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Abstract

We intend to compare and analyze certain machine learning algorithms by taking two

different datasets tackling separate real world issues. The first one relates to agriculture.

Bangladesh, being an agrarian country, is heavily dependent on rain. Being able to pre-

dict the rainfall amount accurately would enable successful and sustainable production.

Machine learning algorithms can also help predict the category of crimes in a particular

area. This will enable law enforcers in a certain region to predict and categorize recent

crimes based on past incidents. Our aim was to approach these problems by labelling

and processing the data and then comparing the results of different cost functions.
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Chapter 1

Introduction

Machine learning performs the task of detecting certain patterns from data automatically

often from a large data set. Based on its newly learned patterns, we can then predict out-

puts from future data [1]. For instance, a computer program that plays checkers, can be

trained to learn from its own experience and improve. If we denote the experience of

playing against itself with E, the performance measure with P and the task with T, we

can say that the program can learn from experience E, with respect to the task T and

performance P [2]. Machine learning fits in complex problems where a specific algo-

rithm is not the answer and where observation of events is required.

One of the pioneers of machine learning was Arthur Samuel. In his words, machine

learning is a “Field of study that gives computers the ability to learn without being ex-

plicitly programmed” [3]. He built a checkers playing program and made it play 10,000

games against itself and during this he made the program determine which positions

were favourable or not depending on wins or losses.
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Enhancing predictive ability is one of the core tenets of machine learning. This can

be achieved by creating or sometimes modifying the existing algorithms, thus enabling

them to process more data. The current paper presents an attempt at solving two distinct

problems using regression, classification and neural networks and compares the results

obtained.

1.1 Motivation

Machine learning algorithms have facilitated scientific advancements in numerous ways

throughout the world. Bangladesh is yet to be familiarized with it. In this paper, we

propose machine learning approaches in predicting rainfall measurements in the agri-

culture, and classify crimes in a certain region to categorize and predict curved data

based on past events. So far, data from radar values have been used to estimate rainfall

amounts. In our research, we took polarimetric radar data. Since smaller drops tend

to evaporate more, by using polarimetric radar data we will be able to infer raindrop

sizes more accurately. Applying learning algorithms will thus make the prediction bet-

ter than the existing ones. Adding to this, categorizing crimes based on time and place

will effectively assist a program meant to predict the type of crimes.

1.2 Goals

Our primary aim is to implement machine learning algorithms and compare the results

in order to select which ones perform the best in the two separate situations. Using

our rain data, we would like to build an intelligent system that would be able to predict

hourly rainfall. The agricultural system in Bangladesh has not been facilitated with suf-
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ficient technological advancement. For measuring rainfall, we are highly dependent on

rain gauges which often leads to an incorrect result. Our proposal for the first problem

is thus to get values from radar data, analyse the results of the algorithms and use the

one that performs the best. This will not only be useful for agriculture, it will also help

environment specialists gain correct information to tackle natural disasters like drought.

In addition to this, our country has a trade record with criminal activities. Crime records

have been recorded manually thus far, and does not have much technological scope for

classifying them. Using the best learning algorithms for this problem, our approach

would be to classify these crimes based on their time and place in a certain region. This

would enable us to predict the category of a crime given a specific time and location.
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Chapter 2

Literature Review

2.1 Related Work

Estimation of rainfall has been done in Bangladesh by a few researchers in the past

few years. Most of these work encompassed rainfall measurement and characterizing

rainfall trends [4]. In order to quantify the precipitation over Bangladesh, the Tropical

Rainfall Measuring Mission (TRRM) satellite coupled with the 3B42 algorithm have

been applied using remote sensing data [5]. Most of the data have been collected using

rain gauges up until a few years ago, when remotely sensed radar- data started emerging

as an option. For our research, we have used data provided by NEXRAD and MADIS.

The data consists of polarimetric data and using these values will also be convenient

because of their two sided orientation, one having horizontal and the other having a ver-

tical component.

On the other hand, Bangladesh is yet to experience sufficient research on criminal

records. Some of the algorithms that have been used for analysing crime patterns are
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Linear Regression, Additive Regression and Decision Stump algorithms. Upon further

research, it has also been found that Linear Regression performed better than the other

ones [6].

2.2 Introduction to Machine Learning

Machine learning can be of several categories.

• Supervised learning

• Unsupervised learning

• Reinforcement learning

• Recommender systems

2.2.1 Supervised Learning

Supervised learning is the most widely applied form of machine learning. It can be de-

fined as the process when the data is labelled, in other words, when the output variable

is known. Also, the predictors and responses are present in the data, the features are

known and this information is used during the training of the data. [1]

For example, let’s say we have a basket full of marbles with different colours. We

have a program that would sort same coloured marbles together. From our previous

work, we have already instructed the program about different colours (i.e. RGB val-

ues, hue, saturation etc.) and they are acquainted with these colours. This task is per-

formed by response variables, whose task is to instruct that if a marble has a specific
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colour value, it should be categorized as a specific colour. This is a type of supervised

learning[7].

2.2.1.1 Classification

Classification organizes the given data in distinct classes by first modelling the data.

This supervised learning technique assigns instances to previously defined classes. If

we have inputs x and outputs y and a set of classes C, then the goal of classification is

to learn a mapping from x to y, where y G 1,... ,C. Function approximation is used in

classification problems. For this, we assume y = f(x), where f is an unknown function.

On a given labelled set, our aim is to estimate the function f and then make predictions.

Furthermore, classification also tries to predict on a completely new set of inputs, oth-

erwise known as novel inputs.

Let’s take an example where we have to determine breast cancer to be malignant or

benign based on the size of a tumour. In this case, we will have to classify the data into

two specific classes, it will be either malignant or benign. For the output, we can have a

discrete number of possible values. We can also take one particular attribute, plot data

and based on it can differentiate the results, or segment them into groups. Similarly, by

taking other attributes and making classes, we can assign different individuals to these

classes [8].

2.2.1.2 Regression

Regression is used to predict continuous values, meaning we try to estimate continuous

valued output. Contrary to classification, in regression instead of determining the class
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we want to derive a numeric function.[9]

A real example for regression would be to predict the next day’s stock price if the cur-

rent market conditions along with other supporting information are given. The key

difference here is that we are not determining which class the stock price or any other

attribute should belong to, determining if something belongs to a class or not. Rather,

we are predicting a numeric value. For instance, suppose there is a particular video

on YouTube, where classification would determine whether children below the age of

10 can watch it or not, regression would predict the age of the viewer [1]. Since our

problem is predicting the amount of rainfall, it is possible to apply regression.

2.2.1.3 Neural Networks

Neural Networks is one of the most powerful machine learning algorithms. They at-

tempt to fit derived parameters given a training set [10], and are found to be significantly

efficient in recognizing patterns. Neural Networks can be seen as simplified models of

human brains. The brain has neurons and synapses. These synapses perform the task

of connecting the neurons. These neurons can be thought of as Booleans while the

synapses can be signified as small numbers ranging between -1 to 1.

For our problem, we will be focusing on the classification problems of Neural Networks.

2.2.2 Unsupervised Learning

Unsupervised learning is the opposite of supervised learning, where the outcome vari-

able is unknown. It means the data is not labelled, so the program will have to extract

values and information from the given data by itself. Unsupervised learning algorithms
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can be used for clustering, reduction and visualization, but in general it is not used for

prediction. Finding interesting structure in the data is the concern here, which is also

sometimes referred to as knowledge discovery [1].

If we take the example of coloured marbles in a basket like we did in the case of super-

vised learning, this time we would not know anything about the marbles. The program

will have to take a specific example, categorize it and repeat for all the marbles. The

program, unlike the previous one, does not know anything from past experience. The

training data and response variable will also be absent in this case.
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Chapter 3

Methodology

3.1 Data Collection

Rain gauges have been used to measure the rain for a certain location, however they have

some drawbacks. The primary reason is that they cannot be placed everywhere. Also,

the data radars that are used to estimate rainfall do not match the measurements from

rain gauges. For this reason, we have used polarimetric data [11]. This will prove to be

more effective because polarimetric data consists of horizontal and vertical orientations,

so they provide higher quality data. Our data consists of NEXRAD and MADIS data

collected between April to August 2014. This was collected from Midwestern corn-

growing regions. For our crime classification problem, we collected data from SFPD

Crime Incident Reporting system, provided by SF Open Data, with a range of around

twelve years. A successful implementation and analysis of the selected algorithms on

both these data set has the potentiality to help us in societal and economical ways. Both

the data, besides their original sources, have been collected from kaggle.com.
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3.2 Data Description

The data for rainfall estimation consists of multiple radar observations over the course

of hours. There are multiple rows with the same ID. The columns are as follows:

TimeToEnd: How many minutes before the end of the hour was this radar observa-

tion?

DistanceToRadar: Distance between radar and gauge. This value is scaled and rounded

to prevent reverse engineering gauge location

Composite: Maximum reflectivity in vertical volume above gauge

HybridScan: Reflectivity in elevation scan closest to ground

HydrometeorType: One of nine categories in NSSL HCA. See presentation for details

Kdp: Differential phase

RR1: Rain rate from HCAbased algorithm

RR2: Rain rate from Zdrbased algorithm

RR3: Rain rate from Kdpbased algorithm

RadarQualityIndex: A value from 0 (bad data) to 1 (good data)

Reflectivity: In dBZ

ReflectivityQC: Qualitycontrolled reflectivity

RhoHV: Correlation coefficient

Velocity: (aliased) Doppler velocity

Zdr: Differential reflectivity in dB

LogWaterVolume: How much of radar pixel is filled with water droplets?

MassWeightedSD: Standard deviation of drop size

Expected: the actual amount of rain reported by the rain gauge for that hour

17



The dataset for crime classification is derived from San Francisco Police Department

Crime Incident Reporting System. The data fields are as follows:

Dates: timestamp of the crime incident

Category: category of the crime incident (only in train.csv). This is the target variable

you are going to predict

Descript: detailed description of the crime incident (only in train.csv)

DayOfWeek:the day of the week

PdDistrict : name of the Police Department District

Resolution: how the crime incident was resolved (only in train.csv)

Address: the approximate street address of the crime incident

X: Longitude

Y: Latitude

3.3 Data Processing

• In both of the data sets, in multiple occurrences the data was separated by commas

and we have taken comma separated values.

• When faced with multiple data on a single column, we separated them based on

spaces. For instance, the first data separated was placed on the first row, the sec-

ond one on second row and likewise. In this way, we divided a row into multiple

rows. This is because we wanted to do vectorised implementation.
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• In our rain data, the rightmost column contains the value for rainfall amount.

While running the algorithms, that rightmost column was the Y, in other words,

the output. Moreover, in the data there were some features with errors and nan

values. The reasons that can be attributed to these errors are echo below signal-to-

noise threshold, beam blockage and pixel at edge of echo. Since they cannot be

processed and there is no way to get those data, we have omitted those columns.

The remaining columns that were not omitted are X (features).

• For the crime classification problem, the data was divided into categories. How-

ever, they were string values. So we had to convert them into numeric values.

• The data for crime classification has a column where the timeframe is divided in

dd-mm-yy and then the hour, minute and second with a space in between. We

placed the year, month and date on different columns, meaning we have used

them as separate features.

• The two rightmost columns on the crime data are X and Y, which are representing

the locations. So, while running the algorithms, these two were given higher

priority.

3.3.1 Mean Normalization

To make gradient descent work well some practical tricks are usually followed. One

of them is mean normalization. The idea is to make features have zero mean[12]. The

steps are as follows:

• Take a feature xi
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• Replace it by (xi−mean)/max

xi = (xi−µi)/si

µi is the average value of xi in training set

si range value of the feature (maximum−minimum)

3.4 Applying Algorithms

3.4.1 Gradient Descent

Gradient Descent is a numerical optimization algorithm that is reliable for minimizing

differentiable functions. Beginning with a primary set of parameter values, gradient

descent iteratively moves toward the values that minimize the cost function and other

functions mainly in linear regression. Using a calculus approach, the function takes

steps in a negative direction [13].

3.4.1.1 Linear Hypothesis

Gradient Descent is a way to automatically improve the hypothesis function. The Linear

Hypothesis for Linear Regression is

3.4.1.2 Cost Function

Cost function measures the accuracy of hypothesis function.

20



The variable used are:

m The number of training examples

x(i) The input vector of the ith training example

y(i) The output vector of the ith training example

θ The chose parameter values or weights

hθ (x(i)) The algorithm’s prediction for the i th training example using the parameters θ

Cost function lets us figure out how to fit the best straight line to our data. If the

model yields a poor result, the cost becomes higher. Hence, the objective is to find

the parameters θ which give the minimum possible cost J. In order to solve a mini-

mization problem we need to minimize (hθ (x)− y)2 for each sample and sum this over

the training set [10].

3.4.1.3 Gradient Descent Algorithm

The cost minimization is done by solving the values of theta which sets the derivative

to zero. This can be done analytically with calculus and algebra. However, in case of

complex functions it is done by gradient descent. The principal gradient descent is an it-

erative algorithm that uses theta and the first derivative. The main algorithm is as follow:
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where alpha is the learning rate that decides how big or small the step size would be

towards the convergence. If alpha is too small the algorithm takes baby steps and will

process very slowly. However, if it is too large the algorithm might not converge and

might even diverge. Hence, it is very critical to select the right learning rate [14].

The following two figures illustrate why this might occur. In the first figure, α is suffi-

ciently small so each iteration in the algorithm results in a step towards the minimum,

resulting in convergence of the algorithm.
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Figure 3.1: when α is too small

In the second figure, α is too large and each subsequent iterate increasingly over-

shoots the minimum, resulting in divergence of the algorithm [15].
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Figure 3.2: when α is too large

The above algorithm is processed for the value of θ0 and θ1 and simultaneously

update both of them. By simultaneously, it is meant that we have to compute the right

hand side for both θ0 and θ1. Then we can update θ0 and θ1 at the same time.

The derivative term gets smaller as the value approaches the global minimum even with

alpha is fixed. So there is no need to change alpha over time [10].
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3.4.1.4 Gradient descent for multi variable

The function for gradient descent is

Our goal is to minimize the cost function to

This function uses two variables. However, in case of multiple features we need to have

more parameters. Considering this, for the hypothesis can be written as

Instead of treating J only as a function, J() is now written as a parameter function J(θ).

The algorithm now is done through a simultaneous update of every θ j value

[14]

25



3.4.2 Classification

In binary classification, the data falls into two categories, the positive (1) and the neg-

ative (0). Logistic regression is then used to set the threshold. However, logistic re-

gression generates a value which is always either 0 or 1 for Y . But hypothesis can give

values greater than 0 or less values than Therefore, the algorithm needs to be developed

so that it can give values between 0 and 1 [10].

3.4.2.1 Hypothesis

In case of linear regression the hypothesis was,

hθ (x) = (θ T x)

For classification hypothesis representation,

hθ (x) = g((θ T x))

where

g(z) = 1/(1+ e−z)

This is the sigmoid or the logistic function. If we combine these equations we can write

out the hypothesis as

hθ (x) = 1/(1+ e−θ T x)
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3.4.2.2 Interpreting hypothesis output

When the hypothesis (hθ (x)) generates a number, that value is treated as the estimated

probability that y = 1, given x and parameterized by theta.

X is the feature vector and hθ (x) gives probability

hθ (x) = P(y = 1|x;θ)

Since this is a binary classification task we know y = 0 or 1

So the following must be true

• P(y = 1|x;θ)+P(y = 0|x;θ) = 1

• P(y = 0|x;θ) = 1−P(y = 1|x;θ)[1]

3.4.2.3 One vs All

In binary classification using logistic regression, the positive and negative classes are

separated by a straight line. By using ‘one vs all’, sometimes called ‘one vs rest’ classi-

fication the same idea can be applied for multiclass classification.

For example if there arc three classes, it can be used as three separate classification

problem and can be defined in numerical order. Thus a fake training set is created

where one set is put in a positive class and the rest in the negative classes. The positive

class is assigned the value 1 and the negative class is assigned value 0. Now a standard

logistic regression crossfire is trained which will give a positive boundary.

27



For each training set a classifier h(i)
θ
(x) is fit

The superscript i here represents the class which is currently considered as the posi-

tive class and the rest of the class will be considered as negative at that time. Thus a

logistic regression classifier h(i)
θ
(x) is trained for each class i in order to determine what

is the probability that y is equal to class i given x and prioritize by theta. The other

classes are processed in the same way.

h(i)
θ
(x) = P(y = i|x;θ) (i = 1,2,3, ...)

Finally, when a new input x is given to make a prediction, all i number of classifiers is

run on the input x and then the class i can be chosen that maximizes all of them[16]. So,

whichever value of i gives the highest probability, y can be predicted to be that value.

max
(i)

h(i)
θ
(x)

finally to make a prediction when we’re given a new inputx, we just run all i number of

classifiers on the input x and we then pick the class i that maximizes the three.[10].

3.4.2.4 Cost Function

As previously stated, linear regression uses the following function to measure theta.
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Instead of writing the squared error term, we can write,

We can redefine the cost function as,

Though this cost function worked well for linear regression, this particular function

yields a non-convex function of the parameter’s data for logistic regression since our

hypothesis function has a non-linearity (sigmoid function of hθ (x)). Hence, if gradient

descent is run on this sort of function, it is not guaranteed to converge to the global

minimum.

To solve this, a new logistic regression cost function is formed:
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Here, when the prediction is right, the cost function is 0. Else it slowly increases cost

function as it becomes more inaccurate

Figure 3.3: Cost function representation when y = 1 and y = 0

Here X axis is what we predict and Y axis is the cost associated with the prediction.

If y = 1 and hθ (x) = 1 and if hypothesis predicts exactly 1 then the cost is equal to zero.

As hθ (x) goes toward 0, cost goes to infinity.

If y = 0, then cost is evaluated as −log(1−hθ (x)) and yields inverse of the other func-

tion.

Since y is always either 0 or 1, the cost function can be re-written in a simpler way

cost(hθ (x),y) =−ylog(hθ (x))− (1− y)log(1−hθ (x))

When y = 1, the equation simplifies to log(h−θ(x)) which is stated above when y = 1.

Now, if y = 0, the equation simplifies to −log(1−hθ (x)) which also turns out to be the
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same as above when y = 0.

Finally, the cost function for θ parameters can be defined as

[10]

3.4.3 Neural Network

The motivation behind the idea of ”neural network” is identifying the computational

difference between a human brain and digital computers. The specialty of the brain is

not limited to being able to perform highly complex non-linear computations, but also

the ability to perform parallel information processing. For example, human brain per-

forms complex computations such as pattern recognition, motor control etc. As a matter

of fact, the ability to build up its own rules through experiences is the reason behind the

human brain’s ability to do complex computations. That human brain learns from expe-

riences is the central idea behind neural networks[17]. Following is a formal definition

of neural netwok:

A neural network is a massively parallel distributed processor made up of simple pro-

cessing units, which has a natural propensity for storing experiential knowledge and

making it available for use. According to Aleksander and Morton (1990), it resembles

the brain in two respects:
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1. Knowledge is acquired by the network from its environment through a learning

process.

2. Interneuron connection strengths, known as synaptic weights, are used to store

the acquired knowledge.

Artificial neural networks are known for having potential for very complicated behavior

as they consist of many interconnected simple nonlinear systems, which are typically

modeled by sigmoid functions. As said before, the primary motivation for neural net-

works was the human brain where simple neurons are massively interconnected [18].

An artificial neural network learn from examples(experiences) by operating in parallel,

composed of a huge number of interconnected plain neurons(processors) .In case of

artificial neural networks, exploitation is the easiest in case of these known biological

neural systems’ characteristics [19]. The strength of interconnections of simple ele-

ments of a neural network, defined as neurons, are known as weights . Adjustment is

done to these weights to boost performance [18].

3.4.3.1 Artificial Neural Network - representation of a neuron

A neuron is a logistic unit in an artificial neural network where

• input is fed via input wires

• Logistic unit does computation which is like calculation of hypothesis hθ (x) for

logistic regression

Here

hθ (x) = 1/e−θ T x

• output is sent down via output wires
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Figure 3.4: Neuron’s computation model

It is often good to include the bias unit x0 which is equal to 1

3.4.3.2 Feed forward neural network

The feed forward neural network was the first and simplest type of artificial neural

network devised. In this network, the information moves in only one direction, forward,

from the input nodes, through the hidden nodes (if any) and to the output nodes. There

are no cycles or loops in the network.
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Figure 3.5: Feed-forward Neural Network block diagram

• Here, input is x1, x2 and x3

• We could also call input activation on the first layer - i.e. (a11, a21 and a31

). Activation actually stands for the value computed as well as outputted by the

node. For each node, we have to calculate activation.

• Three neurons in layer 2 (a12, a22 and a32 )

• Final fourth neuron which produces the output

– Which we call a13

• input layer is the first layer

• output layer is the final layer which produces value computed by a hypothesis

• Middle layer(s) are called the hidden layers [10]
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3.4.3.3 The Perceptron

The term perceptron has no established definition, but is used to describe a feed forward

network which contains a neuron that has predetermined weighted connection with the

input layer and used only for acquisition of data.

3.4.3.3.1 Single-Layer Perceptrons The simplest form of an artificial neural net-

work is known as perceptron. It is used to classification of linearly separable patterns.

It contains a single neuron and the weight and bias of this neuron is adjustable. Addi-

tionally, a single layer perceptron (SLP) has only one layer of output neurons.

Figure 3.6: A single layer perceptron with two input neurons and one output neuron

3.4.3.3.2 Multi-layer perceptron Feed forward nets with single or multiple layers

of neurons between the input and output nodes are known as multi-layer perceptron.

Besides there are hidden units in these additional layers. Moreover, these hidden units

are neither directly connected to input or to output nodes[20]. Back-propagation is the

most popular algorithm among the wide range of learning techniques that Multi-layer

networks use. Here comparison between the correct answer and output values are used

while computing some predefined error function value. Through the network, this error
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value is fed back via several methods. This information is then used by the algorithm

for weight adjustment of each connection. This helps to reduce the error function value

by small amount. Convergence of the network is determined when calculated error is

small. This convergence usually takes repetition of the procedure for a huge number of

training cycles [21].

3.4.3.4 Back-propagation

Though the back-propagation algorithm was at first introduced in the 1970s, but its

significance wasn’t fully valued until a famous 1986 paper by David Rumelhart, Geof-

frey Hinton, and Ronald Williams. That paper describes several neural networks where

back-propagation works far faster than earlier approaches to learning, making it possi-

ble to use neural nets to solve problems which had previously been insoluble. Today,

the back-propagation algorithm is the workhorse of learning in neural networks.

3.4.3.4.1 The Algorithm The error signal at the output of neuron j at iteration n

(i.e., presentation of the nth training example) is defined by

e j(n) = d j(n)− y j(n)

neuron j is an output node.

Correspondingly, the instantaneous value E(n) of the total error energy is

where the set C includes all the neurons in the output layer of the network. Let N

denote the total number of patterns (examples) contained in the training set. The average
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squared error energy is obtained by

For a given training set, Eav represents the cost function as a measure of learning per-

formance. The objective of the learning process is to adjust the free parameters of the

network to minimize Eav

3.4.3.4.2 The Two Passes of Computation Two distinct passes of computation are

distinguished in the application of the back-propagation algorithm. The first pass is

referred to as the forward pass, and the second is referred to as the backward pass.

The synaptic weights remain unaltered in the forward pass throughout the network, and

the function signals of the network are computed on a neuron-by-neuron basis. The

backward pass, on the other hand, starts at the output layer by passing the error signals

leftward through the network, layer by layer, and recursively computing the 0 (i.e., the

local gradient) for each neuron[22].

3.4.3.4.3 Stopping Criteria It cannot be shown that back-propagation algorithm has

hit convergence. However, the back-propagation algorithm is considered to have con-

verged when the absolute rate of change in the average squared error per epoch is suffi-

ciently small[17].
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Chapter 4

Experiment and Results

4.1 Training and Testing

4.1.1 Training in Gradient Descent

While we were running the training set in order to train the program, it was critical to

choose alpha. The value of alpha was determined by trial and error. The program be-

came properly trained when the cost function yielded minimum error and and converged

to zero or near zero[23].

4.1.2 Training for Classification

In case of one vs all algorithm, for training the data of rainfall prediction, we split the

training set into 70 separate binary classification problems since our objective was to

predict the percentage of amount of rainfall for each mm between 0 to 69.

Similarly, for training the data for crime problem, we calculated the number of cate-
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gories of crime mentioned in the data. We found that there were 24 categories of crimes.

Hence, the training set was divided into 24 separate binary classification problems.

4.1.3 Training a neural network

4.1.3.1 Randomly initializing weights

The weights carried by multilayered high order perceptrons plays a huge role in decid-

ing the learning speed [24]. There are several suggestions for initializing these weights.

Among them random weight initialization is the simplest. Whether the training algo-

rithm will result in a satisfactory local minimum or in an unacceptable local minimum,

depends on weight initialization. The successful convergence probability is dependent

on weight initialization scheme [25].

4.1.3.2 Implementing forward propagation

Forward propagation has two important steps.

• Activation of each input unit is the very first step.

Activation also depends on

– Input(s) to the node

– Parameters which are associated with that very node.

• Then calculation of activation of each layer sequentially by forward propagation

to calculate final hypothesis.

Following figure is an example of a network which includes associated calculations.
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4.1.3.3 Computing Cost Function

The cost function of neural network is as follows:

The output of this cost function is a k dimensional vector. Here hθ (x) i refers to the ith

value in the hθ (x) vector.
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4.1.3.4 Implement Back propagation

Back propagation, an abbreviation for ”backward propagation of errors”, is used to

calculate partial derivatives. Hence it minimizes the cost function. The basic idea, used

to compute the partial derivatives ∂E
∂wi j

for each weight in the network, is to repeatedly

apply the chain rule:

where

To compute or the influence of the output si of unit i on the global error E, the

following two cases are distinguished:

• If i is an output unit, then

• If i is not an output unit, then the computation of is a little more complicated.

Again, the chain rule is applied:

(1)
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where succ(i) denotes the set of all units k in successive layers (successive means closer

to the output layer) to which unit i has a non-zero weighted connection wki.

Equation (1) assumes knowledge of the values ∂E
∂wi j

for the units in successive lay-

ers to which unit i is connected. This can be provided by starting the computation at

the output layer and then successively computing the derivatives for the units in pre-

ceding layers, applying (1). In other words, the gradient information is sequentially

moved from the output-layer back towards the input-layer. Therefore it is called ‘back

propagation algorithm. [7]

4.2 Experiment Result

4.2.1 Gradient Descent

After training the system with the training set, our algorithm yielded the graph shown

below:
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Figure 4.1: Cost function representation for data set

Here X axis represents the number of iterations and Y axis represents the Cost func-

tion J. From the graph, we see that as the number of iteration increases, the cost function

error moves towards to zero. Hence, it shows that the system has converged and is ready

to run the test data. So, using the value of theta that we got, we ran the test data. Thus

we got the values of theta from the train data. We took those theta values and the values

of the features of test data as input for the hypothesis function of linear regression and

thus we got the output which is the amount of rainfall for the corresponding features.

For measuring the accuracy, we compared the yielded outputs of rainfall amount and the

actual value of rainfall amount. We observed that the error was high. Even though we

tried different values of alpha to improve the accuracy, the error could not be minimized

in a significant amount. Since, the train data was huge on size, the algorithm could not

be trained properly. As a result, the predicted values were not accurate as expected.
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4.2.2 Classification

After training, applying the test data for crime, we can see the following histrogram

Figure 4.2: Histogram for Crime data set

Here in the X axis the crime data has been categorized into 24 classes. and from the

Y axis we can see how much crime is on each category. Here class 3 has the highest

occurence crime.
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Again from the rain dataset we get

Figure 4.3: Histogram for Rain data set

Here in the X axis showa that the rain data has been categorized into 70 classes. and

from the Y axis we can see the probability of each rain in mm. Since our data was short

and consisted most of 0 values, the maximum probability is on 0.

Accuracy from running classification on crime dataset is around 40%. Since classifi-

cation result depends on the value of λ , choosing λ was really crucial here. Choosing
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the value of λ , we had to go through ’trial-and-error’ process. Hence we can conclude

a better λ would result into better accuracy.

4.2.3 Neural Network

Running neural network gave us around 50% accuracy. Here we have used two hidden

layers. Again choosing λ was crucial here. The neural network algorithm should have

worked better than classification. However, since our data is complex and we used

backpropagation, getting our result was very slow.
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Chapter 5

Future Work

Since our processed data set for rainfall prediction was very large, gradient descent

turned out to be very slow to run the train set and test set. Therefore, in future, we

plan to use stochastic gradient descent since it provides a drastic simplification. The

algorithm randomly picks example and from this, we plan to estimate the gradient in

each iteration instead of computing the gradient of En( fw) exactly.

wt+1 = wt− γtδwQ(zt ,wt)

At each iteration, some examples are randomly picked and the stochastic process wt, t = 1, ...

is dependent on it. Thus the system is expected to converge much faster[26].

Moreover, since our rainfall data was very complex, therefore neural networks did not

work well in these case. Backpropagation being a slow algorithm plays a role behind

this slow convergence. Therefore we plan implement deep learning and SVM for pre-

dicting rains.
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Furthermore,in future, we intend to apply more complex algorithms, for instance, deep

learning which should give more accurate results than neural network as it has more

hidden layers. We would like to examine how the data performs on these algorithms.

This will enable us to highlight more on the accuracy as well as compare them.
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