDATE(STreeNode[e.id])

 end if

 end for

 end if

end while

4.5 Build Segment Tree for the Edge Array: (Average Consensus)

Now we have to make another segment tree for the edge array. Here in every node of the

segment tree can take only single elements which we name treeEdge. To build a segment tree

as it goes from top to bottom so when we reach the leaf nodes of the segment tree we

mapped the leaf node number to its corresponding edge to STree2Node-Array[have to do it

for future purposes] and while considering the left child and right child for the upper nodes in

segment tree we will choose the highest weight based edge for average consensus. For

average consensus we define edge for the below formula:

24| Page

 Aweight = absolute((State[u]+State[v]/2)-x(bar))

Figure 13 is the build segment tree for the Figure 7 edge array and Algorithm 8 is based on

Build segment tree for the edge array for Average Consensus. Figure 12 graph is actually for

Average Consensus.

4.6 Average Consensus Algorithm

This algorithm runs for edges and implemented in another Segment tree data structure. For

every time we will consider the top node from the segment tree and as initially we have

highest max weight edges based average consensus weight in the top node. If the top node

average consensus weight is zero that means one of two end pointer sensor node or both

sensor nodes don’t have enough energy to communicate that defines one of them or both are

faulty nodes. So if top node average consensus weight is not zero we will continue our average

consensus algorithm. Here we might have to change many edges average consensus weight

and their end points value according to updating protocols of average consensus. Because if

the edges end points connected to another edges then we have to change their information

also. For example see the Figure 13[top node id 1]. When we will work on edge [3-7] we

should make change edge [3-5] and [7-5] information’s also. While updating we have to make

25| Page

change their information inside the segment tree by the help of Edge graph and as we track

down in STree2Node-array the leaf nodes index of the segment tree so we can directly go

tothat node and update it from there and by doing bottom up processing we make changes

until we reach to the root. While doing bottom up processing we will do the same thing what

we did for building the segment tree. When we can see that there top node edges contain

faulty node then we will stop running our algorithm. Because we are taking maximum edge

average consensus weight and faulty node based edges weight is zero so all the others tree

nodes in the segment tree contains only faulty sensor nodes. Figure 13 is the Segment tree for

Average Consensus Algorithm. Algorithm 10 is based on Average Consensus algorithm.

Note: While updating we must also minimizes energy from that edge two pointer node. There

is huge possibility Average Consensus might have error rate. The formula for calculating error

rate is given below:

Algorithm 7: Tracking Highest Priority Node (Average Consensus)

HIGHEST2(S2Node l, S2Node r)

Initialize a S2Node (Node) which keep a treeNode

if(l.Eweight == 0) then Node = r

else if(r.Eweight == 0) then Node = l

else if(l.AstateU == l.AstateV) then Node = r

else if((r.AstateU == r.AstateV) or (l.Aweight < r.Aweight)) then Node = l

else if(r.Aweight == l.Aweight) then take one of them which has max Energy Weight

else Node = r

end if

return Node

26| Page

Algorithm 8: Building Segment Tree (Average Consensus)

Initialize Segment Tree(S2Tree)

BUILD-TREE2(node-id,i,j)

if(i == j) then

 S2Tree[i].treeEdge = E[i]

 S2TreeNode[i] = node-id

end if

Left = node * 2

Right = Left + 1

Mid = (i+j)/2

BUILD-TREE2(Left,i,Mid)

BUILD-TREE2(Right,Mid+1,j)

S2Tree[node-id] = HIGHEST2(S2Tree[Left],S2Tree[Right])

Algorithm 9: Updating Segment Tree (Average Consensus)

UPDATE2(node-id)

i = node-id

while ((i = i >> 1) != 0)

 Left = i * 2

 Right = left + 1

 S2Tree[i] = HIGHEST2(S2Tree[Left],S2Tree[Right])

end while

27| Page

Algorithm 10: Average Consensus Algorithm

Average Consensus Algorithm ()

Energy of all sensor nodes stores in Energy Array(Energy)

BUILD-TREE2(1,1,edgeSize)

topnode = 1

while(true)

 edge = S2Tree[topnode].mainEdge

 if(S2Tree[topnode].treeEdge.AstateU == S2Tree[topnode].treeEdge.AstateV) then

 Highest Possible Average Consensus Occurred… break

 else-if(edge.Aweight == 0) then

 Average Consensus Reached…. break

 else

 EnergyU = Energy[edge.u]-distance(edge.u,edge.v)

 EnergyV = Energy[edge.v]-distance(edge.u,edge.v)

 if(EnergyU<0 or EnergyV<0) then

 Make S2Tree[S2TreeNode[edge.id]] //as a faulty edge.

 UPDATE2(S2TreeNode[edge.id]) // do nothing just run update…

 else

 Energy[edge.u] = EnergyU

 Energy[edge.v] = EnergyV

 UPDATE2(S2TreeNode[edge.id]) // follow average updating protocol.

 for Each edge e ∈ EG.Adj[edge.u]

 if(e.u == edge.u and e.v != edge.v) then

28| Page

 S2Tree[e.id].treeEdge.BstateU = edge.BstateU

 //Change S2Tree[S2TreeNode[e.id]] information of edge weight

 UPDATE2(S2TreeNode[e.id])

 else if(e.v == edge.u and e.u != edge.v) then

 S2Tree[e.id].treeEdge.BstateV = edge.BstateU

 //Change S2Tree[S2TreeNode[e.id]] information of edge-weight

 UPDATE2(S2TreeNode[e.id])

 end if

 end for

 for Each edge e ∈ EG.Adj[edge.v]

 if(e.u == edge.v and e.v != edge.u) then

 S2Tree[e.id].treeEdge.BstateU = edge.BstateV

 //Change S2Tree[S2TreeNode[e.id]] information of edge-weight

 UPDATE2(S2TreeNode[e.id])

 else if(e.v == edge.v and e.u != edge.u) then

 S2Tree[e.id].treeEdge.BstateV = edge.BstateV

 //Change S2Tree[S2TreeNode[e.id]] information of edge-weight

 UPDATE2(S2TreeNode[e.id])

 end if

 end for

 end if

 end while

29| Page

 Chapter 5

5. Result and Analysis:

We have implemented our algorithm in C, D, O, I, H topologies and random topologies. Those

are given below:

5.1 C Topology

 Table No.1 Iteration vs Relative Error(C topology)

30| Page

For ER(1,2,3) Minimum Relative Error Rate (0.809,0.765,0.747)

For ER(1) Binary Consensus Reaching Iteration 156 and Average Consensus Reaching Iterations

1368

For ER(2) Binary Consensus Reaching Iteration 191 and Average Consensus Reaching Iterations

1573

For ER(3) Binary Consensus Reaching Iteration 162 and Average Consensus Reaching Iterations

1811

 Figure 14: Iteration vs Relative Error(C topology)

5.2 D Topology

31| Page

 Table 2: Iteration vs Relative Error(C topology)

For ER(1,2,3) Minimum Relative Error Rate (0.731,0.809,0.754)

For ER(1) Binary Consensus Reaching Iteration 788 and Average Consensus Reaching Iterations

1315

For ER(2) Binary Consensus Reaching Iteration 436 and Average Consensus Reaching Iterations

953

For ER(3) Binary Consensus Reaching Iteration 307 and Average Consensus Reaching Iterations

1192

32|Page

 Figure 15: Iteration vs Relative Error(D topology)

5.3 O topology

33|Page

 Table 3: Iteration vs error rate(O topology)

For ER(1,2,3) Minimum Relative Error Rate (0.793,0.827,0.836)

For ER(1) Binary Consensus Reaching Iteration 243 and Average Consensus Reaching Iterations

1970

For ER(2) Binary Consensus Reaching Iteration 244 and Average Consensus Reaching Iterations

1681

For ER(3) Binary Consensus Reaching Iteration 213 and Average Consensus Reaching Iterations

1546

 Figure 16: Iteration vs Error Rate(O topology)

34|Page

5.4 H topology

 Table 4: Iteration vs error rate(H topology)

35| Page

For ER(1,2,3) Minimum Relative Error Rate (0.949,0.932,0.942)

For ER(1) Binary Consensus Reaching Iteration 79 and Average Consensus Reaching Iterations

387

For ER(2) Binary Consensus Reaching Iteration 119 and Average Consensus Reaching Iterations

507

For ER(3) Binary Consensus Reaching Iteration 84 and Average Consensus Reaching Iterations

401

 Figure 17: Iteration vs Error Rate (H topology)

36| Page

5.5 I Topology

 Table 5: Iteration vs error rate(I topology)

37| Page

For ER(1,2,3) Minimum Relative Error Rate (0.952,0.962,0.951)

For ER(1) Binary Consensus Reaching Iteration 120 and Average Consensus Reaching Iterations

325

For ER(2) Binary Consensus Reaching Iteration 51 and Average Consensus Reaching Iterations

267

For ER(3) Binary Consensus Reaching Iteration 68 and Average Consensus Reaching Iterations

345

 Figure 18: Iteration vs Error Rate (I topology)

Analysis for topologies(C,D,O,H,I)

Here we considers 5 shaped network models which are C, D, I, H, O. For all those 5 shaped

network models we calculated Relative error based on number of iterations. We took 3 data

three times to clearly see the results variations. For C, D, I shaped data we took iterations from

200 to 2000 but for shape H and O we took iterations from 100 to 1000 the reason is we saw

that the highest average based consensus reaching time is faster than shaped C,D,I. Here for

average consensus we consider only highest average consensus.

38| Page

From the figure we only consider 3 cases:

1) Number of iterations VS Relative Error

2) Highest Average Consensus reaching point VS Relative Error(Single point)

3) Binary Consensus Reaching point VS Relative Error(Always zero)(Single Point)

Here, IA denotes iterations for average consensus, IB denotes Iterative for binary consensus,

EA denotes Relative error for average consensus, EB denotes Relative error for Binary

consensus and HACP denotes highest average consensus reaching point. BCP denotes Binary

consensus reaching point.

5.6 Random Topology

 Table 6: Node vs Iteration vs error rate vs Faulty Node(Random topology)

39| Page

 Figure 19: Iteration vs Error Rate Figure 20: Nodes vs Iteration

 Figure 21: Iteration vs Faulty Nodes

40| Page

Analysis for Random Topologies

After creating random graph we got those data. Here

I denote to Iteration, E denotes to Error, F denotes to faulty node, A for Average Consensus, B

for Binary Consensus. For example, I(B1) means 1st time data of Iteration for Binary

Consensus reaching time. Here is very interesting thing we have noticed error rate for binary

consensus is always zero which is obvious but the number of faulty node for average

consensus is always zero too which is not obvious at all. The reason is actually we proposed

average consensus updating protocol which protocol always give priority to the sensor node

remaining energy and their distance among them and as we define faulty node when a sensor

node has zero energy remain so those edges based on low differences of energy and distance

have the lowest priority based edges so from our tree we already reached consensus before

handling them. So generally we have zero faulty nodes for average consensus. But in extreme

rare cases there might be few faulty nodes for average consensus.

From the diagram we consider 3 cases:

1) No. of Iteration vs Relative Error

2) No. of Iterations vs Number of Faulty Nodes

3) No. of Nodes vs Number of Iterations.

IA means Iteration for Average Consensus, IB means iteration for Binary consensus

EA means Relative Error for Average Consensus, IB means Relative Error for Binary consensus

FA means Number of faulty nodes for Average consensus, FB number of faulty nodes for

Binary consensus.

In the case of average consensus we know that there is no exact time for reaching consensus.

We can reach at every step at consensus level and of course error rate is different but here we

claimed the highest average consensus based on the given network condition in case

3(Number of Nodes VS Number of Iterations). That means minimum error rate we can reach

for the given network condition. So here we calculated highest average consensus. Besides,

for binary consensus we know that we can only reach consensus level when all non-faulty

sensor nodes follow the same protocol. So for binary consensus error rate is zero.

41| Page

 REFERECENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
network: a survey,” Computer Network, vol. 38, pp. 393–422, 2002.
[2] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,” Computer,
vol. 37, no. 8, pp. 41–49, 2004.
[3] W. J. Li and H. Y. Dai, “Cluster-based distributed consensus,” IEEE Transactions
on Wireless Communications, vol. 8, no. 1, pp. 28–31, 2009.
[4] S. Sardellitti, M. Giona, and S. Barbarossa, “Fast distributed average consensus
algorithms based on advection-diffusion Processes,” IEEE Transactions on Signal
Processing, vol. 58, no. 2, pp. 826–842, 2010.
[5] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip
algorithms for distributed signal processing,” Proceedings of the IEEE, vol. 98, no. 11,
pp. 1847–1864, 2010.
[6] W. Ren and R. W. Beard, Distributed Consensus in MultiVehicle Cooperative
Control: Theory and Applications, Springer, London, UK, 2010.
[7] A. D. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic gossip:
efficient averaging for sensor networks,” IEEE Transactions on Signal Processing, vol.
56, no. 3, pp. 1205–1216, 2008.
[8] F. Benezit, A. G. Dimakis, P. Thiran, Vetterli, and M. Gossip, “Along the way: order-
optimal consensus through randomized path averaging,” in Proceeding of the Allerton
Conference on Communication, Control, and Computing, pp. 26–28, Allerton, Ill, USA,
September 2007.
[9] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast gossip
algorithms for consensus,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp.
2748–2761, 2009.
[10] D. Ustebay, B. N. Oreshkin, M. J. Coates, and M. G. Rabbat, ¨ “Greedy gossip
with eavesdropping,” IEEE Transactions on Signal Processing, vol. 58, no. 7, pp.
3765–3776, 2010.
[11] K. I. Tsianos and M. G. Rabbat, “Fast decentralized averaging via multi-scale
gossip,” in Proceeding of International Conference on Distributed Computing in Sensor
System, pp. 21–23, Santa Barbara, Calif, USA, June 2010.
[12] M. Zheng, M. Goldenbaum, S. Stanczak, and Y. Haibin, “Fast average consensus
in clustered wireless sensor networks by superposition gossiping,” in Proceedings of
the IEEE Wireless Communication and Networking Conference, pp. 1–4, Paris,
France, April 2012.
[13] D. J. Baker and A. Ephremides, “The Architectural organization of a mobile radio
network via a distributed algorithm,” IEEE Transactions on Communications, vol. 29,
no. 11, pp. 1694–1701, 1981.

42| Page

[14] M. Gerla and J. Tzu-Chieh Tsai, “Multicluster, mobile, multimedia radio network,”
Wireless Networks, vol. 1, no. 3, pp. 255–265, 1995.
[15] S. Basagni, “Distributed clustering for Ad Hoc networks,” in In Proceeding of the
International Symposium on Parallel Architectures, Algorithms and Networks, pp. 23–
25, Perth, Australia, June1999.
[16] S. Basagni, “Distributed and mobility-adaptive clustering for multimedia support in
multi-hop wireless networks,” in Proceedings of the 50th IEEE Vehicular Technology
Conference (VTC ’99), pp. 19–22, Amsterdam, The Netherland, September 1999.
[17] M. Chatterjee, S. K. Das, and D. Turgut, “WCA: a weighted clustering algorithm for
mobile Ad hoc networks,” Journal of Cluster Computing, vol. 5, no. 2, pp. 193–204,
2002.
[18]M. Draief and M. Vojnovic, Convergence speed of Binary interval consensus," in
proceedings of annual joint conference of the IEEE computer and communications
societies (INFOCOM 2010), San Diego California, March 15-19, 2010

43| Page

 @2016

 Rajkin Hossain

 All Rights Reserved

