Solving University Course Scheduling Problem Using Genetic

 Algorithm and analyzing results with Other Algorithms

Authors
Md. Ashraful Alam 12101108

Toushika Islam 11101002

Duke Joseph 10201038

Supervised By
Moin Mostakim

A thesis presented for the degree of B.Sc in Computer Science And Engineering

Department of Computer Science and Engineering
BRAC University
Bangladesh

Abstract

Solving University Course Scheduling Problem Using Genetic Algorithm and analyzing results with Other Algorithms

A study on course timetabling problem which is a combinatorial optimization NP-hard problem. The aim of this thesis is to find optimal or near optimal solution of course scheduling for Computer Science And Engineering Department Of BRAC University. Different solution methods for course timetabling exists hence in this thesis Genetic Algorithms is used to generate feasible solution and Q-learning is action for evaluating results. Experimental data sets are parsed from a given structure. Different constraints are handled with discrete fitness evaluation. Schedule conflicts are handled after producing random generation. Finally, results are tested according to their performance and presented with a feasible representation mode.

Dedication

To our beloved parents for their love
To our respected teachers for direct and indirect help through our work To BRAC University for which this thesis became possible.

Declaration

We, hereby declare that the results of this thesis are obtained by our own work and implementation. Resources and materials of this thesis found and develop by other researchers are carefully mentioned in reference citation. This thesis has not been published or presented in parts or as a whole for any Degree.

Authors Signature
\qquad
Md. Ashraful Alam
\qquad

Toushika Islam
\qquad

Duke Joseph
\qquad

Acknowledgment

We wish to express our sincere gratitude to our honorable supervisor, Mr. Moin Mostakim Sir for giving us the opportunity to work with him as well as guiding and tolerating some of our premature thoughts through out the journey. Furthermore, We would like to thank Mrs. Farzana Rashid mam who suggested us to work on this topic and provided us basic progressive thoughts and strategies until she left for PhD. Our special thanks to Md. Shamsul Kaonaine sir for guidance and encouragement in carrying out this thesis. We also express our gratitude to the official and other staff members Of BRAC University who rendered their help during the period of our thesis. Best regards from our heart goes to our parents who have been providing greatest support not only to carry on the this thesis but also throughout our life. Finally, We the participants of our thesis, Md. Ashraful Alam, Toushika Islam and Duke Joseph also like to thank each other to carry out the thesis with harmony.

Contents

1 Introduction 8
1.1 Objectives 9
2 Scheduling 10
2.1 Non-Academic Scheduling 11
2.2 Academic Scheduling 11
3 Algorithms 13
3.1 Genetic Algorithm 13
3.1.1 Selection 14
3.1.2 Crossover 16
3.1.3 Mutation 17
$3.2 \quad$ Simulated Annealing 17
3.2.1 Background From Physics 17
3.2.2 SA Pseudo code 18
3.2.3 Neighborhood Search 19
3.2.4 Cost Calculation 19
3.2.5 Cooling Schedule 21
3.3 Q-Learning 21
3.4 Human Machine Interaction 27
4 Problem Definition 28
4.1 Problem for BRAC University 29
4.1.1 Constraints for BRAC University 29
4.1.2 Multidimensional representation 30
4.1.3 Resources of BRAC University 31
5 Problem Solving Approach 32
5.1 Genetic Algorithm Approach 33
5.1.1 Chromosome Encoding 33
5.2 Data Set 33
5.3 Probability Analysis 35
6 Data Manipulation 38
6.1 The Database 39
6.1.1 System Architecture 39
6.1.2 Database Schema 40
6.2 Program 40
6.2.1 Filter Mechanism 43
6.2.2 Crossover Mechanism 43
6.2 .3 mutation Mechanism 43
7 Result Representation 44
7.1 New Schedule 44
7.2 Result Comparison 59
8 Future Work 61
9 Conclusion 62

Chapter 1

Introduction

An inevitable problem that every University has to solve by any mean is to schedule its courses. More specifically, individual departments are responsible for doing this task. It is very much time consuming to meet all the constraints while making the schedule manually. Automated timetabling is a task to provide optimal or near optimal solutions within a short period of time ensuring a quality schedule using different optimization techniques.

The problem can be defined as a task where a number of University courses' related events are to be allocated in limited resources under a set of constraints. Violation of the constraints should be kept as minimum as possible even though it is considered and proved as NP-complete problem.

Different types of scheduling problem are described in literature which are very much similar to this problem. Examination scheduling, lab scheduling, job scheduling e.t.c. shows similar behavior in functionality and complexity. Each problem varies along with their constraints.

1.1 Objectives

In this thesis paper different semester's course schedules from BRAC University CSE department are observed, studied and analyzed for defining patterns and assemble data. Genetic algorithm is used to provide solution under constraints and Q learning is implemented to check whether the solution is fair enough or not. So in short the objective of this thesis are:

- Collection and processing of raw data from different sources.
- Analysis and group them into different sets of data according to the criteria they need to be sorted.
- Implementation of Genetic Algorithm to generate solution
- Evaluate fitness and continue until fitness is acceptable.
- validation and comparison of obtained results.

Chapter 2

Scheduling

Scheduling refers to the set of rules and mechanisms to maintain the order of our everyday work.Different institutions have different policies to make up their own schedule based on their requirements. On the contrary, in our everyday life from morning till evening, we all have to go through a certain schedule to perform our work orderly. So, it is inevitable issue to all. A timetable is such a model that could be educational, transport, job, sports or even anything which needs to be satisfied under certain constraints during allocation.

According to, Anthony Wren(1996)[22] scheduling can be defined "Time tabling is the allocation, subject to constraints, of given resources of objects being placed in space-time, in such a way as to satisfy as nearly as possible a set of desirable objectives." 2]

As being an NP-complete problem, no method is able to solve it avoiding polynomial amount of time. [7] [2]

2.1 Non-Academic Scheduling

There are several tasks which are very important to be organized in the parameter of time. Any kind of violation could be disasters in this type of scheduling. Economic,social even life threatening situation could be arisen. Some of these kinds of scheduling are:

- Airport Scheduling
- Sports Scheduling
- Traffic Scheduling
- Employee Scheduling

2.2 Academic Scheduling

Different types of models can be found in use of academic scheduling which behaves several ways in their characteristics. Most of the models are handling academic scheduling chaos. Most common models for academic scheduling are :

- School Scheduling is one of the most important phenomenon of educational structure. To manage the resources of school ,the authority provides an optimal schedule maintaining the constraints. Basically,every year due to change of students number, number of class room, teachers number the schedule might have changed. The authority's main focus is to provide an optimal schedule for the school by analyzing it's previous data.
- College Scheduling is similar to the school scheduling. But, over here the
management have to be more careful to generate this schedule. Rather than school, in college there are more subjects, extra curricular activities, the management gets into trouble to fix up an optimal routine. On the other hand, each college subject consists of two parts and each part has it's own lab as well as theory class. So, the management usually try to complete one part in a year and another part in next year. As a result they have to provide at least two different routine to perform this task.
- University Scheduling is another major scheduling on regarding platform. Different Universities have their own way to provide their own routines. Some University Provide yearly routines and few university provides semester routine(consists of consecutive few months) depending on the resources of their curriculum.
- Exam Scheduling topic comes at the end of a semester or a term ; so that, the authority can know about students progress. From it's they can also take decision where to progress and also think about the improvement of their providing routine so that student can make the best use of that schedule.For this reason, all the educational institutions generates their own schedule by considering student,instructors and management's suitable times.
- Lab Scheduling is a part of curriculum design. Without hindering other schedule the authority also provide a schedule for performing lab work.Every educational institutions have their own lab schedule according to their willing. When they generates this routine they mainly focus on to manage atleast one day to perform that lab work.

Chapter 3

Algorithms

3.1 Genetic Algorithm

Computational models belong to evolutionary Algorithms class as well Artificial Intelligence. A Function optimizer works on basis of natural evolution like Selection, Crossover, Mutation, and Inheritance which is also used solving complex optimization problems comparatively for bigger search spaces. A Genetic Algorithm has many steps maintaining few consequences. First of , it generates a random population using different parametric data and condition. At the next step, it evaluates the fitness and select them for further steps. Finally, It(GA) manipulates some of it's offspring for better fitness if needed.

3.1.1 Selection

Reproduction (or selection) is an operator that makes more copies of better strings in a new population. Reproduction is usually the first operator applied on a population. During each successive generation, a proportion of existing population is selected to breed a new generation. Individual solutions are selected through fitness-based process, where fitter solutions are typically more likely to be selected. Selection methods rate the fitness of each individual and preferentially select the best solution.

Common Methods of Selection are:

- Roulette wheel method.
- Tournament selection.
- Stochastic remainder selection.

We are using Roulette wheel for our research work.

Roulette wheel Selection:

The $i_{t} h$ string in the population is selected with a probability proportional to f_{i}. Since the population size is usually kept fixed in a simple Genetic Algorithm, thus the sum of the probability of each string being selected for the mating pools must be one. Therefore, the probability for selecting the string is [8]

$$
P_{i}=\frac{f_{i}}{\sum_{i=1}^{n} f_{i}}
$$

Weakest Chromosome

Fittest
Chromosome

Roulette wheel pseudo code:

```
for all members of population
    sum += fitness of this individual
    end for
    for all members of population
                                probability = sum of probabilities +
        (fitness / sum)
        sum of probabilities += probability
            end for
    loop until new population is full
            do this twice
                        number = Random between 0 and 1
                        for all members of population
                                    if number > probability
                                    but less than next probability
                                    then you have been selected
                                    end for
    end
    create offspring
    end loop
```


3.1.2 Crossover

A crossover operator is used to recombine two strings to get a better string. The next step after selection is crossover which generates a second generation population of solutions from those selected through selection.

Some Common types of Crossover: [19] [8]

- One site crossover
- Two site crossover
- Trade of Uniform Crossover(TOUC).

Currently, in our research work we are using one site crossover. Crossover is advantageous over the conventional method because through crossover we can easily exchange the information in the timetable which makes it optimal and effective as per the requirements.

3.1.3 Mutation

Mutation adds new information in a random way to the genetic search process and ultimately helps to avoid getting trapped at local optima. It is an operator that introduces diversity in the population whenever the population tends to become homogeneous due to repeat use of reproduction and crossover operators. (15) 13]

3.2 Simulated Annealing

3.2.1 Background From Physics

From the solid state physics, we first come to know about annealing process from where the simulated annealing algorithm is introduced. First, a solid gets high temperature and then again it comes back to it's normal state. The solid particles achieve higher mobility due to increase higher temperature. Different locations can be reached around the solids by the particles because the temperature gets lower slow enough. There is term called Metropolis loop which indicates a repeating procedure which runs till the thermal equilibrium is achieved.

In the solid state physics, solid matters have characteristics to be at energy state E with temperature T. The probability of remaining at state E is [2]

$$
P(E)=\left(\frac{1}{Z(T)} * e^{\frac{e_{s}}{K_{Z} * T}}\right)
$$

Here, K_{Z} is Boltzmann constant and the temperature dependent normalization factor is $Z(T)$.

3.2.2 SA Pseudo code

In pseudo code Simulated annealing can be written as [2]
\Rightarrow Random initial solution $S=S_{0}$
\Rightarrow Select an initial Temperature $T=T_{0}>0$
\Rightarrow Select a Temperature reduction rate α
\Rightarrow loop
\Rightarrow loop
$\Rightarrow \quad S^{\prime}=\operatorname{NeighborhoodSearching}(S)$
$\Rightarrow \quad \delta=F\left(S^{\prime}\right)-F(S)$
$\Rightarrow \quad$ if $\left(\delta<=0\right.$ or $\left.\exp \left(-\frac{\delta}{T}<\operatorname{rand}[0,1]\right)\right)$
$\Rightarrow \quad S=S^{\prime}$
$\Rightarrow \quad$ end if
\Rightarrow until Temperature normal
$\Rightarrow \quad \mathrm{T}=$ CoolingSchedule (t)
\Rightarrow until stop condition $=$ true

3.2.3 Neighborhood Search

One of the key components of simulated annealing method is neighborhood searching which performs to find out next possible solution set.

- Firstly,it search for randomly chosen neighbors as solution. This part is called simple searching neighborhood.
- Secondly, the algorithm goes for swapping the neighbors as per needed.
- Finally, the method runs with the searching and the swapping both.

3.2.4 Cost Calculation

Cost calculation depends on problem definition, as the problems varies cost calculation parameters also changes. For scheduling purpose, we consider cost in three types: [2]

- Search Cost
- Swap Cost
- Constraint Cost

Search Cost

In neighborhood structure, for each solution set different types of complexity comes up like data structures and run time complexity. This leads us the search cost.

Swap Cost

When a huge number of solution set needs to be swapped among neighborhood,
it charges a cost function and get added to the total cost.

Constraint Cost [2]

Several types of constraints we face in scheduling problem and each constraint allows cost due to violation. If time slot constraint is violated then the cost

$$
F_{1}=w_{1} \sum_{i=1}^{n} T_{i}
$$

For Instructor assignment violation,

$$
F_{2}=w_{2} \sum_{i=1}^{m} I_{i}
$$

For Course violation,

$$
F_{3}=w_{3} \sum_{i=1}^{r} C_{i}
$$

For slot violation,

$$
F_{4}=w_{4} \sum_{i=1}^{p} S_{i}
$$

For soft constraint violation,

$$
F_{5}=w_{5} \sum_{i=1}^{q} S c_{i}
$$

For Room Conflict,

$$
F_{6}=w_{6} \sum_{i=1}^{u} R_{i}
$$

So in total the cost for schedule by simulated annealing would be [2]

$$
F=F_{1}+F_{2}+F_{3}+F_{4}+F_{5}+F_{6}
$$

3.2.5 Cooling Schedule

It's an optimization algorithm which uses heuristic values. In every step of iteration, the new temperature is being calculated using previous temperature multiplied by cooling rate. This process runs for the whole schedule until the energy comes down to normal for the timetable.

3.3 Q-Learning

[3] [20] Q learning, a form of reinforcement learning in which the agent learns to assign values to state-action pairs. We need first to make a distinction between what is true of the world and what the agent thinks is true of the world. First let's consider what's true of the world. If an agent is in a particular state and takes a particular action, we are interested in any immediate reinforcement that's received but also in future reinforcements that result from ending up in a new state where further actions can be taken, actions that follow a particular policy. Given a particular action in a particular state followed by behavior that follows a particular policy, the agent will receive a particular set of reinforcements. This is a fact about the world. In the simplest case, the Q-value for a state-action pair is the sum of all of these reinforcements, and the Q -value function is the function that maps from state-action pairs to values. But the sum of all future reinforcements may be infinite when there is no terminal state, and besides, we may want to weight the future less than the here-and-now, so instead a discounted cumulative reinforcement is normally used: future reinforcements are weights by a value gamma between 0 and 1. A higher value of gamma means that the future matters more for the Q -value of a given action in a given state.

If the agent knew the Q -values of every state-action pair, it could use this information to select an action for each state. The problem is that the agent initially
has no idea what the Q-values of any state-action pairs are. The agent's goal, then, is to settle on an optimal Q-value function, one which that assigns the appropriate values for all state/action pairs. But Q-values depend on future reinforcements, as well as current ones. How can the agent learn Q-values when it only seems to have access to immediate reinforcement? It learns using these two principles, which are the essence of reinforcement learning:

- If an action in a given state causes something bad to happen, learn not to do that action in that situation. If an action in a given state causes something good to happen, learn to do that action in that situation.
- If all actions in a given state cause something bad to happen, learn to avoid that state. That is, don't take actions in other states that would lead you to be in that bad state. If any action in a given state causes something good to happen, learn to like that state.

The second principle is the one that makes the reinforcement learning magic happen. It permits the agent to learn high or low values for particular actions from a particular state, even when there is no immediate reinforcement associated with those actions. For example, in our time Scheduling problem, the agent receives a reward when it reaches the goal from the random state. It now knows that the path is a good one to go to because you can get rewarded in only one move from it.

Mathematical Explanation

Here is the mathematical detail. First, consider the optimal Q-value function, the one that represents what's true of the world.

$$
Q^{*}\left(x_{t}, u_{t}\right)=r\left(x_{t}, u_{t}\right)+\gamma \max _{u_{t+1}} Q^{*}\left(x_{t+1}, u_{t+1}\right)
$$

That is, the optimal Q-value of for a particular action in a particular state is the sum of the reinforcement received when that action is taken and the discounted best Q-value for the state that is reached by taking that action[1][2]. The agent would like to approach this value for each state-action pair. At any given time during learning, the agent stores a particular Q-value for each state-action pair. At the beginning of learning, this value is random or set at some default. Learning should move it closer to its optimal value. In order to do this, the agent repeatedly takes actions in particular states and notes the reinforcements that it receives. It then updates the stored Q-value for that state-action pair using the reinforcement received and the stored Q-values for the next state. Assuming the Q-values are stored in a lookup table, the agent could use one of these update equations:

$$
Q^{\text {new }}\left(X_{t}, U_{t}\right)=(1-\eta) Q^{\text {old }}\left(x_{t}, u_{t}\right)+\eta\left[r\left(x_{t}, u_{t}\right)+\gamma \max _{u_{t+1}} Q^{\text {old }}\left(x_{t+1}, u_{t+1}\right)\right]
$$

The first equation sets the Q -value to be the sum of the reinforcement received and the discounted best Q -value for the next state. But this is usually a bad idea because the information just received may be faulty for one reason or another. It is better to update more gradually, to use the new information to move in a particular direction, but not to make too strong a commitment. The second update equation reflects this strategy. There is learning rate, which controls the learning step size, that is, how fast learning takes place. The new Q -value for the state and action is the weighted combination of the old Q-value for that state and action and what the new information would lead us to believe. Later we will see how a neural network can replace the lookup table for storing Q -values.

Q-Learning Algorithm

Q-Learning learns the optimal policy even when actions are selected according to a more exploratory or even random policy. The procedural form of the algorithm is:

Initialize $\mathbf{Q}(\mathbf{s}, \mathbf{a})$ arbitrarily Repeat (for each episode):

Initialize s

Repeat (for each step of episode):
choose a from s using policy derived from \mathbf{Q}

Take action a, observe $\mathbf{r}, \mathbf{s}^{\prime}$

$$
\begin{aligned}
& Q(s, a)=Q(s, a)+\alpha\left[r+\gamma \max _{\alpha}, Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right] \\
& \quad \mathrm{s}=\mathrm{s}^{\prime}
\end{aligned}
$$

until \mathbf{s} is terminal.

This procedural approach can be translated into plain English steps as follows:

- Initialize the Q-values table, Q(s, a).
- Observe the current state, s.
- Choose an action, a, for that state based on one of the action selection policies.
- Take the action, and observe the reward, r , as well as the new state, s '.
- Update the Q-value for the state using the observed reward and the maximum reward possible for the next state. The updating is done according to the formula and parameters described above.
- Set the state to the new state, and repeat the process until a terminal state is reached.

Simplified: The transition rule of Q learning is a very simple formula:
$\mathrm{Q}($ state, action $)=\mathrm{R}($ state, action $)+$ gamma * $\operatorname{Max}[\mathrm{Q}$ (next state, all actions) $]$ The gamma parameter has a range of 0 to $1(0<=$ gamma $<1)$, and ensures the convergence of the sum. If gamma is closer to zero, the agent will tend to consider only immediate rewards. If gamma is closer to one, the agent will consider future rewards with greater weight, willing to delay the reward.

The Q-Learning algorithm goes as follows:

- Set the gamma parameter, and environment rewards in matrix R.
- Initialize matrix Q to zero.
- For each episode: Select a random initial state.

While the goal state hasn't been reached.

- Select one among all possible actions for the current state.
- Using this possible action, consider going to the next state.
- Get maximum Q value for this next state based on all possible actions.
- Compute: Q (state, action) $=\mathrm{R}$ (state, action) + gamma * $\operatorname{Max}[\mathrm{Q}$ (next state, all actions)]
- Set the next state as the current state.

Implementation and Result

Q-learning is a technique for letting the AI learn by itself by giving it reward or punishment. We have implied this method for a simple sector of our Time Schedul-
ing Project. Suppose, we have taken all the room numbers of a university, we used all of them as a state. Our example shows the Q-learning used for path finding to get the exact goal which is the appropriate room. According to the method it learns where it should go from any state. The process starts at a random place, it keeps memory of the score while it explores the area, whenever it reaches the goal, we repeat with a new random start. After enough repetitions the score values will be stationary (convergence). In this example the action outcome is deterministic (transition probability is 1) and the action selection is random. The score values are calculated by the Q-learning algorithm $\mathrm{Q}(\mathrm{s}, \mathrm{a})$. The image shows the states (Room1,Room2,Room3,Room4,Room5,Room6) possible actions from the states and the reward given.

Step-1

We set reward 50 to only the nearby states of goal, rest all are 0 .

Step-2

According to the algorithm we find the reward and choose path with maximum value which reaches to the goal.

3.4 Human Machine Interaction

Human machine interaction is a method which finds a solution using another solution. First of all, the method finds one single solution which can be feasible enough to use further. Then , it improves the solution manually.This model is based on mainly approximation and modification. The shortcomings of this method is the cost of computation which is very high on basis of different parameter.

Chapter 4

Problem Definition

University course timetabling is one of the most difficult and time consuming problem to solve. Here,events like course,seminar,sessions etc are to be assigned in different resources like time slots, participants/lecturer/instructor and rooms.The fact is this allocation must maintain different types of constraints which could be divided into two categories which are: [8] [13]

- Hard Constraints: These types of constraints are never to be violated by any mean. Usually these types of constraint are very carefully defined so that if any sudden critical situation arise could be handled in shortest possible time. Some of the hard constraints we define in our thesis are:
- One room can not be assigned more than one courses in single time slot.
- One lecturer is allowed to take one class at a time.
- Teachers must be assigned according to their specialization and preference.
- Soft Constraints: Some constraints are maintained in scheduling, violation of which are not that much disastrous. Maintaining these constraints enrich the quality of the timetabling.
- Teachers preferable time slots to be assigned .
- Back to back classes for teachers are suggested to avoid.
- Senior teachers should get highest priority for assigning courses and slot. The quality of auto-generated University Course Schedule depends on how many constraints they meet. It is quite impossible to fulfill all of them.

4.1 Problem for BRAC University

As a leading University in Bangladesh which is ensuring higher education, it has some unique facilities, rules and regulation. Some times rules are helpful for avoiding complexity. Sometimes it makes things more complicated in certain criteria. As, being private university government facilities are absent in here. So, apparently hundred percent of it's resources are provided and ensured by the authority and trusty board. As a new university, comparing to other government and traditional university like Dhaka University, BUET, Rajshahi University and many more universities, it does not have a great establish alumni association. So, Scholarship from outside university are very rare. As a result, University has limited options to arrange events like class, seminar and academic facilities outside the regular timing. Another Problem is BRAC University does not have any permanent campus and departments do not have buildings for their own operation. They are just overlapping each other for every aspects of resources.

4.1.1 Constraints for BRAC University

BRAC University is an open credit university where different credits courses are being offered to be taken by . But restrictions are defined as prerequisite. Students are free to take any courses according to the curriculum but they have to
ensure that prerequisite for that particular course is being completed. On the other hand, authority holds the responsibility to make schedule such a way so that students do not have to mess up with the schedule due to prerequisite hazards. So, section number of higher courses actually depend on lower courses of university. So. according to the number of sections for particular course refers the need of instructors.

4.1.2 Multidimensional representation

The Scheduling problem is easy to describe in a multidimensional view. Here, resources like rooms and time slots can easily be identified. In a particular day for one particular slot all the rooms which are permitted for one department are available. So, One unit cube of the three dimensional view represents a unique allowable resource. 19]

Some particular components are :

- every courses are to be taught three hours per week. This time is divided into two equals time slots.
- one teacher is assign for each section of a particular course .
- lecturers should be available according to their designated time into assigned room.

4.1.3 Resources of BRAC University

To define the problem by set of resources and events,first we need to clarify each and every set of needed components. For n number of courses if m number of lecturers are available where q numbers of rooms to be designated into several time slots than a schedule problem can be well defined. So, to define in mathematical expression lets assume the needed sets like:

Set of n Courses, $C=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}$
Set of Sections for corresponding courses, $S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$
Here, course maps to section.
Set of m Lecturers, $L=\left\{l_{1}, l_{2}, l_{3}, \ldots, l_{m}\right\}$
Set of q Rooms, $R=\left\{r_{1}, r_{2}, r_{3}, \ldots, r_{q}\right\}$

Set of $i * j$ Time slots, $T=\Sigma\left\{t_{i}, d_{j}\right\}$ Where $i=$ slots/day; $j=$ days/week So the problem is defined with 5 tuples [6] (4] [8] (9)

$$
f(x)=<C, S, L, R, T>
$$

According to the definition we designed our chromosomes for the implementation of Genetic Algorithm to produce new routine.

Chapter 5

Problem Solving Approach

In an on going semester BRAC University needs to prepare a whole new schedule for upcoming semester. Most of the time maximum teachers remains unchanged. So, it is pretty much predictable that teachers are going to take more or less same courses in next semester.There are several causes for having changes in new schedule like

- The number of student increase in each semester.
- Arrival of Ramadan.
- Arrival of new teachers.
- Offering new courses.
- Number of rooms
- Recovery of leaving teacher

In making of new schedule different approaches are introduced by the person/s who is/are responsible for it. What if one single approach can solved all these headache and ensure a new time table which is acceptable at a high fitness scales? In this thesis, we try to represent such an approach in an organized manner so that the preparations of a new schedule can be well understood.

5.1 Genetic Algorithm Approach

5.1.1 Chromosome Encoding

As discussed before, to solve the scheduling problem using GA, we needed to encode the data set into sets of Chromosomes [11]. We defined each Chromosome with six parts.

Instructor	Course	Section	Room	Day	Time

For easier manipulation we merged days and Time into one as Time Slot.

Instructor	Course	Section	Room	Time Slot

We use String encoding for the Chromosomes, like for Instructor we use his/her three length initial; for Course a six length course id; Section for any course would be a digit a per need; Rooms will be encoded as their name given by the university to identify according to building floor and room number; and time slot will be denoted according to their number. Now, we define different data sets according to the need for Chromosome encoding. [13] 5]

5.2 Data Set

To do so first of all, we need to establish a parameter according to the problem definition which will be resonating to BRAC University curriculum for CSE. One of the most reliable sources for collecting the relative data set is the routine which is provided by the department before each semester's registration to the students. In these routines the facts are clearly indicated that which teacher is going to take which courses in which time and in which room the class will take place. for establishing the data set we need we collected ten consecutive routines from fall 2012 to fall 2015. From them eight routines have been discarded because most of the
data from the earlier routines became unusable due to a lot of inevitable changes in administrative and objective structure of the department. Our most valuable data set has come from latest four semester(Fall 2014,Spring 2015,Summer 2015 and Fall 2015).

Room Set

After analysis of collected data we found a set of rooms from several buildings which are frequently used for different classes. We defined the set as R which we have the cardinality R_{n}. It is need to be cleared that no lab room are included as we have not focused about lab scheduling of corresponding courses. [11] 5]

Instructor Set

We also made an analysis on another resource which we need for scheduling is instructors. For instructors the defined set is I as we used in here. An analytic survey over CSE department of BRAC University is found that junior instructors are not allocated to take theory classes for certain period of time which varies instructor to instructor. So, again we "Redefine" our instructor set a functional instructor set, I_{f} which has cardinality I_{M}. We clearly state that I_{f} includes those instructor who are allocated one or more theory classes for one particular semester. [11] [5]

Course Set

A predefined set which is designed by BRAC University Curriculum for CSE including necessary and elective courses; which we denote as C. Few years back where we were fresh graduate students, noticed that some of the necessary courses were being offered in attractive semester. In an explanation lets talk about the course "Database System" which course id is CSE 370 in BRAC University. If this course was being offered in Fall semester then it would be offered in Fall semester on corresponding year where summer semester is skipped to offer the course. As a growing
university students numbers are counting up in each semester. Recently we found that this skip methodologies now in action only for some elective courses and not applicable for necessary courses. The cardinality of course set is defined by the BRAC University curriculum for CSE is C_{P}. [11] [5]

Time set

In general BRAC University goes functional for five days a week for undergraduate program. Each day has theory class periods, starts at 8.00 am and ends at 6.30 pm , one hour twenty minutes span for each and after every class period, ten minutes break for next class. Counting One and half hour a unit time period for one theory class we got seven(7) slots for one day and $7 * 5=35$ time slots for a week [6] [11].

Day/Time	T1	T2	T3	T4	T5	T6	T7
Day 1	0	1	2	3	4	5	6
Day 2	7	8	9	10	11	12	13
Day 3	14	15	16	17	18	19	20
Day 4	21	22	23	24	25	26	27
Day 5	28	29	30	31	32	33	34

5.3 Probability Analysis

The chance of an event to occur for an experiment is the probability of that event. If an event can occur in A number of ways and total number of outcomes is B then probability of event E is

$$
P(E)=A / B
$$

An important fact is, there are courses which can be taught by different
number of instructors and there also can be courses which is taught by only one particular teacher. In that case

$$
P(\text { Instructor } \mid \text { Course })=1
$$

For the case of multiple instructors for one course which have multiple sections:lets assume that,
$a=$ number of sections
$b=$ number of instructors could be assigned

Probability of an Instructor to be assigned for a particular Course is :-

$$
P(\text { Instructor } \mid \text { Course })=f(a, b)=\sum_{i=a}^{1} \frac{1}{i_{C_{1}} * b_{C_{1}}}
$$

We see that each courses could have multiple sections to allow all the students who want to take the course for that particular semester. If course C_{i} has number of sections S_{i} then total number of instances for the courses to be offered by the department for a particular semester is

$$
N=\sum_{i=1}^{n} C_{i} * S_{i}, n \in R
$$

As we have N number of instances of courses to be assigned within 35 slots where we have R_{n} number of rooms, we can allocate maximum R_{n} course instances for one slot. A slot could be remain empty means no course instance is assigned on that particular slot. Another important point is one course instance should be allocated for three hours a week, which indicates two different time slots in 35 slots which are to be assigned. Under this circumstances total instances for courses becomes double means $2 * N$ is waiting for designated slots. So, for one slot
the probability to be assigned for one course instance is

$$
P(\text { Course } \mid \text { Slot })=\frac{1}{\left(35 * R_{n}\right)_{C_{1}} *(2 * N)_{C_{1}}}
$$

We experienced in our University that one or two rooms always kept free for any urgent need. For satisfying this constraint we kept three rooms reserved, so that if any clash happens only due to same room then it can be solved up to three clashes. At this pint the probability gets revised as

$$
P(\text { Course } \mid \text { Slot })=\frac{1}{\left(35 *\left(R_{n}-3\right)\right)_{C_{1}} *(2 * N)_{C_{1}}}
$$

Chapter 6

Data Manipulation

To get result from raw data we need to collect corresponding data from BRAC University and store them into Database according to defined data set. We kept the facility to upload previous schedule and process them into raw data. When a previous routine is uploaded to the database in csv format our program then extract the necessary data and analyze them to insert into appropriate tables. Before that the whole set of data from the csv file is stored into a table called Raw Data. This Table is not actually relational but a virtual source for other tables which are dynamically enrich with necessary data from this Raw Data table. Some of the tables are manipulated in such a way that they are created at run time; if previously the table existed containing data the whole table get dropped before creating new one. In this way we avoided duplicate data.

Along with database, we needed appropriate programming where our necessary algorithm(which is Genetic algorithm)is being implemented. We also needed programming for comparison purpose where different algorithms (Simulated Annealing and Q-Learning) are used. For these type of implementation where bunch of data sets are being handled within a single manipulation at one single time of the process we needed object oriented programming. Mainly Encapsulation property is required.

Finally, we would like to present our prepared schedule from the implementation results in different ways. Such as in csv format or using a traditional GUI(Graphical User Interface) designed as formal academic routine.

6.1 The Database

6.1.1 System Architecture

We used MySQL Database for necessary data storing purpose. When main program starts it provides data to designed data structure and after processing them when the program generates a temporary schedule which to be justified by comparison program several times to get a final result; then the result get stored again in database for further use and after getting a fair enough fitness for overall schedule a completely new schedule file will be generated.

6.1.2 Database Schema

Relational tables are in action to reduce redundancy and faster access to the data. Some tables are predefined and some tables are temporary, as they are dynamically created and dropped. Population table is completely dependent to other table to be created. When the main program starts at that moment previously crated population table gets dropped and completely new table gets crated for new population from where new results come out.

6.2 Program

The whole task was divided into different modules where each and every module has different functions to perform. From parsing previous routine into raw data to generating a brand new routine every step works as a interconnected dependent network.the steps can be shown in a listed manner like:

- Data Analysis
- Parse previous Schedule
- Fetch into raw data
- Categorize and store in different tables
- Random Population Generation
- Select Course
- Select Random Instructor
- Assign appropriate Section number
- Select Random Room
- Select random Slot

Instructor	Course	Section	Room	Day	Time

- Fitness Evaluation [19] 5]
- Course Fitness (increasing Order Course ID)
- Teacher Fitness (Priority Value) [5]
- Slot Fitness (anti-proportional to Slot Number)

$$
\text { fitness }=C_{\text {value }} * P_{\text {value }} *\left(35-S_{\text {value }}\right) .
$$

- Conflict Identification
- Teacher Conflict // same teacher assigned for more than one courses in
same slots
- Room Conflict // more than one class allocated in one room in same slots
- GA
- Filter //based on fitness and Conflicts
- Mutation // if conflict is only for room in same slot
- Crossover // if conflict is for same teach in same slot
- Offspring Selection // based on fitness evaluation after Mutation and Crossover
- Second Generation Population
- Calculate total fitness
- Compare with previously generated new Schedule fitness
- Update new Schedule if new fitness is higher than previous one

6.2.1 Filter Mechanism

Filtering process filters all fit enough chromosomes on the basis of Instructors. It only checks if one particular teacher is assigned twice or more in single time slot. If such hard constraint violation is identified, the conflicted chromosomes can not pass through the filtering process.

6.2.2 Crossover Mechanism

Single point Crossover is used in this paper.After filtering process Crossover process goes for the left conflicted chromosomes. At first it checks either the conflict is for Instructor or not, if for instructor then the crossover point is only the instructor part. If the conflict is not for Instructor it goes for crossover exit point.

6.2.3 mutation Mechanism

After Filter and Crossover process the main program(GA) checks whether any room conflict is present or not. If room constraint violation number is less than or equal to present available room number then Mutation process only mutates room part of the Chromosomes. Otherwise the process seeks for available rooms in other slots and mutates room part and slot part of that corresponding Chromosome accordingly.

Chapter 7

Result Representation

When the program runs for the very first time a new schedule file is produced and it happens in shorter time comparatively as the result has a fitness value which is to compare only with itself. From the second time run of the program and onward runtime increase. Every time the fitness of a newly generated schedule is higher than the last kept schedule only then the new one gets saved as a new schedule.

7.1 New Schedule

The schedule which is generated by the procedure discussed earlier can be represented in a tabular format. The results are shown in this paper are obtained from 15 times execution of the main program. Each time the program generates a better fitness schedule than the previous one it takes more execution time. If we gather the run time in a table then the comparison comes clear.

No.	E1	E2	E3	E4	E5	E6	E7	E8
Runtime	31.7	15.4	16.2	28.8	16.4	16.2	16.5	16.6

E9	E10	E11	E12	E13	E14	E15
16.5	29.5	22.9	18.9	16.03	16.03	15.3

From the execution time we can have a prediction on each generation either it is a
good one, can bee accepted or comparatively bad one and be rejected. In the tab-
ular format, we tried to show a detail information for a class where slots, courses,
instructors, sections are arranged according to their correspondence.

Slots	8.00-9.20	9:30-10:50	11:00-12.20	12.30-1.50	2.00-3.20	3:30-4.50	5.00-6.20
Sun	AIZ_CSE260_4_UB30501 HOS_CSE370_4_UB30503 TBA_CSE162_1_UB30303	MMD_CSE421_3_UB30303 JU_CSE341_4_UB40301 HOS_CSE370_2_UB10303	MAM_CSE230_4_UB10304 AIZ_CSE260_2_UB10303 TBA_CSE250_3_UB30303	BIS_CSE321_1_UB40301 ACH_CSE330_3_UB30501 IFF_CSE420_2_UB30603	$\left\lvert\, \begin{aligned} & \text { MMD_CSE101_2_UB10304 } \\ & \text { AAR_CSE110_4_UB30503 } \end{aligned}\right.$	AAR_CSE110_2_UB30303 MSA_CSE111_5_UB10303 NAT_CSE321_2_UB40301	TRH_CSE470_1_UB10303 ZAR_CSE422_2_UB40301 TBA_CSE460_1_UB30501
Mon	KHR_CSE461_1_UB30503 MMD_CSE320_7_UB10304 MSN_CSE111_2_UB30303 SRT_CSE331_2_UB40301 HOS_CSE370_3_UB30501 DMH_CSE423_2_UB30502	MSN_CSE260_1_UB30503 NUS_CSE220_1_UB10304 SLI_CSE220_4_UB10303 MMM_CSE331_1_UB30502 HAL_CSE230_5_UB30603 TBA_CSE250_2_UB30501	 KHR_CSE101_1_UB10304 MAH_CSE101_3_UB30502 MMM_CSE221_2_UB30303 ACH_CSE340_2_UB40301 SKZ_CSE421_2_UB30503 TBA_CSE250_1_UB30603	 MMD_CSE421_1_UB10303 DIP_CSE101_4_UB30502 MSA_CSE111_1_UB30503 MMM_CSE221_5_UB30501 MIK_CSE320_6_UB30603 ADR_CSE391_1_UB30303	MMD_CSE410_1_UB10304 MHR_CSE330_5_UB40301 NUS_CSE220_5_UB30503 MKR_CSE360_1_UB30303 ADR_CSE491_1_UB10303	MMD_CSE320_4_UB30503 DIP_CSE110_1_UB10303 MHR_CSE340_1_UB30501 HAL_CSE330_2_UB40301 ACH_CSE340_4_UB30502	NUS_CSE220_3_UB30501 MMM_CSE471_1_UB10303 HAL_CSE230_1_UB30601 AKC_CSE470_3_UB10304 TBA_CSE350_2_UB30502
Tue	DIP_CSE110_3_UB30503 TRH_CSE470_4_UB30303 HAL_CSE330_6_UB10304 AIZ_CSE260_4_UB30501 ZAR_CSE422_1_UB10303 MKR_CSE470_2_UB30502 HOS_CSE370_1_UB30603 TBA_CSE162_1_UB40301	KHR_CSE461_3_UB30501 MMD_CSE101_-_UB30502 MSA_CSE111_3_UB30601 TRH_CSE221_3_UB30303 IU_CSE341_3_UB10303 HOS_CSE370_2_UB10304 DMH_CSE423_1_UB40301	KHR_CSE101_8_UB30601 RAK_CSE101_5_UB10303 MSN_CSE111_4_UB30501 MAM_CSE230_2_UB10304 AIZ_CSE260_2_UB30303 ZAR_CSE331_3_UB40301 TBA_CSE250_3_UB30503	MAH_CSE101_10_UB30502 MHR_CSE330_1_UB10304 BIS_CSE321_1_UB40301 MSN_CSE260_5_UB30601 ACH_CSE330_3_UB30501 TAA_CSE330_4_UB30503 IFF_CSE420_2_UB30603 TBA_CSE251_1_UB10303	KHR_CSE461_2_UB30501 MMD_CSE101_2_UB10304 MHR_CSE340_5_UB30603 AAR_CSE110_4_UB30503 SRT_CSE310_1_UB30303 JIU_CSE341_2_UB10303 IFF_CSE420_1_UB40301 TBA_CSE460_2_UB30502	MMD_CSE320_1_UB30501 MAH_CSE320_5_UB30303 MIS_CSE321_3_UB30502 AAR_CSE110_2_UB40301 MSA_CSE111_5_UB10303 MIK_CSE320_3_UB30603 NAT_CSE321_2_UB30503 JU_CSE341_1_UB30601 TBA_CSE103_1_UB10304	RAK_CSE221_4_UB30303 MHR_CSE101_6_UB30501 BIS_CSE101_7_UB30503 MSN_CSE260_3_UB10303 SLI_CSE220_2_UB40301 TRH_CSE470_1_UB10304 ZAR_CSE422_2_UB30502 TBA_CSE350_1_UB30603 TBA_CSE460_1_UB30601
Wed	KHR_CSE461_1_UB30503 MMD_CSE320_-_UB10304 MSN_CSE111_2_UB30303 SRT_CSE331_2_UB40301 HOS_CSE370_3_UB30501 DMH_CSE423_2_UB30502	MSN_CSE260_1_UB30503 NUS_CSE220_1_UB10304 SLI_CSE220_4_UB10303 MMM_CSE331_1_UB30502 HAL_CSE230_5_UB30603 TBA_CSE250_2_UB30501	KHR_CSE101_1_UB10304 MAH_CSE101_3_UB30502 MMM_CSE221_2_UB30303 ACH_CSE340_2_UB40301 SKZ_CSE421_2_UB30503 TBA_CSE250_1_UB30603	MMD_CSE421_1_UB10303 DIP_CSE101_4_UB30502 MSA_CSE111_1_UB30503 MMM_CSE221_5_UB30501 MIK_CSE320_6_UB30603 ADR_CSE391_1_UB30303	MMD_CSE410_1_UB10304 MHR_CSE330_5_UB40301 NUS_CSE220_5_UB30503 MKR_CSE360_1_UB30303 ADR_CSE491_1_UB10303	MMD_CSE320_4_UB30503 DIP_CSE110_1_UB10303 MHR_CSE340_1_UB30501 HAL_CSE330_2_UB40301 ACH_CSE340_4_UB30502	NUS_CSE220_3_UB30501 MMM_CSE471_1_UB10303 HAL_CSE230_1_UB30601 AKC_CSE470_3_UB10304 TBA_CSE350_2_UB30502
Thu	DIP_CSE110_3_UB30503 TRH_CSE470_4_UB30303 HAL_CSE330_6_UB10304 ZAR_CSE422_1_UB10303 MKR_CSE470_2_UB30502 HOS_CSE370_1_UB30603	KHR_CSE461_3_UB30501 MMD_CSE101_9_UB30502 MSA_CSE111_3_UB30601 TRH_CSE221_3_UB30303 JU_CSE341_3_UB10303 DMH_CSE423_1_UB10304	KHR_CSE101_8_UB30601 RAK_CSE101_5_UB10303 MSN_CSE111_4_UB30501 MAM_CSE230_2_UB10304 ZAR_CSE331_3_UB30303	$\|$MAH_CSE101_10_UB30502 MHR_CSE330_1_UB10304 MSN_CSE260_5_UB30601 TAA_CSE330_4_UB40301 TBA_CSE251_1_UB30603	KHR_CSE461_2_UB30501 MHR_CSE340_5_UB30603 SRT_CSE310_1_UB10304 JU_CSE341_2_UB10303 IFF_CSE420_1_UB30303 TBA_CSE460_2_UB40301	MMD_CSE320_1_UB30501 MAH_CSE320_5_UB30303 BIS_CSE321_3_UB30502 MIK_CSE320_3_UB30603 JIU_CSE341_1_UB30503 TBA_CSE103_1_UB30601	RAK_CSE221_4_UB30303 MHR_CSE101_6_UB30501 BIS_CSE101_7_UB30503 MSN_CSE260_3_UB10303 SLI_CSE220_2_UB40301 TBA_CSE350_1_UB10304

Slots	8.00-9.20	9:30-10:50	11:00-12.20	12.30-1:50	2.00-3.20	3:30-4.50	5.00-6.20
Sun	$\left\lvert\, \begin{aligned} & \text { MAH_CSE320_5_UB30603 } \\ & \text { ACH_CSE33O_3_UB30601 } \\ & \text { TBA_CSE350_1_UB30303 } \end{aligned}\right.$	DMH_CSE423_1_UB10304 TBA_CSE250_1_UB30503 TBA_CSE350_2_UB30502	TAA_CSE330_4_UB30501 JU_CSE341_1_UB30503 TBA_CSE251_1_UB30303	DIP_CSE110_3_UB10304 NUS_CSE220_1_UB30303 TBA_CSE103_1_UB30603	MMD_CSE320_4_UB10303 AAR_CSE110_6_UB40301 MIK CSE320 3 UB30501	ZAR_CSE422_2_UB30303 ADR_CSE491_1_UB10304 TBA_CSE162_1_UB30603	$\|$MHR_CSE330_5_UB30503 MKR_CSE360_1_UB30502 TBA_CSE250_3_UB10303
M	DIP_CSE110_5_UB30501 AAR_CSE110_2_UB10304 MSN_CSE111_2_UB30601 SLI_CSE220_4_UB30503 MMM_CSE331_1_UB30303 TBA_CSE250_2_UB40301	MMD_CSE421_3_UB10303 RAK_CSE221_1_UB30501 BIS_CSE101_7_UB10304 MSN_CSE260_3_UB30603 MMM_CSE221_5_UB30601 MAM_CSE230_4_UB30303	MMD_CSE101_2_UB10304 NUS_CSE220_3_UB30303 AIZ_CSE260_2_UB40301 NAT_CSE321_2_UB30503 HOS_CSE370_3_UB30601 TBA_CSE460_2_UB10303	MAH_CSE101_3_UB10303 MSN_CSE260_1_UB10304 JU_CSE341_4_UB30601 HOS_CSE370_2_UB40301 IFF_CSE420_1_UB30503 SKZ_CSE421_2_UB30502	KHR_CSE461_2_UB10303 SRT_CSE331_2_UB30601 ACH_CSE340_2_UB30501 ZAR_CSE422_1_UB30603 HOS_CSE370_4_UB10304 TBA_CSE460_1_UB30303	 KHR_CSE461_1_UB30601 MAH_CSE320_2_UB40301 MSA_CSE111_3_UB30501 MSN_CSE260_5_UB30503 MMM_CSE221_2_UB30502 DMH_CSE423_2_UB30603	KHR_CSE101_1_UB30601 MHR_CSE340_5_UB10304 MSA_CSE111_1_UB10303 TRH_CSE470_4_UB30603 HAL_CSE330_6_UB30303 HOS_CSE370_1_UB30501
Tue	MMD_CSE320_7_UB30603 MAH_CSE320_5_UB30601 MSN_CSE111_4_UB10303 NUS_CSE220_5_UB30502 HAL_CSE330_2_UB40301 ACH_CSE330_3_UB30501 TBA_CSE350_1_UB30303	MMD_CSE320_1_UB10304 RAK_CSE221_4_UB30603 AAR_CSE110_4_UB30501 TRH_CSE470_1_UB40301 JIU_CSE341_2_UB10303 MKR_CSE470_2_UB30601 DMH_CSE423_1_UB30303 TBA_CSE250_1_UB30503 TBA CSE350 2 UB30502	MAH_CSE101_10_UB10304 BIS_CSE321_1_UB10303 SLI_CSE220_2_UB30502 MMM_CSE471_1_UB30501 TAA_CSE330_4_UB30303 JUU_CSE341_1_UB30503 ADR_CSE391_1_UB30603 IFF_CSE420_2_UB30601 TBA_CSE251_1_UB40301	MMD_CSE410_1_UB30503 DIP_CSE110_3_UB10304 MHR_CSE330_1_UB30501 NUS_CSE220_1_UB30303 HAL_CSE230_1_UB40301 MAM_CSE230_2_UB30502 IU_CSE341_3_UB30601 TBA_CSE103_1_UB30603	KHR_CSE461_3_UB10304 MMD_CSE320_4_UB10303 MHR_CSE340_1_UB30503 AAR_CSE110_6_UB40301 HAL_CSE230_3_UB30502 MIK_CSE320_3_UB30501 ZAR_CSE331_3_UB30603 AKC_CSE470_3_UB30601	MMD_CSE101_9_UB10304 DIP_CSE110_1_UB30603 MHR_CSE101_6_UB30501 BIS_CSE321_3_UB30601 MSA_CSE111_5_UB10303 TRH_CSE221_3_UB30303 ZAR_CSE422_2_UB40301 ADR_CSE491_1_UB30503 TBA_CSE162_1_UB30502	KHR_CSE101_8_UB10304 DIP_CSE101_4_UB30502 RAK_CSE10__5_UB30501 MHR_CSE330_5_UB30503 AIZ_CSE260_4_UB30603 SRT_CSE310_1_UB30303 MIK_CSE320_6_UB40301 MKR_CSE360_1_UB30601 TBA_CSE250_3_UB10303
Wed	DIP_CSE110_5_UB30501 AAR_CSE110_2_UB10304 MSN_CSE111_2_UB30601 SLI_CSE220_4_UB30503 MMM_CSE331_1_UB30303 TBA_CSE250_2_UB40301	MMD_CSE421_3_UB10303 RAK_CSE221_1_UB30501 BIS_CSE101_7_UB10304 MSN_CSE260_3_UB30603 MMM_CSE221_5_UB30601 MAM_CSE230_4_UB30303	MMD_CSE101_2_UB10304 NUS_CSE220_3_UB30303 AIZ_CSE260_2_UB40301 NAT_CSE32__2_UB30503 HOS_CSE370_3_UB30601 TBA_CSE460_2_UB10303	MAH_CSE101_3_UB10303 MSN_CSE260_1_UB10304 JUU_CSE341_4_UB30601 HOS_CSE370_2_UB40301 IFF_CSE420_1_UB30503 SKZ_CSE421_2_UB30502	KHR_CSE461_2_UB10303 SRT_CSE331_2_UB30601 ACH_CSE340_2_UB30501 ZAR_CSE422_1_UB30603 HOS_CSE370_4_UB10304 TBA_CSE460_1_UB30303	KHR_CSE461_1_UB30601 MAH_CSE320__UB40301 MSA_CSE111_3_UB30501 MSN_CSE260_5_UB30503 MMM_CSE221_2_UB30502 DMH_CSE423_2_UB30603	KHR_CSE101_1_UB30601 MHR_CSE340__UB10304 MSA_CSE111_1_UB10303 TRH_CSE470_4_UB30603 HAL_CSE330_6_UB30303 HOS_CSE370_1_UB30501
Thu	MMD_CSE320_7_UB30603 MSN_CSE111_4_UB10303 NUS_CSE220_5_UB30502 HAL_CSE330_2_UB40301 ACH_CSE340_4_UB30501	MMD_CSE320_1_UB10304 RAK_CSE221_4_UB30603 AAR_CSE110_4_UB30501 TRH_CSE470_1_UB40301 JU_CSE341_2_UB10303 MKR_CSE470_2_UB30601	MAH_CSE101_10_UB10304 BIS_CSE321_1_UB10303 SLI_CSE220_2_UB30502 MMM_CSE471_1_UB30501 ADR_CSE391_1_UB30503 IFF_CSE420_2_UB30603	MMD_CSE410_1_UB30503 MHR_CSE330_1_UB30501 HAL_CSE230_1_UB40301 MAM_CSE230_2_UB30502 JIU_CSE341_3_UB30601	KHR_CSE461_3_UB10304 MHR_CSE340_1_UB30503 HAL_CSE230_3_UB40301 ZAR_CSE331_3_UB30502 AKC_CSE470_3_UB30603	MMD_CSE101_9_UB10304 DIP_CSE110_1_UB30603 MHR_CSE101_6_UB30501 BIS_CSE321_3_UB30601 MSA_CSE111_5_UB10303 TRH_CSE221_3_UB30303	KHR_CSE101_8_UB10304 DIP_CSE101_4_UB30502 RAK_CSE101_5_UB30501 AIZ_CSE260_4_UB30603 SRT_CSE310_1_UB30303 MIK_CSE320_6_UB40301

If we represent the schedule in a raw manner including all related data like chromo-
some fitness, chromosome number and all other, then the representation would be like below:

ChromosomEnstructor		Course	Section	Room	Slot	Fitness
1	MAH	CSE320	5	UB30603	0	3185
2	ACH	CSE330	3	UB30601	0	10500
3	TBA	CSE350	1	UB30303	0	0
4	DMH	CSE423	1	UB10304	1	18360
5	TBA	CSE250	1	UB30503	1	0
6	TBA	CSE350	2	UB30502	1	0
7	TAA	CSE330	4	UB30501	2	495
8	JIU	CSE341	1	UB30503	2	11880
9	TBA	CSE251	1	UB30303	2	0
10	DIP	CSE110	3	UB10304	3	96
11	NUS	CSE220	1	UB30303	3	384
12	TBA	CSE103	1	UB30603	3	0
13	MMD	CSE320	4	UB10303	4	1612
14	AAR	CSE110	6	UB40301	4	1860
15	MIK	CSE320	3	UB30501	4	2821
16	ZAR	CSE422	2	UB30303	5	15600
17	ADR	CSE491	1	UB10304	5	19200
18	TBA	CSE162	1	UB30603	5	0
19	MHR	CSE330	5	UB30503	6	2610
20	MKR	CSE360	1	UB30502	6	1160

21	TBA	CSE250	3	UB10303	6	0
22	DIP	CSE110	5	UB30501	7	42
23	AAR	CSE110	2	UB10304	7	1680
24	MSN	CSE111	2	UB30601	7	168
25	SLI	CSE220	4	UB30503	7	168
26	MMM	CSE331	1	UB30303	7	1344
27	TBA	CSE250	2	UB40301	7	0
28	MMD	CSE421	3	UB10303	8	2700
29	RAK	CSE221	1	UB30501	8	189
30	BIS	CSE101	7	UB10304	8	39
31	MSN	CSE260	3	UB30603	8	429
32	MMM	CSE221	5	UB30601	8	567
33	MAM	CSE230	4	UB30303	8	2080
34	MMD	CSE101	2	UB10304	9	48
35	NUS	CSE220	3	UB30303	9	312
36	AIZ	CSE260	2	UB40301	9	286
37	NAT	CSE321	2	UB30503	9	728
38	HOS	CSE370	3	UB30601	9	5040
39	TBA	CSE460	2	UB10303	9	0
40	MAH	CSE101	3	UB10303	10	77

41	MSN	CSE260	1	UB10304	10	363
42	JIU	CSE341	4	UB30601	10	3960
43	HOS	CSE370	2	UB40301	10	10500
44	IFF	CSE420	1	UB30503	10	600
45	SKZ	CSE421	2	UB30502	10	12500
46	KHR	CSE461	2	UB10303	11	13920
47	SRT	CSE331	2	UB30601	11	160
48	ACH	CSE340	2	UB30501	11	3400
49	ZAR	CSE422	1	UB30603	11	12480
50	HOS	CSE370	4	UB10304	11	4200
51	TBA	CSE460	1	UB30303	11	0
52	KHR	CSE461	1	UB30601	12	13340
53	MAH	CSE320	2	UB40301	12	819
54	MSA	CSE111	3	UB30501	12	720
55	MSN	CSE260	5	UB30503	12	297
56	MMM	CSE221	2	UB30502	12	483
57	DMH	CSE423	2	UB30603	12	12420
58	KHR	CSE101	1	UB30601	13	440
59	MHR	CSE340	5	UB10304	13	816
60	MSA	CSE111	1	UB10303	13	1760

61	TRH	CSE470	4	UB30603	13	240
62	HAL	CSE330	6	UB30303	13	360
63	HOS	CSE370	1	UB30501	13	9240
64	MMD	CSE320	7	UB30603	14	364
65	MAH	CSE320	5	UB30601	14	3185
66	MSN	CSE111	4	UB10303	14	252
67	NUS	CSE220	5	UB30502	14	252
68	HAL	CSE330	2	UB40301	14	945
69	ACH	CSE330	3	UB30501	14	10500
70	TBA	CSE350	1	UB30303	14	0
71	MMD	CSE320	1	UB10304	15	1040
72	RAK	CSE221	4	UB30603	15	140
73	AAR	CSE110	4	UB30501	15	360
74	TRH	CSE470	1	UB40301	15	180
75	JIU	CSE341	2	UB10303	15	7200
76	MKR	CSE470	2	UB30601	15	360
77	DMH	CSE423	1	UB30303	15	18360
78	TBA	CSE250	1	UB30503	15	0
79	TBA	CSE350	2	UB30502	15	0
80	MAH	CSE101	10	UB10304	16	35

81	BIS	CSE321	1	UB10303	16	210
82	SLI	CSE220	2	UB30502	16	30
83	MMM	CSE471	1	UB30501	16	1767
84	TAA	CSE330	4	UB30303	16	495
85	JIU	CSE341	1	UB30503	16	11880
86	ADR	CSE391	1	UB30603	16	8360
87	IFF	CSE420	2	UB30601	16	456
88	TBA	CSE251	1	UB40301	16	0
89	MMD	CSE410	1	UB30503	17	368
90	DIP	CSE110	3	UB10304	17	96
91	MHR	CSE330	1	UB30501	17	1620
92	NUS	CSE220	1	UB30303	17	384
93	HAL	CSE230	1	UB40301	17	432
94	MAM	CSE230	2	UB30502	17	640
95	JIU	CSE341	3	UB30601	17	1440
96	TBA	CSE103	1	UB30603	17	0
97	KHR	CSE461	3	UB10304	18	9860
98	MMD	CSE320	4	UB10303	18	1612
99	MHR	CSE340	1	UB30503	18	306
100	AAR	CSE110	6	UB40301	18	1860

101	HAL	CSE230	3	UB30502	18	72
102	MIK	CSE320	3	UB30501	18	2821
103	ZAR	CSE331	3	UB30603	18	5440
104	AKC	CSE470	3	UB30601	18	510
105	MMD	CSE101	9	UB10304	19	8
106	DIP	CSE110	1	UB30603	19	6
107	MHR	CSE101	6	UB30501	19	12
108	BIS	CSE321	3	UB30601	19	672
109	MSA	CSE111	5	UB10303	19	1280
110	TRH	CSE221	3	UB30303	19	112
111	ZAR	CSE422	2	UB40301	19	15600
112	ADR	CSE491	1	UB30503	19	19200
113	TBA	CSE162	1	UB30502	19	0
114	KHR	CSE101	8	UB10304	20	20
115	DIP	CSE101	4	UB30502	20	1
116	RAK	CSE101	5	UB30501	20	15
117	MHR	CSE330	5	UB30503	20	2610
118	AIZ	CSE260	4	UB30603	20	11
119	SRT	CSE310	1	UB30303	20	180
120	MIK	CSE320	6	UB40301	20	1365

121	MKR	CSE360	1	UB30601	20	1160
122	TBA	CSE250	3	UB10303	20	0
123	DIP	CSE110	5	UB30501	21	42
124	AAR	CSE110	2	UB10304	21	1680
125	MSN	CSE111	2	UB30601	21	168
126	SLI	CSE220	4	UB30503	21	168
127	MMM	CSE331	1	UB30303	21	1344
128	TBA	CSE250	2	UB40301	21	0
129	MMD	CSE421	3	UB10303	22	2700
130	RAK	CSE221	1	UB30501	22	189
131	BIS	CSE101	7	UB10304	22	39
132	MSN	CSE260	3	UB30603	22	429
133	MMM	CSE221	5	UB30601	22	567
134	MAM	CSE230	4	UB30303	22	2080
135	MMD	CSE101	2	UB10304	23	48
136	NUS	CSE220	3	UB30303	23	312
137	AIZ	CSE260	2	UB40301	23	286
138	NAT	CSE321	2	UB30503	23	728
139	HOS	CSE370	3	UB30601	23	5040
140	TBA	CSE460	2	UB10303	23	0

141	MAH	CSE101	3	UB10303	24	77
142	MSN	CSE260	1	UB10304	24	363
143	JIU	CSE341	4	UB30601	24	3960
144	HOS	CSE370	2	UB40301	24	10500
145	IFF	CSE420	1	UB30503	24	600
146	SKZ	CSE421	2	UB30502	24	12500
147	KHR	CSE461	2	UB10303	25	13920
148	SRT	CSE331	2	UB30601	25	160
149	ACH	CSE340	2	UB30501	25	3400
150	ZAR	CSE422	1	UB30603	25	12480
151	HOS	CSE370	4	UB10304	25	4200
152	TBA	CSE460	1	UB30303	25	0
153	KHR	CSE461	1	UB30601	26	13340
154	MAH	CSE320	2	UB40301	26	819
155	MSA	CSE111	3	UB30501	26	720
156	MSN	CSE260	5	UB30503	26	297
157	MMM	CSE221	2	UB30502	26	483
158	DMH	CSE423	2	UB30603	26	12420
159	KHR	CSE101	1	UB30601	27	440
160	MHR	CSE340	5	UB10304	27	816

161	MSA	CSE111	1	UB10303	27	1760
162	TRH	CSE470	4	UB30603	27	240
163	HAL	CSE330	6	UB30303	27	360
164	HOS	CSE370	1	UB30501	27	9240
165	MMD	CSE320	7	UB30603	28	364
166	MSN	CSE111	4	UB10303	28	252
167	NUS	CSE220	5	UB30502	28	252
168	HAL	CSE330	2	UB40301	28	945
169	ACH	CSE340	4	UB30501	28	2380
170	MMD	CSE320	1	UB10304	29	1040
171	RAK	CSE221	4	UB30603	29	140
172	AAR	CSE110	4	UB30501	29	360
173	TRH	CSE470	1	UB40301	29	180
174	JIU	CSE341	2	UB10303	29	7200
175	MKR	CSE470	2	UB30601	29	360
176	MAH	CSE101	10	UB10304	30	35
177	BIS	CSE321	1	UB10303	30	210
178	SLI	CSE220	2	UB30502	30	30
179	MMM	CSE471	1	UB30501	30	1767
180	ADR	CSE391	1	UB30503	30	8360

181	IFF	CSE420	2	UB30603	30	456
182	MMD	CSE410	1	UB30503	31	368
183	MHR	CSE330	1	UB30501	31	1620
184	HAL	CSE230	1	UB40301	31	432
185	MAM	CSE230	2	UB30502	31	640
186	JIU	CSE341	3	UB30601	31	1440
187	KHR	CSE461	3	UB10304	32	9860
188	MHR	CSE340	1	UB30503	32	306
189	HAL	CSE230	3	UB40301	32	72
190	ZAR	CSE331	3	UB30502	32	5440
191	AKC	CSE470	3	UB30603	32	510
192	MMD	CSE101	9	UB10304	33	8
193	DIP	CSE110	1	UB30603	33	6
194	MHR	CSE101	6	UB30501	33	12
195	BIS	CSE321	3	UB30601	33	672
196	MSA	CSE111	5	UB10303	33	1280
197	TRH	CSE221	3	UB30303	33	112
198	KHR	CSE101	8	UB10304	34	20
199	DIP	CSE101	4	UB30502	34	1
200	RAK	CSE101	5	UB30501	34	15
201	AIZ	CSE260	4	UB30603	34	11
202	SRT	CSE310	1	UB30303	34	180
203	MIK	CSE320	6	UB40301	34	1365

Course Allocation Per Instructor

In this figure, each and every teacher are represented in x - axis and number of courses allocated to them plotted in y - axis. In two different graph we can see one particular teacher can have different number of courses which are randomly allo-
cated to them. The courses for which no teachers are assigned for them the count is 0 .

Chromosomes Fitness

A fitness for chromosomes indicates the probability to be selected for next phase of the routine from a randomly generated population. The graph is plotted such a way that x - axis represented particular course allocated to teacher and y - axis represents fitness value for them. If the new population has higher total fitness regarding the old one only then the resulted routine will be updated.

Number of Courses Assigned Per Slot

Along with X axis slots are plotted and along with Y axis number of allocations are plotted in the figure. This graph helps us to find out the demand of a slot according to the corresponding count. Also it becomes very useful for modifying mutation design of the main program.

7.2 Result Comparison

Results from Simulated Annealing gets lower fitness than the Genetic Algorithm generated Schedule most of the time. For comparing the results two different fitness were calculated. One from Genetic Algorithm generated result and another from Simulated Annealing generated result. Finally the comparing fitness will be calculated by using formula:-

$$
C_{f}=\frac{\left(G A_{\text {fitness }}-S A_{\text {fitness }}\right)}{G A_{\text {fitness }}} * 100 \%
$$

If comparing fitness C_{f} is positive then Genetic Algorithm has produced better result than the Simulated Annealing process, and if the C_{f} is negative then Simulated Annealing is better in Scheduling.for every routine generation Genetic Algorithm and Simulated annealing has run simultaneously same number of times times as Genetic Algorithm count and in about more than 100 times run Simulated Annealing gives one better result than Genetic Algorithm.

Chapter 8

Future Work

Our study was only over Computer Science and Engineering Department of BRAC University to find and optimal solution of course scheduling. There are lots of scope over all the departments to be included under one schedule generation project. We are eager to implement many other features in our next work. Some are like:

- For further optimization and better fitness and hybrid model can be proposed.
- The shortcomings after further analysis is to be overcome.
- As we overlooked lab and exam scheduling the scope is open for these two categories to be integrated.
- Enrich User Interface for better performance and prepared version for remote devices.
- Secure data by decentralizing and distributing in different databases.

Chapter 9

Conclusion

In this paper, our main focus was to design a procedure, based on Genetic algorithm for generating a schedule for BRAC University CSE Department automatically. There are a lot of works done on this type of scheduling before but the main difference from them is, our work is only for BRAC University CSE department where we used our BRAC life experience and modified the algorithm accordingly to get a better and feasible schedule. We also developed our selection process in such unique way that the main program would need to run crossover and mutation process less amount of times, which increases the convergence rate of new schedules and decrease the new schedule generation time. Finally we tried to compare our results with other heuristic algorithms to ensure the acceptance of the newly generated schedule.

Reference

[1] Al-Betar, M. A., and Khader, A. T. A harmony search algorithm for university course timetabling. Annals of Operations Research 194, 1 (2012), 3-31.
[2] Aycan, E. Solving the course scheduling problem by constraint programming and simulated annealing. 2008.
[3] Boyan, J. A., and L.Littman, M. Packet routing in dynamically changing networks: A reinforcement learning approach. Advances in neural information processing systems (1994), 671-671.
[4] Bratković, Z., Herman, T., Omrčen, V., Čupić, M., and Jakobović, D. University course timetabling with genetic algorithm: A laboratory excercises case study. In Evolutionary Computation in Combinatorial Optimization. Springer, 2009, pp. 240-251.
[5] Chen, R.-M., and Shih, H.-F. Solving university course timetabling problems using constriction particle swarm optimization with local search. Algorithms 6, 2 (2013), 227-244.
[6] Colorni, A., Dorigo, M., and Maniezzo, V. A genetic algorithm to solve the timetable problem. Politecnico di Milano, Milan, Italy TR (1992), 90-060.
[7] Cooper, T. B., and Kingston, J. H. The complexity of timetable construction problems. Springer, 1996.
[8] Jain, A., Jain, D. S., and Chandre, D. P. Formulation of genetic algorithm to generate good quality course timetable. International Journal of Innovation, Management and Technology 1, 3 (2010).
[9] Jat, S. N., and Yang, S. A guided search genetic algorithm for the university course timetabling problem.
[10] JHA, S. K. Exam timetabling problem using genetic algorithm. International Journal of Research in Engineering and Technology (2014).
[11] Kohshori, M. S., and Abadeh, M. S. Hybrid genetic algorithms for university course timetabling. International Journal of Computer Science issues (2012).
[12] Lakshmi, R., Vivekanandhan, K., and Brintha, R. A new biological operator in genetic algorithm for class scheduling problem. International Journal of Computer Applications (0975 8887) Vol 60 (2012), 6-11.
[13] LARGET, H. Genetic algorithms used in timetable management.
[14] Lewis, R., Paechter, B., and Rossi-Doria, O. Metaheuristics for university course timetabling. Springer, 2007.
[15] Lukas, S., Aribowo, A., and Muchri, M. Solving Timetable Problem by Genetic Algorithm and Heuristic Search Case Study: Universitas Pelita Harapan Timetable. INTECH Open Access Publisher, 2012.
[16] Nuntasen, N., and Innet, S. Application of genetic algorithm for solving university timetabling problems: A case study of thai universities. UTCC Engineering Research Papers (2007).
[17] Qin, G., And Ma, H. An intelligent course scheduling model based on genetic algorithm. TELKOMNIKA Indonesian Journal of Electrical Engineering 12, 4 (2014), 2985-2994.
[18] Setyaningsih, F. A. System application of genetic algorithm for scheduling optimization study using java (case study: Department of computer system untan). IPTEK Journal of Proceedings Series 1, 1 (2014).
[19] Sigl, B., Golub, M., and Mornar, V. Solving timetable scheduling problem using genetic algorithms. In Proc. of the 25th int. conf. on information technology interfaces (2003), pp. 519-524.
[20] Watkins, C. J., and Dayan, P. Q-learning. Machine learning 8, 3-4 (1992), 279-292.
[21] West, J. M., and Antonio, J. K. A genetic algorithm approach to scheduling communications for a class of parallel space-time adaptive processing algorithms. In Parallel and Distributed Processing. Springer, 2000, pp. 855-861.
[22] Wren, A. Scheduling, timetabling and rostering -A special relationship. In Practice and Theory of Automated Timetabling. 1996.
[18] [16] [1] [5] [14] [12] [21] [17] [10]

