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ABSTRACT 
 

 

This research represents an integrated approach of reconstructing three dimensional 

environments for robotic navigation. It mainly focuses on three dimensional surface 

reconstructions of the input data using Kinect, a depth sensor. With an increase in the application 

areas making use of point clouds, there is a growing demand to reconstruct a continuous surface 

representation that provides an authentic representation of the unorganized point sets and render 

the surface for visualization.  

 

The main goal of this research is the study of various surface reconstruction algorithms and the 

creation of a three dimensional model of an object and/or an entire three dimensional 

environment from a set of point clouds. It starts by scanning an environment or an object using 

Kinect and store the point cloud generated using OpenGL and Microsoft Visual Studio. Then it 

focused on creating a mesh out of the stored point cloud in MATLAB, using a computational 

geometric approach called Delaunay Triangulation.  Finally, combining surfaces and applying 

surface reconstruction method the three dimensional model is obtained.  
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1. INTRODUCTION 
 

In the field of computer graphics surface reconstruction is a challenging problem with a wide 

range of application like medical imagery [1], unmanned aerial vehicle [2], video games and 

other graphic applications.  Surface reconstruction from raw geometric data has received an 

increasing attention due to the ever range of geometric sensors which tends to be very expensive. 

Since Microsoft released the Kinect camera, which has a depth sensor in addition to the RGB-

sensor, a quite cheap hardware is available that is able to extract 3D data of its surroundings. 

Nowadays various applications like unmanned aerial vehicle, human recognition, ground mobile 

robot has implemented this Kinect sensor. 

Surface reconstruction using Kinect sensor can be tricky and a lot of researches has taken place 

to address this particular issue. Among these researches, Kinect Fusion developed by Microsoft 

in 2011, a popular technique that creates three dimensional reconstructions in real-time.  

On their research, depth data streamed from a Kinect sensor are fused into a single global 

implicit surface model of the observed scene in real time. The current sensor pose is obtained 

simultaneously by tracking the live depth frame relative to the global model using a course to 

fine iterative closest point algorithm. The system also works in complete darkness mitigating any 

issues concerning low light conditions and RGB-D based systems. They have been successful to 

map medium sized room with volumes of < 8m
3
 [3].  

However the technique is executed almost exclusively on the graphics card allowing both 

tracking and mapping to perform at the frame-rate of the Kinect. 

Such expensive requirement calls for a light weight model where our system emerges. Our 

system architecture uses a 64-bit Windows operating system, a Kinect to stream depth maps, 

OpenGL and MATLAB to process and render the final three dimensional reconstructions.  
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1.1 Motivation 
 

Emergence of three dimensional printers has revolutionized the field of computer graphics and 

design modeling. Being able to replicate a real object as accurately as possible is a very complex 

task. The scanning techniques for data acquisition and hardware requirement for post processing 

is still very expensive. Thus the challenge to simplify such complex task has been the core 

motivation for us.  

Amongst the various input devices which provide depth information by scanning an object, 

Kinect sensor has gained rapid popularity around the world for its versatile features satisfying the 

purpose of 3D scan and texture mapping. Robotics club of BRAC University first introduced this 

magnificent device to us during their exhibition of a gesture detecting robot a few years ago. 

Further study on this gadget made us interested to use it in our research. 
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1.2 Thesis Outline 
 

Chapter 1 is the formal introduction of the thesis. We have discussed our motivation and 

approach towards our proposed topic in this chapter.  

 

Chapter 2 is the background study that covers all the important basics needed for this research 

along with their formal definitions and representations. In this chapter we have described the 

concepts on Scanning Techniques, Kinect Sensor, Graphics Rendering Basics, Triangulation 

Basic, Delaunay Triangulation and Surface Reconstruction. Moreover, we have also introduced 

the tools we have used. 

 

Chapter 3 focuses on the proposed work. Firstly, we have described our whole workflow to 

achieve the results following our proposal. Then we have discussed the Data Acquisition 

Technique followed by Data Calibration and Processing. Later, we have elaborated our approach 

of acquiring three dimensional models of both Object and Environment. Additionally we have 

attached all the pseudo codes of our algorithms with each part in this chapter.  

 

Chapter 4 is the result analysis part where we have explained our acquired results following our 

approach towards proposed work. We have attached visual of both the input and generated 

output in this chapter.  

 

In chapter 5, we have made a comparative analysis of our results based on some performance 

metrics.  

 

In chapter 6, we have talked about the limitations of our project as well as mentioned about some 

approaches to overcome those limitations and works that can be derived from this research. 
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2. BACKGROUND STUDY 
 

2.1 Scanning Techniques 
 

3D reconstruction is a technique of collecting 3D data via an input device and processing it to a 

virtual 3D model. It is a widely used technique in visual computing, since modern applications 

like games or robotic vision tend to be more photo realistic leading to high costs in content 

creation [4].   

2.1.1 Methods 

 

According to the equipment used, traditional methods for acquiring dense point cloud of 

object for 3D reconstructions can be categorized into two main streams i.e. the multi view 

stereo route and the 3D laser scanner route. In recent years depth camera has become one of 

the popular 3D measurement equipment due to its small size, portability and ability to 

perform real-time data acquisition. 

 

a) Multi-view stereo: The process includes taking two or more images of the same object 

from different angles with a certain degree of overlap, finding corresponding points 

within the overlapping region to estimate the relative position of the cameras and 

reconstructing the 3D coordinate of the object [5]. 

b) Laser scanner: The structure includes a laser source that can beam laser, a sensor that 

measures the distance to the surface, control unit and so on. These type of scanners 

measures the distance by calculating the time taken for a pulse of light to make  a 

roundtrip i.e. a laser is used to emit a pulse of light and the amount of time before the 

reflected light is seen by a detector is timed. However the speed of light makes the 

requirement very strict thus leading to expensive hardware. Nevertheless, accuracy is 

very high close to sub-micron level for these scanners [5]. 
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c) Depth camera: Like any other RGB camera, video capturing process is similar with a 

depth camera; however it also takes down the distance between the object and camera 

on the basis of time of flight [5]. 

2.2 Kinect 

 

The Kinect camera was first introduced by Microsoft in cooperation with Prime Sense in June 

2009. It has been implemented in various applications like unmanned aerial vehicle [2] , human 

recognition, 3D model reconstruction [3] , ground mobile robot navigation [6] and medical 

applications [1].   

 

Figure 1: Kinect Workflow [7]  

 2.2.1 Hardware Features 
 

a) It has a standard CMOS color sensor, to retrieve an RGB picture 

b) To gather depth information it includes an infrared laser which shoots IR rays 

through the whole scene and a CMOS sensor records them. The distance to 

camera is measured by the size and the position of the recorded IR dots [4]. 

c) In addition the camera has a built in 3D microphone to get audio information. 

Table 1: Hardware Specification 

Resolutions 640x480 pixels of raw distance  

Sampled Resolutions 1600x1200 pixels 

Depth image rate(frequency) 30Hz 

Measurement accuracy 4mm 

Capture range 0.8m-3.5m 

Price $200 
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Retrieving all the data on the chip, the system produces a depth map which is aligned 

with the RGB picture and they are combined to a single RGBD texture that is sent over 

the USB port [4]. In addition Microsoft has provided SDK for developers to create open 

source projects and enhance individual study. 

2.2.2 Kinect SDK  

 

 

Figure 2: Kinect SDK [7] 

Kinect SDK provides native API which allows access to features like depth streaming, 

color streaming, gesture recognition, facial tracking etc. The Natural User Interface 

(NUI) is the core of the Kinect for Windows API which manages audio stream, color 

image data and depth image data. Detailed description of this API will be discussed 

through implementation later in the research [7]. 
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2.3 3D Graphics and Rendering Pipeline 

 

In computer graphics, rendering pipeline is the process of producing image on the display from 

the world description. Pipeline can greatly improve the throughput due to its massive parallelism 

[8]. 

3D Graphics Rendering Pipeline accepts description of 3D objects in terms of vertices of 

primitives shapes (triangle, point, line and quad) and produces the color value for the pixels on 

the display [8]. 

 

Figure 3: 3D Graphics and Rendering Pipeline [9] 

Output of one stage is fed as input of the next stage. A vertex has attributes such as (x, y, z) 

position, color (RGB or RGBA), vertex-normal (nx, ny, nz),  and texture. A primitive is made up 

of one or more vertices. The rasterizer raster-scans each primitive to produce a set of grid-

aligned fragments, by interpolating the vertices. 

 

2.3.1 Key stages 

a) Vertex Processing: Process and Transform individual vertices. 

b) Rasterization: Convert each connected vertices into set of fragments. A fragment 

represents as a pixel in 3D space, which is aligned with the pixel grid, consisting 

position, color, normal and texture. 

c) Process Individual fragments. 

d) Convert all the fragments into 2D color pixel for display. 
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2.4 Image Registration 
  

Image registration is the procedure of transforming different sets of data into a single coordinate 

system. These sets of data may vary in their source, time, viewpoints etc. Image registration 

algorithms try to recover the transformation parameters that express a mapping of one image 

onto another, where both of them are from the same scene [10]. One of the main uses of 

registration is to find the differences in the underlying scene.  

To get a full view of the desired 3D scene, rotation and stitch operations may require over the 

data sets. The Rotation is a geometric transformation of data about one of the axes of a 

Coordinate system. The following three basic rotation matrices rotate vectors by an angle θ about 

the x, y, or z axis, in three dimensions, using the right hand rule — which codifies their 

alternating signs. 

 






















cossin0

sincos0

001

xR     … … … (1) 

 


























cos0sin

010

sin0cos

yR     … … … (2) 

 














 



100

0cossin

0sincos





zR     … … … (3) 

 

Now, Stitching is the process of combining multiple adjacent images together. While 

constructing a large scene for an environment, we need to stitch the point cloud data.  Today’s 

digital maps and satellite photos are output of Image stitching algorithms. The panorama view of 

digital camera is also a result of stitching.  
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2.5 Surface Triangulation 
 

Surface Triangulation is the process, in which a surface is subdivided into multiple pieces of 

triangles usually considered that each side of a triangle (except from the outer edges) is entirely 

shared by another triangle [11]. This is an essential process to visualize a complex shaped 

surface in a more simpler way. When considering a surface as a collection of triangles then it is 

easier to formulate a mathematical process to define, determine and manipulate the 

characteristics of that surface. 

 

2.5.1 Triangulation over a Set of Points 

 

Triangulation of a set of points refers having a set P of n number of points in the plane and 

a set E of straight line segments that joins two points from P and no line segments 

intersects each other except in the joining points [12].  Different triangulation algorithms 

can be applied on a provided set of Point Cloud Data to achieve a triangulated surface 

which further can be used to generate concrete 3D surface through different polygonization 

technique. 

 

2.5.2 Triangle Mesh 

 

In computer graphics, a triangle mesh means a collection of vertices, edges and faces in 

that resides together in forms of multiple triangles to define a 3D object. Tough 

Triangulation and Triangle meshes are completely different; they are interconnected 

because to form a triangle mesh, at first, we have to go through the process of triangulation.  
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2.5.3 Triangulation Techniques 

 

There are several triangulation techniques in practice. For this paper, we will be focusing 

on triangulation over a point set which resides on a 2D plane and then we will formulate a 

procedure to obtain a 3D triangle mesh from our triangulated points.  

One approach of triangulation would be iterating through all of the points and connecting 

each adjacent point as an edge of a triangle [13]. However, selecting these adjacent points 

are critical and we might end up with a very much distorted shaped triangulated surface 

from the desired if adjacent points are not chosen efficiently.  

 

2.6 Delaunay Triangulation 

 

In computational geometry and mathematics, one of the efficient and widely approached 

triangulation techniques is the Delaunay Triangulation. We had a set of points P and assuming all 

the points are on the same plane. The Delaunay triangulation for the set P would be DT (P) such 

that there is no point in P which is inside the circumcircle of any triangle in DT (P). Things 

should be noted that, for a set of points on the same line there exists no Delaunay triangulation. 

On the other hand, there can be more that one Delaunay triangulation for four or more points 

which are on the same circle. 

 

                                         
 

  

 

 

 

Form new 

triangles with the 

remaining edges. 

 

Adjacent edges of those 

two triangles removed. 

Vertex falls inside 

the circumscribed 

circle Of the two 

indicated triangle 

Red dot = 
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In the figure we have projected a set of Delaunay triangulated points where no points are inside 

the circumcircle of any other three points. 

 

2.6.1 Process of Achieving Delaunay Triangulated Points 

 

There are several ways of getting Delaunay triangulated points from a given set of points 

on a plane. The basic algorithm to approach is  

1. Construct a super triangle which contains the convex hull of the entire point set. 

2. Take the first point to be triangulated. 

3. Connect the point from the three vertices of the super triangle. 

4. Then draw a circumcircle of the triangle. 

5. Determine another point inside the triangle from the point set. 

6. Connect the point from the vertices of the triangle inside which the point is 

contained. 

7. Iterate from 4 to 6 until all the points are iterated. 

8. When the iteration is complete remove the vertices of the super triangle that was 

created at first. 

Figure 4: Delaunay Triangulated Points [22] 
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Figure 5: Flow Chart of Delaunay Triangulation 
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2.6.2 Normal 

 

Surface Normal, in a three dimensional space, refers to a vector which is perpendicular to 

a surface of a specific point located in the boundary of a shape. Each face in a mesh has a 

perpendicular unit normal vector. The Face Normal points away from the front side of the 

face [14]. On the other hand, a Vertex Normal at a vertex of a polygonal shape is a 

directional vector associated with that vertex, intended as a replacement to the true 

geometric normal of the surface. It is usually computed as the normalized average of the 

surface normals of the faces that contain that vertex. 

 

       

Figure 6: Face and Vertex Normal [14] 

     

 

 

The above algorithm leaves us with a Delaunay triangulated form of our given point set 

where the angles of every triangles are maximized. 
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2.7 Surface Reconstruction 

 

In context of computer graphics, Surface reconstruction, is the process by which a fairly accurate 

outer shape of an object can be generated from partial information such as the known peripheral 

points of the same. It leads to the visual implementation of an object, by defining points in a 3 

dimensional array of X, Y and Z axis. However, different input devices (i.e. laser scanner, 

photogrammetric image measurements, geometric sensors, motion sensors etc.) provide an 

unorganized point cloud which makes the reconstruction very difficult. Moreover, partial data, 

unavoidable presence of noise and unable to define the topology of original surface makes the 

process immense to generate an accurate shape [15]. 

According to Navreet, the main steps of surface reconstruction are: 

 Eradication of noise and reducing computation time by down sampling the point set 

 Defining the peripheral topology of the object 

 Production of polygonal surface model 

 Refining the model by essential editing [16]  

 

 

Figure 7: Surface Reconstruction [17]  
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2.7.1 Reconstruction Methods 

 

Navreet also stated three major surface reconstruction methods [16]. A brief description of 

them is given below. 

 

Figure 8: Reconstruction Methods [16] 

 

Region Growing Methods spread information and gradually form the surface of the 

object. Bernardini’s Ball-Pivoting algorithm is an example to this method.  

Computational geometry methods rely on the appliance (i.e. Delaunay triangulation). 

They interpolate the original points. Therefore, noise can heavily affect these methods 

efficiency. Alpha Shapes and the Crust algorithm fall in this category. 

Algebraic methods focus on developing a suitable function for all the points. Their prime 

goal is to make the function efficient to avoid noisy output. The signed distance based 

and implicit functions are example to this group. 
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2.7.2 Shading 

 

Shading refers to portraying the depth sensitivity in a 3D model by altering levels of 

darkness.  It is the process of varying the color of an object, according to its angle to 

lights and its remoteness from lights to construct a photorealistic output model. It is 

performed during the rendering process. 

Flat shading is a lighting approach that shades each polygon of an object according to the 

angle between the direction of the light source and the polygon’s surface normal, their 

respective colors and the intensity of the light source. It is usually used for fast rendering. 

In contrast, in Smooth Shading the color differs from pixel to pixel. It predicts that the 

surfaces are curved. Interpolation techniques is used calculate the values of pixels 

between the vertices of the polygons. Gouraud and Phong’s shading are part of smooth 

shading [18]. 

 

2.8 Tools 

The key tools applicable for Surface reconstruction can be listed as follows: 

2.8.1 OpenGL 

 

Renowned software interfaces for graphics hardware, in short an API which contains 

over hundreds of functions to create interactive three dimensional graphics application. 

It is extensively used in the fields of CAD, virtual reality, scientific visualization, 

information visualization, flight simulation and video games.  

OpenGL is OS independent, which do not include facilities like windowing tasks or 

obtaining user input. One must build up their model using a set of geometric primitives 

defined by this library. It supports three classes of geometric primitives: points, line 

segments and closed polygons [19]. 
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2.8.1.1 OpenGL rendering Architecture [9]: 

 

 Display List: All data, geometry (vertex) and pixel data can be stored in a 

display list. 

 Vertex Operation: Each vertex and normal coordinates are transformed 

from object coordinates to eye coordinates. If lighting is enabled, color of 

the vertex can be calculated.  

 Primitive Assembly: Projection matrix transforms the primitives and clips 

the volume. Then the 3D scene is mapped to window space coordinates by 

perspective division. 

 Pixel Transfer Operation: The data are either stored in texture memory or 

rasterizer directly to fragments. 

  Texture Memory: Texture Images are loaded into texture memory to be 

applied onto geometric objects. 

  Rasterization: Conversion of both geometric and pixel data into fragment. 

  Fragment Operation: Convert fragment to pixels onto frame buffer. 

 

 

Figure 9: OpenGL Rendering Architecture [9] 
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2.8.1.2 Application program [19]:  

 

i. GL: core graphics capability. Specify graphics primitives, attributes, 

geo-metric transformations and many other.  

ii. GLU: utilities on top of GL. Functions useful for drawing and 

transforming objects. 

iii. GLUT: input and windowing functions. 

 

2.8.1.3 Key features: 

 

i. Model View Matrix and Projection Matrix. 

ii. Viewport transform. 

iii. Z-buffer and Hidden-Surface Removal for output merging. 

iv. Provides point sources, spotlight and ambient light. 

v. Texture Filtering. 

 

Our system uses the data array which holds a copy of the image we get from the Kinect during 

the scanning process which will be discussed more in the implementation section. The input 

stream is then displayed by setting OpenGL texture and camera viewpoint functions. 
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2.8.2 MATLAB 

 

MATLAB is a high-performance language for technical computing. It integrates 

computation, visualization and programming environment. Furthermore, it has 

sophisticated data structures, contains built-in editing and debugging tools and 

support object oriented programming. It also has easy to use graphics commands that 

make the visualizations of results immediately available. There are toolboxes for 

signal processing, symbolic computation, control theory, simulation, optimization and 

several other fields of applied science and engineering. These factors make MATLAB 

and excellent tool for teaching and research [20]. 

In 2015 MATLAB has improvised its Computer Vision toolbox which provides 

algorithms and functions for 3D reconstruction and 3D point cloud processing [21]. 

Some of the features used in this research include: 

1. Scaling and down sampling of point cloud data. 

2. Transformation, rotation and registration of point cloud data. 

3. Read, Write and Store Point Clouds. 

Moreover, MATLAB provides an optimized function for Delaunay Triangulation 

over point cloud data. Given these factors and other computational performances, 

MATLAB has been chosen for simulating our results.  
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3. PROPOSED WORK 
 

In this paper we are proposing to design a complete system that will take a real scene and/or 

object as input and generate its 3D model that can be rendered on screen and also be rotated, 

zoomed in and out. Additionally, for the environment part we have recorded the RGB data (Red 

Green Blue) along with the depth information. Also, we will be trying to map the RGB data on 

our generated surface so that our generated surface seems identical to the input environment. 

In order to achieve our desired system, we have divided our working process into several sub 

categories- 

a) Data Acquisition, 

b) Data Calibration, 

c) Data Processing and  

d) 3D Model. 

After data calibration we have divided our research work into two parts-  

a) Object Modeling and 

b) Environment Modeling. 

Both object model and environment model consists of data processing and 3D model. 

In the upcoming few sections we will see the pseudo codes of the basic algorithms that we need 

to formulate the proposed system following by a little elaboration. After that, the result analysis 

section is divided into two sub divisions that consists object modeling and environment 

modeling. The results of the object modeling segment have been formatted categorizing into 

three phases- a) input, b) data processing and c) output similarly the results of the environment 

modeling are formatted into two parts a) input and b) process and c) output.   
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3.1 Workflow 

 
 

Figure 10: Work Flow 
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3.2 Data Acquisition 

3.2.1 Environment Setup 

 

Kinect SDK provides API which recognizes a gesture as user input. These APIs are 

compatible for C++ development and are required to include in the project to call those 

functions. We have used Visual Studio 2012 to integrate OpenGL and C code. 

APIs used in the project: 

a) NuiApi: Core features like audio stream, color and depth image stream. 

b) NuiImageCamera: defines the NUI image and camera services. 

c) NuiSensor: Refers to the Kinect plugged in to the environment. 

 

 

3.2.1.1 Kinect Coordinate System 

The Kinect uses a Cartesian coordinate system centered at the RGB camera lens. The 

positive Y axis points up, the positive Z axis points where the Kinect is pointing and 

positive X axis points to the left. 

3.2.1.2 Alignment  

The Kinect uses its depth camera and RGB camera to map a coordinate into space. 

This mapping follows a certain registration process so that the color and depth data do 

not overlay upon each other giving poor depth map quality. The Kinect SDK provides 

a function which can identify a pixel in the RGB image with a particular point in the 

depth image. In particular, we have stored the column and row (i.e. x and y 

coordinate) of the color pixel in order of each depth pixel. 
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3.2.2 Initialize Kinect 

Pseudo code 

Check Kinect () 

Output: sensor S; 

1. numSensors= get sensor count from NUI Sensor Api. 

2. if numSensors is equals to zero 

3.  then return false 

4. end if 

5. S= uses color and depth stream from NUI Sensor. 

6. return S 

The process contains two parts: First we find an attached Kinect Sensor, and then we 

initialize and prepare the Kinect to read data from it. Prior to this function we have 

declared a constant/handle as an identifier of the Kinect Camera. 

3.2.3 Getting Depth frame from the Kinect 

 

Pseudo code 

Get Depth Data (S, F) 

Input: depth sensor S, frame F 

Output: depth data array D 

1. get S from frame  F 

2. lock the frame 

3. Initialize D with empty 

4. for each point p ϵ F do  

5.  X = get row data from the frame f for p 

6.  Y  = get column data from the frame f for p 

7.  Z = get depth data from the frame f for p 

8.  map (X, Y, Z) to color 

9.  add (X, Y, Z) to D 

10.  Write D in buffer 

11. end loop 
12. release frame 

13. return D 
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In this function, first we acquire frame from the sensor and lock it so that it doesn’t get 

corrupted while we are reading it. Then we retrieve the depth pixel data (row, column and 

depth in the depth image) and map it on to the row and column of the pixel in the color 

image. The 3D coordinates of that pixel is retrieved as well and written into the buffer. 

Finally we release the frame so that the Kinect can use it again.  

3.2.4 Getting RGB frame from the Kinect 

 

Pseudo code 

Get RGB Data (S, F) 

Input: rgb sensor S, frame F 

Output: rgb data array C 

1. get S from frame  F 

2. lock the frame 

3. Initialize C with empty 

4.  for each point p ϵ F do  

5.  R = get red data from the frame f for p 

6.  G = get green data from the frame f for p 

7.  B = get blue data from the frame f for p 

8.  add (R, G,B ) to C 

9.  Write C in buffer 

10. end loop 

11. release frame 

12. return C 

 

In this section, we have determined RGB color for each depth pixel. The color image 

frame is in BGRA format, one byte per channel, laid out row by row. We converted each 

4-byte BGRA value into RGB float value. The rest of the execution is similar to the depth 

retrieving function regarding frame lock and release.   
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3.3 Data Calibration 
 

3.3.1 Scaling 
 

Pseudo code 

Scale (P, M) 

Input: raw point cloud P, max of magnifying scale M 

Output: scaled point cloud P1  

Initialize X = x axis of P, Y = y axis of P, Z = z axis of P 

1. for i = 0 to length of X do 

2.                 XMIN = min of X 

3.                 X[i] = X[i] – XMIN 

4.                 XMAX = max of X 

5.                 X[i] = X[i] / XMAX 

6.                 X[i] = X[i] * M 

7.                 YMIN = min of Y 

8.                 Y[i] = Y[i] – YMIN 

9.                 YMAX = max of Y 

10.                 Y[i] = Y[i] / YMAX 

11.                 Y[i] = Y[i] * M 

12.                 ZMIN = min of Z 

13.                 Z[i] = Z[i] – ZMIN 

14.                 ZMAX = max of Z 

15.                 Z[i] = Z[i] / ZMAX 

16.                 Z[i] = Z[i] * M 

17. end loop 
18. P1 = make point cloud (X, Y, Z) 

19. return P1 

 

The function takes a sample point cloud with a given parameter M. For each point, the x, 

y, z coordinates are taken. The minimum value of each coordinates is retrieved and 

subtracted from all the points in that axis. Then maximum value is taken which also 

divides all the points in that axis. Finally the coordinate is multiplied with the given 

parameter M to return a new set of points.  
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3.3.2 Down Sample 
 

Pseudo code 

Downsample (P, GS) 

Input: initial point cloud P, size of grid axis GS 

Output: down sampled point cloud P1  

1. create grid with axis size GS 

2. divide the P into grids along XY plane 

3.  G = list of all the grids 

4. for each grid g ϵ G do 

5.                 A = list of all the points in grid g 

6.                 AZ-AVG = average Z axis coordinate value of A 

7.                 for each point a ϵ A do 

8.                               AZ = Z axis coordinate value of a 

9.                               if AZ = AZ-AVG  

10.                                             then keep a in A 

11.                                             else drop a from A 

12.                                end if 

13.                 end loop 

14. end loop 

15. P1 = make point cloud by joining the grids of G 

16. return P1 

 

The function receives a sample point cloud data with a grid size. The sample is then 

divided into dimensions of the given grid size. For each grid, the average of Z-axis 

coordinate is calculated and compared with all the other points inside that grid. Points 

which do not match with the average calculated are dropped while the others are kept into 

a new matrix and returned.  

The function is used to improve the triangulation performance as it removes duplicate 

variables and redundant computation.  
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3.4 Data Processing 
 

3.4.1 Isolation from the Environment 
 

Pseudo code 

Isolation from Environment (P, XMAX, XMIN, YMAX, YMIN, ZMAX, ZMIN) 

Input: point cloud P, object range in x, y and z axis (XMAX, XMIN, YMAX, 

YMIN, ZMAX and ZMIN) 

Output: isolated object point cloud P  

1. for each point p ϵ P do 

2.                 PX = X axis coordinate value of p 

3.                 PY = Y axis coordinate value of p 

4.                 PZ = Z axis coordinate value of p 

5.                 if PX < XMIN  or PX > XMAX 

6.                               then drop p from P 

7.                               else  if PY < YMIN  or PY > YMAX 

8.                                             then drop p from P 

9.                                             else  if PZ < ZMIN  or PZ > ZMAX 

10.                                                            then drop p from P 

11.                                                            else  keep p in P 

12.                                             end if 

13.                               end if 

14.                 end if 

15. end loop 

16. return P 

 

 

The function takes a sample point cloud with ranges of X, Y, Z coordinates.  The sample 

is passed through a loop where points which fall between these ranges are kept while 

others are discarded. 

The function is used mostly to isolate an object for triangulation. From an actual scene 

the background is subtracted which allows the object to be triangulated and push into 

further processes.  
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3.4.2 Geometric Translation 
 

Pseudo code 

Geometric Translation (P, TX, TY, TZ, RAXIS, RӨ) 

Input: point cloud P, translation parameter over x, y and 

z axis (TX, TY, TZ), rotation axis RAXIS and angle 

RӨ 

Output: transformed point cloud P1  

1. for each point p ϵ P do 

2.                 PX = X axis coordinate value of p 

3.                 PX = PX + TX 

4.                 PY = Y axis coordinate value of p 

5.                 PY = PY + TY 

6.                 PZ = Z axis coordinate value of p 

7.                 PZ = PZ + TZ 

8. end loop 

9. A = affine rotation over RAXIS with angle RӨ 

10. P1 = point cloud rotation (P, A) 

11. return P1 

 

The function takes a sample point cloud with translation parameter, rotation axis and 

rotation angle. For each points P, its coordinate is translated according to TX, TY, and TZ. 

Then new point set is rotated along the given axis, RAXIS at an angle RӨ.  

The function is implemented at stages where we have merged all the point clouds taken 

from different angles. Furthermore this function aids into the orientation of the 

coordinates when we apply registration and stitching.  
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3.4.3 Stitching 

 

Pseudo code 

Stitch (P, PREF) 

Input: a list of all the point clouds P, a reference point 

cloud PREF  

Output: a singled merged point cloud P1 

1. place PREF in P1 

2. for each point cloud p ϵ P do 

3.                 determine the position of p in reference to PREF 

4.                 PTEMP = place p in its new position  

5.                 P1 = merge P1 and PTEMP 

6. end loop 

7. return P1 

 

The function basically takes an array of point clouds and merges them in a large scaled 

single coordinate system. A reference point cloud is used to determine the position of the 

each variable scene, and it merges the point clouds accordingly. 

The function is used create a complete view using the multiple amount of point cloud 

data retrieved from several scene of the same object or environment with various point of 

view. 
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3.4.4 Delaunay Triangulation 
 

Pseudo code 

DelaunayTriangulate ( P )  

 Input: raw point cloud set P: P1……..n ϵ P  

 Output: Triangulated Point Cloud Set dt: dt1,2…m ϵ dt 

1. Bag triangleBag, edgeBag 

2. Create Super Triangle, t1 

3. triagleBag.push(t1)     

4. for i = 1 to n do  

5.  for j = 1 to size of triangleBag do 

6.   Circle c = draw circum circle( tj )    

7.   if coordinate(Pi ) ϵ area 

8.    then  edgeBag.push(edges(tj)) 

9.     triangleBag.remove(tj) 

10.   end if 

11.  end loop 

12.  remove duplicate edge (edgeBag) 

13.  for k = 1 to size of edgeBag do 

14.   triangle = formTriangle(edgeBag.get(k), Pi )  

15.   dt.push(triangle) 

16.  end loop 

17.   end loop 

18.  for l = 1 to size of dt do 

19.  if dtl contains vertex from initially created Super Triangle 

20.   then  remove dtl 

21.  end if 

22.  end loop 

23.  return dt 

The function takes a set of points P as input that resides in a 2D space. Before calling this 

function we need to choose a base plane from our 3D point cloud data where we will like 

all the points to be triangulated. We have to calculate the convex hull of that point set to 

be delivered as input in the function for creating the initial super triangle. The super 

triangle basically fits the whole convex hull of the input point set. After through the 

iteration over the point set according to the algorithm we get a set of triangulated points 

as output. 
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3.5 Object 3D Model 
 

 Pseudo code 

Object 3D Model (P) 

 Input: a list of all the point clouds P  

 Output: reconstructed 3D model M 

1. for each point cloud p ϵ P do 

2.  scale the point cloud P 

3.  down sample P 

4.  reduce the noise of P with threshold value 

5.  isolate the object from environment 

6. end loop 

7. define a reference point cloud PREF from P 

8. for each point cloud p ϵ P do 

9.  apply geometric transformation on P based on PREF 

10. end loop 

11. P1 = stitch all the point clouds P 

12. apply Delaunay triangulation on P1 

13. M = surface reconstruction over P1 

14. display M 

15. return M 

 

The function takes all the point clouds related to the target object as input. Initially, it 

calibrates the point cloud data and reduces the noise with threshold value. It then isolates 

the object from the environment in each point cloud. After defining a reference, it 

transforms all the other point clouds accordingly. Stitching is performed to achieve a 

single coordinate system for all the scenes. Finally, Delaunay triangulation and surface 

reconstruction is performed over the merged point cloud. The output is displayed in 3D 

model.   
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3.6 Environment 3D Model 
 

 Pseudo code 

Environment 3D Model (P) 

 Input: a list of all the point clouds P  

 Output: reconstructed 3D model M 

1. for each point cloud p ϵ P do 

2.  scale the point cloud P 

3.  down sample P 

4.  reduce the noise of P with threshold value 

5. end loop 

6. define a reference point cloud PREF from P 

7. for each point cloud p ϵ P do 

8.  apply geometric transformation on P based on PREF 

9. end loop 

10. P1 = stitch all the point clouds P 

11. apply Delaunay triangulation on P1 

12. M = surface reconstruction over P1 

13. display M 

14. return M 

 

Environment modeling is almost identical to object modeling algorithm. However, it does not 

require any isolation of the object as it deals with the whole environment. The function takes all 

the point clouds of the environment. At first, it calibrates the point cloud data. It follows the 

general process of geometric transformation and stitching. After Delaunay triangulation and 

surface reconstruction is performed, the output is displayed in a 3D model.   
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4. RESULT AND ANALYSIS 
 

In this part we will discuss the result of the project. 

 

4.1 Object 3D Model 
 

4.1.1 Sample: Bucket 

 

4.1.1.1 Input: 

 

              

              

Figure 11: Real Image and Raw point cloud sample from 0 degree, 135 degree and 225 degree angle 
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In figure 11, the upper left image represents the real photo of the bucket. We have taken 

depth data of the same bucket from 3 equilateral angles. With a defined reference angle 

among them, we have performed geometric rotation over y axis on the other two point cloud 

in 135 and 225 degree respectively. Rest of images shows their individual positions. 

 

 

4.1.1.2 Process: 

 

 

Figure 12: Sample after Stitching and Registration 

 

We have stitched and registered the three point clouds all together. In figure 12, the image 

displays the dimensions of the object in a single point cloud. 
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4.1.1.3 Output: 

 

        

Figure 13: Sample after Surface Reconstruction 

From the acquired point cloud, we have performed triangulation and surface reconstruction 

to gain the 3D model of the object. In figure 13, we have the side and top view of the 

surface reconstructed object model respectively.  

 

4.1.2 Sample: Chair 

 

4.1.2.1 Input 

      

Figure 14: Real Image and Raw point cloud sample 

In figure 14, the left image represents the real photo of a chair. We have taken a single scan 

for the depth data from the front angle. Right image is the point cloud view of the object. 
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4.1.2.2 Process 

    

Figure 15: Surface Normal 

We have isolated the object from its environment. Afterwards, we have performed the 

triangulation over the point cloud and determined the surface normal of the each triangle. 

Based on the normal, we have removed the triangles which are not in the front face, to get a 

refined set of triangles. In figure 15, the triangulated object along with the surface normal 

vectors of each triangle is displayed. 

 

4.1.2.3 Output 

 

Figure 16: Sample after Surface Reconstruction 

After acquiring an optimal set of triangles of the object, we have performed surface 

reconstruction over the triangulated object. The filled surface with phong lighting and 

interpolate shading  
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4.1.3 Sample: Sofa 

 

4.1.3.1 Input 

 

 

Figure 17: Real Image 
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Figure 18: Raw point cloud sample 

Figure 17 is the real image of a sofa set. We have taken four scans of the object to get its depth data. 

Figure 18 represents the front, back, left and right side of the object respectively. Defining front side 

as the reference, we have performed geometric rotation over the back, left and right side of the 

object. 

 

4.1.3.2 Process 

 

    

Figure 19: Sample after Stitching and Registration 

We have stitched and registered the four point clouds and merged them in a single 

coordinate system. Figure 19 represents the registered point cloud of the object. 
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4.1.3.3 Output 

 

 

Figure 20: Sample after Surface Reconstruction 

 

We have performed the triangulation over the merged point cloud. Later on, the output has 

been passed through surface reconstruction method to achieve the 3D model view of the 

object. Figure 20 represents the sample model in mesh and after surface reconstruction.  

 

Our proposed object 3D modeling process has provided results which satisfies our 

objectives for generating a fairly accurate structure of any object, given enough depth 

information. However, the inseparable noise affiliated with the input data slightly reduces 

the success rate of our algorithm. Then again, proper application of the noise reduction 

techniques may increase the performance of the algorithm and result in highly efficient 3D 

object models.   
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4.2 Environment 3D Model 
 

4.2.1 Sample: Lab Room 

4.2.1.1 Input 

 

    

     

Figure 21: Raw Environment Input 

In figure 21, we have the original image and three sections of the graphics lab room of our 

university in point cloud view. Considering the east side as reference, we have performed 

geometric transformation over north and south view of the room. 
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4.2.1.2 Output 

 

Figure 22: Two Merged Environment 

 

Figure 23: Three Merged Environment 

In figure 22 and 23, we can observe the merged scene of the previously mentioned scenes. We 

can identify the physical shapes of the chairs, tables and the computer monitors on the point 

cloud view. In this experiment, we have successfully implemented the stitching and registration 

technique over the point clouds of the environment. Figure 22 and 23 represents the merged 

output of two and three scenes respectively.   
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4.2.2 Sample: Room 1 

4.2.2.1 Input 

 

 

Figure 24: Original Environment 

 

 

Figure 25: Point Cloud Scenes 

We have taken two sides of a Room 1 for our experiment. Figure 24 and 25 represent the actual 

image of the room and the individual point cloud views of the taken sides. 
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4.2.2.2 Process 

 

 

Figure 26: Merged Environment 

In figure 26, we have projected the point cloud merge of the two different sides of the room in a 

single coordinate system. The merged environment holds the original texture information as it 

has been acquired. 

 

4.2.2.3 Output 
 

   

Figure 27: Reconstructed Surface Model without and with Color Texture  

In this experiment, we have been able to reconstruct the surface of the environment after 

triangulating the merged point cloud.  We projected the 3D model of the targeted scene without 

and with color as they are presented in figure 27. 
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4.2.3 Sample: Room 2 

4.2.3.1 Input 

 

 

Figure 28: Original Environment 
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Figure 29: Point Cloud Scenes 

We have performed another experiment in a Room 2 with three scenes. Figure 28 is the 

panorama view of the room and figure 29 represents individual point cloud views of west, south 

and east side. 

 

4.2.3.2 Process 

 

 

Figure 30: Merged Environment 

We have performed the stitch and registration operation over our targeted point clouds. We have 

merged them together and projected in a single one as displayed in figure 30.  
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4.2.3.3 Output 
 

   

 

 

Figure 31: Reconstructed Surface Model without and with Color Texture  

In figure 31, we have displayed the output results of our experiment as we triangulated and 

reconstructed the surface of the environment. The images represent the model without and with 

original color texture.  
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5. DATA ANALYSIS 

We have performed our testing in three different objects with different number of scans. First, 

we have used a chair which is taken by only a single depth data scan. Then we have performed 

the test on a bucket with three scans from different angles. Finally, a sofa has been scanned from 

four side of it to conduct our experiment. 

Table 2: Performance Analysis of Object Model 

Object No of Scan 

Dimension 

(L x W x H) 

cm
3
 

No of Raw 

Points 

No of 

Sampled 

Point 

No of 

Triangle 

Runtime 

(sec) 

Chair 1 
48.77 x 48.77 

x 91.44 
282058 49955 99876 9.964 

Bucket 3 
36.58 x 30.48 

x 36.58 
560316 110555 36387 4.711 

Sofa 4 
76.34 x 76.34 

x 64.26  
717077 145888 126918 8.229 

 

 

 

Figure 32: Proportion of Down Sample Runtime of Object Model 

At first we have presented a comparison of these three objects based on their actual number of 

points during raw scanning and number of sampled points after performing down sample 

process. For chair, the number of points is reduced count goes from 282058 to 49955. The down 

sample process successfully compact the bucket information with only 11055 points where the 

number of raw points was 560316. Again, for the sofa the number of points has been down 

282058 

560316 

717077 

49955 
110555 145888 

Chair Bucket Sofa 

Proportion of Downsample 

Raw points Sampled points 



Page 56 of 61 

 

sampled from 717077 to 145888. For all three objects, the sampled number of points is 18%-

20% of the original scan points. 

     

Figure 33: Number of Triangle and Runtime of Object Model  

In figure 27, we have displayed the number of triangles generated from the object and the 

runtime of execution. For chair, it created 99876 triangles and took approximately 10 seconds. 

The bucket stated the minimum for both triangles (36387) and runtime (4.7 seconds). Finally, 

126918 triangles were needed to model the sofa over 8 seconds. 

Again, we have experimented in two different rooms with different number of scans and 

analyzed the performance of our algorithm. For Room 1 we have chosen two sections of the 

environment. Afterwards, we have taken three sections for Room 2 and performed the same 

modeling technique. We analyzed the down sample, triangle and the required runtime. 

 Table 3: Performance Analysis of Environment Model 

Environment 
No of 

Scan 

Dimension 

(L x W x H) 

m
3
 

No of Raw 

Points 

No of 

Sampled 

Point 

No of 

Triangle 

Runtime 

(sec) 

Room 1 2 1.4 x 2.2 x 1.7 300458 280479 436419 20.82 

Room 2 3 2.8 x 3.0 x 1.4 640341 439266 878407 29.81 
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Figure 34: Proportion of Down Sample of Environment Model 

As environment requires dense depth data for better modeling, we have chosen to keep the 

original information as much as possible. Yet, to reduce over head and duplicate points, we down 

sampled the data a bit. Room 1 initially gave 300458 points in its scanned data which have been 

compacted in 280479, reducing around 7%. On the other hand, we managed to down sample the 

number of points by 31.5%, from 640341 to 439266. 

     

Figure 35: Number of Triangle and Runtime of Environment Model  

 

Room 1, which is measured around 3.08 square meters, has taken 436419 triangles to construct 

the model in approximately 21 seconds. Compare to that, Room 2, covering 8.4 square meters, 

has generated 878407 triangles to produce the output result and taken near about 30 seconds. 
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6. CONCLUSION AND FUTURE PROSPECTS 

 

Here in this paper we have proposed a complete system that will scan the environment through 

Kinect optical scanning sensor and reconstruct the surface from the scanned data with proper 

geometric property. However, we have not been able to implement some features very efficiently 

due to limited amount of time i.e.  generating the 3D surface in real time, developing parallel 

algorithm etc. In this area there is a scope for improvement in the proposed system. 

6.1 Triangulation over three dimensional space 

We have used two dimensional triangulation processes for triangulating points in this 

research. We can improve this algorithm to iterate directly over three dimensional spaces 

and considering a circumscribed sphere for checking the Delaunay validity of triangles. 

This approach can make our triangulation process more robust and the noise amount of 

the generated mesh will be much lesser. 

In our proposed structure, we have triangulated all the points of the depth image. 

However if we could consider the flat zone of the surface as combination of minimum 

triangles and took much more amount of triangles in the edges, we could increase our 

throughput and reduce the computation time. The product of reconstructed surface would 

have been much better outlook as well. 

 

6.2 Data Acquisition Technique 

The technique used to acquire point cloud data in our research has caused a lot of noise 

and errors. A circular trajectory of the sensor is needed and applies loop closure to 

perform a global optimization. Moreover, we can provide a dense surface prediction by 

utilizing raycast method against live depth map aligned.  

In the environment modeling part, we have manually selected the reference point cloud 

for applying geometric translation over the rest. There may be a scope for automating this 

whole process so that we do not need to manually specify any reference point cloud. 
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6.3 Parallel Processing 

Currently, research on simultaneous localization and mapping (SLAM) has focused more 

on real time tracking and reconstruction. Parallelizing the process is the essential ideal for 

real-time reconstruction. Taking advantage of high GPU processing hardware we can 

easily parallelize the algorithm used in our system such as registration and reconstruction 

part.  

 

In recent times a camera named RealSense R200 introduced by Intel enables the user to generate 

a three dimensional model in real time using libraries created in their SDK. This feature relates 

to the purpose our research but the camera itself is new in this research field and a lot of ground 

has to be covered like system integration, understanding the functions to extract point cloud, etc 

before its actual implementation. 

 

With the arrival of Microsoft Kinect sensor and its extensive available resources will open up 

many new possibilities for augmented reality, human –computer-interaction and other field. In 

this research, we have presented a workflow to reconstruct 3D object and environment. There are 

three steps in our system: 

I. Data acquisition from Kinect Sensor and pre-process. 

II. Registration of the point-cloud. 

III. Integration of the depth data using geometric method, Delaunay Triangulation following 

3D model generation. 

Our hope is to scale the system further, reconstructing larger scenes with more memory efficient 

representations and also we hope our system will open many new topics for research both in 

terms of underlying technology, as well as the interactive possibilities it enables. 
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