
 

 

 

School of Engineering and Computer Science 

BRAC University 

 

 

Bangla Character Recognition for Android 

Devices 

 

 

 

Thesis Supervisor: 

Abu Mohammad Hammad Ali 

Department of CSE,  

BRAC University 

 

Conducted by: 

Shahrin Manzur (12101113) 

Shafiqul Islam (12101128) 

Abu Foysal (12101131) 

Aparajita Chowdhury (12301056) 



 

2 | P a g e  

 

Declaration 

This is to certify that this thesis report is submitted by the authors listed for the degree of 

Bachelor of Science in Computer Science and Engineering to the Department of Computer 

Science and Engineering under the School of Engineering and Computer Science, BRAC 

University. We hereby declare that this thesis is based on the results found by us and no other. 

Materials of work found by other researchers are mentioned by reference. This thesis, neither 

in whole nor in part, has been previously submitted elsewhere for the award of any degree or 

diploma. 

 

Signature of Supervisor 

 

---------------------------------------- 

Abu Mohammad Hammad Ali 

 

Signatures of Authors 

 

---------------------------------------- 

Abu Foysal 

 

---------------------------------------- 

Shafiqul Islam 

 

---------------------------------------- 

Aparajita Chowdhury 

 

---------------------------------------- 

Shahrin Manzur 

 

 

 

 

 

 

 

 

 



 

3 | P a g e  

 

Acknowledgement 

We are grateful to our supervisor Abu Mohammad Hammad Ali, Lecturer, Department of 

Computer Science and Engineering, BRAC University, for guiding us. Because of him we were 

capable of developing our understanding regarding the thesis topic. 

We would like to thank Muhammed Tawfiq Chowdhury, alumni of BRAC University, who 

managed his valuable time to help us in our thesis project. 

We are grateful to Moin Mostakim and Rubayat Ahmed Khan for their insightful comments 

and encouragements, but also for the hard questions which motivated us to widen our research 

from various perspectives. 

Furthermore, we would like to show our gratitude to our parents, for their continuous support 

and faith in us for achieving our goals.  

Finally, we are extremely grateful to the Almighty, who has always helped us in every step of 

our lives to reach this point. 

 

 

 

 

 

 

 

 

 



 

4 | P a g e  

 

Abstract 

In this paper, we illustrate our attempt to create editable documents from images by retrieving 

the text. The process is widely known as Optical Character Recognition (OCR). We have tried 

to build an Android application for detecting Bengali characters. Previously, several attempts 

have been made in developing a Bengali OCR. However, there were a few limitations which 

drove us to work on this project. In order to recognize more characters and joint letters, we 

decided to work on reducing the error rate to preserve more texts. To serve our purpose, we 

found the Tesseract OCR engine and Leptonica Image Processing Library to be the best option. 

Tesseract is used in order to recognize the characters and Leptonica is used to build an Android 

application by extracting data from the text. We are using the Tesseract 3.03 version currently 

available to work on this project. Moreover, we demonstrate how we obtained better results by 

manipulating Tesseract along with Serak to create box files and trained data. In addition to that, 

we discuss how we dealt with joint letters, dangerous ambiguity and contrast issues in order to 

increase efficiency. Furthermore, we explain our analyzed data, our progress and the future 

scopes of improvement. 

Keywords 

Optical Character Recognition (OCR), Bangla language, Android, Tesseract, Leptonica. 

 

 

 

 

  



 

5 | P a g e  

 

Table of Contents 

1. Introduction .................................................................................... 9 

1.1 Background ...................................................................................................... 9 

1.2 Motivation ......................................................................................................10 

1.3 Thesis Outline ..................................................................................................10 

2. Literature Review ............................................................................ 12 

3. System Architecture ......................................................................... 15 

3.1 Tesseract OCR ..................................................................................................15 

3.2 Development environment .....................................................................................16 

3.3 Building Tesseract Library .....................................................................................17 

3.4 The New Tesseract 3.03 ........................................................................................21 

3.4.1 Building the training tools ................................................................................21 

3.5 Software used for training......................................................................................22 

3.5.1 jTessBoxEditor ............................................................................................22 

3.5.2 QT Box Editor .............................................................................................24 

3.5.3 Serak Tesseract Trainer v0.4 ..............................................................................25 

4. System Approach ............................................................................ 27 

4.1 Work flow: ......................................................................................................27 

4.1.1 Training Dristee OCR .....................................................................................27 

4.1.2 Executing Dristee OCR ...................................................................................28 

5. System Implementation ..................................................................... 30 

5.1 Generating image files from text files .........................................................................30 

5.1.1 Types of characters used for training .....................................................................31 

5.2 Creating Box Files ..............................................................................................33 

5.3 Processing Box Files ...........................................................................................34 

5.4 Computing the Character Set ..................................................................................34 

5.4.1 Setting the Unicharset Properties .........................................................................35 

5.5 Font Properties ..................................................................................................35 



 

6 | P a g e  

 

5.6 Shape Clustering ................................................................................................36 

5.7 Unicharambigs ..................................................................................................37 

5.8 The Final Crunch ...............................................................................................38 

6. System Programming........................................................................ 39 

7. Experimental Result ......................................................................... 43 

7.1 Precision and Recall ............................................................................................43 

7.1.2 Precision and Recall for AdorshoLipi ....................................................................46 

7.1.3. Precision and Recall of Nikosh ..........................................................................48 

7.1.4. Precision and Recall of Kalpurush .......................................................................49 

7.1.5. Precision and Recall of SolaimanLipi ...................................................................51 

7.1.6 Skewness: ..................................................................................................54 

8. Conclusion .................................................................................... 56 

9. Future Aspects ............................................................................... 57 

Acronyms ........................................................................................ 59 

References: ...................................................................................... 60 

Appendix ......................................................................................... 62 

 

 

 

 

 



 

7 | P a g e  

 

List of Figures 

Figure 1: Properties for tess-two ........................................................................................................................... 18 

Figure 2: Configuration type selection .................................................................................................................. 18 

Figure 3: Configuration Window .......................................................................................................................... 19 

Figure 4: NDK Builder Selection .......................................................................................................................... 20 

Figure 5: Tess-two Library Selection .................................................................................................................... 20 

Figure 6: Outlook of jTessBoxEditor .................................................................................................................... 23 

Figure 7:Font selection in jTessBoxEditor ............................................................................................................ 23 

Figure 8: Generating Tiff and Box files using jTessBoxEditor............................................................................. 23 

Figure 9: Generated Tiff and Box files for SolaimanLipi font. ............................................................................. 24 

Figure 10: Outlook of QT Box Editor ................................................................................................................... 24 

Figure 11: Setting Bengali language in QT Box Editor ........................................................................................ 25 

Figure 12: Editing box files in QT Box Editor ...................................................................................................... 25 

Figure 13: Overview of Serak Tesseract Trainer .................................................................................................. 26 

Figure 14: OCR Mode of Serak Tesseract Trainer ................................................................................................ 26 

Figure 15: Training workflow of Dristee OCR ..................................................................................................... 28 

Figure 16: Workflow diagram ............................................................................................................................... 29 

Figure 17: Text input in jTessBoxEditor ............................................................................................................... 30 

Figure 18:Text input using txt file......................................................................................................................... 30 

Figure 19: Detection using only font size 12 ........................................................................................................ 31 

Figure 20: Detection after using multiple font sizes ............................................................................................. 31 

Figure 21: Vowel diacritic separate ...................................................................................................................... 33 

Figure 22: Vowel diacritic merged ........................................................................................................................ 33 

Figure 23: Box file creation .................................................................................................................................. 33 

Figure 24: Unicharset sample ................................................................................................................................ 35 

Figure 25: DangAmbigs ........................................................................................................................................ 37 

Figure 26: Unicharambigs ..................................................................................................................................... 37 

Figure 27: Relationship between retrieved data and total set of data. ................................................................... 43 

Figure 28: Relationship between retrieved, not retrieved and irrelevant data retrieved. ....................................... 43 

Figure 29: Relationship between precision and recall. .......................................................................................... 44 

Figure 30: Harmonic average and Break-even points. .......................................................................................... 45 

Figure 31: Precision for desktop version ............................................................................................................... 52 

Figure 32: Precision for Android version .............................................................................................................. 53 

Figure 33: Recall for desktop version ................................................................................................................... 53 

Figure 34: Recall for Android version .................................................................................................................. 54 

Figure 35: Skewness ............................................................................................................................................. 54 

Figure 36: Skewed Bangla Text ............................................................................................................................ 55 

 



 

8 | P a g e  

 

List of Tables 

Table 1: Numerical Ambiguities ........................................................................................................................... 31 

Table 2: Types of characters trained ..................................................................................................................... 32 

Table 3: Various types of training images............................................................................................................. 32 

Table 4: Diacritic overview ................................................................................................................................... 33 

Table 5: Renaming with language prefix .............................................................................................................. 38 

Table 6:Comparison after exposure ...................................................................................................................... 40 

Table 7:Exposure modes ....................................................................................................................................... 40 

Table 8: Sample detection ..................................................................................................................................... 42 

Table 9: Experimental result calculated for mobile application of AdorshoLipi font. .......................................... 46 

Table 10: Experimental result calculated for desktop version of AdorshoLipi font. ............................................ 47 

Table 11: Experimental result calculated for mobile application of Nikosh font. ................................................. 48 

Table 12: Experimental result calculated for desktop version of Nikosh font. ..................................................... 48 

Table 13: Experimental result calculated for mobile application of Kalpurush font. ............................................ 49 

Table 14: Experimental result calculated for desktop version of Kalpurush font. ................................................ 50 

Table 15: Experimental result calculated for mobile application of SolaimanLipi font........................................ 51 

Table 16: Experimental result calculated for desktop version of SolaimanLipi font. ........................................... 51 

Table 17: Pearson’s Formula ................................................................................................................................ 55 

 

 

 

 



 

9 | P a g e  

 

Bangla Character Recognition for Android 

Devices 

1. Introduction 

1.1 Background 

Optical character recognition (OCR) converts typed, handwritten or printed images into editable 

texts digitally [1]. This eases editing and storage electronically, which would have been 

immensely time consuming if typed manually. However, there are several complications. OCR 

tends to confuse similar letters, for example “o” and “0” [2]. Moreover, it will be similarly 

perplexing for OCR to detect characters on dark backgrounds [2]. Bengali character recognition 

is much more complicated. There are several different fonts and joint letters in Bangla which 

makes the job more difficult. Despite not being something new, there has not been much 

improvement regarding Bangla OCR. For example, only two sophisticated Bangla OCRs have 

been published in 2006 [3]. 

There might be several reasons for this. Firstly, OCR is designed for English alphabets, so 

training it for Bengali is a challenging job. Secondly, there are many more Bengali characters 

compared to Roman characters and some are so similar that OCR often produces wrong output 

[4]. Previously, there has been research in this area, but few attempts to work on the space issue. 

It is important to note that OCR cannot detect any space between two words. Therefore, it 

remains a challenging topic. 

Currently, books and documents are digitized by manually typing them. This is a very long 

process as well as costly. Therefore, if we could build an OCR to read the characters directly 

from the pages and digitize them, then the effort will be drastically lessened.  

Mobile phones, especially Android smartphones, have become a very popular device. Android 

devices are commonly used and come with extensive features. These devices have cameras 

which can take good quality pictures. There are several OCR applications for different 



 

10 | P a g e  

 

languages for detecting texts directly from images. Therefore, we have conducted our research 

on Android devices and developed an application to detect text instantaneously, especially for 

Bengali characters. 

1.2 Motivation 

We have already gone through some research paper on related works done previously. We 

found out that the accuracy level in various categories is not satisfactory. Therefore, we were 

motivated to increase the accuracy level. 

In our day-to-day life, we see that many old books, important papers or documents get worn 

out or damaged with age. Nor, do we have any digital forms of these writings. There was no 

scanner to scan and store these documents. Thus, there is no other way to get the documents 

again other than typing the entire thing manually. Moreover, if we wanted to edit any part of 

the writing then we had to rewrite everything and correct the errors. This can create overhead 

and unnecessary labor. Sometimes, even rewriting is not possible as the documents can get 

illegible. For this reason, we have thought to develop an OCR application to preserve such 

books and papers for our convenience. The application will be able to create editable text files 

so that we can edit or print the documents whenever we want. Furthermore, the Android 

application will work quicker than typing or writing the whole thing manually. 

Consequently, our primary goal is to build a handy and usable application which can be used 

by people of all ages. It will be a portable application that can run on any Smartphone device. 

Moreover, the whole process will be shortened as it will be an Android based application. 

Lastly, as the generated text file is going to be a searchable and editable document, people can 

search the desired word rather than reading the whole page. Subsequently, the converted file 

can be stored as a softcopy for future use. 

1.3 Thesis Outline 

In chapter 2, we have discussed about the previous works conducted on OCR for detecting 

Bengali characters. Chapter 3 is based on the System Architecture of our Android application. 

The full description about the environment that is required to develop our application is 

discussed here. Next, in chapter 4, we have briefly gone through the approach we are following 



 

11 | P a g e  

 

in developing our Android OCR application. Chapter 5 covers the technical parts of the 

Tesseract OCR engine and its training is discussed in detail in this chapter. The whole 

mechanics behind the training of Tesseract is described here. Chapter 6 is solely based on the 

performance of the application. The application is tested under various circumstances and 

environmental conditions. Several statistics and graphs are used to explain the outcome of our 

Android OCR application. In chapter 7, we have tried to summarize our thesis work and provide 

a brief overview of the whole process. Chapter 8 is a brief discussion on how the OCR 

application can be further improved in the future. Moreover, we have also included some 

problems that are still present in the application. However, this chapter also contains a few ideas 

about how the problems can be approached. In the Appendix, we included about parts of the 

source code that we have used during the development of our Android OCR application. The 

full source code is available on request. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 | P a g e  

 

2. Literature Review 

While progressing and planning for our thesis, we consulted many research papers regarding 

OCR. Since very less has been done on Bangla OCR, we studied the papers for English and 

Hindi OCR and found fruitful information. Smith [5], discusses in his paper how OCR detects 

damaged characters easily. This was a big help for our research. He also worked on 20 samples 

of 94 characters of eight fonts in four attributes, bold, italic, normal, bold italic, which gave rise 

to a data set of 60,160. We decided to work with four fonts training 3,725 characters each. 

However, we managed to find some papers on Bangla OCR. Omee, in their paper, pointed out 

some important facts about Bangla characters. Bangla characters are not case sensitive [1]. 

However, some have a special feature called “matra” which is a line over the character. Hasnat 

[3], worked on HMM (Hidden Markov Model), a recognizer used for handwritten text and 

speech recognition, as there were very few attempts reported for printed character recognition. 

However, we decided to use Tesseract as character recognition, as it is the best possible open 

source Optical Character Recognition engine.  

Zaman [6], points out in their paper that the current languages trained by Tesseract are, Arabic, 

Bulgarian, Catalan, Chinese (Simplified), Chinese (Traditional), Czech, Danish, Dutch, 

English, Finnish, French, German, Greek, Hindi, Hungarian, Indonesian, Italian, Japanese, 

Korean, Latvian, Lithuanian, Polish, Portuguese, Romanian, Russian, Serbian (Latin), Slovak, 

Slovenian, Spanish, Swedish, Tagalog, Thai, Turkish, Ukrainian, and Vietnamese.  

However, there is no mention of Bengali language which rose our curiosity even more. 

Chowdhury [7] and his team worked under Khalilur Rhaman to build an improved desktop 

version of Tesseract by training 18110 characters and 2617 words according to their report. 

However, we figured out it would be more convenient if it was more portable, thus we decided 

to develop an Android version. Android devices come with a camera, which we can use to 

capture images directly. On the other hand, in most desktop versions, one has to scan a paper, 

then pass it through their OCR application. Therefore, our approach of using Android devices 

greatly speeds up the process and decreases the overall effort needed. Mahbub [6] and his team, 

worked on an Android version as well. Their approach was to develop an Android application 

to translate images captured by a portable device’s camera which can later translate and display 

on screen along with the original text. While going through their paper we realized their training 

set 1 has an accuracy rate of only 68.62%. Further, their application failed to recognize spaces 



 

13 | P a g e  

 

and contained a few words in their test images. Thus, we decided to keep these issues in mind 

while working on our thesis. Furthermore, we have used the latest version of Tesseract, version 

3.03, available now, which was not present at their time. Arif [8], worked on OCR using feature 

extraction. He talks about different feature extraction techniques and how zoning is used to 

build a better Bengali character recognizer. 

Rakhsit [4], on the other hand worked on recognizing handwritten text. They have used 

Tesseract 2.01 instead of building a new recogniser. They have used the handwritten version 

containing few Bengali characters. They used pen based devices such as a stylus or tablet and 

gathered different handwritings from different people. Their first data set contained individual 

handwritten Bengali vowels, their second data set had Bangla consonant and third set contained 

digits. Their accuracy was around 90% for each set of data.  

However, their data set was not large enough to rely upon. We had tried to train a few samples 

of handwritten text, but unfortunately, we were not able to train them on Tesseract. The training 

failed in shapeclustering processing, which means that Tesseract was unable to detect the shapes 

present in the image and store them in the database.  

Therefore, we decided not to deal with handwritten characters, as well as Rakhsit [9], was not 

too clear about juktakkhors or joint letters as they only considered single letters. Although there 

has been much research on handwritten recognizers, very few attempts were taken for Bengali 

characters. One reason might be it is very different from Roman letters as Bengali characters 

have “matra” or headline and “aakar” and “folas”. 

Pal [10], used the approach of recognizing the character shapes by a combination of template 

and feature matching approach. Images are digitized by flatbed scanner and subjected to skew 

correction, line, word and character segmentation, simple and compound character separation. 

They have used a feature based tree classifier for simple character recognition.  

Chaudhuri, in their proposed model [11], used document digitization, skew detection, text line 

segmentation and zone separation, word and character segmentation, character grouping into 

basic, modifier and compound character category for both Bangla and Devnagari (Hindi). Their 

system showed a good performance for single font scripts, printed on clear documents. 

Omee [1] in their paper mentioned the development of OCR, their workflow and algorithms. 

According to their paper, there are 5 steps to basic OCR: 



 

14 | P a g e  

 

1. Scanning. 

2. Preprocessing. 

3. Feature extraction or pattern recognition. 

4. Recognition using one or more classifier. 

5. Contextual verification or post processing. 

They also mention noise detection and reduction. They discussed two types of noise 1) 

background noise 2) salt and pepper noise. They also pointed out that inablity of differentiating 

between two similar characters is also the result of noise. In our case also, we faced various 

such cases and decided to handle it using an algorithm which will be discussed later. Another 

vital reason for noise is brightness and contrast. Patel [2], in their paper discussed about many 

aspects of recognition background, such as gray scale, printed, colored, etc. 

They compared two different recognizers, Tesseract and Transym and figured out that the latter 

is better in detecting characters in number plate. Tesseract faces issues while considering dark 

background. Thus, we have decided to improve the background by increasing contrast and 

brightness in the pre-processing section which we hope will lead to better output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 | P a g e  

 

3. System Architecture 

3.1 Tesseract OCR 

The Tesseract OCR engine was originally developed as a proprietary software at Hewlett-

Packard between 1985 and 1995 and has been sponsored by Google since 2006 [7]. Tesseract 

is the most accurate open-source OCR engine which uses Leptonica Image Processing Library 

for image processing purposes. Tesseract can read a wide variety of image formats and convert 

them to text in over 40 different languages. However, Tesseract was originally designed to 

recognize English text only. To deal with other languages and UTF-8 characters, such as 

Bengali, several efforts have been made to modify its engine and the training system [9]. The 

system structure itself needed to be changed to make Tesseract able to deal with languages other 

than English. Tesseract 3.0 can handle any Unicode character. However, there were limits as to 

the range of languages that Tesseract will be able to successfully detect. Therefore, we had to 

take adequate actions to make sure that Bangla language gets recognized by Tesseract. 

Tesseract 3.01 added top-to-bottom languages, and Tesseract 3.02 added Hebrew (right-to-left). 

Tesseract can currently handle complex scripts like Arabic with an auxiliary engine called cube. 

However, cube, is not yet equipped to detect the Bangla language. Additionally, it includes 

”unicharset” to make multi-language handling easier. This function aids us as we are going to 

be using four different Bangla fonts to train and detect characters. Though Tesseract is slower 

with a large character set language (like Chinese), but it seems to work nonetheless. Tesseract 

also takes more time to detect Bangla character compared to detect English characters. 

However, it can still detect Bangla characters which is the main purpose of our research.  

Tesseract 3.03 added new training tool text2image to generate box/tiff files directly from text. 

It also has support for PDF output with searchable text. However, the text is only searchable, 

as it will be in PDF format and cannot be edited. Tesseract v3.03 (rc) is currently the latest 

available Tesseract engine, therefore, we used this engine in our research. 

Initially, there was a desktop version programmed in the C programming language. It was only 

capable of detecting text from images saved on the computer. However, using tess-two library 

we can use Tesseract and Leptonica Image Processing Library on the Android platform. Tess-

two is a fork of the Tesseract Tools for Android that provides us the ability to utilize the OCR 



 

16 | P a g e  

 

engine on an Android device. The Tesseract Tools for Android is a set of of the following three 

features: 

 Android API 

 Tesseract OCR engine 

 Leptonica Image Processing Library. 

The tess-two comes up with the tools for compiling and running both Tesseract and Leptonica 

Image Processing Library on the Android OS. 

3.2 Development environment 

This project uses the tess-two library to incorporate Tesseract and Leptonica Image Processing 

Library for using in any Android Platform. To use tess-two, at first, we had to build it on the 

Linux based operating system. For this we used Ubuntu OS. Tess-two contains an Android 

library project that provides a Java API for accessing natively-compiled Tesseract and 

Leptonica APIs. We had to use Android SDK and Android NDK to build the project in Ubuntu. 

However, after completing building the application, we shifted to Windows Operating System. 

The main advantage of this shifting was, we could use some Windows based softwares like 

Serak Tesseract Trainer and QT Box Editor for working with multiple files in batch. We can 

use QT to edit and create box files very easily. By using Serak, we can automatize the scripting 

of Tesseract on TIFF/box file pairs. In Ubuntu, we had to manually enter all the file names of 

the training images and box files in the terminal to run Tesseract on them. The number of files 

is quite large considering the fact that we are training a huge data set. By using Serak, the overall 

effort is minimized. 

We have successfully installed and run the Tesseract engine with tess-two library using the 

following configurations:  

1. Ubuntu 14 

2. Windows7/8.1/10 

3. Android 2.2 + 

4. Tesseract v3.03 

5. Leptonica Image Processing Library v1.72 

6. Four trained data file for four different types of Bangla language. 



 

17 | P a g e  

 

3.3 Building Tesseract Library 

For using tess-two in our project as a library, we had to first build and then import it as an 

Android Library. We have used Eclipse Juno Android ADT for developing our project. So, after 

building tess-two, we had to import it into Eclipse as Eclipse Android Library Project. 

To build the latest tess-two code, we had to run the following commands in the terminal: 

git clone git://github.com/rmtheis/tess-two tess 

cd tess 

cd tess-two 

ndk-build 

android update project --path . 

ant release 

After building, we imported the tess-two library package into Eclipse using File->Import-

>Existing Projects into Workspace. 

Next, we had to build Tesseract 3.03 and Leptonica Image Processing Library for our project. 

For this we had to use the Android NDK to compile the native language in Tesseract and 

Leptonica libraries. The Native Development Kit (NDK) is a set of tools that allows us to 

leverage C and C++ code in our Android apps. 

These are the steps we followed to setup the Android NDK: 

1. Downloaded the Android Native development Kit (NDK) from the Android Developers 

website. 

2. Extracted the NDK in a folder in the computer. We extracted it in “D:\Android\android-

ndk”. 

a. Configuring Eclipse: Project->Properties->Builders->New… 



 

18 | P a g e  

 

 

Figure 1: Properties for tess-two 

b. A new dialog will open presenting a list of builder types. We select the Program 

type and press the OK button. 

 

Figure 2: Configuration type selection 

 



 

19 | P a g e  

 

c. In the Main tab, fill in the following: 

i. Name: NDK Builder 

ii. Location: /opt/android-ndk/ndk-build (or wherever your ndk-build 

binary is). We may also use a variable as in 

${system_property:user.home}/lib/android-ndk/ndk-build 

iii. Working Directory: ${workspace_loc:/DristeeOCR} where DristeeOCR 

is our project name. 

 

Figure 3: Configuration Window 

d. After filling in the details, we click OK. 

e. Setting the ndk-build.cmd command in the parameter builds the native programs 

for us. 



 

20 | P a g e  

 

 

Figure 4: NDK Builder Selection 

Next we must make sure that the Is Library check box is checked in the Android menu. 

 

Figure 5: Tess-two Library Selection 



 

21 | P a g e  

 

After completing the above process, we finish setting up the basic requirements for developing 

a project with the two native programs Tesseract and Leptonica Image Processing Library. 

3.4 The New Tesseract 3.03 

For using the newer version of Tesseract, which is 3.03, we need some additional libraries to 

build the training tools. 

sudo apt-get install libicu-dev 

sudo apt-get install libpango1.0-dev 

sudo apt-get install libcairo2-dev 

3.4.1 Building the training tools 

For compiling Tesseract from source we need to make and install the training tools with 

separate make commands. Once the above additional libraries have been installed, we run the 

following from the Tesseract source directory: 

make training 

sudo make training-install 

To train for another language, we had to create some data files in the tessdata subdirectory, and 

then crunch these together into a single file, using combine_tessdata command. The naming 

convention is languagecode.file_name Language codes for the released files following the ISO 

639-3 standard.  

The files used for Bengali are: 

tessdata/ben.config 

tessdata/ben.unicharset 

tessdata/ben.unicharambigs 

tessdata/ben.inttemp 



 

22 | P a g e  

 

tessdata/ben.pffmtable 

tessdata/ben.normproto 

tessdata/ben.punc-dawg 

tessdata/ben.word-dawg 

tessdata/ben.number-dawg 

tessdata/ben.freq-dawg 

Finally, after crunching the above files we get the following file: 

tessdata/ben.traineddata 

The traineddata file is simply a concatenation of the input files, with a table of contents that 

contains the offsets of the known file types. 

3.5 Software used for training 

3.5.1 jTessBoxEditor 

jTessBoxEditor v1.4 is a Java based software created by a Vietnamese company, VietOCR. It 

is a box file editor and trainer for Tesseract OCR, which provides the functions to edit the box 

data in both Tesseract 2.0x and 3.0x formats and full automation of Tesseract training. It can 

read images of common image formats, including multi-page TIFF. This program requires Java 

Runtime Environment 7 or later to operate. This program was used by Gajoui and Banerjee in 

their research to train Tesseract [13], [14], so we decided to use it as well. 

The editor mode of jTessBoxEditor requires us to provide the TIFF/Box files as input. The 

images to be used in training should be of 300 DPI and 1 bpp (bit per pixel) black and white or 

8 bpp grayscale uncompressed TIFF format. For box files, the file needs to be encoded in UTF-

8 format which can be generated by Tesseract executables with appropriate command-line 

options or they can also be created using the built-in TIFF/Box Generator of jTessBoxEditor. 

For our project we have made extensive use of the TIFF/Box Generator function only. For a 

given input UTF-8 text file, the generator produces an image in TIFF format along with a Box 

file. The box contains the mapping of the characters that were in the text file. The generated 



 

23 | P a g e  

 

image is, depending on anti-aliasing mode enabled, a binary or 8-bpp grayscale, uncompressed 

multi-page TIFF with 300-DPI resolution. We have included noise in our training image, so 

that it results in better trained data. Letter tracking, or spacing between characters, can be 

adjusted to eliminate bounding box overlapping issues. Overlap in the boxes causes huge 

problems for Bengali characters. As we know, the characters in the Bangla alphabet are not 

uniform in shape. So we had to be very careful when creating the character boundaries in the 

box files. 

 

Figure 6: Outlook of jTessBoxEditor 

 

Figure 7:Font selection in jTessBoxEditor 

 

Figure 8: Generating Tiff and Box files using jTessBoxEditor 



 

24 | P a g e  

 

 

Figure 9: Generated Tiff and Box files for SolaimanLipi font. 

3.5.2 QT Box Editor 

The QT Box Editor is a tool for adjusting tesseract-ocr box files. The aim of this project was to 

provide an easy and efficient way for editing regardless of file size. The QT Box Editor is a 

successor of the tesseract-gui project that is no longer in development. This software is used to 

edit already created box files. We have used this software instead of jTessEditor because QT is 

much more sophisticated. Editing boxes in bulk is a very time consuming job. However, with 

QT the amount of time needed to process each box file is reduced significantly. Furthermore, 

QT has some very useful functions like insert, merge, split and delete right at the tip of our 

mouse. However, multipage TIFF is not supported yet and we must make sure to use TIFF with 

compression or PNG due to image quality and space. QT was also used by Banerjee in their 

research [14]. 

 

Figure 10: Outlook of QT Box Editor 

 



 

25 | P a g e  

 

 

Figure 11: Setting Bengali language in QT Box Editor 

 

 

Figure 12: Editing box files in QT Box Editor 

 

3.5.3 Serak Tesseract Trainer v0.4 

Serak Tesseract Trainer is a front end GUI for Training Tesseract 3.02. We have basically used 

Serak to automate the training process in the Windows OS Environment. Serak has the feature 

to create traineddata files using only TIFF/Box file pairs. We have used Serak at the very end 

of our project to combine all the TIFF and box files and create a traineddata for the Tesseract 

engine. It is very useful when we are dealing with a large number of files. In our case, we had 

a pretty big character set. So, manually executing all the process and functions in creating a 

traineddata file is very inefficient and would require a lot of effort. 



 

26 | P a g e  

 

After successfully creating the traineddata file, we feed  it to Serak and use its OCR Mode to 

run Tesseract on images to detect characters. Using Serak’s OCR Mode we are able to test and 

verify the integrity of the data set we had trained using the TIFF and box files. 

 

Figure 13: Overview of Serak Tesseract Trainer 

 

 

Figure 14: OCR Mode of Serak Tesseract Trainer 

 

 



 

27 | P a g e  

 

4. System Approach 

4.1 Work flow: 

The development process of Dristee OCR has two phases. Firstly, the training part where we 

create a database for the OCR to use, and detect Bengali characters from images. Secondly the 

Android application which uses the traineddata file and recognizes Bengali text and converts 

the recognized text into an editable and searchable document. 

4.1.1 Training Dristee OCR 

Our project is entirely dependent on the quality and quantity of the text we have used for 

training. While training, we had to be very cautious that we do not make any mistake in the 

character sets. This is because what we may think of as a slight error, may end up significantly 

decreasing the accuracy of our application. Next, the character set itself is vital, as we have to 

cover all the existing Bengali characters.  

The number of Bengali characters is very large, if we consider the joint letters for training. As 

we are trying to increase the accuracy, we have included all possible joint letters in our training 

data. After preparing the text data for training, we convert them into images using 

jTessBoxEditor. We get four sets of training data file for four fonts. Consequently, using QT 

Box Editor we make changes necessary for the box files, making sure that the characters are 

correctly mapped inside the boxes. 

Additionally, it is essential that there are no overlapping boxes in the training set, as it may 

create a shapeclustering error in later stages of training. Finally, after successfully creating the 

box files, we use Serak Tesseract Trainer to automatize the training process and combine the 

traineddata file using the box files.  



 

28 | P a g e  

 

 

Figure 15: Training workflow of Dristee OCR  

 

4.1.2 Executing Dristee OCR 

As we want to develop a real time system for character detection, we will be using the video 

capture interface of the camera on our Android Phone. The calibration of the resolution will be 

done so that it can avoid any kind of distortion like parallax error. After that, some simultaneous 

internal processes will be executed like capturing the image and preparing it for the OCR. 

Concurrently, Leptonica Image Processing Library will work and hand over the data to 

Tesseract for character recognition. 

Finally, when the recognition is done by properly matching with box files and corresponding 

Unicode Character, the result will be converted to text format and shown in the activity window 

of the application on the Android device. The text file will then be saved in the device for future 

use. 



 

29 | P a g e  

 

 

Figure 16: Workflow diagram 

 

 

 

 

 

 

 

 

 



 

30 | P a g e  

 

5. System Implementation 

5.1 Generating image files from text files 

To start the training process of our application, we need images to train with. So, we had to 

generate good quality image files from text. For this purpose, we used jTessEditor. By using 

the TIFF/Box Generator method, we easily converted text to images in TIFF format directly. 

TIFF format image is recommended for training Tesseract. The software jTessEditor also 

creates Box files of the characters given in the text files. Here, we provided the input as txt file 

for raw text in the text box. We had trained for a total of four fonts. They were: AdorshoLipi, 

Kalpurush, Nikosh and SolaimanLipi. In jTessBoxEditor, we also added ”Noise” to artificially 

add noise to our training image. Adding noise increases the detection level of the OCR. For our 

research, we used noise value of 5 and the font size 12. Later on, we increased our data set using 

different font sizes such as, 14, 18, 24, 36. 

 

Figure 17: Text input in jTessBoxEditor 

 

Figure 18:Text input using txt file 

 



 

31 | P a g e  

 

We have found that using a variety of font sizes help increase the accuracy of the OCR. Initially, 

we only used font size 12 for all the texts. However, using the traineddata, created using these 

images resulted in poor accuracy. Therefore, we decided to increase the font size and create 

new sets of training images and box files. With these new traineddata, we were able to increase 

the recognition to some extent. 

 

Figure 19: Detection using only font 

size 12 

 

Figure 20: Detection after using multiple 

font sizes 

5.1.1 Types of characters used for training 

We have tried to cover all the characters present in the Bengali alphabet, however, we have not 

included Bengali numbers in our final data set. During the testing phase, we found that 

including number increases the ambiguity of the characters. Several other issues were addressed 

by Datta [15] in his paper. While most numbers were harmless except for ” ২” and ” ৩”, the 

OCR is quite frequently confused between these two numbers. It is also seen to be confusing অ 

and ত  with ৩ on several occasions. This results in decreased overall accuracy. Moreover, we 

choose not to train the vowel diacritics (া  িা া  া  া  ো ৈা ো  ো ...) individually either. Training 

with these characters also affects the detection level of the OCR. This fact was already 

confirmed by Zaman [6] in their paper.So, we concluded that it would be better to associate 

these diacritic characters with consonants forcefully and train them for our OCR application. 

More information on the properties of different Bengali scripts can be found at [12]. Lastly, our 

whole research concentrated on the successful detection of conjunct consonants. No work has 

been done to detect these joint letters precisely. 

ই, ঈ -> ২ 

অ, ত-> ৩ 

Table 1: Numerical Ambiguities 



 

32 | P a g e  

 

Bangla Vowels অ আ ই ঈ উ ঊ ঋ এ ঐ ও ঔ 

Bangla Consonants ক খ গ ঘ ঙ চ ছ জ ঝ ঞ ট ঠ ড ঢ ণ ত থ দ ধ ন প 

ফ ব ভ ম য র ল শ ষ স হ ড় ঢ় য় ৎ া  া   া  

Bangla Conjunct Consonants ন্ঠ ন্ত স্ক স্ক্র ষ্ট ষ্ণ ষ্ক শ্ল হ্ল স্ল ড্ড ঞ্ঝ... 

Bangla Consonants with diacritics  ক  খ  ঠি ধ  চ  কূ জ ূেঢ ৈখ েগ  েঘ ... 

Table 2: Types of characters trained 

We have trained a total of 12,191 individual Bengali characters for our Dristee OCR 

application. This includes all four fonts which consists of all possible Bengali characters. The 

majority of this data set consists of conjunct consonants as they are huge in number, 8971 to be 

precise. 

 
 

 

 

Table 3: Various types of training images 



 

33 | P a g e  

 

5.2 Creating Box Files 

After converting the text into images, we must now create box files for them. Box files are 

simply the mapping of the characters in the images. We are using QT Box Editor for creating 

and editing the box files. It is required to merge character likes ক, া  into ক  as we do not want 

the vowel diacritics to be separate. Doing this in jTessBoxEditor is troublesome, therefore we 

used QT. 

 

Figure 21: Vowel diacritic separate 

 

Figure 22: Vowel diacritic merged 

Table 4: Diacritic overview 

The Box files contain the characters in the image in Unicode format as well as their 

corresponding ”Left, Bottom, Right, Top” position with respect to the dimensions of the 

images. 

 
 

Figure 23: Box file creation 



 

34 | P a g e  

 

5.3 Processing Box Files 

After we have created all the box file pairs, we need to run Tesseract on each of the images and 

corresponding box files. For each of the images and box file pairs, we must execute the 

following command: 

For Windows Platform Exclusively: 

tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] box.train 

tesseract ben.solaimanlipi.exp0.tif ben.solaimanlipi.exp0 box.train 

For All Platforms: 

tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] box.train.stderr 

tesseract ben.solaimanlipi.exp0.tif ben.solaimanlipi.exp0 box.train.stderr 

However, it is not feasible to run this command for a large number of training images. It takes 

both effort and time to manually execute all the commands. Therefore, we have used Serak 

Tesseract Trainer to automate the task for us. Serak runs this command relentlessly until all the 

images and box files are processed. 

Executing this command line creates a [lang].[fontname].exp[num].tr file for every pair. Eg. 

ben.solaimanlipi.exp0.tr. 

5.4 Computing the Character Set 

Next, we must create a unicharset data file, which lets Tesseract know the set of possible 

characters it can output. For this we need to use the unicharset_extractor program on the box 

files generated above. However, unlike previous processes, we do not need to type the same 

command over and over for every box file. We can just append the name of the box files 

separated by a space. 

unicharset_extractor lang.fontname.exp0.box .... lang.fontname.expN.box 

unicharset_extractor ben.solaimanlipi.exp0.box .... ben.solaimanlipi.expN.box 



 

35 | P a g e  

 

 

Figure 24: Unicharset sample 

 

5.4.1 Setting the Unicharset Properties 

A new tool and set of data files in 3.03 allow the addition of extra properties in the unicharset, 

mostly sizes obtained from different fonts. 

training/set_unicharset_properties -U input_unicharset -O output_unicharset --

script_dir=training/langdata 

5.5 Font Properties 

Subsequently, we need to generate the font_properties file. This file contains all the information 

about the style of the text. It controls the style the output receives after the font is recognized. 

The font_properties file is a text file specified by the -F filename option to mftraining. 

Each line of the font_properties file is formatted as follows: 

<fontname> <italic> <bold> <fixed> <serif> <fraktur> 

Here, <fontname> is a string naming the font and <italic>, <bold>, <fixed>, <serif> and 

<fraktur> are all simple 0 or 1 flags indicating the respective state of the font. 

Eg. solaimanlipi 0 0 0 0 0, means that the font name is solaimanlipi with no styling present. 

 



 

36 | P a g e  

 

5.6 Shape Clustering 

When the character features of all the training pages have been extracted, we need to cluster 

them to create the prototypes. The character shape features can be clustered using the 

shapeclustering, mftraining and cntraining programs: 

shapeclustering -F font_properties -U unicharset lang.fontname.exp0.tr .... 

lang.fontname.expN.tr 

Eg. shapeclustering -F font_propterties -U unicharset ben.solaimanlipi.exp0.tr .... 

ben.solaimanlipi.expN.tr 

Shapeclustering creates a master shape table by shape clustering and generates a shapetable file. 

As we are training for an Indic language, we are going to use the shapeclustering method. This 

method is only used for Indic languages. 

mftraining -F font_properties -U unicharset -O lang.unicharset lang.fontname.exp0.tr .... 

lang.fontname.expN.tr 

Eg. mftraining -F font_properties -U unicharset -O ben.unicharset ben.solaimanlipi.exp0.tr 

.... ben.solaimanlipi.expN.tr 

The -U file is the unicharset generated by unicharset_extractor above, and ben.unicharset is the 

output unicharset that will be given to combine_tessdata. Mftraining will output to two other 

data files: inttemp and pffmtable. The inttemp file contains information about the shape 

prototypes, whereas, pffmtable contains the number of expected features for each character we 

are training. 

cntraining lang.fontname.exp0.tr .... lang.fontname.expN.tr 

cntraining ben.solaimanlipi.exp0.tr .... ben.fontname.expN.tr 

This command will create the normproto data file which is the character normalization 

sensitivity prototypes. 

 



 

37 | P a g e  

 

5.7 Unicharambigs 

During our training procedure, we observed a slight difference at some of the consonants with 

Bengali “kar” also known as the vowel diacritic. For instance, when we tried to detect ত  it 

outputted অ. This is an ambiguity that confuses the engine to identify a list of consonants with 

“kar”. To fix the problem, we went through a bit of research and came to know that there is a 

file called DangAmbigs which deals with a mapping to reduce complexity between ambiguous 

figures. Another example may be ক  = কণ. It uses numbering to map the corresponding 

possibilities like the following image. 

 

 

Figure 25: DangAmbigs 

 

We generated this file in order to reduce detection failure in identical letter groups. In our 

version we are using a similar file called unicharambigs more specifically Tesseract unicharset 

ambiguities. This unicharambigs file first appeared in Tesseract 3.00. Before that the similar 

format as already mentioned DangAmbigs (dangerous ambiguities) was used. The structure 

was mostly similar but only obligatory changes could be defined. One extra column was added, 

holding either 1 or 0. Here, 1 means a mandatory replacement, 0 means an optional substitution. 

Initially we were facing problems with saving the Unicharambigs with proper configuration. 

So we used sublime text to maintain the Unicode format.  

 

Figure 26: Unicharambigs 

 

Here in the demonstration we can see 2 characters are confused with two other characters, where 

non-obligatory replacement is indicated by 0. In the second line 1 character is confused with 2 

characters and an obligatory replacement is indicated by 1 and so on. 



 

38 | P a g e  

 

5.8 The Final Crunch 

Finally, all of our data files are created and ready for use. Now it was time to create the 

traineddata file. The traineddata file is simply the concatenation of all the data files we had 

created above. For this, we first sorted out the files and added the prefix ”ben.” to all of them. 

Before After 

shapetable 

normproto 

inttemp 

pffmtable 

unicharset 

unicharambigs 

ben.shapetable 

ben.normproto 

ben.inttemp 

ben.pffmtable 

ben.unicharset 

ben.unicharambigs 

Table 5: Renaming with language prefix 

 

Now, we were all set to generate the traineddata file. For this, we ran the command 

”combine_tessdata” on them as follows: 

combine_tessdata lang. 

Eg. combine_tessdata ben. 

After successfully executing this command, a new file, ben.traineddata will be created. This file 

acts as the fuel to our Android application. 

However, if we are working on a Windows platform, then we can simply use the software Serak 

Tesseract Trainer we had discussed earlier to automate the process for us. Manual labor is 

greatly reduced if we use this software fruitfully. 

 

 



 

39 | P a g e  

 

6. System Programming 

In our project, Dristee OCR, CaptureActivity.java is being used to capture the text image. The 

application checks the first launch and downloads the trained data from a server where we kept 

our trained data hosted. After initializing, the OcrInitAsyncTask.java initializes a concurrent 

thread to simultaneously process OCR on the text image in real time. The 

PreferencesActivity.java gives the option to the user to choose the fonts from a dropdown list 

which they prefer to use for detection.  

The DecodeHandler.java utilizes the OcrRecognizeAsyncTask.java to continuously perform 

the detection for Bengali characters. PlanarYUVLuminanceSource.java utilizes the Leptonica 

Image Processing Library internally to adjust the brightness and contrast before passing the 

thread to Tesseract detection. It also uses the matrix manipulation of images and crops the image 

source in a grayscale image format for OCR. OcrResult.java provides the resultant text of 

detected Bangla Unicode font mapped results as text. This string is finally shown on the activity 

as detected text. The whole process is repeated continuously for real time detection.  

From our observation we saw that the OCR result in lower light in case of printed text is not 

satisfactory. We did a bit of research and came to know about monochrome and colored light 

model from graphics to fix this issue. Finally, we came to a conclusion that using the camera 

flash will help us develop the result to a great extent. Screen images use emission based 

technology. On the other hand, printed document detection needs to be implemented with 

reflection based technology. In our project we introduced a package called 

bracu.ac.bd.ocr.camera, here we included the class CameraConfigurationManager.java. This 

class utilizes the methods doSetTorch and setFlashMode to enable flash. 

Exposure is another issue to increase the quality of the image before detection and compromise 

contrast. This is dealt by CameraManager.java. Consequently, three exposure levels called low, 

medium and high are given as option to the user. The method setExposureCompensation is used 

to apply the exposure. 

The class ViewfinderView.java is a view which is set on top of the camera preview which adds 

the viewfinder rectangle and slightly reduces opacity around it. The class CameraManager.java 

was implemented to wrap up the camera services used in the preview. For instance, we had 

https://github.com/Grohon/OCR/blob/master/src/bracu/ac/bd/ocr/PlanarYUVLuminanceSource.java


 

40 | P a g e  

 

implemented the adjustFramingRectangle method which takes the height and width as 

parameters and helps calibrating frame size. 

Before Exposure Control: After Exposure Control: 

  

Table 6:Comparison after exposure 

From the above test images, we can observe that the exposure of the camera plays an important 

role in image quality, Hence, efficient detection of the characters depends on it. However, we 

must acknowledge the fact that not all cameras have the same exposure level. Therefore, we 

have margined the exposure level using the minimum and maximum exposure possible by the 

camera. Next, we manipulated this information in setting three exposure levels, low, medium 

and high [Appendix 2]. 

Exposure: Low Exposure: Medium Exposure: High 

   

   

Table 7:Exposure modes 

 



 

41 | P a g e  

 

A few more sample of images after the exposure of the camera is adjusted manually. 

After manually setting the exposure of the camera: 

 

 

 



 

42 | P a g e  

 

 

 

 

Table 8: Sample detection 



 

43 | P a g e  

 

7. Experimental Result 

7.1 Precision and Recall 

For our research and understanding training quality, we have tested our trained data in both 

desktop version and in our own Android application called “Dristee OCR”. Moreover, test was 

carried out using two sets of sample data. One set of data contained converted images from text 

files that we trained and the other set contained screenshots for desktop version and images 

clicked by our application from newspapers, magazines, etc. In order to calculate accurately, 

we used “precision” and “recall” [16].   

This method is typically used in pattern recognition and information retrieval. Precision states 

the fraction of how many retrieved results are correct and are relevant and recall, on the other 

hand, gives an estimated fraction of how many positives is returned by the model. The following 

figures show pie chart and graphs for better illustration of these and their relationship. 

 

Figure 27: Relationship between 

retrieved data and total set of data. 

 

Figure 28: Relationship between 

retrieved, not retrieved and irrelevant 

data retrieved. 

Let us assume, A is the total number of characters detected by the OCR, B is the total number 

of actual characters and C is the total number of correctly detected characters. Therefore, in our 

case, precision and recall is:  

Precision: C/A 

Recall: C/B 



 

44 | P a g e  

 

 

Figure 29: Relationship between precision and recall. 

 

The graph in Figure 29 shows an inverse relation between the two terms, where precision 

decreases exponentially as recall increases. In this graph, a perfect precision score of 1.0 means 

every result retrieved by the search was relevant. However, it says nothing about whether or 

not all the relevant documents were retrieved.  

Whereas, a perfect recall score of 1.0 means that all relevant documents were retrieved, but says 

nothing about the irrelevant documents retrieved by the search. As the value of precision 

decreases it is indicating how the relationship between the retrieved and the correct value 

deteriorates.  

On the other hand, as the value of recall decreases it indicates that less relevant data were 

retrieved. Therefore, as the amount of relevant data increases, the possibility of irrelevant data 

goes up as recall does not keep count of the irrelevant ones. 

 



 

45 | P a g e  

 

 

Figure 30: Harmonic average and Break-even points. 

The properties or the expected behaviors of text categorization or information retrieval systems 

can vary. For example, for one system, it is better to return most correct answers, while in 

another, it is better to cover more true positives. There is a trade off between precision and 

recall: if a classifier says "True" to every category for every document, then it receives perfect 

recall, but very low precision. However, it can be easily seen that if a classifier says "False" for 

every category, except one which is correct (TP =1 and FP=0) then it will have a precision equal 

to 1 but a very low recall. That is why it makes comparison between systems easier if the system 

is characterized by a single value, the break-even point (BEP), which is the point at which 

precision equals recall. Figure 30 shows the relationship between precision and recall. It is 

calculated by the formula:  

𝐹 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

In order to find the BEP from the graph we drew a y = x line on the graph. We know as recall 

increases precision decreases, therefore, we get an intersecting point on the graph which gives 

us the BEP. 



 

46 | P a g e  

 

In our case, we have used four sets of data for the Android application and four sets of data for 

the desktop version. We tried to compare between these two methods in order to learn the 

success rate of our training and ways to improve our Android application.  

7.1.2 Precision and Recall for AdorshoLipi 

Below is the result for AdorshoLipi font tested by both Android and desktop version. For 

desktop version, we have used the “Serak Tesseract Trainer v4.0” which can execute Tesseract 

on image files. We provided Serak Tesseract Trainer with our “traineddata” files and ran it on 

our test images. Below are the results: 

Table 9: Experimental result calculated for mobile application of AdorshoLipi font. 

 

A B C Precision Recall 

49 50 34 69.4% 68.0% 

11 11 11 100.0% 100.0% 

23 23 22 95.6% 95.6% 

33 32 30 90.9% 93.8% 

25 23 21 84.0% 91.3% 

27 24 23 85.2% 95.8% 

47 50 41 87.2% 82.0% 

47 55 43 91.5% 78.2% 

A B C Precision Recall 

34 25 22 64.7% 88.0% 

30 26 17 56.6% 65.6% 

33 32 15 45.4% 46.8% 

13 14 11 84.6% 78.5% 

32 25 18 56.3% 72.0% 

15 13 9 60.0% 69.2% 

34 26 21 61.8% 80.8% 

21 17 10 47.6% 58.8% 

26 22 15 57.7% 68.2% 

Average: 

Precision: 59.4% Recall: 69.8% 



 

47 | P a g e  

 

32 33 28 87.5% 84.8% 

Average: 

Precision: 87.9% Recall: 87.7% 

Table 10: Experimental result calculated for desktop version of AdorshoLipi font. 

According to this statistic, with random length of characters, AdorshoLipi font has a precision 

of 59.4% and recall of 69.8% with our Android application. However, for the same font but 

with a desktop version, we used some sample scanned Bangla characters. We found out that the 

scanned images have a very high level of accuracy for detection, with an average precision of 

87.9% and recall of 87.7%. 

Percentage difference of Precison: 

|𝑃1 − 𝑃2|

(
𝑃1 + 𝑃2

2 )
∗ 100 

|59.4 − 87.9|
59.4 + 87.9

2
∗ 100 

|−28.5|
147.3

2
∗ 100 

28.5

73.65
∗ 100 = 38.7% 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Percentage difference of Recall: 

|𝑅1 − 𝑅2|

(
𝑅1 + 𝑅2

2
)

∗ 100 

|69.8 − 87.7|
69.8 + 87.7

2
∗ 100 

|−17.9|
157.5

2
∗ 100 

17.9

78.75
∗ 100 = 22.7% 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 



 

48 | P a g e  

 

7.1.3. Precision and Recall of Nikosh 

Similary, we tested both Android and desktop version for the font ”Kalpurush” by creating a 

separate traineddata file and feeding it to Serak Tesseract Trainer. Below are the results for the 

same sample of data we used for the mobile in AdorshoLipi: 

A B C Precision Recall 

35 25 20 57.1% 80.0% 

31 26 16 51.6% 61.5% 

36 32 17 47.2% 53.0% 

17 14 7  41.2% 50.0% 

32 25 17 53.1% 68.0% 

7 13  4 57.1% 30.8% 

30 26 17 56.7% 65.4% 

19 17 9 47.3% 52.9% 

23 22 17 73.9% 77.3% 

Average: 

Precision: 53.9% Recall: 59.9% 

Table 11: Experimental result calculated for mobile application of Nikosh font. 

Similarly, we conducted another test with a different data set with desktop version using 

scanned images. 

A B C Precision Recall 

18 16 13 72.2% 81.3% 

12 10 5 41.6% 50.0% 

12 12 10 83.3% 83.3% 

37 27 14 37.8% 51.9% 

40 54 19 47.5% 35.2% 

25 25 24 96.0% 96.0% 

26 29 8 30.8% 27.6% 

45 38 10 22.2% 26.3% 

36 38 19 52.8% 50.0% 

Average: 

Precision: 53.8% Recall: 55.7% 

Table 12: Experimental result calculated for desktop version of Nikosh font. 



 

49 | P a g e  

 

Percentage difference of Precision: 

|𝑃1 − 𝑃2|

(
𝑃1 + 𝑃2

2 )
∗ 100 

|59.9 − 53.8|
53.9 + 53.8

2
∗ 100 = 0.19% 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Percentage difference of Recall: 

|𝑅1 − 𝑅2|

(
𝑅1 + 𝑅2

2 )
∗ 100 

|59.9 − 55.7|
59.9 + 55.7

2
∗ 100 = 7.27% 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

 

7.1.4. Precision and Recall of Kalpurush 

Similary, we have also tested both Android and desktop version for the font ”Kalpurush”. 

However, unlike the previos methods, we have now used exposure control and flash light in our 

mobile application. Below are the results with the same sample data we used for the mobile in 

AdorshoLipi: 

A B C Precision Recall 

29 25 18 62.1% 72.0% 

25 26 19 76.0% 73.1% 

31 32 25 80.1% 78.1% 

16 14 10 62.5% 71.4% 

27 25 20 74.1% 80.0% 

12 13  8 66.7% 61.5% 

28 26 19 67.9% 73.1% 

14 17 12 85.7% 70.6% 

25  22 17 68.0% 77.3% 

Average: 

Precision: 71.5% Recall: 73.0% 

Table 13: Experimental result calculated for mobile application of Kalpurush font. 



 

50 | P a g e  

 

Similarly, we have also tested another data set with desktop version using scanned images. 

A B C Precision Recall 

42 37 27 64.3% 73.0% 

14 13 7 50.0% 53.8% 

15 14 9 60.0% 64.3% 

26 24 14 53.8% 58.3% 

30 25 19 63.3% 76.0% 

28 24 18 64.3% 75.0% 

38 25 16 42.1% 64.0% 

41 28 17 41.5% 60.7% 

29 24 14 48.3% 58.3% 

Average: 

Precision: 54.2% Recall: 64.8% 

Table 14: Experimental result calculated for desktop version of Kalpurush font. 

 

Percentage difference of Precision: 

|𝑃1 − 𝑃2|

(
𝑃1 + 𝑃2

2 )
∗ 100 

|71.5 − 54.2|
71.5 + 54.2

2
∗ 100 = 27.53% 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Percentage difference of Recall: 

|𝑅1 − 𝑅2|

(
𝑅1 + 𝑅2

2 )
∗ 100 

|59.9 − 55.7|
59.9 + 55.7

2
∗ 100 = 7.27% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

 



 

51 | P a g e  

 

7.1.5. Precision and Recall of SolaimanLipi 

Similary, we have also tested both Android and desktop version for the font ”SolaimanLipi”. 

Moreover, like Kalpurush, we have included exposure control system and flash light technology 

when we are using our OCR Application. Below are the results with the same sample data we 

used for the mobile in AdorshoLipi: 

A B C Precision Recall 

22 25 18 81.8% 72.0% 

21 26 17 81.0% 65.4% 

34 32 27 79.4% 84.4% 

13 14 9 69.2% 64.3% 

29 25 20 69.0% 80.0% 

17 13  10 76.9% 76.9% 

30 26 24 80.0% 92.3% 

19 17 14 73.7% 82.3% 

20 22 17 85.0% 77.3% 

Average: 

Precision: 77.3% Recall: 77.2% 

Table 15: Experimental result calculated for mobile application of SolaimanLipi font. 

Next, we have used a separate data set for testing SolaimanLipi on desktop using scanned 

images. 

A B C Precision Recall 

11 11 10 90.9% 90.9% 

10 10 7 70.0% 70.0% 

9 7 5 55.6% 71.4% 

15 15 12 80.0% 80.0% 

5 5 5 100.0% 100.0% 

14 13 10 71.4% 76.9% 

25 21 13 52.0% 61.9% 

30 29 13 43.3% 44.8% 

17 16 13 76.5% 81.3% 

Average: 

Precision: 71.1% Recall: 75.2% 

Table 16: Experimental result calculated for desktop version of SolaimanLipi font. 

 



 

52 | P a g e  

 

From the above results of AdorshoLipi and Nikosh, we can conclude that the result for desktop 

version was better than Android version. Keeping this in mind, we later tried to obtain a better 

result with a better camera. To further improve our accuracy, we tried changing the lighting 

conditions during our experiments. 

However, after some test trials, we found out that the light was not sufficient due to the fact that 

the pictures need to be taken from a close distance by the camera. Therefore, we used the 

flashlight on the Android phone to increase the quality of light. Morever, manual selection of 

exposure setting was also added to help obtain better results. 

Finally, after setting the exposure correctly and using flash light whenever necessary, 

significant increase in the detection of text was observed in later trials. Therefore, we can 

conclude that our trained data were to some extent successful and the poor quality of Android 

results are hugely due to the camera and lighting quality. 

 

Figure 31: Precision for desktop version 



 

53 | P a g e  

 

 

Figure 32: Precision for Android version 

 

 

Figure 33: Recall for desktop version 

 



 

54 | P a g e  

 

 

Figure 34: Recall for Android version 

7.1.6 Skewness: 

Image Skewness was also an issue to be noticed in case of OCR. Skewness refers to the tilt in 

the bitmapped image of the scanned document image for Optical character Recognition [17]. 

Smith [18] mentions in his paper, an important part of any document recognition system is 

detection of skew in the image of a page. Their paper presents a new, accurate and robust skew 

detection algorithm based on a method for finding rows of text in page images. Not all image 

texts are uniformly symmetrical. To get the skewness of an image it can be converted to a binary 

file after making a grayscale from the source image. Next, from mathematical formulae of 

distribution, the angle of skewness is measured. Sarfraz [19] discusses in his paper, an input 

image needs to be normalized and converted into a format accepted by the OCR system. The 

OCR systems typically assume that the documents were printed with a single direction of the 

text and that the acquisition process did not introduce a relevant skew. However, practically 

this assumption is not very strong and printed document could be skewed at some angle with 

the horizontal axis. 

 
Figure 35: Skewness 



 

55 | P a g e  

 

1. A perfect normal distribution provides tapering equally from both sides maintaining 

symmetry.  

2. In a left skewed distribution left side is longer than the right side tail. 

3. In a positively skewed distribution right hand side tail is longer than the left one. 

In the figure above the middle one is a normal Bell Curve of normal distribution where it turns 

out that the average and the peak are equal. In left the negatively skewed is also called a left 

skewed graph. Similarly, positively skewed is a right skewed graph. There are several methods 

of calculating skewness. 

Formula for calculating skewness: 

Pearson’s Formula: 

(𝑚𝑒𝑎𝑛 − 𝑚𝑜𝑑𝑒)

𝜎
 

Table 17: Pearson’s Formula 

For example, the following figure illustrates the skewed example for a sample Bangla text 

image: 

 

 

Figure 36: Skewed Bangla Text 

 

An image can be either right or left skewed. As Tesseract can handle two dimensional skewness 

to some extent by its internal process, we can expect a better result. 



 

56 | P a g e  

 

8. Conclusion 

We basically came up with this idea in order to preserve old books and novels. For example, 

big books and novels take up a lot of space in bookshelves. If our device can help to store it in 

a more sophisticated manner, space management issue will be solved. Also, we see there are 

many old but valuable books owned by our parents and grandparents. However, many get worn 

out and are not in a condition to be read. Many books are no longer available in the market. 

Therefore, we decided to improve the existing system such that the accuracy level is nearer to 

100%. Of course, software systems are never 100% accurate. However, if what we discussed 

in the future aspect is met, we might get even better results. We hope this system will be helpful 

for foreigners if we can include a translation option along with the recognition of Bangla text. 

As the translation is not as accurate as it should be, there is a lot of scope to work in this sector 

as well. 

Overall, we succeeded in our aim to make Tesseract more precise. We checked a lot of forums 

and discussions and most of them discussed about space detection issues. We took it to be a 

serious matter, as without the proper positioning of space words can be misleading. We tried to 

apply many different ways to solve the issue and the most successful one is described in our 

paper. However, there is yet more work to be done using algorithms in order to solve the issues 

regarding space detection.  

According to our observation and analysis of the previous works, we moved on to further 

develop the Bengali OCR system. As a result, we came up with a better solution. Along with 

the joint characters, we introduced different fonts to cover more variations. We conducted our 

research and completed the implementation of a portable Android application for Bangla OCR. 

This applicaton is user friendly and efficient in detecting Bengali characters from images and 

converting them to editable text files. 

 



 

57 | P a g e  

 

9. Future Aspects 

From the extensive research, literature review and related work we came across various 

approaches of handling the shortcomings of character recognition. However, there still persists 

some limitations in the current research, which could be further improved by deploying other 

existing methods and applications. Our main goal for this thesis was to train more fonts and to 

be able to detect spaces. However there are several more aspects in which OCR for Bangla can 

be improved. Firstly, even though we tried to train space by training words, the OCR does not 

always detect space. Therefore, extensive work can be done here to improve the space issue in 

Tesseract. Secondly, there are very few initiatives taken to work with handwritten texts.  

We found a few papers on handwritten OCR. For example, Rakshit [4] and his team worked on 

developing Tesseract for handwritten bangla texts. However, they only dealt with single 

characters, such as vowels, consonants and numbers. Jutktakkhors or joint letters are yet to be 

handled. Thus there is scope for work on this area. Moreover, recognition of cursive text is even 

more challenging than handwritten text recognition. It is said to have accuracy level lower than 

handwritten text and will not be possible without grammar information. For example, 

recognizing entire words from a dictionary is easier than trying to parse individual characters 

from script. We found no paper for cursive text in Bengali or any paper working with Bengali 

grammar. Therefore, we believe there is a huge opportunity to develop an application that 

understands Bengali characters rather than just recognising it. 

In addition to that, we looked at different papers which mentioned different ways and 

algorithms to improve the accuracy of OCR. Arif [8] in his paper mentions about a new feature 

extraction procedure called zoning and template matching combined. Template matching is 

needed to be implemented first and later zoning is used to increase accuracy. Bengali is the 

official language of Bangladesh. However, very few attempts have been taken to improve 

software and computer based contents and system localization in Bengali. 

Consequently, in order to develop any application, the basic standard for encoding language 

must be met. There are few fields which have not been improved yet. For example, hardly any 

detailed morphological analysis for Bengali language has been carried out in order to improve 

software framework. This is very crucial for supporting applications like OCR. 



 

58 | P a g e  

 

In addition to that, there are hardly any attempts to create a lexicon of Bengali language [20]. 

The few that exists lack colloquial language and proper noun which are expanding day by day. 

Therefore, there is still scope left to build a lexicon for Bengali. The most important issue for 

Bengali OCR or any other OCR is the camera application. If the camera is a little shaky or if 

the text is not in proper position the OCR fails to detect any character. We tried our best to 

reduce this error to a minimum, however, there is still a lot of scope to improve this sector by 

programming a better camera application. 

Though we worked on a defined scope, we have a greater possibility to expand it in the near 

future to zoom into a larger vision. The OCR application can bring a mesmerizing impact if we 

can integrate that in Google Glass for real time detection. It turns out that not only for user 

comfort, but implementing the application in mobile device would give flexibility to align and 

calibrate the display for tilted image. 

The contrast issue of the detection cannot also be underestimated. Since we are using Tesseract 

which is not open source, we cannot work on improvement of image processing sector, which 

is what is dealt by leptonica image processing library. In future we want to work on 

experimenting contrast improvement  before passing the image for OCR purpose. To some 

extent it is intuitive that adjusting image quality tends to provide better results as per our 

observation.  

To keep pace with the technology, utilizing an updated library beggars description. For instance, 

when we started the research the available version of Tesseract for android platform was 3.02 

but now we have 3.03. We can infer that the day is not so far when we will have developed a 

version of Tesseract library available to outweigh the current result. 

 

 

 

 



 

59 | P a g e  

 

Acronyms 

1. OCR - Optical Character Recognition 

2. HMM - Hidden Markov Model 

3. API - application program interface 

4. RC - Release candidate 

5. SDK - Software Development Kit 

6. NDK - Native Development Kit 

7. DPI - Dots per inch 

8. PDF - Portable Document Format 

9. OS - Operating System 

10. TIFF - Tagged Image File Format 

11. BEP - Break-even Point 

12. TP - True positive 

13. FP - False positive 

 

 

 

 

 

 

 



 

60 | P a g e  

 

References:  

[1] Omee, F. Y., Himel, S. S., & Bikas, M. A. N. (2011). A Complete Workflow for 

Development of Bangla OCR. International Journal of Computer Applications, 21(9). 

[2] Patel, C., Patel, A., & Patel, D. (2012).  Optical Character Recognition by Open Source 

OCR Tool Tesseract: A Case Study. International Journal of Computer Applications, 55(10). 

[3] Hasnat, M. A., Habib, S. M. M., Khan, M. (2008). A High Performance Domain Specific 

OCR For Bangla Script. Novel Algorithms and Techniques In Telecommunications, 

Automation and Industrial Electronics. (pp. 174-178). 

[4] Rakshit, S., Ghosal, D., Das, T., Dutta, S., Basu, S. (2009). Development of a Multi-User 

Recognition Engine for Handwritten Bangla Basic Characters and Digits. Int. Conf. on 

Information Technology and Business Intelligence. 

[5] Smith, R. (2007). An Overview of the Tesseract OCR Engine. Proc. of 9th ICDAR 2007, 

Curitiba, Paraná, Brazil. (pp. 629-633). IEEE Explore. 

[6] Zaman, S. M., & Islam, T. (2012). Application of Augmented Reality: Mobile Camera 

Based Bangla Text Detection and Translation. BRAC University. 

[7] Chowdhury, M., T., Islam, M., S., Bipu, B., H. (2015). Implementation of an Optical 

Character Recognizer (OCR) for Bengali language. BRAC University. 

[8] Arif, S., R. (2007). Bengali Character Recognition using Feature Extraction. BRAC 

University. 

[9] Hasnat, M., A., Chowdhury, M., R., Khan, M. (2009). Integrating Bangla script recognition 

support in Tesseract OCR. BRAC University. 

[10] Pal, U., Chaudhuri, B., B. (1994). OCR in Bangla: an Indo-Bangladeshi language. Proc. of 

ICPR, Jerusalem, Israel. (pp. 269-274). IEEE Explore. 

[11] Chaudhuri, B., B., Pal, U. (1997). An OCR system to read two Indian language scripts: 

Bangla and Devnagari (Hindi). Proc. of 4th ICDAR. Ulm, Germany. (pp. 1011-1015). IEEE 

Explore. 



 

61 | P a g e  

 

[12] Abdullah, A., Khan, M. (2007). A Survey on Script Segmentation for Bangla OCR. BRAC 

University. 

[13] Gajoui, K., E., Ataa-Allah, F., Oumsis, M. (2015). Training Tesseract Tool for Amazigh 

OCR. Recent Researches in Applied Computer Science. Proc. of 15th International Conference 

on Applied Computer Science (ACS15), Konya, Turkey. (pp.172-179). WSEAS Press. 

[14] Banerjee, S. (2012). A Study on Tesseract Open Source Optical Character Recognition 

Engine. Jadavpur University. Retrieved December 13, 2015, from: http://dspace.jdvu.ac.in 

/handle/123456789/27793. 

[15] Datta, S., Chaudhury, S., and Parthasarathy, G. (1992). On Recognition of Bengali 

Numerals with BackPropagation Learning. IEEE International Conference on Systems, Man 

and Cybernetics (pp. 94-99). IEEE Explore. 

 [16] Manning, C., & Schütze, H. (1999). Foundations of Statistical Natural Language 

Processing. Cambridge, Mass. MIT Press. 

[17] Aithal, P., K., Acharya, U., D., Siddalingaswamy, P., C. (2013). A Fast and Novel Skew 

Estimation Approach using Radon Transform. International Journal of Computer Information 

Systems and Industrial Management Applications (5). (pp. 337-344). 

[18] Smith, R., (1995). A Simple and Efficient Skew Detection Algorithm via Text Row 

Algorithm. Document Analysis and Recognition. Proc. of 3rd International Conference ICDAR 

(2). Montreal, Quebec. IEEE Explore. 

[19] Sarfraz, M., Zidouri, A., Shahab, S.A. (2005). A novel approach for skew estimation of 

document images in OCR system. International Conference on Computer Graphics, Imaging 

and Vision: New Trends. (pp. 175-180). IEEE Explore. 

[20] Hayder, K. (2007). Research Report on Bangla Lexicon. BRAC University. 

 



 

62 | P a g e  

 

Appendix 

Appendix 1: Flash light control 

Parameters params; 

params.setFlashMode(Parameters.FLASH_MODE_TORCH); 

if (key.equals(KEY_TORCH)) { 

   listTorchControl.setSummary(PreferenceManager.getDefaultSharedPreferences( 

         getBaseContext()).getString("KEY_TORCH", "OFF")); 

    PreferenceManager.getDefaultSharedPreferences(getBaseContext()).edit(). 

          putString("KEY_TORCH", listTorchControl.getValue()).commit();   

} 

 

Appendix 2: Exposure Control 

    Parameters params; 

    params = theCamera.getParameters(); 

    String str = PreferenceManager.getDefaultSharedPreferences(context). 

    getString("KEY_EXPOSURE", "medium");  

    int min = params.getMinExposureCompensation(); 

    int max = params.getMaxExposureCompensation(); 

    int avg=(min+max)/2; 

    if (str.equals("high")) { 

        params.setExposureCompensation(max); 

    }else if(str.equals("low")){ 

        params.setExposureCompensation(avg); 

    }else{ 

        params.setExposureCompensation((avg+max)/2); 

    } 



 

63 | P a g e  

 

Appendix 3: Adjusting Framing 

public synchronized void adjustFramingRect(int deltaWidth, int deltaHeight) { 

     if (initialized) { 

          Point screenResolution = configManager.getScreenResolution(); 

               if ((framingRect.width() + deltaWidth > screenResolution.x - 4) || 

(framingRect.width() + deltaWidth < 50)) { 

 deltaWidth = 0; 

               } 

               if ((framingRect.height() + deltaHeight > screenResolution.y - 4) || 

(framingRect.height() + deltaHeight < 50)) { 

 deltaHeight = 0; 

               } 

               int newWidth = framingRect.width() + deltaWidth; 

               int newHeight = framingRect.height() + deltaHeight; 

               int leftOffset = (screenResolution.x - newWidth) / 2; 

               int topOffset = (screenResolution.y - newHeight) / 2; 

               framingRect = new Rect(leftOffset, topOffset,leftOffset + newWidth, topOffset + 

newHeight); 

               framingRectInPreview = null; 

               } else { 

                    requestedFramingRectWidth = deltaWidth; 

                    requestedFramingRectHeight = deltaHeight; 

               } 

} 

The code provided above is only a snippet of the source code used in our OCR application. Full 

source code is available on request. 


