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ABSTRACT

This thesis reviews the exact numerical computation of the classical bounce solution in

the false vacuum decay for a quartic scalar field potential which is offset by an external

source. The decay rate in a semiclassical analysis consists of a leading exponential

contribution due to the classical action evaluated on the classical bounce solution as well

as a prefactor of functional determinants due to quantum fluctuations about the classical

bounce solution. The equation of motion of the classical bounce solution is obtained

using the Euler-Lagrange equation and is numerically solved using the shooting method

and the finite-difference method. The appendix reviews a computational technique for

evaluating the functional determinants of one-dimensional operators via the Gel’fand-

Yaglom theorem.
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Chapter 1

Introduction

1.1 A Qualitative Preview of False Vacuum Decay

False vacuum decay is the transition of a scalar field φ from a local minimum φ− of

the potential energy U(φ) towards another local minimum φ+ of lower potential energy.

This is shown in Figure 1.1 [5, 6]. The local minima at φ = φ− and φ = φ+ of the

potential U(φ) are such that φ− < φ+ and U(φ−) > U(φ+). Therefore, the decay occurs

from the scalar field φ− to the scalar field φ+. φ− and φ+ are, therefore, called the false

vacuum and the true vacuum, respectively.

During the decay, the scalar field transitions across a potential barrier. Therefore, false

vacuum decay is classically forbidden and the process is mediated by quantum tunnelling.

The physical mechanism of such a process is the first-order phase transition in bubble

Figure 1.1: A scalar field potential U(φ) with its local minima at φ = φ− and φ = φ+.
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Introduction 2

nucleation - the decay proceeds by the nucleation of expanding bubbles of true vacuum

within the metastable false vacuum [5, 6, 12, 13].

The decay rate per unit volume per unit time of the scalar field has been calculated

in the semiclassical approximation and consists of, among other factors, a dominant

exponential contribution due to the action evaluated on the classical bounce solution.1

Therefore, the quantitative form of the classical bounce solution for a given scalar field

potential is required to compute a certain part of the decay rate per unit volume per

unit time of the associated scalar field. The goal of the thesis is to derive an equation of

motion of the classical bounce solution (using the least action principle) for a particular

quantitative form of the scalar field potential in Figure 1.1 and to illustrate and compare

numerical computational methods which can be used to solve for the classical bounce

solution.

1.2 Physical Application to the Phenomenological Theory

of Cosmic Inflation

The theory of false vacuum decay was used to propose the phenomenological model of

cosmic inflation [10]. The theory posits an exponential expansion of space that lasted

from 10−36 seconds after the Big Bang to sometime between 10−33 and 10−32 seconds.

The hypothetical scalar field thought to be responsible for inflation is called the inflaton

field. The key idea of inflation is the following: as the early universe cooled, it was

trapped in a false vacuum with a high energy density (it was supercooled), which is

much like a cosmological constant. The universe could only decay out of this metastable

vacuum through the process of bubble nucleation via quantum tunneling. Therefore,

bubbles of true vacuum spontaneously formed in the sea of false vacuum and rapidly

began expanding at the speed of light, thereby causing inflation.

1.3 Road-Map of the Thesis

This section presents an overview of the chapters in the thesis.

Chapter 1 introduces the problem of false vacuum decay. In section 1.1, the key idea

of quantum tunnelling via bubble nucleation of a scalar field from the false vacuum to

the true vacuum is illustrated. In section 1.2, one particular phenomenon - the cosmic

inflation - in which the theory of false vacuum decay has been used is then discussed.

1The classical bounce solution is the scalar field configuration that results in the extremum of the
action.
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Chapter 2 shows that the decay rate per unit volume per unit time consists of a dominant

exponential contribution due to the action evaluated on the classical bounce solution and

a prefactor of functional determinants due to quantum fluctuations about the classical

bounce solution. Firstly, the decay rate is derived for a system with finitely many

degrees of freedom in sections 2.2 to 2.5. The expression is then generalised to field

theory in section 2.6.The calculation of the decay rate for a system with finitely many

degrees of freedom in sections 2.2 to 2.5 is further divided into the calculation of the

exponential contribution via WKB tunnelling in sections 2.2 and 2.3 and the calculation

of the prefactor of functional determinants in sections 2.4 and 2.5.

Chapters 3 and 4 and Appendix A focus exclusively on the computation of the classical

bounce solution for a specific quantitative form of the scalar field potential shown in

Figure 1.1. Appendix B focuses exclusively on the calculation of the pre-factor of func-

tional determinants for the specific quantitative form of the scalar field potential chosen

in Chapter 3.

Chapter 3 derives the equation of motion of the classical bounce solution for a specific

quantitative form of the scalar potential shown in Figure 1.1. In section 3.1, the Eu-

clidean classical action is derived from the action in Minkowski space via Wick rotation.

In section 3.2, a specific quantitative form of the scalar field potential is chosen. In

section 3.3, the equation of motion of the classical bounce solution is derived for the

chosen scalar field potential. In section 3.4, as an aside, an approximation technique -

the thin-wall limit - used to analytically compute the classical bounce is reviewed.

Chapter 4 numerically computes, using two alternative techniques, the classical bounce

solution from its equation of motion. In section 4.1, the shooting method is used to

compute the solution. The algorithm and C/C++ implementation of the algorithm are

discussed. In section 4.2, the finite-difference method is used to compute the solution.

The algorithm and Mathematica implementation of the algorithm are discussed. In

section 4.3, the results are discussed and the two numerical methods are compared with

each other.

Appendix A presents the source code for the C/C++ implementation of the shooting

method and the Mathematica implementation of the finite-difference method for the

numerical computation of the classical bounce solution from its equation of motion.

Appendix B reviews the procedure to compute the ratio of determinants of one-dimensional

operators - the so-called Gel’fand Yaglom theorem. This is only the first step in the cal-

culation of the pre-factor of functional determinants for the specific quantitative form

of the scalar field potential chosen in Chapter 3. Subsequent steps in the calculation are

discussed in [9].



Chapter 2

Euclidean Solutions

2.1 Introduction

The crux of this chapter is Equation 2.43, which defines the decay width of false vacuum.

This formula is derived using a semiclassical approximation - solutions of classical field

equations are used to obtain properties of corresponding quantum field theories. The

solutions obtained in this limit are called Euclidean solutions, and in the particular case

of false vacuum decay, these are called bounce solutions. Even though the full power

of this method becomes apparent in quantum field theories, it is first introduced in the

context of single-particle quantum mechanics for pedagogical reasons. In section 2.2,

the WKB tunnelling formula for quantum mechanics with a single degree of freedom is

presented. In section 2.3, the WKB tunnelling formula is extended to the quantum me-

chanics of many degrees of freedom. In section 2.4, the instanton solution for tunnelling

in a symmetric double-well potential is obtained. In section 2.5, the classical bounce

solution for metastable decay is obtained. Finally, section 2.6 extends the results of this

chapter to field theory [6, 14].

2.2 WKB Tunnelling in One-Dimensional Quantum Me-

chanics

The dynamics of a particle is governed by the Hamiltonian

H =
p2

2m
+ V (q), (2.1)

4



Euclidean Solutions 5

where the potential profile of V (q) is shown in Figure 2.1. If such a particle with an

energy E incident on the potential barrier from the left, then, in the vast majority of

cases, the particle will be reflected back towards the left from the position q1. In a small

number of cases, however, the particle will tunnel across the barrier from q1 to q2 and

emerge to the right of the barrier. The probability amplitude for tunnelling is propor-

tional to e−B/2, where the exponent B can be estimated using the WKB approximation

as

B = 2

∫ q2

q1

dq
√

2m[V (q)− E]. (2.2)

Figure 2.1: A potential barrier with classical turning points at q = q1 and q = q2.

2.3 WKB Tunnelling in Multi-Dimensional Quantum Me-

chanics

A particle within a system of generalised coordinates q1, q2, . . . , qN is defined by a

Lagrangian given by

L =
1

2

N∑
j=1

(
dqj

dt

)2

− V (q1, q2, . . . , qN )

=
1

2

(
dq

dt

)2

− V (q),

(2.3)

where q is the generalised vector coordinate.1

1The Lagrangian is used to define the system since the analysis will be generalised to field-theoretic
systems and a lagrangian treatment is more amenable to field-theoretic problems.
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To tunnel across a potential barrier from a given point in the coordinate space, a particle

can now traverse any one of an infinite number of different paths. The particle carries a

different probability amplitude for tunnelling along each of these individual paths. The

probability amplitude for tunnelling across the barrier along any given path P is given

by e−B[P ]/2, where the exponent can be estimated using the WKB approximation as

B[P ] = 2

∫ sf

0
ds
√

2[V (q(s))− E], (2.4)

the path P being parametrised by a trajectory s such that

(ds)2 =
N∑
j=1

(dqj)2 ≡ (dq)2 (2.5)

and E = V (q0), where q(0) = q0 defines the initial position of the particle.2

It is instructive to limit the analysis only to the most probable escape path as it con-

tributes most significantly to the overall tunnelling probability amplitude [2, 3]. In such

a case, B[P ] is a global minimum. The goal is therefore to determine the path q̄(s) which

minimises B[P ]. To that end, Jacobi’s principle and Hamilton’s principle are useful.

In classical mechanics, Jacobi’s principle states that a system governed by the Lagrangian

in Eq. 2.3 has a trajectory q(s) (in the coordinate space) which minimises the functional

I =

∫ sf

0
ds
√

2[E − V (q(s))], (2.6)

where q0 = q(0) and qf = q(sf ) are the initial and final positions of the system, respec-

tively. The trajectories q(s) over which the integration is performed are constrained to

satisfy the principle of conservation of energy as

E =
1

2

(dq
dt

)2

+ V (q). (2.7)

Comparing Eqs. 2.4 and 2.6, it is deduced that B[P ] = 2iI. Therefore, the trajectory

q̄(s) which minimises the barrier penetration integral B[P ] in quantum tunnelling is also

2Here, it is assumed that the particle begins to tunnel from the origin.
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the trajectory of classical motion (in the coordinate space) governed by the Lagrangian

in Eq. 2.3.3

In classical mechanics, Hamilton’s principle states that a system governed by the La-

grangian in Eq. 2.3 has a trajectory q(s) (in the coordinate space) which minimises the

action

S =

∫ tf

t0

dt L(q, q̇), (2.8)

where q(t0) = q0 and q(tf ) = qf are the initial and final positions of the system,

respectively. The trajectories q(s) over which the integration is performed are, however,

not constrained, as in Jacobi’s principle.

Therefore, the trajectory q̄(s) which minimises the barrier penetration integral B[P ] in

quantum tunnelling also minimises the action

S =

∫ tf

t0

dt

[
1

2

(
dq

dt

)2

− V (q)

]
, (2.9)

Performing a formal analytic continuation using τ = −it, the corresponding Euclidean

action is obtained as

SE =

∫ τf

τ0

dτ

[
1

2

(dq
dτ

)2
+ V (q)

]
(2.10)

The constraint Eq. 2.7 from Jacobi’s principle leads to

1

2

(dq̄
dτ

)2

= V (q̄)− E = V (q̄)− V (q̄0). (2.11)

so that

3At this point, it must be noted that quantum tunnelling is the actual physical pheneomenon of
interest, and the allusion to Jacobi’s principle from classical mechanics is simply a computational method
(carrying no physical significance) used to determine the trajectory q(s) most likely to be taken during
the tunnelling phenomenon.
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SE [q̄] =

∫ τf

τ0

dτ 2[V (q̄)− V (q0)] +

∫ τf

τ0

dτ V (q0)

=

∫ τf

τ0

dτ

√√√√(dq̄
dτ

)2√
2[V (q̄)− V (q0)] +

∫ τf

τ0

dτ V (q0)

=

∫ sf

0
ds
√

2[V (q̄)− V (q0)] +

∫ τf

τ0

dτ V (q0).

(2.12)

This result gives a relation between the tunnelling exponent B and the Euclidean action.

The particular case of interest is the tunnelling between a local minimum and a turning

point qf that is not a minimum of V , such as the decay of a bound state in a potential

like that in Figure 1.1. In this case, the solution begins at τ = −∞, but reaches qf at a

finite value of τ , at which point dq̄
dτ = 0. Because the Lagrangian is invariant under time

reversal, this solution can be continued back to the initial point qi, which is reached at

τ =∞. This doubles the Euclidean action, so that for the full solution

B = SE [q̄]− SE [q0] (bounce), (2.13)

where SE [q0], given by the last integral in Eq. 2.12, is the Euclidean action of the trivial

constant solution q(τ) = q0. It should be noted that this relation between B and SE

only holds at their stationary points.

For obvious reasons this solution is called a bounce. The bounce corresponding to a

potential like that in Figure 1.1 is shown in Figure 3.1.

Figure 2.2: The Euclidean bounce solution as a result of metastable decay. The
classical turning point is at q = b.
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2.4 Path Integral Approach to Tunnelling: Instantons

In this section, the pre-exponential factor in the tunnelling amplitude for an instanton

with a single degree of freedom is derived using the path integral approach.

As a concrete example, the case of a symmetric double-well potential with potential

minima at x = ±a as shown in Figure 2.3 is considered. For convenience, the potential

minima are set to zero so that the term
∫ τf
τ0
dτ V (q0) in Eq. 2.12 is zero and the barrier

penetration integral is obtained simply from the Euclidean action.

Figure 2.3: A double-well potential.

It is instructive to consider the matrix elements

〈a|e−iHt|a〉 = 〈−a|e−iHt|−a〉 (2.14)

and

〈a|e−iHt|−a〉 = 〈−a|e−iHt|a〉, (2.15)

where |±a〉 are the position eigenstates with eigenvalues x = ±a respectively.

According to the path integral formalism of quantum mechanics,

〈±a|e−iHt|a〉 =

∫
[dq(τ)]eiS[q], (2.16)

Under a Wick rotation, the problem is switched into Euclidean space as follows:

〈±a|e−HT |a〉 =

∫
[dq(τ)]e−SE [q], (2.17)

where T is the imaginary time and the integration is over trajectories such that q(−T/2) =

a and q(T/2) = ±a.
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Expansion of the matrix element on the left hand side in terms of energy eigenstates

produces

〈±a|e−HT |a〉 =
∑
n

e−EnT 〈±a|n〉〈n|a〉. (2.18)

Fr large T , only the smallest energy eigenvalues significantly contribute to the matrix

element. Calling the lowest even and odd energy eigenstates by |+〉 and |−〉, respectively,

〈a|e−HT |a〉 = |〈a|+〉|2e−E+T + |〈a|−〉|2e−E−T (2.19)

and

〈−a|e−HT |a〉 = 〈−a|+〉〈+|a〉e−E+T + 〈−a|−〉〈−|a〉e−E−T (2.20)

so that

〈a|e−HT |a〉+ 〈−a|e−HT |a〉
〈a|e−HT |a〉 − 〈−a|e−HT |a〉

= e(E−−E+)T , (2.21)

where 〈a|±〉 = ±〈−a|±〉 and |〈a|+〉|= |〈a|−〉| have been used.

The goal is to extract the difference E− − E+ in the lowest energy eigenvalues. To

that end, the matrix elements on the left hand side are evaluated using path integrals.

Each of the path integrals are approximated by a sum of Gaussian integrals about their

stationary points. Given a Euclidean solution q̄(τ), it is possible to write

q(τ) = q̄(τ) +
∑
n

cnψn(τ), (2.22)

where ψn(τ) is an eigenmode with eigenvalue λn of

δ2S

δq(τ)δq(τ ′)

∣∣∣∣∣
q=q̄(τ)

= − d2

dτ2
+ V ′′(q̄(τ)) ≡ S′′(q̄) (2.23)

Shifting from q(τ) to the the values cn,

[dq] =
∏
n

dcn√
2π

(2.24)
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Therefore, the contribution to the path integral from this stationary point is

I =

∫ ∏
n

dcn√
2π
e−[S(q̄)+ 1

2
Σkλkc

2
k+··· ], (2.25)

so that

I = e−S(q̄)
∏

λ−1/2
n [1 + · · · ]

= e−S(q̄) [det S′′(q̄)]−1/2 [1 + · · · ].
(2.26)

For 〈a|e−HT |a〉, the stationary point is the trivial constant solution q0(τ) = a. So, the

contribution to the path integral is

I0 = [det S′′(q0)]−1/2 (2.27)

For 〈−a|e−HT |a〉, the stationary point is the instanton solution such that q1 extends

from −a at τ = −T/2 to a at τ = T/2. So, the contribution to the path integral ought

to be

e−S1 [det S′′(q1)]−1/2, (2.28)

where S1 is the Euclidean action of the instanton. However, there is a zero mode of S′′

as follows:

ψ0(τ) = N−1/2 dq1

dτ
, (2.29)

reflecting the broken τ -translation symmetry. Given the zero eigenvalue, det S′′ vanishes

and the pre-exponential factor blows to infinity.

The solution to the problem is given in [14]. The resulting contribution to the path

integral is

I1 = e−S1 [det S′′(q0)]−1/2KT, (2.30)

where
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K =

(
N

2π

)1/2[
det ′S′′(q1)

detS′′(q0)

]−1/2

(2.31)

where the prime on the determinant indicates that only nonzero modes are to be in-

cluded.

In addition to these, there are approximate stationary points that must also be con-

sidered. It turns out that one needs to focus on a configuration with n instantons

and anti-instantons and the contribution from all configurations with n instantons and

anti-instantons is

In = e−nS1 [det S′′(q0)]−1/2 KnT
n

n!
. (2.32)

Now, taking all the contributions from the stationary and approximately stationary

points, the matrix elements are given by

〈a|e−HT |a〉 =
∑

evenn

In

= [det S′′(q0)]−1/2
∑

evenn

[e−S1KT ]n

n!

= [det S′′(q0)]−1/2 cosh [e−S1KT ]

(2.33)

and

〈−a|e−HT |a〉 =
∑
oddn

In

= [det S′′(q0)]−1/2
∑
oddn

[e−S1KT ]n

n!

= [det S′′(q0)]−1/2 sinh [e−S1KT ]

(2.34)

Therefore,

e(E−−E+)T = exp [2KTe−S1 ], (2.35)

so that
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∆ = E− − E+ = 2Ke−S1 (2.36)

It is noteworthy that the exponent S1 is given by the WKB approximation. The crucial

new result is the pre-exponential factor in Eq. 2.31.

2.5 Path Integral Approach to Tunnelling: Bounces

For the decay of a particle from a metastable minimum V (q = a) = 0 of the potential

energy, the energy at the metastable minimum is a complex number E such that

Im E = −Γ

2
. (2.37)

Arguments which are similar to those of the previous section give

〈a|e−HT |a〉 =

∫
[dq(τ)]e−S[q] = [det S′′(q0)]−1/2 exp

[
KTe−S(qb)

]
, (2.38)

where

K =

(
N

2π

)1/2[
det′ S′′(q1)

det S′′(q0)

]−1/2

, (incorrect). (2.39)

It is possible to extract E0 from the coefficient of T in the dominant exponential at large

T , obtaining

E0 = −

[
lim
T→∞

1

2T
ln det S′′(q0)

]
−Ke−S(qb) =

1

2

√
V ′′(a)−Ke−S(qb). (2.40)

It turns out that S′′(qb) has a mode with negative eigenvalue. The solution to the

problem of negative modes is given in [14]. The corrected expression for K is

K =
i

2

(
N

2π

)1/2[
det′ S′′(q1)

det S′′(q0)

]−1/2

. (2.41)

Therefore, the decay width is
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Γ = −2 Im E0 =

(
S(qb)

2π

)1/2[
det′ S′′(q1)

det S′′(q0)

]−1/2

e−S(qb) (2.42)

under the assumption that V (q = a) = 0.

For the general case of V (q = a) 6= 0,

Γ =

(
B

2π

)1/2∣∣∣∣∣ det ′ S′′(qb)

det S′′(q0)

∣∣∣∣∣
−1/2

e−B (2.43)

where B is the difference between the bounce action and that of the trivial solution.

2.6 Extension to Field Theory

The formalism in the previous sections was developed for a system with finitely many

degrees of freedom. However, false vacuum decay is a problem in quantum field theory.

Therefore, it is instructive to generalise the developments of the preceding sections to a

system with continuously many degrees of freedom. The three crucial parameters that

transform are the following (for a theory of a single scalar field in D + 1 dimensions):

• Coordinates qj become field configurations φ(~x).

• The tunnelling path ~q(τ) becomes φ(~x, τ).

• The potential energy V (~q) becomes U [φ(x)] =
∫
dDx

[
1
2(∇φ)2 + V (φ)

]



Chapter 3

Equation of Motion of the

Classical Bounce Solution

3.1 Euclidean Classical Action

The action S[φ] in Minkowski space for a scalar field φ is given by

S[φ] =

∫
d4x

(
1

2
(∂µφ)2 − U(φ)

)
. (3.1)

Under a Wick rotation τ = it, the derivative transforms as (∂τ , ∂i) = (−i∂t, ∂i) and the

Euclidean classical action Scl[φ] for the same scalar field φ is obtained as

Scl[φ] =

∫
d4x

(
1

2
(∂µφ)2 + U(φ)

)
. (3.2)

It must be noted that the transformation of the underlying Minkowski space into Eu-

clidean space via analytic continuation into the imaginary temporal axis is simply a

computational technique that simplifies the analysis of semiclassical tunnelling prob-

lems and carries no physical significance whatsoever.

3.2 Scalar Field Potential for False Vacuum Decay

The simplest model for false vacuum decay [5, 6] considers a form of the field potential

U(φ) as shown qualitatively in Figure 3.1. A standard form of the field potential U(φ)

15
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Figure 3.1: A quartic field potential U(φ) with its non-degenerate local minima at
φ = φ− and φ = φ+.

consistent with Figure 3.1 and widely considered in the existing literature [4–7] is the

following:

U(φ) =
λ

8
(φ2 − a2)2 − ε

2a
(φ− a), (3.3)

where λ is the coupling constant and ε represents the effect of a constant external source

on the field potential U(φ). The physical interpretation of ε as an external source can be

appreciated by considering the form of the field potential U(φ) for ε = 0: when ε = 0, the

field potential U(φ) is a symmetric double-well potential with local minima at φ = −a
and φ = a, such that U(φ−) = U(φ+) = 0.

3.3 Equation of Motion of the Classical Bounce Solution

The equation of motion of the classical bounce solution can be derived for the scalar field

potential in 3.3 by application of the principle of least action to the Euclidean classical

action in 3.2. However, the calculations are enormously simplified if the scalar field

potential in 3.3 and the Euclidean classical action in 3.2 are each rescaled as in sections

3.3.1 and 3.3.2, respectively. The equation of motion of the classical bounce solution is

then calculated in section 3.3.3.

3.3.1 Rescaling of the potential U(φ)

Expansion of the scalar field φ about the false vacuum φ = φ− as follows
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φ = φ− + ϕ (3.4)

is useful because the linear term in the Taylor expansion of the scalar field potential

U(ϕ) vanishes:

U(ϕ) = U(φ−) + U ′(φ−)(ϕ− φ−) +
U ′′(φ−)

2
(ϕ− φ−)2+

U ′′′(φ−)

6
(ϕ− φ−)3 +

U ′′′′(φ−)

24
(ϕ− φ−)4 + · · ·

= U(ϕ) = U(φ−) +
U ′′(φ−)

2
(ϕ− φ−)2+

U ′′′(φ−)

6
(ϕ− φ−)3 +

U ′′′′(φ−)

24
(ϕ− φ−)4 + · · ·

(3.5)

Now, keeping terms up to dimension four,1 the potential U(ϕ) is given by

U(ϕ) =
m2

2
ϕ2 − η ϕ3 +

λ

8
ϕ4, (3.6)

where

m2 =
λ

2
(3φ2
− − a2) η =

λ

2
|φ−|.

3.3.2 Rescaling of the action Scl(φ)

Rescaling the field ϕ and the space-time coordinates x as follows

x̄ = mx ϕ =
m2

2η
Φ. (3.7)

is also useful because the classical Euclidean action in terms of the dimensionless quan-

tities x̄ and Φ simplifies to:

Scl[Φ] =

(
m2

4η2

)∫
d4x̄

[
1

2
(∂̄µΦ)2 +

1

2
Φ2 − 1

2
Φ3 +

α

8
Φ4

]
, (3.8)

1In four-dimensional space-time, the mass dimensions of the couplings are: [λ] = 0, [a] = 1, and
[ε] = 4.
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where the quartic coupling strength is determined by the dimensionless quantity

α =
λm2

4η2
= 1− ε

2λa4
+ · · · , (3.9)

and the dimensionless potential is given by

U(Φ) =
1

2
Φ2 − 1

2
Φ3 +

α

8
Φ4. (3.10)

Figure 3.2 shows some plots, for various values of α, of U(Φ).

Figure 3.2: Plots of U [Φ] = 1
2Φ2 − 1

2Φ3 + α
8 Φ4, for α = 0.6, 0.7, 0.8, 0.9, 0.99. As α

approaches 1, the rescaled potential tends to the double-well potential.

3.3.3 Equation of motion of the spherically symmetric classical bounce

solution

In this section, the equation of motion of the rescaled classical bounce Φcl(r) in 3.7 is

obtained from the stationary point of the rescaled classical Euclidean action in 3.8 under

the assumption that the classical bounce is spherically symmetric. Expressing the angu-

lar measures in radians, the transformation from Cartesian coordinates {x1, x2, x3, x4}
to spherical polar coordinates {r, φ1, φ2, φ3} is given by:2

2The principle of least action leads to the Euler-Lagrange equations which are conditions to what
is integrated over all space. So there is no need to transform the volume element d4x. However,
the classical bounce is radially symmetric, and the equation of motion takes a simpler form in spherical
polar coordinates than in Cartesian coordinates, hence the decision to transform coordinates, the volume
element, the action and ultimately the Lagrangian.
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x1 = r cos(φ1)

x2 = r sin(φ1) cos(φ2)

x3 = r sin(φ1) sin(φ2) cos(φ3)

x4 = r sin(φ1) sin(φ2) sin(φ3) sin(φ4) (3.11)

Therefore, the spherical volume element in 4-dimensional Euclidean space is found from

the Jacobian of the transformation as follows:

d4x =

∣∣∣∣det
∂(xi)

∂(r, φj)

∣∣∣∣dr dφ1 dφ2 dφ3

d4x = r3 sin2(φ1) sin(φ2) dr dφ1 dφ2 (3.12)

Therefore,

Scl[Φ] =

(
m2

4η2

)∫
d4x̄

[
1

2
(∂̄µΦ)2 +

1

2
Φ2 − 1

2
Φ3 +

α

8
Φ4

]
=

(
m2

4η2

)∫ 2π

0
dφ3

∫ π

0
dφ2 sin(φ2)

∫ π

0
dφ1 sin2(φ1)∫ rf

0
r3 dr

(
1

2
(∂rΦ)2 +

1

2
Φ2 − 1

2
Φ3 +

α

8
Φ4

)
=(2π)(2)

(
π

2

)(
m2

4η2

)∫ rf

0
dr r3

(
1

2
(∂rΦ)2 +

1

2
Φ2 − 1

2
Φ3 +

α

8
Φ4

)
=(2π2)

(
m2

4η2

)∫ rf

0
dr r3

(
1

2
(∂rΦ)2 +

1

2
Φ2 − 1

2
Φ3 +

α

8
Φ4

)
, (3.13)

where the radial integral of the classical Euclidean action Scl[Φ] is integrated from r = 0

to r = rf .

Therefore, the Lagrangian L[Φ] of the system in spherical polar coordinates is given by

L[Φ] ∝ r3

(
1

2
(∂rΦ)2 +

1

2
Φ2 − 1

2
Φ3 +

α

8
Φ4

)
(3.14)

The classical bounce solution Φcl(r) corresponding to the extremum of the classical

Euclidean action Scl[Φ] can therefore be found using the Euler-Lagrange equation for

the scalar field Φ as follows:
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∂L
∂Φcl

− ∂r
(

∂L
∂(∂rΦcl)

)
= 0 (3.15)

r3

(
Φcl −

3

2
Φcl +

α

2
Φ3

cl

)
− ∂r

(
r3∂rΦcl

)
= 0

−Φ′′cl −
3

r
Φ′cl + Φcl −

3

2
Φ2

cl +
α

2
Φ3

cl = 0. (3.16)

The boundary conditions which the classical bounce solution Φcl(r) must satisfy are as

follows:

Φ′cl(0) = 0, (3.17)

Φcl(r)→ Φ− ≡ 0, as r →∞. (3.18)

The nature of the boundary conditions can be appreciated from the following facts:

1. Φcl(r) interpolates between the false and true vacuum as r goes from 0 to ∞.

Therefore, the boundaries of the system are at r = 0 and r =∞.

2. The system is assumed to occupy the false vacuum for an indefinite period of time

before the decay spontaneously starts towards the true vacuum. Therefore, the

field starts towards the true vacuum from rest, hence the boundary condition in

3.17.

3. The Euler-Lagrange equation in 3.15 follows from the principle of least action only

if the scalar field Φcl(r) vanishes at infinity, hence the boundary condition in 3.18.

In the following chapter, the equation of motion 3.16 is solved numerically to obtain the

classical bounce solution Φcl(r).

3.4 The Thin-Wall Approximation

3.4.1 Motivation

The exact analytical computation of the classical bounce solution Φcl(r) for any non-

trivial field theory is a technically difficult problem - no such computations have yet

not been performed. However, various approximation schemes, chief among them the
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thin-wall approximation (expanding Φcl about the point α = 1, where the two vacua

are degenerate), have been used to compute the classical bounce solution analytically.

Although the goal of the thesis is to review an exact computational (numerical) tech-

nique for the classical bounce solution[9], the thin-wall approximation is still reviewed

for completeness and as a conduit into the existing literature on the topic.

3.4.2 Physical interpretation

In the limit that ε � λa4, the potential energy difference U(φ−) − U(φ+) between the

false and true vacua is given by

U(φ−)− U(φ+) = ε

[
1 +O

(
ε

λa4

)]
. (3.19)

Equation 3.19 can be physically interpreted to mean that the bubbles of true vacuum

within the false vacuum have thin walls compared to their radius. Quite appropriately,

this small ε limit is known as the “thin-wall” approximation [5, 6].

3.4.3 Derivation

In the following, the potential minima φ = φ− and φ = φ+ are first calculated and then

used to determine the potential energy difference U(φ−)− U(φ+).

The minima of the field potential U(φ) can be expressed in terms of the parameters λ,

a and ε by finding the stationary points of the potential field U(φ):

dU

dφ
= 0

λ

4
(φ2 − a2)(2φ)− ε

2a
= 0

φ(φ2 − a2) =
ε

λa

φ3 − φa2 − ε

λa
= 0. (3.20)

Equation 3.20 can be solved by first finding the minima for when ε = 0 and then

finding the perturbation of each of these minima when ε is small. Therefore, under the

assumption that φ± = φ0
± + εφ1

± + O(ε2) and that the derivative is zero to linear order

in ε,
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• to 0th order in ε,

φ3 − φa2 − ε

λa
= 0

(φ0)3 − (φ0)a2 = 0

φ0 = 0,±a. (3.21)

• to 1st order in ε,

φ3 − φa2 − ε

λa
= 0

(φ0 + εφ1)3 − (φ0 + εφ1)a2 − ε

λa
= 0

(φ0)3 + 3(φ0)2(εφ1)− a2φ0 − a2εφ1 − ε

λa
= 0.

Therefore, for φ0 = ±a,3

3a2φ1 − a2φ1 =
1

λa
=⇒ φ1 =

1

2λa3
.

Therefore, the two minima are φ± = ±a(1 ± ε
2λa4

+ ...). So, the difference in potential

energy U(φ−)− U(φ+) between the true and false vacua is given by:

U(φ−)− U(φ+) =
λ

8
(φ4
− − φ4

+)− λa2

4
(φ2
− − φ2

+)− ε

2a
(φ− − φ+)

Now,

φ− − φ+ = −a(1− ε

2λa4
+ . . . )− a(1 +

ε

2λa4
+ . . . ) = −2a+ . . . , and

φ− + φ+ = −a(1− ε

2λa4
+ . . . ) + a(1 +

ε

2λa4
+ . . . ) =

ε

λa3
+ . . . ,

so that

φ2
− − φ2

+ = − 2ε

λa2
+ . . . .

Furthermore,

φ2
− + φ2

+ = [−a(1− ε

2λa4
+ . . . )]2 + [a(1 +

ε

2λa4
+ . . . )]2 = 2a2 + . . . ,

3φ0 = 0 is a local maximum, so it is not needed to consider how it shifts.
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so that

φ2
− − φ2

+ = −4ε

λ
.

Therefore,

U(φ−)− U(φ+) = ε+ . . . . (3.22)

Therefore, ε can be interpreted as the potential energy difference or barrier between the

two classical vacua in the limit that ε� λa4.



Chapter 4

Numerical Computation of the

Classical Bounce Solution

The goal of this chapter is to present two alternative numerical techniques - the shooting

method and the finite-difference method - to solve the equation of motion 3.16 repro-

duced below:

−Φ′′cl −
3

r
Φ′cl + Φcl −

3

2
Φ2

cl +
α

2
Φ3

cl = 0,

with the boundary conditions 3.17 and 3.18, also reproduced below:

Φ′cl(0) = 0,

Φcl(r)→ Φ− ≡ 0, as r →∞.

4.1 The Shooting Method

4.1.1 Algorithm

The solution to the differential equation 3.16 via the shooting method has been im-

plemented in C/C++ in section 4.1.2. C/C++ does not built-in functions to directly

implement the shooting method. Therefore, the various aspects of the shooting method

that have found use in the C/C++ implementation in section 4.1.2 are discussed below,

one by one.

24
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In the shooting method, a number of iterations of some specific computation must be

performed to obtain the solution of the equation of motion 3.16 to a reasonable degree

of precision. That specific computation is the numerical integration of 3.16 using 4th

order Runge-Kutta, starting at some very small r = r0, and ending at some very large

r = rf .The choice of a non-zero initial value of r and the choice of a finite final value of

r is explained later in the section.

The first iteration of the numerical integration uses the initial condition 3.17 given by

Φ′cl(0) = 0 and a guess of the value of Φcl(0) ≡ Φ0. After the first iteration of the

numerical integration is performed, the offset in the value of Φ(rf ) from the value in the

boundary condition 3.18 is used to inform the choice of the new value of Φ0 for the next

iteration of the algorithm. This is the essential link that ties the various iterations of

the numerical integration. In this way, the iterations continue to adjust the value of Φ0

until the boundary condition 3.18 is satisfied.

The preceding exposition of the nature of the iterations implies that the shooting method

converts a boundary value problem into an initial-value problem, such that each of the

iterations of the numerical integration solves an initial value problem for some value of

Φ0. Therefore, the goal of the shooting method is to determine the true value of Φ0 (to

a reasonable degree of precision) that, when along with 3.17 form the initial conditions

of the equation of motion 3.16, satisfy the boundary condition 3.18.

The refinement of the value of Φ0 is mediated by a root finding algorithm. The bisection

method is particularly well suited for this particular differential equation. A simple

plotting of the solutions of the equation for different values of Φ0 reveals the interval

(bounded both from below and from above) of Φ within which the true value of Φ0

is located. Then, the bisection method narrows down this interval in half after each

iteration. In spite of the slow convergence of this method when compared to the Newton-

Raphson method or the secant method, this method is guaranteed to converge to the

true value of Φ0.

The 4th-order Runge-Kutta method is only applicable for 1st-order ordinary differen-

tial equations. Therefore, the second order ordinary differential equation 3.16 must be

converted into a system of coupled first-order differential equations in order to use the

4th-order Runge-Kutta method:

−Φ′′cl −
3

r
Φ′cl + Φcl −

3

2
Φ2

cl +
α

2
Φ3

cl = 0
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=⇒

Θ′cl = −3

r
Θcl + Φcl −

3

2
Φ2

cl +
α

2
Φ3

cl (4.1a)

Φ′cl = Θcl (4.1b)

for the boundary conditions

{
Θcl(0) = 0, (4.2a)

Φcl(r)→ Φ− ≡ 0, as r →∞. (4.2b)

Therefore, the system 4.1a, 4.1b of coupled first-order differential equations must be

numerically integrated concurrently using 4th-order Runge-Kutta method in the appli-

cation of the shooting method.

The numerical integration is started at some very small r = r0, and not at r = 0, because

the term −3
rΦ′cl in 3.16 blows up at r = 0. Therefore, 3.16 cannot be integrated from

r = 0 to r = r0. An alternative computational technique must be used to calculate

Φcl(r0) from the estimated value of Φcl(0) ≡ Φ0. One such technique employs the Taylor

expansion of Φcl(0).

The Taylor expansion of Φcl(r0) is given by

Φcl(r0) = Φcl(0) + Φ′cl(0)(r0) +
Φ′′cl(0)

2
(r0)2 +O(r3

0) (4.3)

Now, the boundary condition 3.17 states that Φ′cl(r0) = 0. Also, the equation of motion

3.16 implies that

Φ′′cl(0) = − lim
r→0

3

r
Φ′cl(r) + Φcl(0)− 3

2
Φ2

cl(0) +
α

2
Φ3

cl(0)

= −3 lim
r→0

Φ′cl(r)− Φ′cl(0)

r
+ Φcl(0)− 3

2
Φ2

cl(0) +
α

2
Φ3

cl(0)

= −3Φ′′cl(0) + Φcl(0)− 3

2
Φ2

cl(0) +
α

2
Φ3

cl(0)

=⇒ Φ′′0(0) = −3Φ′′0 + Φ0 −
3

2
Φ2

0 +
α

2
Φ3

0

=⇒ Φ′′0(0) =
1

4

(
Φ0 −

3

2
Φ2

0 +
α

2
Φ3

0

)

Therefore,
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Φcl(r0) = Φ0 +
r2

0

8

(
Φ0 −

3

2
Φ2

0 +
α

2
Φ3

0

)
+O(r3

0)

= Φ0 +
r2

0

16

(
αΦ3

0 − 3Φ2
0 + 2Φ0

)
+O(r3

0) (4.4)

Therefore, 4.4 is used to obtain Φcl(r0) from the estimated value of Φ0 before the nu-

merical integration of 3.16 is started at r = r0. Furthermore, the system 4.1a, 4.1b of

coupled differential equations must be numerically integrated concurrently. Therefore,

the expression for Φ′cl(r0) = Θcl(r0) is also required:

Φ′cl(r0) =
r2

0

8

(
αΦ3

0 − 3Φ2
0 + 2Φ0

)
+O(r3

0) (4.5)

The numerical integration is ended at some very large r = rf , and not at r =∞, because

the integration will never be completed otherwise by the computing machine. The value

of rf is chosen such that the difference |Φ(2rf )− Φ(rf )| is negligible.

4.1.2 C/C++ implementation of the algorithm

The source code in Appendix A.1 is explained line by line in the following.

Lines 1 to 10: All the required libraries are declared.

The GNU Multiple Precision Arithmetic Library (GMP) library is de-

clared in lines 7 and 8.

GMP is a free library for arbitrary-precision arithmetic, operating on

signed integers, rational numbers, and floating point numbers. The basic

interface is for C but wrappers also exist for C++. The object-oriented

nature of C++ allows for compact code as compared to the C code,

hence the use of the wrapper.
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Lines 12 to 13: The two functions of the program are defined.

Line 12: This function uses the Runge-Kutta method to calculate phi at discrete

values of r.

The variable count of type string counts the current number of times

the function runge kutta is called.

Line 13: This function is called from within the function runge kutta in order to

calculate the local variables k1, k2, k3, k4 within the function runge kutta

method.

The function computes and returns the right-hand side of equation 4.1a.

The right-hand-side of equation 4.1a is written in factorised form to

minimise the number of computations and speed up the running of the

program.

Line 15: The main function starts.

Line 17: alpha is a user-defined constant.

alpha is declared as a variable of class mpf class which is included in the

C++ interface to the GMP library.

Variables of the class mpf class are of arbitrary precision, so alpha can

subsequently be manipulated with the other high-precision real numbers.

Lines 18 to 19: These lines initialise the lower bound phi0 lower and the upper bound

phi0 upper of the true, but yet unknown, value of phi0.

phi0 lower and phi0 upper are chosen such that phi does not diverge to

infinity as r tends to infinity.

The number 10 indicates that phi0 lower and phi upper are in base 10.

The number 500 indicates that 500 bits are reserved for the variables

phi lower and phi upper. 500 binary bits corresponds to 150 decimal

places so the subsequent computations are guaranteed be very precise.

Line 21: This line calls the function runge kutta for the lower bound phi0 lower

of phi0.

The argument 1 indicates that this is the first time the function

runge kutta is called.

Line 22: This line calls the function runge kutta for the upper bound phi0 upper

of phi0.

The argument 2 indicates that this is the second time the function Lines

runge kutta is called.
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Lines 24 to 31: These lines implement the root-finding algorithm - the bisection method.

The bisection method is used to generate finer and finer approximations

to the true value of phi0 down to 100 decimal places.

The bisection method within the for loop calls the function runge kutta

100 times for the 100 iterations of the for loop.

Line 26: This line bisects phi0 lower and phi0 upper to generate a finer approxi-

mation to the true value of phi0.

Each time the interval is bisected, the precision of the value of phi0

increases by 1 decimal place.

Line 27: This line is miscellaneous code used to convert an int type to a string

type.

This is necessary because the function runge kutta requires a string type

rather than an int type as its third argument.

Line 28: This line call the function runge kutta for the current value of phi0.

Lines 29: The if condition checks if the current value of phi0 bounds the true

value of phi0 from below.

Lines 29: The else condition checks if the current value of phi0 bounds the true

value of phi0 from above.

Line 33: The main function ends.

Lines 35 to

121:

This block of code defines the function runge kutta.

Line 37: This line initialises r to 0.001 for the Taylor expansion at small r.

Line 38: This line uses the Taylor expansion in equation 4.4 to calculate phi at r

= 0.001.

Line 39: This line uses the Taylor expansion in equation 4.5 to calculate theta at

r = 0.001.

Lines 42 to 73: This block of code is miscellaneous.

It sets the file input and output to write the data to a text file.

It must be noted that this block of code is specific to the Ubuntu envi-

ronment.

Lines 75 to 79: This block of code is miscellaneous.

It opens an interface that one can use to send commands as if they were

typing into the gnuplot command line.

”The -persistent” keeps the plot open even after this C program termi-

nates.

Line 78 sends commands to gnuplot one by one.
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Lines 81 to 83: These lines initialise the variables which determine if the current ap-

proximation to phi0 bounds the true value of phi0 from above or from

below.

boundType= 1 indicates that phi has diverged.

Lines 85 to

113:

In the while loop, the Runge-Kutta method is run from r= 0.001 to

150.0 in steps of 0.001.

Lines 87 to 94: This block of code calculates the coefficients k1 through k4 of the Runge-

Kutta method for each of the differential equations 4.1a, 4.1b at each

value of r.

Lines 96 to 98: This block of code uses the coefficients from the previous block to cal-

culate phi and theta at the value of r which is one-step size from the

current value of r.

Lines 100 to

103:

Having played around with the program and generating numerous so-

lutions of the second-order differential equation, the following has been

learned:

If phi0 is less than -10.0, then phi shoots off to negative infinity

If phi0 is greater than 10.0, then phi shoots off to positive infinity.

Therefore, the while loop is broken if phi, during any iteration of the

while loop, returns an NaN value

Line 105: The if condition implies that phi either shoots towards positive infinity

or stays level.

Line 106: The if condition implies that phi shoots towards negative infinity.

Line 107: The if condition implies that phi gradually rises up towards positive

infinity

Lines 111 to

112:

This block of code is miscellaneous.

The precision can be modified to other values - I have used 3 decimal

places and 8 decimal places to generate precise and representative plots

while simultaneously avoiding space wastage

Lines 117 to

118:

This block of code is miscellaneous. It is used to check that the compu-

tation has indeed been completed for each value of phi0.

It outputs the value of phi0 at the console/terminal.

The precision has been set to 100 decimal places. This is because 100

iterations will produce a value of phi0 that is precise by 100 decimal

places.
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4.2 The Finite-Difference Method

4.2.1 Algorithm

The solution to the differential equation 3.16 via the finite-difference method has been

implemented in Mathematica in section 4.2.2. Mathematica has the built-in function

NDSolve‘FiniteDifferenceDerivative[Derivative[n], rGrid, pGrid], which computes sym-

bolic equations for the n-th derivative of Φcl(r) as a set of finite-difference equations on a

one-dimensional grid using the values on the grid of the array rGrid of numerical values

of r and of the array pGrid of symbolic values of Φcl(r). The finite-difference equations

can then be simultaneously solved to obtain the numerical values of the array pGrid

which can be plotted against the corresponding values of rGrid to obtain the solution

Φcl(r) of the differential equation 3.16.

4.2.2 Mathematica implementation of the algorithm

The source code in Appendix A.2 is explained line by line in the following.

Line 1: alpha is a user-defined constant.

Line 3: rmin is the value of r from which the finite-difference equations are

evaluated after the Taylor expansion is performed.

Line 4: rmax is the final value of r.

Line 5: rdivisions is the the number of intervals over the range of r.

Line 6: dr is the stepsize.

Line 8: This line creates a one-dimensional grid of values of r and stores as an

array rGrid.

Line 9: This line creates a one-dimensional grid of values of phi and stores as

an array pGrid.

Line 11: This line assigns the coefficient of Φ′′cl(r) of the ordinary differential

equation 3.16 to the function a.

Line 12: This line assigns the coefficient of Φ′cl(r) of the ordinary differential

equation 3.16 to the function b.
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Line 13: This line assigns the coefficient of Φcl(r) of the ordinary differential

equation 3.16 to the function c.

Line 14: This line assigns the coefficient of Φ2
cl(r) of the ordinary differential

equation 3.16 to the function d.

Line 15: This line assigns the coefficient of Φ3
cl(r) of the ordinary differential

equation 3.16 to the function e.

Line 17: This line stores the value of the function a in a one-dimensional grid of

an array aGrid.

Line 18: This line stores the value of the function b in a one-dimensional grid of

an array bGrid.

Line 19: This line stores the value of the function c in a one-dimensional grid of

an array cGrid.

Line 20: This line stores the value of the function d in a one-dimensional grid of

an array dGrid.

Line 21: This line stores the value of the function e in a one-dimensional grid of

an array eGrid.

Line 23: This line computes symbolic equations for Φ′cl(r) at the grid points of r

(by means of a built-in function that uses the finite-difference method)

and stores as an array dpdr.

Line 24: This line computes symbolic equations for Φ′′cl(r) at the grid points of r

(by means of a built-in function that uses the finite-difference method)

and stores as an array dpdr2.

Line 26 : This line uses the boundary condition on Φ′cl(rmin) to reformulate the

finite difference equation at r =rmin.

Line 27: This line uses the boundary condition on Φcl(rmax) to reformulate the

finite difference equation at r =rmax.

Line 28: This line combines the boundary conditions in the previous two lines.
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Line 30: A set of equations is created using the ordinary differential equation. A

table is created, with each entry corresponding to an interior grid point.

Each entry in the table becomes an equation, from the discretized ODE.

The knowledge of the boundary conditions is then used to eliminate the

values of phi on the boundary.

Line 33: The interior values of phi are substituted into the equations that deter-

mine the boundary values of phi.

Line 34: A table of coordinates is created.

Line 35: The solution is plotted.

4.3 Results and Discussion

4.3.1 Results

Figure 4.1: Plots of the bounce solution Φcl(r) for α =
0.5, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, with the plateau ending farther to the right

for increasing α.

Figure 4.1 shows the plots which are expected for different values of α [9]. The source

code for the shooting method generates the expected plots for smaller values of α (in a

limited region of the r-axis, as discussed below). For larger values of α, the plots do not

even touch the r-axis, but show rapidly oscillating behaviour for large values of r - as

r increases, the plots continue to oscillate with decreasing amplitude around any one of
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two horizontal lines given by Φcl(r) = k, where the non-zero constant k is the solution

to the cubic equation

k − 3

2
k2 +

α

2
k3 = 0. (4.6)

For smaller values of α, the plots do not simply remain stable at Φcl = 0, but suddenly

shoot upwards and show similar oscillating behaviour as for the larger values of α.

The cubic equation 4.6 is obtained from the equation of motion 3.16 by setting Φ′cl and

Φ′′cl equal to 0. The oscillations tending towards Φcl(r) = k is an expected behaviour (if

the oscillations can be justified in the first place, but they cannot be justified), because

these lines define the equilibrium solution of the equation of motion 3.16 when the

boundary condition 3.17 is satisfied. However, the sudden oscillating behaviour itself is

unexpected and is worthy of further investigation.

The possible cause of the unexpected behaviour of the plots lies in the stiffness of the

ordinary differential equation 3.16. Shooting methods are notorious for causing stiffness

issues in the solutions of many a differential equation. The essence of stiffness is the

rapid propagation of error in the value of Φcl(r) starting from the (negligibly small)

error in the value of Φcl(0). This behaviour can be remedied with the help of the so-

called multiple shooting method, which is a variant of the standard shooting method

[1]. In the multiple shooting method, the r−axis is divided into a number of equal

intervals and the shooting method is applied to each of these intervals independently of

the others. In general, there is a difference in the values of Φcl(r) at the junction of any

two intervals. These differences are used to compute finer and finer approximations to

the required solution of the differential equation. The division of the r−axis into many

small intervals limits the propagation of errors and thus a reliable and accurate solution

to the differential equation is obtained. Indeed, the multiple shooting method is known

to solve the worst problems of the standard shooting method.

The source code for the finite-difference method generates the expected plots only if the

stepsize is chosen wisely. Too large a stepsize leads to an inaccurate plot because the

error in the values of Φcl(r) at all of the grid points is greater for a larger stepsize. On

the other hand, too small a stepsize also leads to an incorrect plot.

4.3.2 Comparison of the two methods

Both the shooting method and the finite difference method are excellent techniques

for solving differential equations. The shooting method uses a standard root-finding
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algorithm (such as the bisection method) to find the missing initial condition which

satisfies the differential equation and is consistent with the boundary conditions. Also,

the shooting method uses a numerical integration algorithm such as Euler’s method or

the 4th-order Runge Kutta method. On the other hand, the finite difference method

creates a grid of points on the axis of the independent variable and then approximates

the differential equation of interest using finite-difference derivatives (such as the forward

difference, backward difference, central difference, etc.) at each of these grid points. The

resulting set of finite difference equations, one equation at each point of the grid, are

simultaneously solved to produce the solution of the differential equation.

The shooting method is a very popular technique for solving boundary-value problems.

However, a standard numerical package for the shooting method does not exist. This

is because it can quite often cause difficulties such as stiffness problems, in which cases

only a customised solution using the shooting method can solve the differential equation

of interest. On the other hand, the finite-difference method is a very popular technique

for solving differential equations in general, and standard programming software such as

Mathematica, Matlab, etc. are replete with numerical packages for the finite-differente

method. Therefore, the finite difference method is easier to implement in a scientific

programming software such as Mathematica.

Furthermore, numerical solution of a non-linear differential equation with boundary

conditions using programming languages such as C/C++ and Java is, in itself, a com-

putational challenge. Not only is it necessary to use specific programming environments

(Linux, MINGW, etc. for C/C++, Eclipse, etc. for Java), but also appropriate third-

party numerical libraries quite often need to be found and its functionality learnt from

the user documentation and then used in the program. On the other hand, Mathemtica

already has built-in numerical packages for all kinds of sophisticated mathematical com-

putations and it can also be run on all environments. Therefore, Mathematica is par-

ticularly well suited to solve the differential equation, even for the shooting method.



Chapter 5

Conclusion

This thesis reviews the computation of the classical bounce solution for a quartic scalar

field potential which is offset by an external source. In chapter 1, false vacuum decay is

discussed and cosmic inflation - an example consisting of the application of false vacuum

decay - is mentioned. In chapter 2, the decay rate per unit volume per unit time is

shown to consist of a dominant exponential contribution due to the action evaluated on

the classical bounce solution and a prefactor of functional determinants due to quantum

fluctuations about the classical bounce solution. Chapters 3 and 4 and Appendix A

focus exclusively on the computation of the classical bounce solution. Appendix B

focuses exclusively on the calculation of the pre-factor of functional determinants.

The thesis can be improved in several possible ways, Firstly, the classical bounce solution

for the quartic-offset potential model should be calculated reliably and to a high degree of

precision. The multiple shooting method must be implemented to solve the stiffnes prob-

lem of the equation of motion of the classical bounce solution. The source code for the

finite difference method must also be reviewed to identify the reason for the ill-behaved

nature of the solutions for very small stepsizes. Furthermore, this thesis only presents, in

appendix B, the analysis of the functional determinants for one-dimensional operators.

The prefactor of functional determinants for the quartic-offset potential model should

therefore be calculated. Lastly, the scalar field potential should be modified to consider

the decay of a system with three or more local minima.

36



Appendix A

Source Code for the Computation

of the Classical Bounce Solution

A.1 C/C++ Program for the Shooting Method

1 #include <stdlib.h>

2 #include <iostream>

3 #include <fstream>

4 #include <sstream>

5 #include <string.h>

6 #include <string>

7 #include <gmp.h>

8 #include <gmpxx.h>

9

10 using namespace std;

11

12 int runge_kutta(mpf_class phi0, mpf_class alpha, string count);

13 mpf_class get_f_theta(mpf_class r, mpf_class phi, mpf_class theta, mpf_class

alpha);

14

15 int main() {

16

17 mpf_class alpha = 0.50;

18 mpf_class phi0_lower("0", 500, 10);

19 mpf_class phi0_upper("5", 500, 10);

20

21 int a = runge_kutta(phi0_lower, alpha, "1");

22 int b = runge_kutta(phi0_upper, alpha, "2");

23

37
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24 int i;

25 for(i=3; i<100; i++){

26 mpf_class phi = (phi0_lower + phi0_upper)/2;

27 stringstream ss; ss << i; string s = ss.str();

28 int c = runge_kutta(phi, alpha, s);

29 if(c==0) phi0_lower = phi;

30 else phi0_upper = phi;

31 }

32 return 0;

33 }

34

35 int runge_kutta(mpf_class phi0, mpf_class alpha, string count){

36

37 mpf_class r = 0.001;

38 mpf_class phi = phi0 + ((r*r)/16.0)*(phi0)*(2.0-(phi0)*(3.0-(alpha*phi0)));

39 mpf_class theta = (r/8.0)*(phi0)*(2.0-(phi0)*(3.0-(alpha*phi0)));

40 mpf_class stepSize = 0.001;

41

42 char fileName[1000]; strcpy(fileName, "Iteration ");

strcat(fileName, count.c_str());

43 strcat(fileName, ".dat");

44 ofstream textfile;

45 textfile.open(fileName);

46 textfile << fixed;

47 textfile.precision(100); textfile << "# phi(0) = " << phi0 << "\n";

48 textfile << "# r\t\tphi\n";

49 textfile << fixed;

50 textfile.precision(3); textfile << r << "\t\t";

51 textfile.precision(8); textfile << phi << "\n" ;

52 char exportCommand[1000]; strcpy(exportCommand, "set output ’");

strcat(exportCommand, "Iteration ");

53 strcat(exportCommand, count.c_str());

54 strcat(exportCommand, ".png");

55 char plotCommand[1000];

56 strcpy(plotCommand, "plot ’");

57 strcat(plotCommand, fileName);

58 strcat(plotCommand, "’ using 1:2 with line");

59 mp_exp_t exponent;

60 char *pointerToFileName = mpf_get_str(NULL, &exponent, 10, 0,

phi0.get_mpf_t());

61 char titleCommand[1000];

62 strcpy(titleCommand, "set title \"");

63 strcat(titleCommand, "phi(0) = ");

64 strcat(titleCommand, pointerToFileName);
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65 strcat(titleCommand, "\"");

66 char legendCommand[1000];

67 strcpy(legendCommand, "set key off");

68 char gridCommand[1000]; strcpy(gridCommand, "set grid");

69 char xlabelCommand[1000]; strcpy(xlabelCommand, "set xlabel \"r\"");

70 char ylabelCommand[1000]; strcpy(ylabelCommand, "set ylabel \"phi\"");

71 char pngCommand[1000]; strcpy(pngCommand, "set term png");

72 char x11Command[1000]; strcpy(x11Command, "set term x11");

73 char * commandsForGnuplot[] = {titleCommand, legendCommand, gridCommand,

xlabelCommand, ylabelCommand, pngCommand, exportCommand,

plotCommand, x11Command};

74

75 FILE * gnuplotPipe = popen("gnuplot -persistent", "w");

76 int i;

77 for (i=0; i < 9; i++){

78 fprintf(gnuplotPipe, "%s \n", commandsForGnuplot[i]);

79 }

80

81 mpf_class phiBefore = phi;

82 int boundType = 0;

83 bool boundCheck = false;

84

85 while(r<=150.0){

86

87 mpf_class k_1_phi = theta;

88 mpf_class k_1_theta = get_f_theta(r , phi, theta, alpha);

89 mpf_class k_2_phi = theta+(0.5*k_1_theta*stepSize);

90 mpf_class k_2_theta = get_f_theta(r+(0.5*stepSize),

phi+(0.5*k_1_phi*stepSize), theta+(0.5*k_1_theta*stepSize), alpha);

91 mpf_class k_3_phi = theta+(0.5*k_2_theta*stepSize);

92 mpf_class k_3_theta = get_f_theta(r+(0.5*stepSize),

phi+(0.5*k_2_phi*stepSize), theta+(0.5*k_2_theta*stepSize), alpha);

93 mpf_class k_4_phi = theta+(k_3_theta*stepSize);

94 mpf_class k_4_theta = get_f_theta(r+stepSize, phi+(k_3_phi*stepSize),

theta+(k_3_theta*stepSize), alpha);

95

96 r = r + stepSize;

97 phi = phi + (k_1_phi + (2.0*(k_2_phi + k_3_phi)) +

k_4_phi)*(stepSize/6.0);

98 theta = theta + (k_1_theta + (2.0*(k_2_theta + k_3_theta)) +

k_4_theta)*(stepSize/6.0);

99

100 if(phi<-10.0 || phi>10.0){

101 boundType = 1;
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102 break;

103 }

104

105 if((r>=149.0) && (phi>=phi0)) boundType = 1;

106 if((r>=149.0) && (phi<0.0)) boundType = 1;

107 if(phiBefore<phi) boundCheck = true;

108 if((r>=149.0) && (boundCheck==false)) boundType = 1;

109 phiBefore = phi;

110

111 textfile.precision(3); textfile << r << "\t\t";

112 textfile.precision(8); textfile << phi << "\n" ;

113 }

114

115 textfile.close();

116

117 cout.precision(100); cout << fixed;

118 cout << "Pass: " << count << ": " << phi0 << "\r\n";

119

120 return boundType;

121 }

122

123 mpf_class get_f_theta(mpf_class r, mpf_class phi, mpf_class theta, mpf_class

alpha){

124 return ((phi*(((phi/2.0)*((alpha*phi)-3.0))+1.0)) - ((3.0/r)*theta));

125 }
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A.2 Mathematica Program for the Finite-Difference Method

1 alpha = 0.50;

2

3 rmin = 0.000001;

4 rmax = 60.000001;

5 rdivisions = 60;

6 dr = (rmax - rmin)/rdivisions;

7

8 rGrid = Range[rmin, rmax, dr];

9 pGrid = Array[p, rdivisions + 1, {rmin, rmax}];

10

11 a[r_] := -1;

12 b[r_] := -(3/r);

13 c[r_] := 1;

14 d[r_] := -1.5;

15 e[r_] := alpha/2;

16

17 aGrid = Map[a, rGrid];

18 bGrid = Map[b, rGrid];

19 cGrid = Map[c, rGrid];

20 dGrid = Map[d, rGrid];

21 eGrid = Map[e, rGrid];

22

23 dpdr = NDSolve‘FiniteDifferenceDerivative[Derivative[1], rGrid, pGrid];

24 dpdr2 = NDSolve‘FiniteDifferenceDerivative[Derivative[2], rGrid, pGrid];

25

26 pleft = NSolve[dpdr[[1]] == 0, pGrid[[1]]];

27 pright = NSolve[pGrid[[-1]] == 0, pGrid[[-1]]];

28 boundary = Join[pleft[[1]], pright[[1]]];

29

30 equations = Map[(0 == #) &, Flatten[Table[aGrid[[i]]*dpdr2[[i]] +

bGrid[[i]]*dpdr[[i]] + cGrid[[i]]*pGrid[[i]] + dGrid[[i]]*(pGrid[[i]]^2) +

eGrid[[i]]*(pGrid[[i]]^3), {i, 2, Length[rGrid] - 2}]] /. boundary];

31 intSol = FindRoot[equations[[;; Length[rGrid] - 3]], Map[{#, 1} &, Apply[

Union, Map[Variables, equations [[All, 2]] ] ] ]];

32 boundarySol = (boundary /. intSol);

33 solutionArray = (U /. Join[intSol, boundarySol]);

34 dataPoints = Table[{rmin + i*dr, solutionArray[[i + 1]]}, {i, 0,

Length[rGrid] - 1}];

35 ListPlot[dataPoints, AxesLabel -> {Style[x, Medium, Blue], Style[u,

Medium, Blue]}, PlotRange -> All];



Appendix B

Gel’fand-Yaglom Theorem

In this appendix, a computational method - the so-called Gel’fand Yaglom theorem - for

the functional determinants of one dimensional operators is presented. In section B.1,

the theorem is stated. In section B.2, the theorem is proved [8, 11]. In section B.3, an

example is used to illustrate the theorem.

B.1 Statement of the Theorem

Given operators O1 and O2 on the intervals x ∈ [0, L1] and x ∈ [0, L2] respectively, each

with Dirichlet boundary conditions as follows:

Oi ψ(i)
n (x) = λ(i)

n ψ(i)
n (x), ψ(i)

n (0) = ψ(i)
n (Li) = 0, i ∈ {1, 2}, (B.1)

the ratio of the functional determinants of the operators O1 and O2 is

det (O1)

det (O2)
=
φ1(L1)

φ2(L2)
, (B.2)

where φ1(x) and φ2(x) are given by the related initial value problems:

Oi φi(x) = 0; φi(0) = 0, φ
′
i(0) = 1; i ∈ {1, 2}. (B.3)

It is instructive to pause and appreciate the significance of the above theorem. Basically,

the Gel’fand-Yaglom allows one to bypass the explicit calculation of the infinite discrete

42
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sets of eigenvalues {λ(i)
n } - which may, in many instances, turn out to be a formidable (and

nigh impossible) task - and still obtain the ratio of the functional determinants by solving

related initial value problems B.3 - which are simple to evaluate analytically or implement

numerically. Thus, the appeal of the Gel’fand-Yaglom theorem lies in its remarkable

simplicity and practical utility - it is straightforward to implement numerically.

B.2 Proof of the Theorem

B.2.1 ζ-function regularisation

In Chapter 2, functional determinants are defined in terms of the functional integration

of trajectories in the context of the path integral formalism of quantum field theory.

In this section, an alternative definition of functional determinants in terms of the zeta

function regularisation of operators in the context of the spectral theory of functional

analysis is used. Firstly, the necessity of regularisation for the purposes of calculating

the determinant is motivated, and then a rigorous definition of functional determinants

in terms of a generalised Riemann zeta function is presented, finally ending with a

discussion of the regularisation procedure.

As mentioned in Chapter 2, the functional determinant det O of an operator O is given

simply by the product of its spectrum of eigenvalues {λn} as follows:

det O =
∞∏
n=1

λn (B.4)

In general, the product in equation B.4 is divergent. Therefore, the technique of regular-

isation must be implemented on the problem to extract a finite result from the infinite

product of the eigenvalues. The procedure of regularisation calls for a function that

depends on the spectra of the eigenvalues - a so-called spectral function. To that end,

the generalised Riemann zeta function is chosen for reasons which will become apparent

after the following formal manipulations on the zeta function are observed.

The zeta function ζO(s) of an operator O, one prominent example of spectral functions,

is defined as:

ζO(s) ≡ trace

{
1

Os

}
=

∞∑
n=1

1

λsn
(B.5)
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such that s is a complex parameter and the zeta function at points where the function

does not exist is defined via analytic continuation.

Definition B.5 can be used to calculate the derivative of the zeta function with respect

to s as follows:

ζ ′O(s) = −
∞∑
n=1

ln(λn)

λsn
(B.6)

so that

ζ ′O(0) = −ln

( ∞∏
n=1

λn

)
(B.7)

Therefore, the functional determinant det O is given by:

det O = exp (−ζ ′O(0)) (B.8)

Equation B.8 states that the determinant det O can be found by calculating the deriva-

tive of the associated ζ-function at its origin. This is the reason for choosing the gen-

eralised Riemann zeta function for the purposes of regularisation. The crux of the zeta

function regularisation involves the introduction of the regulator s and taking the limit

in which s goes away after the formal manipulations B.6 and B.7 have been performed.

In this way, the required value has been decoded from the divergent product of the

infinite set of eigenvalues in B.4.

Although the operator O has been assumed to live in an infinite-dimensional vector

space, the formalism of the zeta function and definition B.8 of the functional determinant

is also valid for the case of an operator from a finite-dimensional vector space. However,

in that case, the product of the eigenvalues is already convergent, so the zeta function

regularisation is apparently not of much use.

B.2.2 Contour integration

Equation B.5 defines the zeta function ζO(s) in terms of an infinite sum of terms of the

form 1
λsn

. This equation bears a striking resemblance to Cauchy’s residue theorem in the

following form:



Gel’fand-Yaglom Theorem 45

1

2πi

∫
γ
f(λ) dλ =

∞∑
n=1

Res (f, λn), (B.9)

where Res (f, λn), in correspondence with equation B.5, is the n-th residue 1
λsn

of a

function f(λ) at λ = λn in the complex λ-plane. The function f(λ) is constrained

to be analytic, except for poles or isolated singularities located at λ = λn, within a

region enclosed by the contour γ, as shown in Figure B.2. γ must be a simple, closed,

and positive (circling counterclockwise) contour in order for Cauchy’s residue theorem

to hold. Furthermore, the eigenvalues range over the set of all real positive numbers.

Therefore, the contour γ encloses the positive segment of the real axis.

Figure B.1: Contour γ defined around crossed positive eigenvalues in the complex
λ-plane.

Matching the left-hand sides of equation B.5 and equation B.9, the following expression

for ζO(s) is obtained:

ζO(s) =
1

2πi

∫
γ
f(λ) dλ (B.10)

To calculate ζO(s), the functional form of f(λ) must be chosen. For simplicity, the poles

at λ = λn are assumed to be of order 1. Therefore, the denominator of f(λ) is some

function F(λ) such that the zeroes, each of order 1, of F(λ) are the poles λ = λn.

Furthermore, F ′(λn) 6= 0 as the poles are simple. Therefore, the functional form

f(λ) = C(λ)
F ′(λ)

F(λ)
= C(λ)

d

dλ
lnF(λ) (B.11)
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is a suitable ansatz for f(λ). The residues of f(λ) at the poles λ = λn can be found by

Taylor expanding F(λ) and F ′(λ) about λ = λn as follows:

F ′(λ)

F(λ)
=
F ′(λn) + (λ− λn)F ′′(λn) + (λ−λn)2

2 F ′′′(λ− λn) + . . .

F(λn) + (λ− λn)F ′(λn) + (λ−λn)2

2 F ′′(λ− λn) + . . .

=

(
1

λ− λn

)(F ′(λn) + (λ− λn)F ′′(λn) + (λ−λn)2

2 F ′′′(λ− λn) + . . .

F ′(λn) + (λ−λn)
2 F ′′(λ− λn) + . . .

)
, (B.12)

where the fact that F(λn) = 0 is used, so that

Res(f, λn) = lim
λ→λn

(
(λ− λn) f(λ)

)
= lim

λ→λn

(
(λ− λn) C(λ)

F ′(λ)

F(λ)

)
= lim

λ→λn

(
C(λ)

F ′(λn) + (λ− λn)F ′′(λn) + (λ−λn)2

2 F ′′′(λ− λn) + . . .

F ′(λn) + (λ−λn)
2 F ′′(λ− λn) + . . .

)
= C(λ).

(B.13)

Therefore, one of the simplest possible functional forms of f(λ) is given by

f(λ) = λ−s
F ′(λ)

F(λ)
(B.14)

The complex function f(λ) is multivalued due to the pre-factor λ−s, which takes different

values at angles θ and θ + 2π. Therefore, the domain of f(λ) is chosen to be (−π, π)

and place a branch cut on the negative real axis, marked as a solid black line, in Figure

B.2. Therefore, the contour γ cannot cut across the negative real axis.

Furthermore, the pre-factor λ−s in f(λ) introduces an additional pole at λ = 0 of order

s+ 1. Therefore, the contour γ cannot pass through the origin in Figure B.2.

The contour is now deformed γ → γ− such that it encloses the negative real λ-axis,

rather than the positive real axis, see Fig. 4.1. When shifting the upper and lower half

of the γ−-contour towards the branch cut at the negative real λ-axis, the integrands pick

up a phase of eiπs and eiπs, respectively. Thus Eq. B.10 becomes
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ζO(s) =
1

2πi

[
e−iπs

∫ 0

−∞
dλ λ−s

d lnF(λ)

dλ
+ eiπs

∫ −∞
0

dλ λ−s
d lnF(λ)

dλ

]
=
sin(πs)

π

∫ −∞
0

dλ λ−s
d lnF(λ)

dλ
. (B.15)

There is a pole at λ = 0 of order s, which is why the deformed contour maintains its

orientation with respect to the origin. Also, the contour is deformed in such a way that

it still cuts through a point on the real axis in between 0 and λ1.

Figure B.2: Contour γ− defined by deforming contour γ away from the positive
eigenvalues.

Using definition B.8, the functional determinant det O of the operator O can now be

calculated as

det O = exp (−ζ ′O(0))

= exp
(
− d

ds
ζO

∣∣∣∣
s=0

)
= exp

(
lnF(0)− lnF(−∞)

)
=
F(0)

F(−∞)
. (B.16)

The calculation of F(−∞) can be circumvented if the ratio of the functional determinants

of operators O1 and O2 is evaluated instead and the term F(−∞) is assumed to be the

same for both operators so that



Gel’fand-Yaglom Theorem 48

det O1

det O2
=
F1(0)

F2(0)
(B.17)

In typical physical problems, the operator usually takes the form of a Hamiltonian and

the corresponding functional determinant is normalised with respect to the functional

determinant for the free Hamiltonian operator Ofree. Also, the term F(−∞) is typically

independent of the potential. Therefore, the assumptions used to derive equation B.17

are valid in typical physical problems.

An explicit functional form for {Fi(λ)} is now required to complete the derivation of

the Gel’fand-Yaglom theorem. To this end, operators O1 and O2 are considered on the

intervals x ∈ [0, L1] and x ∈ [0, L2] respectively, each with Dirichlet boundary conditions

as follows:

Oi ψ(i)
n (x) = λ(i)

n ψ(i)
n (x), ψ(i)

n (0) = ψ(i)
n (Li) = 0, i ∈ {1, 2}, (B.1)

The required functions {Fi(λ)} must equal 0 at λ = λ
(i)
n and have a finite value at

λ = 0. All the functions in the sets {ψ(i)
n (0)} and {ψ(i)

n (Li)} satisfy the former criteria,

but none of these are defined for λ = 0. This is because the proof, from the start, has

been presumed to exclude non-positive eigenvalues.

Therefore, in search for an alternative functional form for F(λ), initial value problems

are defined with the same operators O1 and O2, but with Cauchy boundary conditions:

Oi φ(i)
n (x) = κ(i)

n φ(i)
n (x), φ(i)

n (0) = 0, φ′(i)n (0) = 1, i ∈ {1, 2}. (B.18)

Once more, the required functions {Fi(λ)} must equal 0 at λ = λ
(i)
n and have a finite

value at λ = 0. The functions in the set {φ(i)
n (0)}, however, equal 0 at κ = κn. As such,

none of the functions from {φ(i)
n (0)} are valid choices for the functions {Fi(λ)}.

In light of the above discussion, the corresponding sets of eigenvalues in problems B.1

and B.18 must be made equal to each other by setting φ
(i)
n (Li) = 0. It may appear

that the functions {φ(i)
n (x)} are uniquely determined by the initial conditions in B.18

and cannot necessarily satisfy φ
(i)
n (Li) = 0. However, φ

′(i)
n (0) can be rescaled to allow

for φ
(i)
n (Li) = 0 and the normalisation constants are dropped as a ratio of functional

determinants is evaluated.
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Therefore, the functions Fi(λ) take the form

Fi(λ) ≡ φ(i)
λ=0(Li) ≡ φi(Li) (B.19)

such that

Oi φi(x) = 0; φi(0) = 0, φ
′
i(0) = 1; i ∈ {1, 2}. (B.3)

Therefore,

det (O1)

det (O2)
=
φ1(L1)

φ2(L2)
, (B.2)

B.3 Example - The Infinite Square Well

It is instructive compute the determinant of the massive Helmholtz operator [− d2

dx2
+m2]

relative to the determinant of the massless operator [− d2

dx2
], both of which lie on the

interval x ∈ [0, L]. Using Dirichlet boundary conditions as in B.1, the corresponding

eigenvalues λ
(i)
n are given by [m2 + (nπL )2] and [(nπL )2] respectively. Therefore, the ratio

of the functional determinants evaluates as follows:

det[− d2

dx2
+m2]

det[− d2

dx2
]

=
∞∏
n=1

[m2 + (nπL )2]

[(nπL )2]
=
∞∏
n=1

[
1 +

(mL
nπ

)2
]

=
sinh(mL)

mL
(B.20)

The result given above has been obtained using an explicit form for the eigenvalues.

However, the ratio of the functional determinants can also be calculated (without re-

sorting to the eigenvalues) using the Gel’fand-Yaglom theorem. To do so, the related

initial value problems as in B.3 are solved:

[
− d2

dx2
+m2

]
φ1(x) = 0 =⇒ φ1(x) =

sinh(mx)

m
(B.21)

[
− d2

dx2

]
φ2(x) = 0 =⇒ φ2(x) = x (B.22)

Therefore, the ratio of the functional determinants using B.2 evaluates to become:
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det[− d2

dx2
+m2]

det[− d2

dx2
]

=
φ1(L)

φ2(L)
=

sinh(mL)

mL
. (B.23)

The results in equations B.20 and B.23 clearly agree, but the point is that if m2 were

replaced by a nontrivial potential V (x), the first approach, from the eigenvalues, would

be extremely difficult, while the Gelfand-Yaglom approach is still easy.
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