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ABSTRACT 

 

These days, computer simulation is increasingly being used for design and 

performance evaluation of communication systems. When simulating a mobile 

wireless channel for communication systems, it is usually assumed that the 

fading process is a random variate with Rayleigh distribution. In this paper, we 

have tried to understand Rayleigh Fading (which best describes the scenario in 

an urban or macrocell environment) better by comparing different models and 

observing the changes that are caused by varying different parameters.  

 

At present, there are a number of methods to generate the Rayleigh fading 

process, some of them quite recently proposed. Due to the use of different 

Rayleigh fading generators, different simulations of the same communication 

system yield different results. Two methods, viz., the Jakes method and the Dent 

(Modified Jakes) method have been studied, simulated and compared based on 

the Rayleigh fading process properties. Various communication systems have 

been simulated using the Rayleigh fading generators and the differences in the 

results, if any, have been analyzed. It was seen that the Dent method is usually 

seen to better describe a Rayleigh fading process compared to the Jakes 

method. 

 

Furthermore, BER analysis of a Rayleigh Fading Process was also done to see 

the effects on the change of different parameters on the variance of BER with 

respect to the SNR. Also, the Rayleigh Fading Process was compared to the 

phenomenon of AWGN using this process. 
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CHAPTER I 

INTRODUCTION 

Simulation of wireless channels accurately is very important for the design and 

performance evaluation of wireless communication systems and components. 

Fading or loss of signals is a very important phenomenon and must be well 

understood by all engineers related to the Wireless Communications Field. That 

leads us to the fading models which try to describe the fading patterns in different 

environments and conditions. Although no model can ‘perfectly’ describe an 

environment, they strive to obtain as much precision as possible. The better a 

model can describe a fading environment, the better can it be compensated with 

other signals, so that, on the receiving end, the signal is error free or at least 

close to being error free. This would mean higher clarity of voice and higher 

accuracy of data transmitted over wireless medium. 

When simulating the wireless channel for mobile and macro cellular 

communications, it is usually assumed that the fading process is a Rayleigh 

fading process. The discrete samples of the Rayleigh fading process have a 

Rayleigh distribution and are correlated. For generating the Rayleigh fading 

coefficients, two different methods of random variate generations are used. The 

model proposed by Jakes is a commonly accepted model of a multipath fading 

environment. The initial simulation method that was used is the Sum of sinusoids 

method proposed by Jakes. The fading process can also be realized by a 

different model, the Dent Model, which is basically and improvement over the 

Jakes Model. This report attempts to find a well suited Rayleigh fading process 

generation technique for a given communication system. 

Chapter II gives a background on Wireless Communications and Fading 

Channels. 
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Chapter III does a BER Analysis of the Rayleigh fading process and compares 

the differences in BER between Rayleigh Fading and AWGN.  

Chapter IV compares the two generation methods based on the Rayleigh fading 

in terms of their behavior when the different input parameters (including the 

Speed v, the Central Carrier Frequency fc, the Symbol Frequency fs and the 

Number of Channel Coefficients to Generate M) were changed.  

Chapter V compares the Jakes and Dent processes in terms of the value of the 

MSE (Mean Square Error) obtained from the Autocorrelation and Cross-

correlation of the signals. 

Chapter VI concludes the work. 
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CHAPTER II 

 

BACKGROUND ON WIRELESS COMMUNICATIONS 

AND FADING CHANNELS 

 

2.1 Fading and Multipath 

 

Fading refers to the distortion that a carrier-modulated telecommunication signal 

experiences over certain propagation media [7]. In wireless systems, fading is 

due to multipath propagation and is sometimes referred to as multipath induced 

fading. To understand fading, it is essential to understand multipath. In wireless 

telecommunications, multipath is the propagation phenomenon that results in 

radio signals' reaching the receiving antenna by two or more paths. Causes of 

multipath include atmospheric ducting, ionospheric reflection and refraction, and 

reflection from terrestrial objects, such as mountains and buildings. The effects of 

multipath include constructive and destructive interference, and phase shifting of 

the signal. This distortion of signals caused by multipath is known as fading. 

  

In other words it can be said that in the real world, multipath occurs when there is 

more than one path available for radio signal propagation. The phenomenon of 

reflection, diffraction and scattering all give rise to additional radio propagation 

paths beyond the direct optical LOS (Line of Sight) path between the radio 

transmitter and receiver. 

 

2.2. Fading Channels  

 

A Fading Channel is a communications channel which has to face different 

fading phenomenons while the signal is carried from the transmitter to the 

receiver. Fading Channels face a phenomenon called multipath (as described 

above) which occurs when all the radio propagation effects combine in a real 
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world environment. In other words, when multiple signal propagation paths exist, 

caused by whatever phenomenon, the actual received signal level is the vector 

sum of all the signals incident from any direction or angle of arrival. Some signals 

will aid the direct path, while other signals will subtract (or tend to vector cancel) 

from the direct signal path. The total composite phenomenon is thus called 

Multipath.  

 

2.3. Causes of Fading 

 

Fading is caused by different physical phenomemon, some of which have been 

discussed below. 

 

2.3.1  Doppler Shift 

 

 
 

Fig:2.1. Diagrammatic Representation of Doppler Shift 

(Picture Courtesy: Research at University of Southern Maine) 
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Let us consider a situation where a mobile is moving at a constant velocity v 

along a path and the source is moving at a velocity of vs [8]. The observed 

frequency f’ and the emitted frequency f will be related by the following equation: 

f
vv

vf
s

)('
±

=                                                   (2.1) 

It is evident from the formula that the detected frequency increases for objects 

moving towards the observer and decreases when the source moves away. This 

is known as the Doppler Effect. 

 

2.3.2. Reflection  

 

Reflection occurs when a propagating electromagnetic wave impinges upon an 

object which has very large dimensions when compared to the wavelength of the 

propagating wave. In other words it can be said that if the plane wave is incident 

on a perfect dielectric, part of the energy is transmitted and part of the energy is 

reflected back into the first medium. If the second medium is a perfect conductor, 

all the energy is reflected back.  Reflections occur from the surface of the earth 

and from buildings and walls. In practice, not only metallic materials cause 

reflections, but dielectrics also cause this phenomenon. 

 

2.3.3 Diffraction  

 

Diffraction occurs when the radio path between the transmitter and receiver is 

obstructed by a surface that has sharp irregularities (edges). The secondary 

waves resulting from the obstructing surface are present throughout the space 

and even behind the obstacle, giving rise to a bending of waves around the 

obstacle, even when a Line of Sight path does not exist between transmitter and 

receiver. At high frequencies, diffraction, like reflection, depends on the geometry 
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of the object, as well as the amplitude, phase, and polarization of the incident 

wave at the point of diffraction. 

 

2.3.4 Scattering  

 

Scattering occurs when the medium through which the wave travels consists of 

objects with dimensions that are small compared to the wavelength, and where 

the number of obstacles per unit volume is large. Scattered waves are produced 

by rough surfaces, small objects, or by other irregularities in the channel. In 

practice, foliage, street signs, and lamp posts induce scattering in a mobile 

communications system. 

 

2.4  Types of Fading 

 

2.4.1 According to Mutipath 

 

There are two types of fading according to the effect of Multipath. These are 

Large Scale Effect and Small Scale Effect [4]. 

 

2.4.1.1 Large Scale Effect  

In Large Scale Fading, the received signal power varies gradually due to signal 

attenuation determined by the geometry of the path profile. 

 

2.4.1.2 Small Scale Effect  

 

Multipath propagation leads to rapid fluctuation of the phase and amplitude of the 

signal if it moves over a distance in the order of wave length. This is know as 

Small Scale Effects. 
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2.4.2 According to Delay Spread 

 

There are two types of fading according to the effect of Delay Spread. These are 

Flat Fading and Frequency Selective Fading [4]. 

 

2.4.2.1 Flat Fading 

 

Flat Fading is one in which all frequency components of a received radio signal 

vary in the same proportion simultaneously. If the bandwidth of the mobile 

channel is greater than the bandwidth of the transmitted channel, it is called flat 

fading. 

 

2.4.2.2 Frequency Selective Fading 

 

Selective fading or frequency selective fading is a radio propagation anomaly 

caused by partial cancellation of a radio signal by itself — the signal arrives at 

the receiver by two different paths, and at least one of the paths is changing 

(lengthening or shortening). This typically happens in the early evening or early 

morning as the various layers in the ionosphere move, separate, and combine. 

The two paths can both be skywave or one be groundwave. 

Selective fading manifests as a slow, cyclic disturbance; the cancellation effect, 

or "null", is deepest at one particular frequency, which changes constantly, 

sweeping through the received audio. 

 

2.4.3 According to Doppler Spread. 

                         

There are two types of fading according to the effect of Doppler Spread [4]. 

These are Fast Fading and Slow Fading. To understand fast fading and slow 

fading the coherence time must be understood. The terms slow and fast fading 

refer to the rate at which the magnitude and phase change imposed by the 
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channel on the signal changes. The coherence time is a measure of the 

minimum time required for the magnitude change of the channel to become 

decorrelated from its previous value. In other words it can be said that coherence 

time is the time duration over which two received signals have a strong potential 

for amplitude correlation. 

 

2.4.3.1 Slow fading  

 

Slow fading arises when the coherence time of the channel is large relative to the 

delay constraint of the channel. In this regime, the amplitude and phase change 

imposed by the channel can be considered roughly constant over the period of 

use. Slow fading can be caused by events such as shadowing, where a large 

obstruction such as a hill or large building obscures the main signal path between 

the transmitter and the receiver.  

 

2.4.3.2 Fast fading  

 

Fast fading occurs when the coherence time of the channel is small relative to 

the delay constraint of the channel. In this regime, the amplitude and phase 

change imposed by the channel varies considerably over the period of use. In a 

fast-fading channel, the transmitter may take advantage of the variations in the 

channel conditions using time diversity to help increase robustness of the 

communication to a temporary deep fade. Although a deep fade may temporarily 

erase some of the information transmitted, use of an error-correcting code 

coupled with successfully transmitted bits during other time instances can allow 

for the erased bits to be recovered. 
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2.5 Types of Small Scale Fading 

 

There are many models that describe the phenomenon of small scale fading [4]. 

Out of these models, Rayleigh fading, Ricean fading and Nakagami fading 

models are most widely used.  

 

2.5.1. Rayleigh fading model 

 

Rayleigh fading is primarily caused by multipath reception. Rayleigh fading is a 

statistical model for the effect of a propagation environment on a radio signal [3]. 

It is a reasonable model for tropospheric and ionospheric signal propagation as 

well as the effect of heavily built-up urban environments on radio signals. 

Rayleigh fading is most applicable when there is no line of sight between the 

transmitter and receiver. If there is at least one line of sight component, Ricean 

fading is more applicable. 

 

In a wireless system, a signal transmitted into the channel interacts with the 

environment in a very complex way, bouncing off various surfaces along the way 

to the receiver. There are reflections from large objects, diffraction of 

electromagnetic waves around objects. The result of these complex interactions 

is the presence of many signal components, or multipath signals, at the receiver. 

In addition to this, if the transmitter, receiver or the objects in the path of the 

signal are in motion, Doppler shift is introduced. As a result of these two 

phenomenon, the received signal is time varying and may be highly attenuated. 

This is a major impairment in a wireless communication system. At any given 

time instance, a number of plane waves will be incident on the mobile antenna. 

Assuming that the career frequency is fc, and the mobile station is moving at a 

velocity of v, if the nth wave is incident on the mobile antenna at an angle of 

)(Tnθ relative to the direction of motion of the mobile, the Doppler shift introduced 

in the incident wave is given by 
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)(cos)(, tftf dnD θ=     (2.2) 

where 
c

d f
vf =  and c is the wavelength of the transmitted signal. If the 

transmitted Signal s(t) is given by { }tfj cetu π2)(Re = where u(t) is the complex 

lowpass signal, v(t), the received complex low pass signal is given by 

                     (2.3) ( ) ))(()(
0

)(,)()(,

1

])[(2 ttuettv n

N

n

fffj
n

ttnDtntnDc τα τπ −=∑
=

+− −

 

where N is the total number of incident waves and αn(t) and τn(t) are the 

amplitude and time delay. 

 

 

 
 

Fig 2.2. Rayleigh Fading environment in a typical urban area 

In most applications no complete direct LOS propagation exists between the 

base-station antenna and the mobile antenna because of the natural and 

constructed obstacles. This is especially true for urban areas. In the urban areas, 
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every time a signal is reflected, deflected and scattered, new multi path signals  

are created thus leading to more distortion in the received signal. 

2.5.2.Ricean fading model 

The Ricean fading model is similar to the Rayleigh fading model, except that in 

Ricean fading, a strong dominant component is present [4]. This dominant 

component is a stationary (nonfading) signal and is commonly known as the LOS 

(Line of Sight Component) 

 
 

Fig 2.3. Illustration of the LOS (Line of Sight) Component 

 

2.5.3.Nakagami fading model 

 

Nakagami fading occurs for instances of multipath scattering with relatively large 

delay-time spreads, with different clusters of reflected waves. Within any one 

cluster, the phases of individual reflected waves are random, but the delay times 

are approximately equal for all waves [4].  
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2.6 Autocorrelation 

 

The Autocorrelation of a signal is the expected value of the product of a random 

variable or signal realization with a time-shifted version of itself. With a simple 

calculation and analysis of the autocorrelation function, we can discover a few 

important characteristics about a random process. These include: 

* How quickly the random signal or processes changes with respect to the time 

function 

* Whether the process has a periodic component and what the expected 

frequency might be. 

 

2.6.1 In-phase and quadrature component 

 

There are two components in the Autocorrelation Component, the In-Phase 

Component and the Quadrature Component. Every sinusoid can be expressed 

as the sum of a sine function (phase zero) and a cosine function (phase π/2 ). If 

the sine part is called the ‘in-phase'' component’, the cosine part can be called 

the `phase-quadrature' or ‘quadrature’ component. In general, `phase quadrature' 

means `90 degrees out of phase’, i.e., a relative phase shift of  + π/2.  

 

It is also the case that every sum of an in-phase and quadrature component can 

be expressed as a single sinusoid at some amplitude and phase. Figure 2.4 

illustrates in-phase and quadrature components overlaid.  
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Figure 2.4: In-phase and quadrature sinusoidal components. 

 

  

2.7 Cross-correlation 

 

If two processes are wide sense stationary, the cross-correlation is defined as 

the expected value of the product of a random variable from one random    

process with a time-shifted, random variable from a different random process 

 

2.7.1 Intra-fader 

 

The cross-correlation functions R(t) between in-phase and quadrature 

components of any single fader (intra-fader) should be close to zero.  

 

2.7.2 Inter-fader 

 

Also, the cross-correlation functions between any pair of different faders (inter-

fader) should be as close to zero as possible. 
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CHAPTER III 

BER (BIT ERROR RATE) ANALYSIS 

3.1. Varying the Diversity Order 

 

Fig 3.1. BER analysis with different orders of diversity 

The effects of varying different parameters were observed while doing BER (Bit 

Error) Analysis for a Rayleigh Fading Channel. At first, the diversity order was 

varied, keeping the channel type (Rayleigh), Modulation type (PSK) and 

Modulation order (2) fixed. When the diversity order was increased, it was seen 

that the BER decreases faster with increasing SNR (Sound to Noise Ratio).   

Since diversity essentially means the number of independent fading propagation 

paths, it is good to have a higher order of diversity so that the same signal can be 
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sent a number of times which would lead to a better reception at the receiving 

end.  

 

3.2. Varying the Modulation Order 

 

Fig 3.2. BER analysis with different orders of modulation 

Secondly, the Modulation Order was varied keeping the other parameters fixed. 

A Diversity Order of 1 and a Modulation Type of PSK were used for the purpose. 

Modulation Order essentially means the number of bits that can be transmitted in 

the same signal. So a Modulation Order of 16 means that 16 bits of data can be 

transmitted in the same frequency. That is likely to lead to higher error rates. So, 

for any given value of the SNR, it is seen that the BER values is higher for higher 

orders of Modulation.     
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3.3.Varying Modulation Type 

 

Fig 3.3. BER analysis with different types of modulation 

The Modulation Type was varied next, keeping the other parameters fixed. A 

Diversity Order of 1 and a Modulation Order of 2 were used for the purpose. It 

was seen that the values of BER for PSK(Phase Shift Keying) is less than that of 

DPSK(Differential Phase Shift keying) which is less than FSK(Frequency Shift 

Keying). PSK essentially means BPSK(Binary Phase Shift Keying) which is the 

simplest from of PSK using 180 degrees Phase Shift. BPSK modulates at 1 bit 

per symbol which reduces the chance of producing errors. Hence, for any given 

value of the SNR, PSK produces the lowest BER. 
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3.4. Comparison Between AWGN and Rayleigh  

 

Fig 3.4. BER analysis AWGN and Rayleigh fading 

AWGN (Additive White Gaussian Noise) channel model is one in which the 

only impairment is the linear addition of wideband or white noise with a 

constant spectral density. It is present even in complete vacuum or free space 

and does not account for the phenomena of fading, frequency selectivity or 

any other form of interference. 

A comparison was done between AWGN and Rayleigh Fading in terms of the 

BER. Initially, when the SNR is zero, the corresponding values of BER for 

Rayleigh Fading and AWGN are same. With increasing SNR, the gap 

between Rayleigh and AWGN gradually keeps increasing. Rayleigh Fading 

always takes into account the phenomenon of AWGN, so the AWGN is 
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partially responsible for the BER value in Rayleigh Fading. It is not possible to 

avoid AWGN in any fading channel which is evident from the figure above.     
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CHAPTER IV 

 

SIMULATION OF DIFFERENT RAYLEIGH FADING MODELS 

 

4.1 Jakes Method 

 

The Jakes fading model, also known as the Sum of Sinusoids model, is a 

deterministic method for simulating time-correlated Rayleigh fading waveforms 

and is still widely used today. The model assumes that N equal-strength rays 

arrive at a moving receiver with uniformly distributed arrival angles αn, such that 

ray n experiences a Doppler shift ωn, = ωm cos (αn), where ωm =2πfv/c is the 

maximum Doppler frequency shift, v is the vehicle speed, f is the carrier 

frequency, and c is the speed of light [1]. 

 

 
Fig 4.1. Jakes fading model with N=10 

 

Using αn=2πn/Ν, there is quadrantal symmetry in the magnitude of the Doppler 

shift, except for angles 0 and π. As a result, the fading waveform can be modeled 

with No + 1 complex oscillators, where No = (N/2 - 1)/2. 

This leads to the equation, 
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                                                                                                                         (4.1) 

where, k is the waveform index, k=1,2,….N0 and  λ is the wavelength of the 

transmitted carrier frequency. Here, βn = πn/(N0+1). To generate the multiple 

waveform, Jakes suggests using 

1
)1(2

1 00 +
−

+
+

=
N

k
N

n
nk

ππθ  

(4.2) 

A software simulation was carried out using the Jakes Model described above 

and the inputs included the Vehicle Speed v (in kmph), the Central Carrier 

Frequency fc in MHz, the Symbol Frequency fs in kbps, the Number of sub-

channels U and the Number of Channel Coefficients to Generate M. The output 

was shown as a power spectrum, with the variation of the signal power in the y 

axis and the sampling time (or the sample number) on the x axis.  
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The Rayleigh Envelope that results for inputs of v = 100 kmph, fc = 2000 MHz,   

fs =10 kbps, U =3 and M = 100000 is shown below: 

 
Fig 4.2. Simulation of Jakes fading model with typical input values 

 

Afterwards, several input parameters were varied to see how it affects the 

obtained Rayleigh Envelope. The inputs which were varied include: Speed v, the 

Central Carrier Frequency fc, the Symbol Frequency fs and the Number of 

Channel Coefficients to Generate M. 

 

 

4.1.1 Varying the speed 

 

Sets of data for three different speeds (v) were used and the corresponding 

Rayleigh Envelopes that resulted are shown below: 



 22

 
Fig 4.3. Simulation of Jakes fading model with v = 200 km/h 
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Fig 4.4. Simulation of Jakes fading model with v = 50 km/h 
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Fig 4.5. Simulation of Jakes fading model with v = 0 km/h 

 

It can be clearly seen that increasing speeds increase the level of fluctuation of 

the Rayleigh Envelope. With a speed of 0 km/h, that is, the transmitter and 

receiver both stationary, the transmitted signal has no variation and the level of 

fluctuation is zero. 

 

4.1.2 Varying the central carrier frequency 

 

Sets of data for two different Central Carrier Frequencies (fc) were used and the 

corresponding Rayleigh Envelopes that resulted are shown below: 
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Fig 4.6. Simulation of Jakes fading model with fc = 1000 MHz 
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Fig 4.7. Simulation of Jakes fading model with fc = 3000 MHz 

 

Therefore it is seen that the fluctuation and variance increases with higher central 

carrier frequency. This happens because, with a given bandwidth, and all other 

factors remaining constant, a higher frequency means a higher ISI and hence 

higher fluctuations in the signal. 

 

4.1.3 Varying the symbol frequency 

 

Sets of data for two different Symbol Frequencies (fs) were used and the 

corresponding Rayleigh Envelopes that resulted are shown below: 



 27

Fig 4.8. Simulation of Jakes fading model with fs = 10 ksps 
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Fig 4.9. Simulation of Jakes fading model with fs = 100 ksps 

 

Therefore it is clearly seen that with a higher Symbol Frequency, the fluctuation 

and variance of the Rayleigh Envelope is lower. This is logically true since a 

higher amount of resources gets used for the same amount of transmitted data 

so the chance of an error happening gets significantly lower.    

 

4.1.4 Varying the number of channel coefficients 

 

Sets of data for three different Number of Channel Coefficients (M) were used 

and the corresponding Rayleigh Envelopes that resulted are shown below: 



 29

 
Fig 4.10. Simulation of Jakes fading model with M = 10000 
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Fig 4.11. Simulation of Jakes fading model with M = 1000 
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Fig 4.12. Simulation of Jakes fading model with M = 100 

 

The above diagrams lead us to conclude that the higher the number of channels 

it is required to generate, higher will be the fluctuation in a given time period. For 

a requirement of 100 Channel Coefficients only, fluctuation is very low over the 

entire period of time. 

 

4.2 Dent Method 

 

The Jakes Model has shortcomings in the correlation functions in the way that it 

must satisfy the following constraint 

2/,, ππθθ +=− iknjn                           (4.3) 

If this condition is not satisfied, the correlation between certain waveform pairs 

can be quite significant which is not desirable. To overcome this problem, Dent 
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suggested the usage of one type of orthogonal functions (Walsh Hadamard 

Code) [1]. To completely eliminate correlation, the oscillators must have equal 

power. This is achieved by reformulating the Jakes model in terms of slightly 

different arrival angles. 

 

 
Fig 4.13. Dent fading model with N=12 

 

Using αn=(2πn/Ν)–(π/Ν) and βn=(πn/Ν0), the waveform can be described  by 

the following equation: 
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where k=1,2…N0, N0=N/4, αn , βn and θn are the independent random phases, 

each of which is uniformly distributed in [0, 2π). Ak(n) is the kth Walsh-Hadamard 
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Just as was the case in Jakes Method, several input parameters were varied in 

the Dent method and the corresponding Rayleigh Envelope found. The inputs 
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which were varied include: Speed v, the Central Carrier Frequency fc, the 

Symbol Frequency fs and the Number of Channel Coefficients to Generate M. 

 

4.2.1 Varying the speed 

 

Sets of data for three different speeds (v) (the same speeds that were used in the 

Jakes Method) were used and the corresponding Rayleigh Envelopes that 

resulted are shown below: 

 
Fig 4.14. Simulation of Dent fading model with v = 200 km/h 
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Fig 4.15. Simulation of Dent fading model with v = 50 km/h 
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Fig 4.16. Simulation of Dent fading model with v = 0 km/h 

 

It can be clearly seen that increasing speeds increase the level of fluctuation of 

the Rayleigh Envelope jus t like it happened with the Jakes Method. With a 

speed of 0 km/h, that is, the transmitter and receiver both stationary, the 

transmitted signal has no variation and the level of fluctuation is zero. 

 

4.2.2 Varying the central carrier frequency 

 

Sets of data for two different Central Carrier Frequencies (fc) (the same 

frequencies that were used in the Jakes Method) were used and the 

corresponding Rayleigh Envelopes that resulted are shown below: 
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Fig 4.17. Simulation of Dent fading model with fc = 1000 MHz 
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Fig 4.18. Simulation of Dent fading model with fc = 3000 MHz 

 

Therefore it is seen that the fluctuation and variance increases with higher central 

carrier frequency (just as it was seen in the Jakes Model). This happens 

because, with a given bandwidth, and all other factors remaining constant, a 

higher frequency means a higher ISI and hence higher fluctuations in the signal. 

 

4.2.3 Varying the symbol frequency 

 

Sets of data for two different Symbol Frequencies (fs) (the same frequencies that 

were used in the Jakes Method) were used and the corresponding Rayleigh 

Envelopes that resulted are shown below: 



 38

Fig 4.19. Simulation of Dent fading model with fs = 10 ksps 
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Fig 4.20. Simulation of Dent fading model with fs = 100 ksps 

 

Therefore it is clearly seen that with a higher Symbol Frequency, the fluctuation 

and variance of the Rayleigh Envelope is lower. Similar results were found in the 

Jakes Method.    

 

4.2.4 Varying the number of channel coefficients 

 

Sets of data for three different Number of Channel Coefficients (M) (the same 

values of M that were used in the Jakes Method) were used and the 

corresponding Rayleigh Envelopes that resulted are shown below: 
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Fig 4.21. Simulation of Dent fading model with M = 10000 
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Fig 4.22. Simulation of Dent fading model with M = 1000 
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Fig 4.23. Simulation of Dent fading model with M = 100 

 

The above diagrams lead us to conclude that the higher the number of channels 

it is required to generate, higher will be the fluctuation in a given time period. 

Similar results were found in the Jakes Method.  
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CHAPTER V 

 

COMPARISON OF THE DIFFERENT MODELS 

 

 

5.1 Using Mean-Square Errors of the Autocorrelation 

 

To compare between the different models used to describe Rayleigh Fading, the 

Mean Square Errors of the Autocorrelation and Cross-correlation has been 

chosen as a parameter to measure the ‘correctness’ of the model which 

describes its applicability to real life situations [2] . For the purpose, a simulation 

was run to generate four uncorrelated complex baseband fading waveforms 

using N0=8 oscillators. With a Doppler frequency ωm=2π(20), 384 000 samples 

of each fading waveform were generated using a sampling frequency fs=3840 

Hz. The Jakes and Dent models were then compared and evaluated in the 

correlation properties. The autocorrelation functions R(τ) of in-phase and 

quadrature components should be close to their theoretical Bessel function 

(J0(ωmτ))=2. So the quality of the fade’s autocorrelation function can be 

measured by the mean-square-error defined by 

N

fiJfiR
N

i
sms∑

−

=

−
=

1

0

2
0

2
)2/)/(())/(( ω

ε    (5.1) 

 

 

where N denotes the time interval over which the mean-square-error is 

evaluated, and we choose N=1000. The results are given in Table 5.1. 

 

 



 44

  Jakes Model Dent Model 

In-phase component 6.0 x 10-3  5.0 x 10-3 

Quadrature 

component 

6.7 x 10-3 6.1 x 10-3 

 

Table 5.1 Autocorrelations of the two models 

 

5.1 Using Mean-Square Errors of the Cross-correlation 

 

The cross-correlation functions R(τ) between in-phase and quadrature 

components of any single fader (intra-fader) should be close to zero, as also 

should the cross-correlation functions between any pair of different faders (inter-

fader). Therefore the quality of the cross-correlation function can be measured by 

the mean-square-error defined by 
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where N=1000.The results are presented in Table 5.2. In general, the results 

obtained from the autocorrelation and the cross-correlation results indicate good 

model performance for the Dent model compared to the Jakes Model. 

 Jakes Model Dent Model 

Intra-fader 7.3 x 10-3 7.0 x 10-3 

Inter-fader 4.94 x 10-2 2.59 x 10-2 

 

Table 5.2 Cross-correlations of the two models 
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CHAPTER VI 

 

CONCLUSION 

 

The two fading models described here, Jakes and Dent (which is basically an 

improvement of the Jakes Model) have very similar properties in terms of the 

physical parameters that are taken into account when designing the models. 

Also, it was seen, that both of them behaved in the same pattern in the 

simulation models when subject to change in the input parameters of Speed v, 

the Central Carrier Frequency fc, the Symbol Frequency fs and the Number of 

Channel Coefficients to Generate M.  

 

But differences arose when the MSE (Mean-Square Error) was calculated for the 

Autocorrelation and Cross-correlation of the signals using the Jakes and Dent 

Methods. It was seen that the values of the MSE for the In-phase Component 

and Quadrature Component were both lower for the Dent Method. Also, the MSE 

values for the Cross-correlation functions, both Intra-fader and Inter-fader, were 

lower for Dent compared to the Jakes Model.  

 

And of course, as mentioned before, the scope of signals not getting correlated in 

the Jakes method were very limited and hence the Dent method was designed 

with an orthogonal function, namely the Walsh-Hadamard Code. This ensured 

that signals were much less correlated to each other.  

 

Furthermore, two other new models have been designed in recent times, the Li 

and Huang Model and the Wu model. Both have built up on the initial Jakes 

Model, trying to reduce the computational complexities and the Mean Square 

Error values.  In terms of correlation parameters, the Wu model claims to be 

almost as good as that of the Li and Huang model, and to be better than that of 

the Jakes and Dent models. However, the computational complexity of the Wu 
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model is said to be only half of the Li and Huang model, which is almost the 

same as that of the Jakes and Dent models. On a concluding note, it is well 

worth repeating that none of the models can be said to be ‘perfect’, nor do they 

claim to be so. It has remained and will always remain a strive towards 

perfection.  
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A. MATLAB Code for BER Analysis (Varying the Order of Diversity) 
 
%Thesis Topic: Comparison Of different models for the analysis of rayleigh 
fading channels  
%Done by:  
%Mahdin Mahboob(ID: 05310051) 
%and Sajidul Alam(ID: 06310054) 
 
X1=1:1:18; 
 
k=18; 
for n = 1:k 
    EbNo = 1:1:18; 
    M = 2;  
    divorder = 2; 
    B = berfading(EbNo,'psk',M,divorder); 
 
end 
 
semilogy(X1,B,'ro-'); 
 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
hold on 
 
for n = 1:k 
    EbNo = 1:1:18; 
    M = 2; % 
    divorder = 4; 
    B = berfading(EbNo,'psk',M,divorder); 
 
end 
 
semilogy(X1,B,'b*-'); 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
 
hold on 
     
for n = 1:k 
    EbNo = 1:1:18; 
    M = 2; % 
    divorder = 8; 
    B = berfading(EbNo,'psk',M,divorder); 



 ii

 
end 
 
semilogy(X1,B,'g^-'); 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
legend('div =2','div=4','div =8' ); 
     
 
 
B. MATLAB Code for BER Analysis (Varying the Modulation Order) 
 
 
 
%Thesis Topic: Comparison Of different models for the analysis of Rayleigh 
fading channels  
%Done by:  
%Sajidul Alam(ID: 06310054) 
%and Mahdin Mahboob(ID: 05310051) 
 
 
X1=1:1:18; 
 
k=18; 
 
 
for n = 1:k 
    EbNo = 1:1:18; 
    M = 2; % 
    divorder = 1; 
    B = berfading(EbNo,'psk',M,divorder); 
 
end 
 
semilogy(X1,B,'ro-'); 
 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
hold on 
 
for n = 1:k 
    EbNo = 1:1:18; 
    M = 8;  
    divorder = 1; 
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    B = berfading(EbNo,'psk',M,divorder); 
 
end 
 
semilogy(X1,B,'b*-'); 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
 
hold on 
 
     
for n = 1:k 
    EbNo = 1:1:18; 
    M = 16;  
    divorder = 1; 
   
    B = berfading(EbNo,'psk',M,divorder); 
 
end 
 
semilogy(X1,B,'g^-'); 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
 
legend('Modulation Order=2','Modulation Order=8','Modulation Order=16' ); 
     
     
 
C.MATLAB Code for BER Analysis (Varying the Modulation type) 
 
 
 
%Thesis Topic: Comparison Of different models for the analysis of Rayleigh 
fading channels  
%Done by:  
%Mahdin Mahboob(ID: 05310051) 
%and Sajidul Alam(ID: 06310054) 
 
 
X1=1:1:18; 
 
k=18; 
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for n = 1:k 
    EbNo = 1:1:18; 
    M = 2; % 
    divorder = 1; 
    B = berfading(EbNo,'psk',M,divorder); 
 
end 
 
 
semilogy(X1,B,'ro-'); 
 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
hold on 
 
for n = 1:k 
    EbNo = 1:1:18; 
    M = 2;  
    divorder = 1; 
    B = berfading(EbNo,'dpsk',M,divorder); 
 
end 
 
semilogy(X1,B,'b*-'); 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
 
hold on 
     
for n = 1:k 
    EbNo = 1:1:18; 
    M = 2;  
    divorder = 1; 
   
    B = berfading(EbNo,'fsk',M,divorder,'noncoherence'); 
 
end 
 
semilogy(X1,B,'g^-'); 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
 
legend('Modulation type=PSK','Modulation type=DPSK','Modulation type=FSK' ); 



 v

D.MATLAB Code for Comparison Between AWGN and Rayleigh 
 
 
%Thesis Topic: Comparison Of different models for the analysis of Rayleigh 
fading channels  
%Done by:  
%Mahdin Mahboob(ID: 05310051) 
%and Sajidul Alam(ID: 06310054) 
 
 
X1=1:1:18; 
 
k=18; 
 
 
    for n = 1:k 
       
        B(n) = berawgn(n,'psk',2,'nondiff'); 
         
    end 
     
    semilogy(X1,B,'ro-'); 
 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
 
hold on 
 
 
X1=1:1:18; 
 
k=18; 
 
 
for n = 1:k 
    EbNo = 1:1:18; 
    M = 2;  
    divorder = 4; 
    B = berfading(EbNo,'psk',M,divorder); 
 
end 
 
 
semilogy(X1,B,'b^-'); 
xlabel('SNR(dB)---------->'); 
ylabel('BER <in semilog> -------------->'); 
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 legend('AWGN','Rayleigh'); 
     
 
E. MATLAB Code for Jakes Model 
 

%Thesis Topic: Comparison Of different models for the analysis of rayleigh 

fading channels  

%Done by:  

%Mahdin Mahboob(ID: 05310051) 

%and Sajidul Alam(ID: 06310054) 

 

function 

[chann,fm,doppler_rate]=modified_jakes_convert_2_jakes_1(v,fc,fs,U,M,segma) 

 

% v:  Vehicle speed in kmph 

% fc: Central carrier frequency in MHz 

% fs: Symbol frequency in ksps 

% U:  Number of sub-carriers or sub-channels 

% M:  Number of channel coefficients to generate 

% segma: Variance of the channel coefficients 

% chann: channels coefficients matrix of size U by M 

% fm: Maximum doppler frequency in Hz 

% doppler_rate: Doppler rate or fading rate 

 

 

% Example:  

% -------- 

% 

[chann,fm,doppler_rate]=modified_jakes_convert_2_jakes_1(100,2000,10,3,1000

0,0); 
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    fm=(1e3/3600)*v*fc/3e2; % maximum doppler frequency in Hz 

    doppler_rate=fm/(fs*1000); 

    No=24; % number of distinct oscilators 

    NN=4*No; % total number of osillators 

    omega_m=2*pi*fm; % maximum doppler frequency 

     

    for u=1:U 

        sum=0; 

        t=1/(fs*1000):1/(fs*1000):(1/(fs*1000))*M; % sampling frequency 

        for n=1:No 

           omega_n=omega_m*cos(2*pi*(n)/NN); % modified line 

           sum=sum+(cos(pi*n/No)+j*sin(pi*n/No))*cos(omega_n*t+theta(n)); % sum 

of No distinct oscillators 

            

        end 

        T=sqrt(2/No)*sum; 

                      

        T=repmat(10.^(segma/20),1,M).*T; % Define the variance of the channel 

(segma) in dB. 

        

        chann(u,:)=T; % the u'th sub-channel 

    end 

     

    % Plot the Rayleigh envelope for the first channel 

    figure(1) 

    plot(10*log10(abs(chann(1,:).^2)),'r') 

    hold on 

    plot(repmat(10*log10(var(chann(1,:))),M,1),'g') 

    ylabel('Rayleigh Envelope in dB');  

    xlabel('Time');  
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    hold on 

 

F. MATLAB code for Dent Model 
 

%Thesis Topic: Comparison Of different models for the analysis of rayleigh 

fading channels  

%Done by:  

%Mahdin Mahboob(ID: 05310051) 

%and Sajidul Alam(ID: 06310054) 

 

function [chann,fm,doppler_rate]=modified_jakes_1(v,fc,fs,U,M,segma) 

 

% v:  Vehicle speed in kmph 

% fc: Central carrier frequency in MHz 

% fs: Symbol frequency in ksps 

% U:  Number of sub-carriers or sub-channels 

% M:  Number of channel coefficients to generate 

% segma: Variance of the channel coefficients 

% chann: channels coefficients matrix of size U by M 

% fm: Maximum doppler frequency in Hz 

% doppler_rate: Doppler rate or fading rate 

 

% Example:  

% -------- 

% [chann,fm,doppler_rate]=modified_jakes_1(100,2000,10,3,10000,0); 

 

    fm=(1e3/3600)*v*fc/3e2; % maximum doppler frequency in Hz 

    doppler_rate=fm/(fs*1000); 

    No=24; % number of distinct oscilators 

    NN=4*No; % total number of osillators 
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    omega_m=2*pi*fm; % maximum doppler frequency 

    H=hadamard(No); % Walsh_Hadamard codes, to generate uncorrelated 

channels 

            for n=1:No 

         theta(n)=rand*2*pi;  % Randomly generated initial phases   

     end 

 

    for u=1:U 

        sum=0; 

        t=1/(fs*1000):1/(fs*1000):(1/(fs*1000))*M; % sampling frequency 

        for n=1:No 

            omega_n=omega_m*cos(2*pi*(n-0.5)/NN); 

            sum=sum+H(u,n)*(cos(pi*n/No)+j*sin(pi*n/No))*cos(omega_n*t+theta(n)); 

% sum of No distinct oscillators 

        end 

        T=sqrt(2/No)*sum; 

        T=repmat(10.^(segma/20),1,M).*T; % Define the variance of the channel 

(segma) in dB. 

        

        chann(u,:)=T; % the u'th sub-channel 

    end 

     

    % Plot the Rayleigh envelope for the first channel 

    figure(1) 

    plot(10*log10(abs(chann(1,:).^2)),'b') 

    hold on 

    plot(repmat(10*log10(var(chann(1,:))),M,1),'r') 

    ylabel('Rayleigh Envelope in dB');  

    xlabel('Sampling Time');  

     

    legend('Power','Variance',2,'Location','NorthEast');         
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