
1 
 

Comparative Analysis of AES  

Algorithms and Implementation of 

AES in Arduino 

Thesis report  

                            

Supervisor: Dr. Amitabha Chakrabarty 

Co-Supervisor: Samiul Islam 

Conducted By: 

Tanzir Ismat (10101016) 

 

 

School of Engineering and Computer Science  

BRAC University 

                                                                                     



2 
 

DECLARATION 

I do hereby declare that this thesis titled, ‘Comparative Analysis of AES Algorithms and 

Implementation of AES in Arduino’ is submitted to the Department Of Compute Science 

and Engineering of BRAC University in fulfillment of the Bachelor of Science in Computer 

Science and Engineering. This thesis is based on results found by myself. Materials of work 

found by other researcher are mentioned by reference. This Thesis, neither in whole nor in 

part, has been previously submitted for any degree. 

Date: 20.12.2015 

 

 

 

 

Signature of Supervisor                                                       Signature of Author 

  

Dr. Amitabha Chakrabarty                                              Tanzir Ismat (10101016) 

Thesis Supervisor 

Assistant Professor  

Department of Computer Science & Engineering 

BRAC University. 

 

 

 



3 
 

Acknowledgements 

It is an honor for me to thank those who made this thesis possible. I owe my deepest gratitude 

to my supervisor, Dr. Amitabha Chakrabarty, whose encouragement, guidance and support 

from the initial level to the end, enabled me to develop an understanding of the subject and 

helped me to fulfill my thesis work. 

This thesis would be not be possible without help from my co-supervisor Samiul Islam. I am 

very thankful to him and would like to show my gratitude to him for constantly helping and 

guiding me to complete the work. 

I would like to give my thanks to all my faculties of Computer Science & Engineering dept. 

of BRAC University, my friends and my family for their constant support.  

Last but not at least, thanks to the Almighty for helping me in every steps of this Thesis work. 

 

 

 

 

 

 

 

 

 

 



4 
 

Abstract  

The Advanced Encryption Standard (AES) are one of the most significant algorithms used in 

symmetric key cryptography. Finalist candidate algorithms of AES competition program 

arranged by National Institute of Standards and Technology (NIST) in 1997 are, five 

algorithms they are: Rijndael, MARS, RC6, Serpent, and Twofish. From these algorithms 

Rijndael got the most numbers of votes and selected as the AES algorithm. In this thesis, 

various finalist candidates of AES algorithms have been analyzed, remarking its main 

advantages and limitations, memory usage of different algorithms and also the selection 

criteria of AES finalist algorithms evaluated on various evaluation criteria.Also the aim of 

this thesis project is to determine if cryptographic software can be implemented in 

commercially available hardware like Arduino that have limited amount of memory. More 

specifically, the different amounts of memory (eg. Flash, EEPROM, SRAM) used and 

remaining need to be determined. For the scope of this project, Advanced Encryption 

Standard (AES) was considered for the Arduino Mega 2560 platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

Table of Contents 

 

 

 

                                  Contents 

 

Page No. 
 

Declaration  

 
2 

 

 Acknowledgements  

 
3 

 

Abstract 

 
4 

 

Table of Contents  

 
5-6 

 

Literature Survey 

 
8 

 

 Chapter 1 Introduction  

 
7 

 

             1.1 Cryptography Basics 9 
                      

             1.2 AES finalist algorithms                   10 
 

                  1.2.1 Evaluation criteria and final score of AES Finalist 

Algorithms 

                  11 
 

                  1.2.2 Comparison between different AES finalist algorithms 

                  1.2.3 Comparison of different AES finalist algorithms   

regarding memory usage 

 

                  12 
 
               13-16 

Chapter 2 The Advanced Encryption Standard (AES) 17 
 

           2.1 Salient feature of AES 17 
 

           2.2 Working and Structure of AES 18-19 

                  Flow chart of AES encryption and decryption process  20 

           2.3 Modes of Operation   21 

                 2.3.1 Electronic Code Block (ECB)                    21 

                 2.3.2 Cipher Block Chaining (CBC)                    21 



6 
 

 

Chapter 3 Implementation of AES in Arduino 

           3.1 Hardware 

 
 

                 22 

                 3.1.1 Arduino Mega 2560               22-24 

                 3.1.2 Types of Memory in an Arduino device                  25 

           3.2 Issues with implementing AES in Arduino                  26 

                 3.2.1 Solution of the problems                  27 

                 3.2.2 Output of Encryption and Decryption code                  28 

                 3.2.3 Checking test vectors                  29 

                 3.2.4 Checking the amount of memory used and remaining                  30 

                 3.2.5 Summary of space available and space used                  31 

 Chapter 4. Achievements of the project 

 

              32-33 

 Chapter 5. Limitations 

       

        

                 34 

 Chapter 6. Conclusion and scope of future works 

 

                 35 

  

 References 

 
 
 

 
              36-37 
 
 

  
 
 
             
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 

 
 

                                         Chapter 1: Introduction  

These days with more and more technological advancements in the field of communication 

there is even more ever increasing threat to data which is being exposed in the environment 

of cryptographic attacks. With more advancement in internet applications there is a lot of 

critical data which is shared by the user and that has to be protected from illegal use by the 

hackers. As the growth of technology, communication through internet and wireless methods 

has become a revolutionary advancement of late. So the never changing attribute which is of 

utmost prominence is the very basic necessity to protect the data from its unauthorized access 

of the information. With increasing inclination towards information security there was even 

more predilection in regard to security algorithms which acts as a barricade between the 

hacker and the critical data. As there were a lot of security algorithms which evolved out of 

the cause and were gaining its own appreciation at different fields of its use, the US 

government wanted to standardize a cryptographic algorithm which will be used universally 

by them called AES (Advanced Encryption Standards).[1] In 1997 NIST announced a 

program to develop and choose an Advanced Encryption Standard to replace the aging Data 

Encryption Standard (DES).They solicited algorithms from the cryptographic community, 

with the intent of choosing a single standard. Fifteen algorithms were submitted to NIST in 

1998, and NIST chose five finalists in 1999. In 2000, Rijndael was selected by getting the 

most votes as the AES algorithm. NIST’’s three selection criteria were security, 

performance, and flexibility. Efficiency of algorithms was also another important criteria. 

Two characteristics were determined as critical in the selection of the AES: security and 

efficiency. In this thesis the evaluation and selection criteria of NIST for AES finalist 

algorithms will be investigated also the comparison between different algorithms will be 

discussed [2]. Another aim of this thesis project is to determine if cryptographic software can 

be implemented in commercially available hardware like Arduino that have limited amount 

of memory. More specifically, the different amounts of memory (eg Flash, EEPROM, 

SRAM) used and remaining need to be determined. For the scope of this project, Advanced 

Encryption Standard (AES) was considered for the Arduino Mega 2560 platform. 

Before going in to details let us just review few basics. 

 



8 
 

 

 

Literature Survey 

 
While studying for my thesis research works that I found and from where I have taken data to 

prepare for myself for thesis are mentioned some over here with details and others in the 

references section. 

 

Comparative Analysis of AES Finalist Algorithms And Low Power 

Methodology For Rc6 Block Cipher – A review( by V. Tharun Deep, Dr. Venkata 

Siva Reddy.) – I have studied the past works and from here I have learned about different 

cryptographic algorithms which were shortlisted by NIST (National Institute of Standards 

and Technology) for the final round of selection for determining the AES also the various 

evaluation criteria for the cryptographic algorithms and the implementation methodology of 

the cryptographic algorithm RC6 which contains the detailed briefing of Key Expansion 

Schedule, Encryption Process, and Decryption process. Also it gives the overview to obtain 

low power at different stages of synthesis flow. 

 

A Performance Comparison of the Five AES Finalists ( by Bruce Schneier, Doug 

Whiting), - From here I have learned performance related topics of five AES finalists 

algorithms like Software performance of these algorithms on different platform using 

different language environment.  

Implementing Security in a Personal Security Device (by Priyansha Gupta-

UCLA), -  From here I have learnt more about AES algorithm and how to implement AES in 

Arduino.I have learnt how to setup install AES library in Arduino and also memory usage of 

Arduino. 

Cryptoprocessing on the Arduino (  by Stig Tore Johannesen- NUST)- From here I 

have gathered more in-depth knowledge about implementing AES in Arduino. 

There are many other publications, online forums and websites from which I have taken 

information to complete my thesis work; those related links and information about them are 

given in reference sections . 

 

 

 



9 
 

 

 

1.1 Cryptography Basics: 

Cryptography is usually referred to as “the study of secret”. Before one can begin to 

understand cryptography, there are several key concepts that must be understood. Firstly, 

there are the terms plaintext and cipher text. Plaintext refers to data that is unencrypted while 

cipher text refers to the data that has been encrypted. Encryption is the process of converting 

normal text to unreadable form. Decryption is the process of converting encrypted text to 

normal text in the readable form. There are two main categories of cryptography depending 

on the type of security keys used to encrypt/decrypt the data. These two categories are: 

Asymmetric and Symmetric encryption techniques. 

 

                           Fig. 1: Different Symmetric and Asymmetric Cryptographic algorithm [3]  

 

A key acts as a password that is used to encode and decode data. In the case of symmetric 

encryption, the key that is used to encrypt the data is the same key that is used to decrypt the 

data. As a general rule, larger key sizes allow for a larger number of key combinations, which 

makes it more difficult for an attacker to correctly guess the key, thereby increasing security. 

A round is another cryptographic term. The number of rounds that an encryption algorithm 

uses refers to the number of iterations that data is encrypted. The purpose for having more 

rounds is to achieve a higher level of security, because an increase in rounds translates to an 

increase in encryption. By increasing the amount of encryption that is done, the resulting 

cipher text becomes more statistically unrelated to the original plaintext. 

 

 



10 
 

 

 

Symmetric Encryption: 

Symmetry encryption technique is also called as single key cryptography. It uses a single key. 

In this encryption process the receiver and the sender has to agree upon a single secret 

(shared) key. Given a message (called plaintext) and the key, encryption produces 

unintelligible data, which is about the same length as the plaintext was. Decryption is the 

reverse of encryption, and uses the same key as encryption. Rijndael(AES), MARS, RC6, 

Serpent, and Twofish these are most used symmetric algorithms. 

 

              

 

          Fig.2 Symmetric algorithm encryption and decryption process  

 

 

 

 

1.2 AES finalist algorithms:  

The US government wanted to standardize a cryptographic algorithm which will be used 

universally by them called AES (Advanced Encryption Standards).In 1997 NIST announced 

a program to develop and choose an Advanced Encryption Standard to replace the aging Data 

Encryption Standard (DES). They solicited algorithms from the cryptographic community, 

with the intent of choosing a single standard. Fifteen algorithms were submitted to NIST in 

1998, and NIST chose five finalists in 1999.These are Rijndael(AES), MARS, RC6, Serpent, 

and Twofish. 

 



11 
 

1.2.1Evaluation Criteria and Final Score of AES Finalist Algorithms: 

NIST focused their evaluation of each algorithm based on the following criteria. In order of 

their stated importance, they were: 

1. Security (the most important factor in the evaluation) 

2. Cost 

3. Algorithm and Implementation Characteristics.  

On the basis of these criteria NIST chose the best algorithm and after voting and the final 

score-    

       Criteria Rijndael Serpent  Twofish     Mars     RC6 

General Security       2                     3        3       3      2 

Implementation 

Difficulty 

      3      3        2       1      1 

Software 

performance 

      3      1        1       2      2 

Smart Card 

Performance 

      3      3        2       1      1 

Hardware 

Performance 

       3       3         2        1       2 

Design Features         2       1         3        2      1 

                                 

Total  

      16      14        13       10     09 

 

                            Table 1: Final Score of AES Finalist Algorithms [4] 

From the table above we can see that, Rijndael got the most numbers of votes and selected as 

the AES. 

 

 



12 
 

1.2.1 Comparison between different AES Finalist Algorithms: 

 

Architectural Comparison:  

Based on the Architecture of these shortlisted algorithms comparison can be summed up 

through a table as shown below- 

 

 

Algorithms 

 

      Type  

of Structure 

 

   Key      

Length 

 

Block Size  

With number 

of rounds 

 

 

S-Boxes 

 

Rijndael  

 

Feistel 

Structure 

 

 

Variable 

128, 192 or 

256 bits 

 

128 bit 

With variable 

10, 12 or 14 

rounds 

 

No 

 

Twofish 

 

 

Fiestel structure 
 

Variable 

128, 192 or 

256 bits 

 

128 bit with 16 

rounds 

 

Four 

 

 

Serpent 

 

Substitution 

permutation 

network 

structure  

 

 

Variable 

128, 192 or 

256 bits 

 

128 bit with 32 

rounds 

 

Eight 

 

 

MARS 

 

Heterogeneous 

structure 

 
Variable 
128 to 
448 bits in 
multiples of 

32-bit 

 

128 bit with 32 

rounds 

 

One 

 

RC6 

 

Feistel 

Structure 

 

 

 

Variable 

128, 192 or 

256 bits  

 

128 bit with 20 

rounds. 

 

No 

 

    Table 2: Architectural comparison of different AES finalist algorithms [5] 

 



13 
 

1.2.2 Comparison of different AES finalist Algorithms on the basis of 

Memory Usage  

 

The memory usage can be defined as the number of functions performed by the 

algorithm, smaller the memory usage greater will be the efficiency. So it’s really 

an important issue in terms of efficiency of AES algorithms. To calculate the 

memory usage of different AES algorithms, I have done the following process- 

 

 Implementing of different AES finalist algorithms on laptop Pc  

( Configuration: Intel Core 2 Duo 2.2 Ghz processor, RAM: 3GB) 

 Medium of Language used: Java 

 IDE used: Eclipse MARS 4.5 

 Method of calculation of Memory Usage: I have used a profiler called 

Jprofiler which is used specially for monitoring memory usage and leaks in 

any Java applications. This profiler can be download from here- 

http://www.ej-technologies.com/download/jprofiler/files. 

 To calculate the memory, in this calculation steps heap memory is 

considered. 

Memory Usage of different algorithms: After implementing different AES finalist 

algorithms in Eclipse and integrating      Eclipse IDE with Jprofiler I have got the results 

of the heap memory usages of   different algorithms from the Jprofiler application.The 

result of these memory usage calculations is given below – 

1) AES (Rijndael): 

Memory 

 

                                                       Processing time        

                                  Fig 3: Memory usage of AES (Rijndael) 



14 
 

2) Twofish: 

Memory 

 
                                                        Processing Time 

                                           Fig:4  Memory usage of Twofish 

      3)Serpent: 

Memory 

 
                                               Processing Time 

 

                                 Fig:5 Memory usage of Serpent 



15 
 

       4)MARS: 

Memory 

 
                                                         Processing time  

                                                  Fig: 6 Memory usage of MARS 

3) RC6 

Memory 

 

                                            Processing Time 

                                 Fig : 7 Memory usage of RC6 

 

 



16 
 

Discussions regarding the memory usage results: 

 

After observing the of memory usage results of AES finalist algorithms, it is seen 

that MARS uses highest memory and also the processing time is higher than the other 

algorithm. And on the other hand, Twofish uses lowest memory. Here one thing 

should be considered that the calculation also depends on implementations of these 

algorithms. Different implementations of these algorithms can bring different 

memory usage results.  

 

 

Summary of the Memory Usage of different algorithms: 

 

Memory(mb) 

 
 

                                       Different AES finalist algorithms 

 

 

 

                Fig: 8 Memory usage of different AES finalist algorithms  

 

 

 

 

 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

AES(Rijndael) Twofish Serpent MARS RC6 

Memory Usage 

Memory Usage 



17 
 

   Chapter 2: The Advanced Encryption Standard (AES): 

This section will cover, in brief, the Advanced Encryption Standard. (The entire section is a 

part of a chapter taught at Purdue. See reference [6] ). 

 

2.1 Salient feature of AES): 

AES is a block cipher with a block length of 128 bits. It allows for three different key 

lengths: 128, 192, or 256 bits. AES Encryption consists of 10 rounds of processing for 128-

bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. Except for the last round 

in each case, all other rounds are identical. Each round of processing includes one single-byte 

based substitution step, a row-wise permutation step, a column-wise mixing step, and the 

addition of the round key. The order in which these four steps are executed is different for 

encryption and decryption. To appreciate the processing steps used in a single round, it is best 

to think of a 128-bit×4 block matrixes consisting of a 4 
 
of bytes, arranged as follows: 
 

byte0 byte4 byte8 byte12 byte1 

byte5 byte9 byte13 byte2 byte6 

byte10 byte14 byte3 byte7 

byte11 byte15 

 

Therefore, the first four bytes of a 128-bit input block occupy the first× column in the 4 4 

matrix of bytes. The next four bytes occupy the second column, and so on. The×4 4 matrix of 

bytes is referred to as the state array. Each round of processing works on the input state array 

and produces an output state array. The output state array produced by the last round is 

rearranged into a 128-bit output block. Unlike DES, the decryption algorithm differs 

substantially from the encryption algorithm. Although, overall, the same 

 

steps are used in encryption and decryption, the order in which the steps are carried out is 

different. Whereas AES requires the block size to be 128 bits, the original Rijndael cipher 

works with any block size (and any key size) that is a multiple of 32 as long as it exceeds 

128. The state array for the different block sizes still has only four rows in the Rijndael 

cipher. However, the number of columns depends on size of the block. For example, when 



18 
 

the block size is 192, the Rijndael cipher requires a state array to consist of 4 rows and 6 

columns. 

 

AES uses a substitution-permutation network in a more general sense. Each round of 

processing in AES involves byte-level substitutions followed by word-level permutations. 

The nature of substitutions and permutations in AES allows for a fast software 

implementation of the algorithm.  

2.2 Working and Structure of AES: 

 

 

 

                     Fig 9: AES encryption and decryption process  

 



19 
 

Before any round-based processing for encryption can begin, the input state array is XORed 

with the first four words of the key schedule. The same thing happens during decryption — 

except that now we XOR the cipher text state array with the last four words of the key 

schedule. For encryption, each round consists of the following four steps: 
 

I. Substitute bytes  
 

II. Shift rows  
 

III. Mix columns IV. Add 

round key. 
 
The last step consists of XORing the output of the previous three steps with four words from 

the key schedule. For decryption, each round consists of the following four steps: 
 

I. Inverse shift rows  
 

II. Inverse substitute bytes  
 

III. Add round key  
 

IV. Inverse mix columns. 
 
The third step consists of XORing the output of the previous two steps with four words from 

the key schedule. Note the differences between the order in which substitution and shifting 

operations are carried out in a decryption round vis-a-vis the order in which similar 

operations are carried out in an encryption round. The last round for encryption does not 

involve the “Mix columns” step. The last round for decryption does not involve the “Inverse 

mix columns” step [5].  

 

 

 

 

 

 

 

 



20 
 

                            

               Fig 10: Flow chart of AES encryption and decryption process  

 

In terms of security no attack has been found for AES, using the full number of rounds, 

which is more efficient than 296 for AES-192. Of specific note in this context is the fact that 

AES, due to a large avalanche effect, is considered immune to related text attacks. The 

avalanche effect in this context referring to the property that a small differences in in-put 

leads to large differences in the output. However some side-channel attacks, attacks on 

implementations that leak information in some way, has been found for several 

implementations of AES, though most of them have been quickly patched when the attack 

became known. 

  



21 
 

 

2.3 Modes of operation:  

2.3.1 Electronic Code Book (ECB) 

 

Electronic Code Book mode is the simplest of all the modes, as it is simply a lack of any 

additional operations on top of the encryption algorithm. It simply calculates each block. 

independently of each other block. While this means the mode is highly parallelizable, it has 

severe security implications. As long as the encryption key and algorithms are safe it is still 

impossible to directly decrypt the message, but due to a small block size (128 bits) it is 

possible to see patterns in the output. If you know the input for some of the output it is also 

possible to know the input of a given output. Figure 3.1 demonstrates this quite well by 

showing the ouput of ECB and CBC mode next to the original input, with a clearly visible 

pattern in the output of ECB mode. 

 

2.3.2 Cipher Block Chaining (CBC)  

Cipher Block Chaining is among the simpler true encryption modes of operation. It works by 

XORing the cipher text of the previous block with the plaintext of the current block when 

encrypting, and with the result of the decryption operation when decrypting. For the first 

block an Initialization Vector is used. Provided the IV is unique this mode is considered 

secure. It does limit the operations to being serial, since the result of the previous operation 

needs to be known before the current operation can be processed.  

 

                                            Courtesy   of Wikimedia Commons     

                                    Fig 11: CBC Encryption and Decryption 



22 
 

Chapter 3. Implementation of AES in Arduino 

 
There are three steps involved to implement AES in Arduino and checking the memory 

usage. These are-    

1. Installing AES library on Arduino. 

2. Running codes to check the functionalities of AES library. 

3. Checking the amount of memory used and remaining. 

 

3.1 Hardware : 
The descriptions of the hardware that are implemented in this project are given below: 

  

 Arduino Mega 2560 and  

 A laptop Computer/ Desktop PC for giving the command. 

 

The development kit used for this system is an Arduino brand kit. The Arduino family of kits 

was chosen because it is the most popular and easily available, and because it has both an 

established development environment and an active community. 

 

 

3.1.1 Arduino Mega 2560 : (The entire section was taken from official Arduino 

website: See reference [7]) 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig 12: Arduino Mega 2560 microcontroller board 

 
The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 . It has 54 

digital input/output pins (of which 15 can be used as PWM outputs), 16 analog inputs, 4 

UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, 



23 
 

an ICSP header, and a reset button. It contains everything needed to support the 

microcontroller; simply connect it to a computer with a USB cable or power it with a AC- 

to-DC adapter or battery to get started. The Mega is compatible with most shields designed 

for the Arduino Duemilanove or Diecimila [6]. 

 

A. ARDUINO MEGA 2560 SPECIFICATION 

Microcontroller                       ATmega2560 

Operating Voltage                             5V 

Input Voltage (recommended)  7-12V 

Input Voltage (limits)                           6-20V 

Digital I/O Pins             54 (of which 15 provide PWM output) 

Analog Input Pins                             16 

DC Current per I/O Pin               40 mA 

DC Current for 3.3V Pin               50 mA 

Flash Memory                          256 KB of which 8 KB used by boot loader 

SRAM                                                    8 KB 

EEPROM                                         4 KB 

Clock Speed                                     16 MHz 

 

B. POWER 

The Arduino Mega can be powered via the USB connection or with an external power 

supply. The power source is selected automatically. External (non-USB) power can come 

either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by 

plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can 

be inserted in the Gnd and Vin pin headers of the POWER connector. 



24 
 

 The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, 

however, the 5V pin may supply less than five volts and the board may be unstable. If using 

more than 12V, the voltage regulator may overheat and damage the board. The recommended 

range is 7 to 12 volts. 

C. MEMORY 

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for 

the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with 

the EEPROM library). 

D. COMMUNICATION 

The Arduino Mega2560 has a number of facilities for communicating with a computer, 

another Arduino, or other microcontrollers. The ATmega2560 provides four hardware 

UARTs for TTL (5V) serial communication. An ATmega16U2 (ATmega 8U2 on the revision 

1 and revision 2 boards) on the board channels one of these over USB and provides a virtual 

com port to software on the computer (Windows machines will need a.inf file, but OSX and 

Linux machines will recognize the board as a COM port automatically. The Arduino software 

includes a serial monitor which allows simple textual data to be sent to and from the board. 

The RX and TX LEDs on the board will flash when data is being transmitted via the 

ATmega8U2/ATmega16U2 chip and USB connection to the computer (but not for serial 

communication on pins 0 and 1). 

A Software Serial library allows for serial communication on any of the Mega2560's digital 

pins. The ATmega2560 also supports TWI and SPI communication. The Arduino 6 software 

includes a Wire library to simplify use of the TWI bus; see the documentation for details. For 

SPI communication, use the SPI library. 

E. PROGRAMMING 

The Arduino Mega can be programmed with the Arduino software. The ATmega2560 on the 

Arduino Mega comes preburned with a boot loader that allows you to upload new code to it 

without the use of an external hardware programmer. It communicates using the original 

STK500 protocol. 

 



25 
 

3.1.2 Types of memory in an Arduino device : 

There are three types of memory in an Arduino: 

A) FLASH MEMORY: 

Flash memory is used to store program image and any initialized data. The flash is 

usually used to hold the executables (and perhaps other static data) for the device. It is 

possible to execute program code from flash, but one can't modify data in flash memory 

from your executing code. To modify the data, it must first be copied into SRAM. Flash 

memory has a finite lifetime of about 100,000 write cycles. So if 10 programs are 

uploaded 10 a day, every day for the next 27 years, one might wear it out 

B) SRAM 

 

SRAM or Static Random Access Memory, can be read and written from executing program. 

This is where temporary variables are stored. SRAM memory is used for several purposes by 

a running program: 
 
• Static Data - This is a block of reserved space in SRAM for 

all the global and static variables from program. For variables 

with initial values, the runtime system copies the initial value 

from Flash when the program starts.   

• Heap - The heap is for dynamically allocated data items. The 

heap grows from the top of the static data area up as data 

items are allocated.  

 

•Stack - The stack is for local variables and for maintaining a record of interrupts and 

function     calls. The stack grows from the top of memory down towards the heap. Every 

interrupt, function call and/or local variable allocation causes the stack to grow. Returning 

from an interrupt or function call will reclaim all stack space used by that interrupt or 

function. 

Most memory problems occur when the stack and the heap collide. When this happens, one 

or both of these memory areas will be corrupted with unpredictable results. In some cases it 



26 
 

will cause an immediate crash. In others, the effects of the corruption may not be noticed 

until much later. 

C) EEPROM 

It can only be read byte-by-byte, so it can be a little awkward to use. The EEPROM is used to 

store long-term information developed during the device's use. It is also slower than SRAM 

and has a finite lifetime of about 100,000 write cycles (you can read it as many times as you 

want). While it can't take the place of precious SRAM, there are times when it can be very 

useful! [6] 

3.2 Issues with implementing AES in Arduino: 

A major concern using Arduino is the limited memory available. The difference between the 

Arduino microcontrollers and a general purpose computer is the sheer amount of memory 

available. The Arduino we are using has only 256K bytes of Flash memory, 8K bytes of 

SRAM and 4K bytes of EEPROM. That is 100,000 times LESS physical memory than a low-

end PC! And that's not even counting the disk drive! 

 
As described above, AES encryption requires 10 rounds of processing for 128-bit keys, 12 

rounds for 192-bit keys, and 14 rounds for 256-bit keys. Each round of processing includes 

one single-byte based substitution step, a row-wise permutation step, a column-wise mixing 

step, and the addition of the round key. The process of encryption will require some memory 

space to store temporary results and the final encrypted results which go in flash. Key will be 

in the EEPROM. The data to be encrypted, any intermediate temporary results, and the 

encrypted block would probably go in SRAM We need to determine if we can fit reasonable 

cryptographic software (probably AES) on this device, while still leaving room for other 

functionality. Alternatively, if we use AES crypto, how much of our space will be available 

for other operations. 

 

 

 



27 
 

3.2.1 Solution of the problems: 

Working in this minimalist environment, resources should be used wisely. 

 

A) Installing AES on Arduino 
 
First step towards solving the problem was to download the   Arduino integrated development 

environment (IDE) software which is an open source and is available on Arduino’s official 

website. Arduino IDE 1.0.5 is downloaded for this project. The next step was to install AES 

on Arduino.  

B) AES library for Arduino 

With some research, I was able to find an AES library that supports 128, 192 and 256 bit key 

sizes. This library can be found here: http://utter.chaos.org.uk:/~markt/AES-library.zip. 

C) Running codes to check the functionalities of AES library 
For checking the functionalities of AES library I have took some ideas from the AES 

algorithm I’ve found  from here- http://www.cs.utsa.edu/~wagner/laws/AESintro.html 

Here is the AES algorithm is outline form, using Java syntax for the pseudo-code, and 

much of the AES standard notation: 

 

Outline of the AES Algorithm: 
 

Constants: int Nb = 4; //  

           int Nr = 10, 12, or 14; // rounds, for Nk = 4, 6, or 8 

Inputs: array in  of 4*Nb bytes // input plaintext 

        array out of 4*Nb bytes // output ciphertext 

        array w of 4*Nb*(Nr+1) bytes // expanded key 

Internal work array: 

       state, 2-dim array of 4*Nb bytes, 4 rows and Nb cols 

   Algorithm: 

       void Cipher(byte[] in, byte[] out, byte[] w) { 

   byte[][] state = new byte[4][Nb]; 

   state = in; // actual component-wise copy 

   AddRoundKey(state, w, 0, Nb - 1);  

   for (int round = 1; round < Nr; round++) { 

      SubBytes(state);  

      ShiftRows(state);  

      MixColumns(state); 

      AddRoundKey(state, w,  

          round*Nb, (round+1)*Nb - 1);  

   } 

   SubBytes(state);  

   ShiftRows(state);  

   AddRoundKey(state, w, Nr*Nb, (Nr+1)*Nb - 1);  

   out = state; // component-wise copy 

} 

http://utter.chaos.org.uk/~markt/AES-library.zip
http://www.cs.utsa.edu/~wagner/laws/AESintro.html


28 
 

3.2.2 Output of Encryption and Decryption code: After running the code for encryption 

and decryption in Arduino IDE  based on the idea from the above mentioned algorithm to 

produce the following output: 
 

I. Plain text  
 

II. Encrypted text (with varying block size)  
 
III. Decrypted text (with varying block size)  
 
IV. Encryption and decryption using 128, 192 and 256 bit key size 
 

V. Time taken by each and every encryption and decryption process  

 

 

 

 
 
 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Fig 13: Output showing encryption and decryption process and the amount of time it took  



29 
 

3.2.3 Checking test vectors: The output for Checking test vectors code is showing the 

following scenarios: 
 

I. Varying size key (128, 192 and 256)  
 

II. Varying plain text and its cipher text  
 
III. Monte Carlo  

 

 
 
 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

                        Fig 14: Test vector code output  

 

 



30 
 

3.2.4 Checking the amount of memory used and remaining: 

1) Flash  

   

The amount of flash memory used can be found out at the bottom part of the sketch. One can 

see the amount of bytes being used after uploading the program. Both encryption & 

decryption and test vector code was taking approximately 8000 bytes out of total 258,048 

bytes in Arduino. 

 

 

 

Fig 15: Flash memory used by encryption            Fig 16: Flash memory used by test 

vectors 

 

2) EEPROM  
 
EEPROM usage is in fully controlled by user, i.e. we have to read and write each byte to a 

specific address. So if we want to save 128 bit key in the EEPROM, it will take only 16 bytes 

in EEPROM. Similarly, a 192 and 256 key will take 24 and 32 bytes respectively. 

 

3) SRAM  
 
SRAM usage is more dynamic and therefore more difficult to measure. The free_ram() 

function is one way to do this. By adding this function definition to the code, then call it from 

various places in the code the amount of free SRAM can be found. 

 

Fig 17:  Calling free_ram( ) function in encryption /decryption code 



31 
 

 

Fig 18: free ram_ram( ) fuction in encryption/decryption code  

For The function free_ram() actually reports the space between the heap and the stack but it 

does not report any de-allocated memory that is buried in the heap. Buried heap space is not 

usable by the stack, and may be fragmented enough that it is not usable for many heap 

allocations either. The space between the heap and the stack is what we really need to 

monitor if we are trying to avoid stack crashes. 

 

Fig 19: output showing free SRAM memory  

 

3.2.5 Summary of space available and space used: 

Type of Memories  Total space Space used Space Remaining 

 available    

Flash 256 KB  8.79 KB 247.2 KB 

EEPROM 4 KB  0.015 KB 3.98 KB 

SRAM 8 KB  1.4 KB 6.9 KB 

 

 Table 3: Amount of flash, EEPROM and SRAM available/used/remaining 



32 
 

Chapter 4. Achievements of the project 

Memory usage of different AES finalist algorithms has been calculated and the comparison 

of the memory usage between these algorithms is showed .AES was successfully installed 

in Arduino and was tested against many of the test-vectors (key varying, plaintext varying, 

Monte Carlo). It was able to perform encryption and decryption with varying key sizes! 
 
This project was successful in attaining main goal i.e. to determine 

 
 Whether AES can be installed in the Arduino platform: A simple AES encryption 

decryption process was installed.  

 The amount of memory available for other device functionalities: Using separate 

techniques for observing the amount of memory used, we were able to find out the 

exact amount of memory that will be used/saved.  
 
In addition to performing encryption and decryption, this project made sure that the time 

taken for the encryption/decryption is considerably low!! Time that encryption took was 

calculated at each and every step to make sure that we don’t face timing issues in future. 

Some speed/timing information is: 

 

128 bit, key setup 0.37ms 
 

128 bit, ECB, encryption 0.58ms / block (27.5kB/s) 

 

128 bit, ECB, decryption 0.77ms / block (20.5kB/s) 

 

 

               192 bit, key setup 0.41ms 

 

192 bit, ECB, encryption 0.71ms / block (22.5kB/s) 

 

192 bit, ECB, decryption 0.92ms / block (17.5kB/s) 

 

 

 

256 bit, key setup 0.52ms 

 

256 bit, ECB, encryption 0.82ms / block (19.5kB/s) 

 

256 bit, ECB, decryption 1.09ms / block (14.5kB/s) 

 

 



33 
 

 

 

 

    Summary of timing information of encryption and decryption 

 
 

Time (ms)

 
                                   Different key length 

      
       Fig 20:  Timing information of encryption and decryption 

                  

 
From the above table we can see that the larger key size length the more 

time it took to key setup ,encrypt and decrypt data. 

 

 

 

 

 

 

 

 

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

128 bit 192 bit 256 bit 

Key Setup 

ECB encryption 

ECB decryption 



34 
 

 

 

 

                             Chapter 5: Limitations 
 

 

As the Arduino doesn't have a file structure and therefore there is no direct way to read/write 

to files. This implementation of AES in Arduino is done with the built in plain text provided 

by the AES library. To encrypt and decrypt of much larger plain text files using Arduino, 

extra Arduino SD card shield is needed with the SD card library. Data can easily be stored on 

an SD card and then using SD card library encryption and decryption can be done. 

 

 

 

 

 

 

     

 

 

 

 

 

    



35 
 

            Chapter 6: Conclusion and Scope of Future Work 

In conclusion, I want to say that, this project determined that AES can be 

implemented in Arduino and there will be sufficient space for other functionalities 

too.AES implementation took very less space and most of the space available in 

Arduino is unused and can be used for other functionalities. While dealing with time 

issues was not a part of this project, this project made sure that the time is kept in 

close watch. It was observed that the amount of time taken by encryption/decryption 

process is less and so ensures that implementing security wouldn’t affect the 

efficiency of the device time wise.  

 

My future work will be exploring further improvement of this project like using 

Arduino SD card shield and SD card library to test the encryption and decryption of 

text file using AES algorithm also I will try to use some other encryption modes like 

CTR. I have also a plan to implement AES in Raspberry Pi to get a comparison result 

between Arduino and Raspberry pi encryption and decryption performance. 

 

 
                                                             

 

 

 

 

 

 

 

 

                                                            



36 
 

                                                       References: 

[1]  V. Tharun Deep, Dr. Venkata Siva Reddy, “Comparative Analysis of AES Finalist 

Algorithms And Low Power Methodology For RC6 Block Cipher-A survey”,  

[2]  Edward Chu, Paul Kim, Frank Liu, Jason Sharma, Jeffrey Yu,” The Selection of the 

Advanced Encryption Standard “ 

 [3] Mansoor Ebrahim, Shujaat Khan, Umer Bin Khalid, “Symmetric Algorithm Survey: A 

Comparative Analysis”,  

[4]  B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall, “Twofish: A 128-Bit Block 

Cipher”, First Advanced Encryption Standard Conference. 

[5]  V. Tharun Deep, Dr. Venkata Siva Reddy, “Comparative Analysis of AES Finalist 

Algorithms And Low Power Methodology For RC6 Block Cipher-A survey”, in International 

Journal for Technological Research In Engineering. 

[6]  R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, “The RC6TM Block Cipher”, First AES 
Conference. 
 

[7] Arduino Official Website, http://arduino.cc/  

 

[8] The Laws Of Cryptography With Java Code by Neal R.Wagner. 

[9] Ross Anderson, Eli Biham, Lars Knudsen, “Serpent: A Proposal for the Advanced 

Encryption Standard”, Cambridge University, England. 

[10] KazumaroAoki and Helger Lipmaa, “Fast Implementations of AES Candidates” K'' 

uberneetika AS Akadeemia tee 21, 12618 Tallinn, Estonia. 

[11]   Bruce Schnier and Doug Whiting,  “Performance Comparision of five AES finalists”. 

[12]  R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the Advanced 

Encryption Standard”, First Advanced Encryption 

Standard Conference. 

[13]  Network  Security,  “Cryptography”  ,  University  of Houston, USA. 

http://arduino.cc/


37 
 

[14]  J. Daemen and V. Rijmen, “AES Proposal: Rijndael”, First Advanced Encryption Standard 

Conference. 

[15] Najib A. Kofahil, Turki Al-Somani2 and Khalid Ai-Zamil3, Performance Evalution of Three 

Encryption/Decryption Algorithms. 

[16] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., and Ferguson, N. ,    

“Performance comparison of the AES submission.”  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 



38 
 

 

 

 


