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I 

Abstract 

Ethanol, with the molecular formula of CH3CH2OH, is a highly useful hydrocarbon which 

is used extensively in major industrial and manufacturing processes. It is also used as a 

fuel, albeit on a much smaller scale. Ethanol is mainly sourced from the fermentation of 

carbon-based feedstock by microorganisms such as yeasts, which can be found almost 

everywhere in the environment. In this study wild-type yeast strains were derived from 

potential sugar-rich food sources commonly found in kitchen markets around Dhaka city, 

namely sugarcane juice, grapes, dates, honey and molasses. Once the desired microbes 

were isolated, they were identified as members of the ethanol producing Saccharomyces 

spp. after stress tolerance studies (thermo- and ethanol- tolerance) and biochemical 

characterization using Analytical Profile Index (API) ® 20C AUX and nitrate broth test. 

This study was conducted to analyze and compare ethanol yields obtained from untreated 

blackstrap molasses and molasses treated with mineral salts. To this end, the isolates were 

initially used to ferment molasses media at standard temperature of 30°C and pH 5.5 in 

order to establish their base ethanol productivity using Conway unit titration. Using the 

titrimetric results obtained as reference, the experiment was repeated with the molasses 

media treated with the mineral salts KH2PO4, MgSO4, MnSO4 and FeSO4 respectively 

to study their effect on ethanol yield outputs. The results indicated an overall increase 

in yields upon the addition of the salts; maximum ethanol percentages for isolate 

S.C-1.0 obtained after a 48 hour incubation in KH2PO4 treated molasses was 8.78% in 

contrast to untreated media which yielded 7.31% after the same time period. Overall, all 

other isolates (S.C-1.1, D-H, HON, GRP-4 and MOL) displayed yield improvements 

with other salts as well. 
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Introduction 

1.1 Background 

The failure of conventional fossil fuels in maintaining mankind’s ever-increasing 

demand for energy in a sustainable and efficient manner is becoming more apparent 

with the passage of time. The issue of fast diminishing supplies of such fossil fuels as 

well as the negative impact they have on the quality of the environment has raised 

calls for alternative energy sources. Biotechnology has emerged to fill that role by 

providing a variety of innovative solutions to the problem. Some of the common 

criteria that are taken under consideration for development of such an alternative 

include the relative abundance of their source, their contribution in minimizing the 

negative impact on the environment and organic life, cost-effectiveness and 

renewability (Hánh-Hägerdal et al., 2007). Most importantly, it must also be able to 

efficiently cater to the energy needs of a rapid growing worldwide population. 

Bioethanol, ethanol that is derived from biological sources by the fermentative action 

of certain microorganisms, is one of many such alternatives and certainly the most 

promising of all. The use of ethanol in industry and manufacturing process however 

was not uncommon before the advent of fossil fuels, as it has been used in the 

production of many consumer products (Ragauskas et. al., 2006; vanWyk, 2001). 

However, the inefficiency and slow production rates of those manufacturing processes 

in comparison to those using fossil fuels proved to be their undoing and they were 

eventually phased out. Recently however, the detrimental effects of fossil fuels on 

organic life and environment as well as impact of their limited supply on the world 

economy have become more apparent (Izmirlioglu and Demirci, 2012). Because of 

this and the technological improvements related to efficient usage of ethanol fuel, 

ethanol derived from biological sources has seen a resurgence in interest. 

Ethanol from kitchen-waste is an attractive and sustainable energy source for 

transportation fuel to substitute gasoline; however it still requires a lot of 

development. Production techniques of bioethanol are categorized into two 

generation. The first generation methods, which is the current method of production, 

uses food crops such as sugar cane and corn and their by-products like molasses. On 
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the other hand second generation ethanol production, which is currently implemented 

on an experimental scale and is under development, utilizes cheaper and non-food 

feedstock like lignocelluloses or municipal solid waste. While the first generation 

methods yielded feasible result, production of ethanol is fairly low and its usage of 

potential food-crops has made it the subject of criticism (Babcock, 2011). Second 

generation methods aim to solve this by reducing the dependence of food crops and 

enable usage of cheaper and non-food feedstock like lignocelluloses or municipal 

solid waste/kitchen wastes, thereby making ethanol more competitive to fossil fuels 

(Matsakas and Christakopoulos, 2015). Furthermore, the processed substrates of 

bioethanol production from such biomasses can be used as organic fertilizer, thereby 

making it a truly sustainable energy resource. 

1.1.1 Ethanol: “the fuel of the future” 

Ethanol or ethyl alcohol is 2-carbon alcohol with the molecular formula CH3CH2OH. 

It is the principal type of alcohol found in alcoholic beverages, produced mainly by 

the fermentation of biomass – mainly sugar crops, e.g. cane and beet, and of grains by 

yeasts. It can also be produced synthetically from petrochemical derivatives by the 

acid-catalyzed hydration of ethane, but the process accounts for only 5% of global 

ethanol production (Licht, 2006). Besides being a key constituent of hard beverages 

ethanol is a very versatile compound, as seen in Table 1.1. 

Compared to uses in other industries, ethanol finds the greatest use as a fuel, 

particularly as engine fuel and as an additive. Credited as the “fuel of the future” from 

as early as the late 1800s (Solomon et al., 2007) and also kick starting the Space Age 

with its implementation in World War II era V-2 rockets (Braeunig, 2008), ethanol 

has had a storied history. The advent of more efficient and cost-effective fossil fuels 

such as petroleum and its derivatives eventually led to it being shelved as a primary 

fuel. Concerns regarding the impact of fossil fuels on the environment and their 

overall diminishing supply, however, caused a resurgence in popularity of ethanol as 

fuel in the past decade. This is characterized by a huge increase in world ethanol 

production which tripled from 17 billion in 2000 to more than 52 billion liters in 2007 

and a 1.7% increase from 3.7% in global usage as fuel in 2008 alone (UNEP, 2009). 

The United States and Brazil are the two major consumers of bioethanol; they are also 

the largest producers contributing to 85% of the total supply worldwide 
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(approximately 80 billion liters) in 2014 (RFA, 2015). Bioethanol is mainly used as a 

fuel mixture in most countries, with the exception of Brazil where flexible fuel 

vehicles compatible with pure ethanol have been introduced recently (ANFAVEA, 

2012). Popular ‘blends’ (gasoline-ethanol mix) include E15, E85, and ED40 to name 

a few; E15 (15% ethanol gasoline) is especially notable since 70% of all automakers 

have approved the use of it in their latest vehicles (RFA, 2015). 

Table 1.1: Uses of Ethanol 

Industry/Sector Application References 

Chemical 

Industry 

Ethanol is a versatile product necessary for the 

establishment of a powerful chemical industry. 

It can be used to produce a long list of 

industrial chemical products and by-products. 

It is also used as a high performing solvent for 

agro industrial preparations. 

Chandel et. al., 

2007 

Medical There is a market for ethanol in developing 

countries in the medical sector, which is 

normally imported from overseas. The ethanol 

finds use in hospitals, clinical operational needs 

and for equipment maintenance purposes. For 

example, bioethanol had undergone 

bioconversion by yeasts to produce probiotics 

and bio-therapeutic agents.  

Demirbas, 2007 

Alcoholic 

Beverages 

Ethanol is used for the production of various 

types of liquors such as wine and beer. 

Demirbas, 2007 

Transportation Substitute fuel in transportation sectors and use 

as a petrol additive. Besides using 100% 

ethanol as a gasoline substitute, the mixing of 

ethanol and gasoline can also be done. It has 

several advantages such that it can increase 

octane number, reduced toxic emissions and 

improving efficiency of spark ignition engines  

Palmarola et. al., 

2005; Bon and 

Ferrara, 2007; 

Alam et. al., 

2007 
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Production of ethanol via fermentation can be carried out by both yeasts and bacteria, 

however yeast is more widely preferred because of high ethanol tolerance and 

production (Bansal and Singh, 2003). Modern processes implement a combination of 

the two organism classes because bacteria also allow the degradation of 

lignocellulosic biomass. Even so, these processes are still not considered to operate at 

100% efficiency as it is difficult to maintain exact conditions of temperature, pH and 

nutrients at all steps of the process. 

 

1.2 Objectives 

The goal of the project is to establish a highly efficient microbial fermentation process 

by natural yeast isolates to produce ethanol as an energy source. To summarize, the 

following work has been performed: 

 Isolation of ethanol producing wild type yeast strain from natural sources. 

 Identification and characterization of isolates. 

 Study of thermo-tolerance and ethanol-tolerance of the yeast strain. 

 Determining base ethanol production yields of isolates grown in defined sugar 

media such as glucose and molasses 

 Analysis of the impact of various inorganic salts on the yield of ethanol 

obtained from fermentation of molasses 
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Literature Review 

2.1 Overview 

Fermentation is a metabolic process that breaks down large carbohydrates such as 

glucose and sucrose to smaller molecules in order to obtain energy to fuel cellular 

processes (Klein et. al., 2006). An anaerobic process (organic reaction without 

oxygen), byproducts of this reaction include acids, gases or alcohols (Ibeto et. al., 

2011). Of the many different byproducts emanating from fermentation processes, 

ethanol is considered to be the most significant. The first studies on ethanol 

fermentation were conducted by Louis Pasteur in 1857 (Moreira, 1983). 

The use of ethanol as a fuel has existed for many years before, albeit on a much 

smaller scale. Recently however, with the foreseeable depletion of fossil fuel sources 

and rising concerns regarding the quality of the environment, ethanol has re-emerged 

as the prime candidate to fill the need for a low-cost and clean alternative fuel. Not 

only are the raw-materials cheap and renewable, studies have also shown that fuel 

ethanol reduces greenhouse gas emissions by 86 to 90% (Isaias et. al., 2004; 

Goettemoeller & Goettemoeller, 2007). Such enthusiasm has led to significant strides 

being made in this area of research. In spite of this, ethanol production from 

fermentation still remains below feasible levels. Emphasis is thus placed on research 

aimed at maximizing fermentation efficiency via optimized utilization of the 

resources and microbial action on the process (Lin-Tanaka et. al., 2006). Many 

microorganisms can facilitate ethanol fermentation to some degree, but the most 

widely used and preferred are yeasts. 

2.2 Microorganism: Yeast 

The majority of the current ethanol fermentation processes are attributed to the action 

of a class of eukaryotic microorganisms known as yeasts. Belonging to the kingdom 

Fungi, yeast represent approximately 1% of all described species within its kingdom 

with approximately 1500 species currently described (Kurtzmann et. al., 2006). 

Despite their small numbers, members display a high level of phylogenetic diversity, 

belonging to both Ascomycota and Basidiomycota phyla. Depending on species, 

yeasts reproduce asexually or sexually (Wayman-Parekh, 1990); asexual reproduction 



P a g e  | 9 

 

by budding is the characteristic method of reproduction. As such, species which 

reproduce by the following method are known as ‘true yeasts’ and are classified in the 

order Saccharomycetales (SGD, 2005). The majority of the ethanol producing yeast 

species belongs to this order. Yeasts are chemo-organotrophs; they use organic 

compounds as energy source and the fermentation takes place anaerobically. The 

principle carbon sources are hexose sugars such as glucose, sucrose and maltose. 

Yeasts are found primarily in sugar rich environments such as fruits or flower nectar 

where they digest necessary nutrients externally and assimilate it afterwards. This 

ability to ferment sugars made them important for bioethanol production.  

Yeasts are classified on the basis of the microscopic appearance of the cells, the mode 

of sexual reproduction, physiological (especially metabolic capabilities and nutritional 

requirements) and biochemical features. Physiological features that are generally 

analyzed include the range of carbohydrates (mono-, di-, tri-, and polysaccharides) 

that a given organism can assimilate under semi-anaerobic and aerobic condition, the 

relative ability to grow in the presence of 50-60% (w/v) D-glucose or 10% (w/v) 

sodium chloride plus 5% (w/v) glucose (a measure of osmo-tolerance) and the relative 

ability to hydrolyze and utilize lipids. These properties help investigators determine 

which yeast strains merit investigation for a particular application (Glazer and Nikido, 

1995). Besides microscopic observation of cells, colony growth characteristics on 

solid media are also used to distinguish between different yeast morphologies. While 

normally colorless, yeast colonies may appear white, cream colored, or tinged with 

brownish pigments on artificial media.  

Notable examples of yeasts used in industrial scale fermentation processes 

(Matsushika et al., 2008) include Saccharomyces uvarum (Detroy et. al., 2004), 

Schizosaccharomyces pombe (Jong-Gubbels et. al., 1996), Kluyueromyces spp. 

(Morikawa et. al., 2004), Candida Shehatae and Pichiastipitis. However, the most 

widely used yeast species is Saccharomyces cerevisiae (Laplace et. al., 1993), which 

is the subject of this research. Saccharomyces cerevisiae is considered to be the 

reference species in ethanol fermentation studies due to its high tolerance to ethanol 

(approximately ~18% concentration) (Morais et. al., 1996). The low yield of by-

product such as acetic acid is also an attractive feature. Yeasts have been used to 

generate electricity and ethanol for biofuel industries. 
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2.3 Sugar bioconversion to ethanol: 

Ethanol fermentation is mainly attributed to anaerobic respiration in yeasts. This is 

facilitated by enzymes which convert sugars into bioethanol from a range of organic 

raw materials derived from biomass. Major biomass sources include wood from 

natural sources, industries or process mills, municipal solid wastes as well as 

agricultural residues and “energy crops”; plants that can be grown and maintained at a 

low cost with ease (Monique et. al., 2003). The raw materials are themselves 

categorized into three groups (Jackman, 1987): 

 Simple sugars (mono and di-saccharides) such as glucose, fructose and sucrose. 

These are mainly present in sugar beets, cane and molasses. Monosaccharide 

sugars like glucose are rarely found in their free state naturally; they are generally 

linked by a glycosidic bond to another monosaccharide to form disaccharide 

sugars like sucrose (a combination of glucose and fructose), also known as table 

sugar. This bond is broken by a class of enzymes called glycosidic amylases. 

Glucose is the main fuel for the metabolic process known as glycolysis, which 

eventually yields ethanol under anaerobic conditions. 

 

 

Figure 2.1: Hydrolysis of Sucrose to Glucose and Fructose 
 

Substrates containing high concentrations of simple sugars can be fermented 

directly into ethanol with minimal processing. Thus, they remain the chief 

substrate for bioethanol production.  

 Starch, a glucose-based polysaccharide which is produced by most green plants 

as an energy source. Derived from corn, potato and root crops, it is itself a 

combination of two different polysaccharides: the linear and helical polymer 

amylose which is composed of individual α-D-glucose units bound by (1-4) 



P a g e  | 11 

 

glycosidic linkage, and the branched amylopectin which contains similar (1-4) 

linkages and additional α (1-6) branch points. Depending on the plant material, 

starch generally contains 20 to 25% amylose and 75 to 80% amylopectin by 

weight. The various glycosidic bonds linking the fermentable D-glucose together 

is hydrolyzed by several different glycosidic amylases like diastase and maltase 

for fermentation to proceed efficiently. These enzymes are either introduced in 

their purified form, or are secreted by microorganisms (Haissig et. al., 2006).  

 

 

 

Figure 2.2: Breakdown of starch by amylases 

 

 Cellulose, a complex polysaccharide composed of several hundreds to thousands 

of β (1→4) linked D-glucose molecules (Crawford, 1981). Major sources include 

wood, agricultural residues, vegetable peels and algae. Like starch, cellulose must 

be broken down for fermentation to occur efficiently, however the process is 

complex and requires extensive enzymatic action by cellulase. Cellulase is an 

enzyme used for the bioconversion of cellulosic and lignocellulosic residues. 

Cellulolytic activity is a multi-complex enzyme system and complete enzymatic 

hydrolysis of starch requires synergistic and sequential action of 3 enzymes: endo-

•-glucanase (EC 3.2.1.4), exo-•-glucanase (EC 3.2.1.91) and •–glucosidase 
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(EC3.2.1.21) (Shankar and Isaiarasu, 2011). The overall catabolic pathway can be 

illustrated below: 

 

 

Figure 2.3: Cellulose Hydrolysis to Glucose 
Owing to the complexity of the hydrolysis reactions and the processing costs 

involved, simple sugar containing substrates are chosen over starch and cellulose 

based raw materials in industrial scale production of ethanol.  

2.4 Raw Materials: Molasses 

Ethanol fermentation processes employ a wide variety of substrates, of which 

molasses is the most widely used. A by-product of the sugar refining industry, 

molasses is a viscous tar-like sugar syrup from which most of the sucrose has been 

crystallized out (Yansong et. al., 2000). Molasses is classified into two categories 

based on crop source: cane molasses (sourced from sugarcane) and beet molasses 

(from sugar beet). Cane molasses is further classified as either refinery molasses, final 

molasses or blackstrap molasses in accordance to the purity of the sugarcane juice 

used in sugar production. Blackstrap molasses is available commercially, whereas 

refinery and final molasses are recycled for other purposes (Rao, 1997). 

Due to its commercial availability, blackstrap molasses is the main ethanol 

fermentation substrate. Besides this obvious implementation, blackstrap molasses can 

also be used to produce cattle feed, bakers’ yeast and in the manufacture of the 

alcoholic beverage rum. Other products such as L-lysine, acetone-butanol, citric acid, 

lactic acid, glutamic acid are also possible, but the amount of end-product obtained is 

very low (Rao, 1997). 
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The composition of molasses from sugar cane varies with the sugar content of the 

cane, its variety and method of processing. It is slightly acidic, having a pH of 5.5 – 

6.5. Sugars constitute the majority of its mass (60-75%), of which 14 – 25% are 

reducing sugars (glucose and fructose). The rest is sucrose. Unlike refined sugars, 

molasses also contains significant amounts of different vitamins and minerals such 

calcium, magnesium, iron, and manganese; one tablespoon provides up to 20% of the 

recommended daily value of each of those nutrients. It is also a good source of 

potassium. The chemical composition of cane blackstrap molasses is shown in Table 

2.1. 

Table 2.1: Nutritional Chart of Blackstrap Molasses 
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2.5 Fermentation by yeast 

 

Figure 2.4: Glycolytic Pathway of yeast-cell 

The fermentation process which yields ethanol from yeast (Saccharomyces 

cerevisiae) occurs due to the metabolism of simple sugars like glucose via the 

glycolytic pathway to produce energy. The reactions that take place within this 

pathway and the enzymes involved have been illustrated in Figure 2.4. 

Because of the lack of oxygen, the end product of the glycolytic pathway (pyruvate) 

does not proceed to the Citric Acid cycle which completely breaks it down to CO2 and 
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H2O. Instead the pyruvate is broken down to CO2 and ethanol via the reaction scheme 

illustrated in Figure 2.5. A smaller output of energy (in the form of ATP) is produced 

as a result. 

 

Figure 2.5: Conversion of glucose to ethanol in yeast cell in fermentation 

 

2.6 Factors affecting fermentation: 

Yeasts, especially Saccharomyces cerevisiae, are extensively used in batch or 

continuous fermentation of sugar substrates to ethanol to produce beverages and 

biofuels. However, due to limited understanding of physiological constraints that 

hamper the rate of glycolysis and ethanol production, product yield is generally low 

(Casey and Ingledew, 1986; Ingram and Buttke, 1985). While this is not an issue in 

the beverage industry, the biofuel industry requires any process to have maximum 

ethanol output in the most efficient and low cost manner to be feasible. Through 

identification of these limitations the overall process could be optimized via the 

development of improved organisms and process conditions, thereby achieving the 

goal (Dombek and Ingram, 1987). 

Cellular tolerance studies of yeasts across a range of conditions have enabled us to 

pinpoint some of the factors which affect production (Olsson and Hägerdal, 1996). 

These studies have been used to assay the survival of the microorganism across a 

range of conditions that develop during large scale batch or continuous processes. 

Various parameters have been identified, some having a greater impact on production 

than others; these include fermentation temperature, media pH, ethanol tolerance and 

the presence of salts.  
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2.6.1 Temperature: 

Temperature of the fermentation environment is an important factor as it directly 

affects the viability of the yeast cells. Although yeasts operate best at ambient 

temperatures of 25-30°C, maximum ethanol is obtained at higher temperatures around 

38°C (Jones et. al., 1981). A compromise has to be made between the two 

temperature ranges as heat emission from fermentation raise media temperature to 

above 40°C. This reduces yeast cell viability and survivability (Morimura et. al., 

1997). Furthermore, optimum temperature for growth and rate of ethanol formation 

were found to depend on medium composition and strain (Laluce et. al., 1993). 

2.6.2 Ethanol Concentration: 

A major limiting factor in most bioprocess reactions is the accumulation of the end 

product in the producing organism cell which limits growth and viability. Ethanol is 

no different since it damages cell membrane and cause other physiological changes 

once a critical intracellular concentration is reached. Intracellular accumulation of 

ethanol is attributed resistance in excreting the product to its surroundings (Navarro, 

1980). The degree of inhibition is also related to environmental factors, an example of 

which is the impact of high temperature. Because the overall ethanol production in the 

cell is increased by high temperatures in contrast to the amount of product excreted 

from cell, intracellular ethanol concentration builds up to critical levels. As a result, 

growth is inhibited (Navarro and Durand, 1978). Under optimum conditions and 

depending on the strain, certain yeasts can tolerate ethanol concentrations of up to 

20%; these strains are also high yielding varieties. Analyses of the membrane 

structures have revealed a relation to this with unsaturated fatty acid and the fatty acyl 

compositions of the plasma membrane (Wayman and Parekh, 1990). 

2.6.3 Effect of mineral salts: 

The process of fermentation in yeast is a fairly complicated mechanism influenced by 

the changing conditions of the media being fermented. During this process the 

concentrations of various media components changes, which in turn causes the yeast 

cells to elicit an appropriate response. Examples of responses include changing 

membrane permeability to allow the entry of more nutrients and the exit of wastes, 

and the increased production of enzymes to name a few. These responses are 

coordinated with the assistance of metal ions. As such, even limited amounts of metal 
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ions in a media have a significant impact on the fermentation process (Walker & 

vanDijck, 2006). 

While certain mineral salts have been observed to influence the fermentation 

performance by yeast (Birch et al., 2003), four mineral ions are considered to be the 

most crucial. These include potassium (K+), magnesium (Mg2+), manganese (Mn2+) 

and iron (Fe2+) (Somda et al., 2011). Potassium (K+) ions are especially important; 

besides being an important constituent for cellular growth, they play an important role 

in maintaining the stability of the yeast cell by preventing the gradual breakdown of 

the membrane caused by accumulation of ethanol (Lam et al., 2014). Magnesium has 

been found to be an essential ingredient for the production of enzymes and release of 

alcohol from the yeast cell (Jin-Bong et al., 1990; Gawande et al., 1998). It also acts 

an activator of certain enzymes such as phosphatidyl transferase and decarboxylase 

(Mori et al., 1985). Fe2+ ions, on the other hand, have been observed to stimulate 

respiration and cellular multiplication in yeast cells (Shockey and Barta, 1991). 
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Materials and Methods: 

3.1 Samples: 

Yeast strains (wild type) sourced from fruits and fruit juices, namely sugarcane, grape 

and dates. These were purchased from different fruit vendors in Dhaka. Two different 

sugarcane juice samples were used; one sample was aged for three weeks whereas the 

other was aged for 2 to 3 days. In addition, honey and molasses were also selected as 

potential sources.  

3.2 Growth Media and Inoculum Broth: 

The experiment required the extensive use of only one type of media specifically for 

yeast proliferation. YEPD (Yeast Extract Peptone Dextrose) broth is composed of 1% 

yeast extract, 2% peptone, 2% glucose or dextrose and desired volume of distilled 

water. Solid media was prepared by addition of 2% v/w of bacteriological agar 

powder to the broth. Once prepared, both were sterilized by autoclaving at 121ºC for 

15 minutes at 15 psi. 

While the yeast isolates were directly sourced from the fruit juices, intact fruits were 

needed to be cultured in YEPD broth modified with malt extract. In this case, the 

basic procedure of preparation was similar to that of YEPD media except for the 

addition of 2-4% malt extract powder. The broth was sterilized by autoclaving at 

121ºC for 15 minutes at 15 psi before use. 

3.3 Fermentation Media: 

Blackstrap molasses sourced from raw sugar cane served as the main substrate for 

fermentation/ethanol production studies. The base reducing sugar content of this 

substrate media is ~20% w/v. The fermentation media was prepared by diluting 250 

ml of molasses to 1000 ml with tap water and boiling the resulting mixture. During 

the boiling process 0.10 gm urea and 0.30 ml concentrated sulphuric acid (~97%) was 

added. The boiling process was maintained in accordance to the final reducing sugar 
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concentration in the molasses required. Once the media was prepared, it was 

distributed into 250 ml Erlenmeyer flasks in 100 ml portions and autoclaved at 121ºC 

for 15 minutes at 15 psi pressure.  

For testing the impact of inorganic salts on the fermentation process, blackstrap 

molasses was again used in the same proportions, but in this case the media was 

treated with 1g of a particular salt. The salt was added after the base molasses media 

was autoclaved. In all, four salts were used for each isolate which include: 

 Potassium dihydrogen phosphate (KH2PO4) 

 Magnesium sulphate (MgSO4) 

 Manganese sulphate (MnSO4) 

 Iron sulphate (FeSO4) 

For reference studies, glucose media of 10% concentrations was also used. They were 

prepared by dissolving the required amount of sugar in 100 ml distilled water. 

Sterilization was done by autoclaving at 121ºC for 15 minutes at 15 psi pressure after 

the media was transferred into conical flasks. 

3.4 Reagents (for media preparation and other purposes) 

 Dinitrosalicylic acid (DNS) 

 0.9% Sodium chloride solution (Normal Saline)  

 Sulphuric acid 

 Sodium hydroxide 

 Sodium thiosulfate 

 Potassium Iodide,  

 Potassium dichromate,  

 Soluble Starch 

 Urea. 

3.5 Equipment and Glassware: 

 Spectrophotometer (Single Beam UV type) 

 Incubator  

 Shaking Incubator 

 Autoclave 
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 pH Meter  

 Microscope  

 Glassware, Fractional distillation apparatus, Magnetic Stirrer, Petri dishes, 

Micro-pipettes, Bunsen burner, Hot plate, Balance, micro-burette, Laminar 

airflow cabinet etc. 

 

3.6 Biochemical test kits and media:  

Yeast specific API® identification kit manufactured by bioMérieux was primarily 

used. In addition, nitrate Broth, which consists of 0.005% w/v peptone, 0.003% w/v 

beef extract and 0.005% w/v potassium nitrate in desired volume of distilled water. 

The pH was adjusted to 7.0 before being distributed to screw capped test tubes. After 

this, the tubes were autoclaved. 

 

3.7 Sample isolation and inoculum development: 

Initially, the yeast sources (sugarcane juice, whole grapes and dates, honey and 

molasses) were left at room temperature for approximately 3-4 days (a second 

sugarcane juice sample was stored for 3 weeks instead). Solid samples were immersed 

in maltose containing YEPD broth, whereas liquid samples were left as it is. Liquid 

source samples were then extracted and serially diluted in sterile saline solution to 

around 100X D.F and inoculated onto separate YEPD agar plates in accordance to 

source by spread plating. These plates were incubated at 30°C for approximately 48 

hours. Colonies from each agar plates were then inoculated into separate sterilized 

inoculation broth tubes, which were then incubated for 24 hours at 30°C and re-

inoculated into fresh agar plates afterwards. By performing this technique, pure yeast 

cultures were eventually obtained. 

3.7.1 Observation and culture maintenance 

Culture maintenance was performed by sub-culturing. This was performed by 

selecting an isolated colony using a loop and streaking onto a fresh YEPD plate. The 

plates were incubated for 48 hours at 30ºC and subsequently preserved in a 

refrigerator at 4ºC, albeit temporarily.  
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3.8 Identification of the yeast: 

Identification of yeast isolates were done on the basis of morphological (Kreger-Van 

Rij, 1984) and physiological characteristics: 

3.8.1 Morphological characterization 

For observing morphological characteristics of the isolates, single colonies from 48 

hour old subcultures were selected and inoculated into fresh YEPD plates via 

streaking. After approximately 48 hours, the growth pattern of the colonies along with 

the texture, color and surface characteristics were noted. Further analyses of the 

colonies were performed at the cellular level using a compound microscope. 

3.8.2 Physiological characterization 

For ascertaining physiological characteristics of the isolates, biochemical tests were 

performed on each isolate. In all cases, an API® identification kit (manufactured by 

bioMérieux) was used. It consists of a strip containing different carbohydrates and 

their derivatives separated into individual cupules. These carbohydrates include 

glucose, glycerol, calcium 2-keto-gluconate, arabinose, xylose, adonitol, xylitol, 

galactose, inositol, sorbitol, methyl β-D-glucopyranoside, N-acetyl-glucosamine, 

cellobiose, lactose (bovine origin), maltose, sucrose, trehalose, melezitose and 

raffinose. Final results were obtained 72 hours after the strip was inoculated with API 

C-media inoculated with yeast cells. They are differentiated by turbidity changes of 

the media in each cupule in comparison to a blank cupule containing no 

carbohydrates. A description is given on the illustration in Figure 3.1: 

Nitrate reduction test was performed to observe nitrate utilization by yeast. The 

methodology involved inoculating nitrate broth with a particular isolate and 

incubating the tubes for 24 hour. After incubation, two reagents (named A and B) 

were mixed carefully to the tubes. The result was obtained immediately afterwards 

and can be noted by a distinct color change. 
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Figure 3.1: API ® 20C AUX kit usage 
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3.9 Stress tolerance test: 

3.9.1 Detection of thermo-tolerance 

In order to assay thermal tolerance of the isolates, 10 ml tubes of autoclaved YEPD 

broth were inoculated with 24-48 hour old yeast subcultures. As a control specimen, 

one of the test tubes was not inoculated. After inoculation, the initial optical densities 

of each tube were measured using the spectrophotometer at 600 nm against the 

medium as blank. The tubes were then incubated at different temperatures (25°C, 

30°C, 37°C and 44°C) for 48 hours, with optical density readings being taken in 24 

hour intervals 

3.9.2 Detection of ethanol-tolerance 

To assay ethanol tolerance of the isolates, the YEPD broth was slightly modified by 

addition of 1ml of varying concentrations (5%, 10%, 15% and 20%) of absolute 

ethanol. This was done after the base YEPD media was distributed as 10 ml portions 

in pre-marked test tubes and autoclaved. The marked tubes were inoculated with yeast 

subculture and a single tube is left un-inoculated to serve as a control. After 

inoculation, the initial optical densities of each tube were measured using the 

spectrophotometer at 600 nm against the medium as blank. The tubes were then 

incubated at 30°C for 48 hours, with optical density readings being taken in 24 hour 

intervals 

 

3.10 Fermentation and Result Analysis: 

Fermentation/ Ethanol production studies were carried out by inoculating yeast 

isolates in the prepared fermentation media. Analysis of ethanol production rates and 

overall efficiency of fermentation was performed on the basis of different parameters, 

but the overall process involved was similar in all cases. Media preparation was done 

in the sterilized environment of a laminar airflow bench. 

3.10.1 Preparation of yeast cell suspensions 

Yeast subcultures derived from 24-48 hours old streak plates were inoculated into 10 

ml of 0.9% normal saline using a sterile loop. The suspension was made homogenous 

by vortexing the tubes after inoculation. 
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3.10.2 Fermentation of defined sugars 

The fermentation media were inoculated with the yeast cell suspension prepared in the 

aforementioned step. The flasks were cotton plugged and incubated at 30ºC in shaking 

condition for 48 hours. 

 

Figure 3.2: Glucose and Molasses fermentation media 

 

3.10.3 Fermentation of molasses media treated with inorganic salts 

The molasses media treated with the salts were inoculated with the yeast cell 

suspension after preparation. In this case however, the experiment was performed in 

separate phases; each isolate sample was inoculated into four flasks of molasses 

media treated with a different salt in each phase. In all cases, the flasks were cotton 

plugged and incubated at 30ºC in shaking condition for 48 hours.  
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Figure 3.3: Molasses media treated with salt 

 

3.11 Estimation of ethanol: 

Initial assay of ethanol production rates were performed by volumetric analysis in 

Conway units. Samples yielding feasible results were distilled and the ethanol 

percentages of the distillates were determined using an alcohol meter. 

3.11.1 Experimental analysis: Conway method 

The Conway method is based on a redox titration principle where the analyte, which 

interacts with the ethanol, is used to determine the percentage of ethanol. The analyte 

in this case is acidified potassium dichromate (0.05M) solution, which oxidizes 

vaporized ethanol to ethanoic acid. The unreacted dichromate is determined by adding 

potassium iodide (50% KI) solution which is also oxidized by the analyte to iodine. 

This iodine is titrated with a standard solution of sodium thiosulfate (0.1N). The 

titration reading is used to calculate the ethanol content after fermentation.  
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Figure 3.4: Conway unit titration apparatus 
After incubating the inoculated fermentation media for a specific time period, 1ml 

portions were extracted and diluted up to 250x. Each of these samples was placed on 

the outer rim of a Conway unit. To serve as a control, a single Conway unit was 

loaded with distilled water. The centers of the Conway units were loaded with the 

dichromate reagent. Petroleum jelly was used to make them air-tight. 

Overall, the procedure may be illustrated as follows: 
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3.12.2 Calculation of results: 

Data obtained from titration readings were used to determine the percentage of 

ethanol (gm/100 ml) present in the sample using the following equation: 

Ethanol (%) =
ሺ୘.ୖ	୭୤	େ୭୬୲୰୭୪ି	୘.ୖ	୭୤	୊.ୗሻൈ	ଵଵ.଺	ൈ	଴.ଵ	ൈ	ୈ.୊	ൈ	ଵ଴଴

ሺ଴.଻ଽଷൈ	ଵ଴଴଴ሻ
  

Where, 

 Density of Ethanol: 0.793 g/ml 

 D.F: Dilution Factor 

 F.S: Fermented solution 

 T.R: Titration Reading 

 Volume of sodium thiosulfate used: 11.60 cm3 

 

 

   

•Distribution of 1ml 0.05M Potassium Dichromate solution to
Conway unit center

•Addition of 1 ml of fermented sample in the outer rim of the
Conway Unit

•Units sealed with paraffin wax coated glass plates and left for
24 hours

•0.5ml 50% KI solution + 1‐2 drop 1% starch solution added to
dichromate

•Titration of reagent complex in the center with 0.1N Sodium
Thiosulphate solution in microburette



P a g e  | 29 

 

 
 
 

Chapter 4 

Results 
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Results: 

 

4.1.1 Morphological characterization 

The morphology of yeast cells were determined on the basis of growth in both liquid 

and solid YEPD media. Observation with the naked eye and microscopic examination 

was used to ascertain the presence of yeast cells. 

4.1.1.1 Growth on YEPD agar plates and broth. 

On agar plates, colonies of yeast grew rapidly and matured within two to three days. 

These colonies were smooth, flat, moist, opaque, and cream in color. Individual 

colonies had smooth outer edges. In liquid YEPD media, the yeasts formed heavy, dry 

climbing pellicles on the surface, with some settling to the bottom of the media. 

 

Figure 4.1: Yeast isolate colonies in YEPD agar medium after 24 hour incubation 
 

4.1.1.2 Microscopic observation 

Cellular morphology studies were carried out on all isolates using a compound 

microscope set to 40X magnification initially. Based on observations made in 24 



P a g e  | 31 

 

hours and 48 hour intervals, unicellular, round cells were observed with a number of 

cells being ovoid in shape. These were noted to be vegetative cells undergoing 

reproduction via budding. Other key features noted were the absence of hyphae and 

pseudo-hyphae in all isolate cell samples. 

 

Figure 4.2: (Clockwise from top left) Cell morphologies of isolates SC-1.0, GRP-4 
and D-H at 40X magnification 
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4.2 Biochemical and physiological characterization 

4.2.1 Carbohydrate fermentation tests and API kit analysis  

Carbohydrate assimilation tests were conducted using API® 20C test strips. Three 

isolates from the six sources (S.C-1.0, D-H and GRP-4) which showed the highest 

yields of ethanol were selected for this. In all cases positive results were obtained for 

glucose (GLU), methyl-αD-glucopyranoside (MDG), galactose (GAL), maltose 

(MAL), saccharose (SAC), melezitose (MLZ), trehalose (TRE) and raffinose (RAF). 

Unlike the other isolates however, GRP-4 displayed a positive reaction with cellibiose 

(CEL) which signified a split probability of the isolate being either of the species 

Saccharomyces cerevisiae or Candida pelliculosa. The results for SC-1.0, D-H and 

GRP-4 are illustrated in Figures 4.5, 4.6 and 4.7 respectively. 

4.2.2 Reduction of potassium nitrate 

Following incubation of the isolates in nitrate media and treatment with reagent A and 

B after 24 hours, the following results were obtained as illustrated in Table 4.1.  

Table 4.1: Nitrate reduction by yeast isolates (Positive: + +, Variable: + -, 
Negative: - -) 

Isolate Name Reaction 

S.C-1.0 -- 

S.C-1.1 -- 

D-H -- 

GRP-4 -- 

HON -- 

MOL -- 

 

Because there was no color change of the nitrate broth to pink/red, it was determined 

that no nitrate was reduced by the isolates. A visual representation of the results 

obtained from the experiment is illustrated in Figure 4.3 and 4.4. 
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Figure 4.3: Result of Nitrate Reduction test against Control (Control to left) 

 

Figure 4.4 API® 20C AUX kit results after 48 hours 
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Figure 4.5: API kit analysis result for Sugarcane Juice sample 
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Figure 4.6: API kit analysis result for Date sample 
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Figure 4.7: API kit analysis result for Grape sample 
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4.3 Results of stress tolerance studies 

4.3.1 Thermotolerance test: 

In the 4 different temperature ranges (25°C, 30°C, 37° and 44°C) selected for 

thermotolerance test, all isolates displayed optimum growth at 30°C in both 24 hour 

and 48 hour time intervals. Beyond that tolerance to temperature was subjected to 

decline after 48 hours of incubation for almost all strains, although at the extreme 

temperature of 44°C only a handful of isolates show a very minor level of growth 

(S.C-1.0 and GRP-4). At milder temperatures of 37°C, isolates SC-1.0 and GRP-4 

demonstrated good growth throughout the total 48 hour incubation period, whereas 

SC-1.1 and D-H displayed good growth in the first 24 hours followed by a general 

decline. Isolates HON and MOL displayed comparatively slower growth during the 

whole incubation period, but much population levels were much higher than 44°C 

populations.  

On the other end of the thermotolerance spectrum at 25°C, all isolates exhibited good 

growth during the first 24 hour interval, but the trend was maintained by isolates S.C-

1.0 and D-H respectively. The table illustrates a summarized result of the 

spectrophotometer readings in a simplified format. Table 4.2 illustrates the optical 

density changes observed for each isolates during 24 and 48 hour intervals at different 

incubation temperatures. 

4.3.2 Ethanol tolerance test result 

According to optical density readings taken after 24 hour and 48 hour intervals, the 

trend observed was a decrease in ethanol tolerance across all isolates. All six isolates 

(S.C-1.0, S.C-1.1, D-H, GRP-4, HON and MOL) showed positive growth at 5% and 

10% ethanol concentrations throughout the entire 48 hour incubation period, except 

isolates HON and MOL whose growth slowed down after 24 hours. At 15% 

concentration, SC-1.0 and GRP-4 showed good growth after 24 hours, but eventually 

slowed down at 48 hours. On the other hand, the remaining isolates showed fairly low 

growth throughout the entire time period. At 20% concentration, growth was stopped 

almost completely for isolates SC-1.1, D-H and MOL but the other isolates showed 

growth but at a very minute rate. Table 4.3 illustrates the optical density changes 
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observed for each isolates during 24 and 48 hour intervals at different ethanol 

percentages. 

Table 4.2: Optical density measurements of yeast isolates to measure 

growth characteristics at different temperatures 

Temperature Isolate Initial O.D 

readings 

O.D 

readings 

after 24 

hours 

O.D 

readings 

after 48 

hours 

O.D 

change 

after 48 

hours 

25°C S.C-1.0 0.465 1.214 2.327 1.862 

S.C-1.1 0.489 1.441 1.955 1.466 

D-H 0.398 1.093 2.076 1.678 

GRP-4 0.501 1.532 2.113 1.612 

HON 0.335 1.053 1.535 1.200 

MOL 0.373 1.146 1.574 1.201 

30°C S.C-1.0 0.503 2.078 3.177 2.674 

S.C-1.1 0.402 1.742 2.333 1.931 

D-H 0.458 1.959 2.459 2.001 

GRP-4 0.532 2.157 3.058 2.526 

HON 0.403 1.768 2.234 1.831 

MOL 0.338 1.674 2.122 1.784 

37°C S.C-1.0 0.533 1.633 2.459 1.926 

S.C-1.1 0.434 1.521 1.759 1.325 

D-H 0.575 1.598 2.135 1.560 

GRP-4 0.499 1.614 2.072 1.573 

HON 0.477 1.036 1.504 1.027 

MOL 0.452 1.118 1.331 0.879 

44°C S.C-1.0 0.342 0.465 0.471 0.129 

S.C-1.1 0.533 0.563 0.429 -0.104 

D-H 0.455 0.469 0.473 0.018 

GRP-4 0.602 0.693 0.711 0.109 

HON 0.513 0.525 0.557 0.044 

MOL 0.554 0.563 0.423 -0.131 
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Table 4.3: Optical density measurements of yeast isolates to test  

ethanol tolerance at different ethanol concentrations 

Ethanol 

Percentage 

Isolate Initial O.D 

readings 

O.D 

readings 

after 24 

hours 

O.D 

readings 

after 48 

hours 

O.D 

change 

after 48 

hours 

5% S.C-1.0 0.464 1.855 2.740 2.276 

S.C-1.1 0.533 1.732 2.403 1.870 

D-H 0.465 1.599 2.459 1.994 

GRP-4 0.545 1.854 2.622 2.077 

HON 0.544 1.498 2.429 1.885 

MOL 0.412 1.378 2.205 1.793 

10% S.C-1.0 0.498 1.534 2.456 1.958 

S.C-1.1 0.353 1.330 1.858 1.505 

D-H 0.426 1.493 2.117 1.691 

GRP-4 0.375 1.442 2.270 1.895 

HON 0.316 1.569 1.857 1.541 

MOL 0.479 1.256 1.861 1.382 

15% S.C-1.0 0.374 1.125 1.356 0.982 

S.C-1.1 0.453 0.963 1.203 0.750 

D-H 0.395 0.757 0.858 0.463 

GRP-4 0.429 1.273 1.436 1.007 

HON 0.454 0.899 1.139 0.685 

MOL 0.319 0.642 0.813 0.494 

20% S.C-1.0 0.364 0.444 0.581 0.217 

S.C-1.1 0.231 0.247 0.345 0.114 

D-H 0.312 0.402 0.503 0.191 

GRP-4 0.276 0.437 0.531 0.255 

HON 0.373 0.415 0.475 0.102 

MOL 0.239 0.288 0.314 0.075 
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Figure 4.8: (Clockwise from left): Preparation of DNS Reagent + YEPD broth for 
Optical Density measurements; Result of ethanol tolerance tests; Yeast isolates 

grown at 30ºC 
 

4.4 Ethanol fermentation 

4.4.1 Ethanol production from defined sugar mediums 

Ethanol yields from fermentation were measured in intervals of 24 and 48 hours, 

using the Conway unit titration method (Conway et al., 1994). On average yields were 

generally low for fermentations carried out in 10% glucose solution, with total alcohol 

percentages in 100 ml of substrate solution ranging between 2.99% to 3.96% after 48 

hours. In this case, the isolates from old sugarcane juice (SC-1.0) and molasses 

(MOL) showed the highest (3.96%) and lowest yields (2.99%) respectively. 

In the case of molasses fermentation media, the ethanol yields from all isolates were 

significantly higher than that obtained from 10% glucose solution. For 100 ml of 

molasses fermentation media, ethanol yield percentages were in the range of 5.49% 
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(HON) to 7.31% (SC-1.0) after complete fermentation. Table 4.4 shows a full list of 

ethanol percentages obtained from all isolates in both 24 hour and 48 hour time 

periods. 

Table 4.4: Titrimetric results of ethanol percentage in defined media (in %) 

Fermentation 

Medium 

Isolate Percentage of 

ethanol after 

24 hours 

Percentage of 

ethanol after  

48 hours 

Glucose (10%) S.C-1.0 3.67% 3.96% 

S.C-1.1 3.22% 3.35% 

D-H 2.98% 3.23% 

GRP-4 3.34% 3.41% 

HON 2.89% 3.11% 

MOL 2.74% 2.99% 

Molasses (100ml) S.C-1.0 6.57% 7.31% 

S.C-1.1 5.56% 4.58% 

D-H 6.19% 6.95% 

GRP-4 5.87% 6.58% 

HON 4.94% 5.85% 

MOL 5.07% 5.49% 
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Figure 4.9: Conway Units used for estimation of ethanol 
 

4.4.2 Ethanol production from molasses with different salt supplements 

In this instance, the assay was performed using the same tests as section 4.4.1, 

however in this case, 1mg of different salts were added to 100 ml of molasses before 

inoculation with different isolates. Compared to fermentation without salt additives, 

yields of ethanol obtained after addition of KH2PO4, MgSO4, MnSO4 and FeSO4 were 

generally higher in all cases. The highest yields of ethanol were obtained from isolates 

grown in KH2PO4 containing molasses media, with isolate SC-1.0 yielding the highest 

amount of ethanol (8.78%) after 48 hours. This was followed by MnSO4 treated 

molasses media, then MgSO4 treated molasses media and FeSO4 treated molasses 

media. In all cases, the top three ethanol producing isolates were found to be S.C-1.0, 

D-H and GRP-4 respectively. Overall, the lowest yield was obtained from HON and 

MOL in media treated with FeSO4 with the ethanol yield tied at 5.85%. Table 4.5 

shows the list of data obtained from the experiment in 24 hour and 48 hour time 

intervals. 
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Table 4.5: Titrimetric results of ethanol percentage in salt treated molasses 
medium (in %) 

Salt supplement Isolate Percentage of 

ethanol after 

24 hours 

Percentage of 

ethanol after 

48 hours 

KH2PO4 S.C-1.0 7.31% 8.78% 

S.C-1.1 5.85% 6.95% 

D-H 6.58% 8.41% 

GRP-4 6.22% 8.05% 

HON 5.49% 6.58% 

MOL 5.85% 6.22% 

MgSO4 S.C-1.0 7.31% 8.05% 

S.C-1.1 5.49% 6.58% 

D-H 6.22% 6.95% 

GRP-4 6.95% 7.31% 

HON 6.58% 6.95% 

MOL 6.22% 6.58% 

MnSO4 S.C-1.0 7.68% 8.41% 

S.C-1.1 6.58% 6.95% 

D-H 6.95% 7.31% 

GRP-4 7.31% 7.68% 

HON 6.58% 7.31% 

MOL 5.85% 6.58% 

FeSO4 S.C-1.0 7.31% 7.68% 

S.C-1.1 6.22% 6.58% 

D-H 6.95% 7.31% 

GRP-4 5.85% 6.95% 

HON 5.12% 5.85% 

MOL 5.49% 5.85% 
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Chapter 5 

Discussion 
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Discussion 

 

Although yeast strains selected and genetically modified for use are available from 

various laboratory and industrial sources, the process of strain isolation is still an 

important facet of the ongoing research for bioethanol production. Derivation of yeast 

strains from local sources is one such aspect; the basis of this being that locally 

obtained strains are more adapted to the rigors of various environmental stresses of 

that particular location. As such, one of the keynotes of this study was the isolation of 

yeast strains from sugar-rich edible substrates commonly found in the local market. 

To that regard, six potential samples were selected which include dates, grapes, 

honey, sugarcane molasses and two sugarcane juices which were aged for different 

time periods. The isolates were selected after screening the samples using a variety of 

different physiological and biochemical parameters. Once the desired organism was 

obtained, these were used to ferment sugarcane molasses, a defined sugar substrate 

medium widely available in Bangladesh. 

Morphological characterization studies of the six samples using and microscopic 

observation seemed to indicate that all of the samples contained yeasts that are 

members of Saccharomyces spp. This conclusion was reached on the basis of growth 

pattern studies in liquid and solid YEPD media; in all cases white and creamy 

colonies with butyrous colony texture were obtained after subculture (Kurtzmann, 

1996). Microscopic observation further confirmed this, as oval and circular shaped 

individual cells which reproduced by polar budding were seen in all cases. Based on 

this, the isolates were named SC-1.0, SC-1.1 (from old and new sugarcane juice), D-H 

(from dates fermented in MYPD broth), GRP-4 (from grapes fermented in MYPD 

broth), HON (from honey) and MOL (from molasses). 

The conclusion was further reinforced by biochemical tests performed using 

bioMérieux’ API® 20C kits. Kit results for SC-1.0, D-H and GRP-4 indicated that all 

of the isolates, with the exception of GRP-4, are of the species Saccharomyces 

cerevisiae. This is in part due to their assimilation of the sugars glucose (GLU), 

methyl-αD-glucopyranoside (MDG), galactose (GAL), maltose (MAL), saccharose 

(SAC), melezitose (MLZ), trehalose (TRE) and raffinose (RAF) (Figures 4.5, 4.6 and 
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4.7); all of these are sugars normally utilized by Saccharomyces cerevisiae. However, 

as GRP-4 showed growth in cellibiose (CEL), its identity was not accurately 

determined although there was a 68% probability that the isolate was also 

Saccharomyces cerevisiae. As previous studies indicate that API® 20C kits have a 

statistical accuracy of 97% for common yeasts (Ramani et al., 1998), the conclusions 

were assumed correct. Furthermore, nitrate assimilation tests for all isolates yielded 

negative results which confirm all isolates from the samples were Saccharomyces 

cerevisiae (Guilimares, 2006).  

Thermotolerance tests also indicated that all isolates (SC-1.0, SC-1.1, D-H, GRP-4, 

HON and MOL) grew best at 30°C within a 48 hour incubation period; this is also the 

optimum growth temperature of Saccharomyces cerevisiae (Alexopoulos, 1962). 

However the isolates also showed good growth within a 5°C to 7°C temperature 

difference (at 25°C and 37°C) (Table 4.2). As for ethanol tolerance, the general trend 

observed was a decrease in tolerance of all isolates above 10% ethanol concentration 

signified by a slowdown in growth rate (Table 4.3), with a near growth stunt at 20% 

(S.C-1.0, GRP-4 and HON showed minor growth). Normally, members of 

Saccharomyces spp. can tolerate ethanol concentrations of up to 16.5 % (Teramoto et 

al., 2005). However, since the isolates are wild-type Saccharomyces yeasts, an 

average maximum tolerance of 10% does not mean that they cannot be members of 

Saccharomyces spp. 

The ethanol production rate was recorded from the fermentation of glucose and 

molasses after 24 and 48 hour time intervals. Additional parameters of fermentation 

included incubation at 30°C in shaking condition with a media pH of 5.0. In this 

study, the production rates of isolates in both glucose and molasses ranged from 

2.53% to 7.31%. Isolate SC-1.0 grown in molasses had the highest yield of ethanol 

(7.31%), whereas the lowest yield was obtained from isolate MOL grown in glucose 

(2.58%). On average, ethanol yields from sugarcane molasses were found to be within 

the range of 7.8% (v/w) in earlier studies (Nofemele et al., 2012). In the context of 

this study, the lowest yield obtain from molasses after 48 hours were obtained from 

isolate MOL (5.85%) which suggests that ethanol yields were more or less similar to 

previously observed level. In the local scenario, a study conducted using five yeast 

isolates named TY, BY, GY-1, RY and SY yielded ethanol concentrations of 12.0%, 

5.90%, 5.80%, 6.70% and 5.80% under similar conditions (Khan et al., 1989). 
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The primary goal of this study was to observe the impact of ethanol production from 

molasses upon the addition of various mineral salts. The parameters used were the 

same as the initial fermentation experiments with molasses media, but in this case 

molasses media were treated with KH2PO4, MgSO4, MnSO4 and FeSO4 respectively. 

On average, the production yields were generally higher than that of non-treated 

media with yields ranging from 5.85% to 8.78%. The highest yield obtained was from 

isolate SC-1.0 grown in KH2PO4 treated media (8.78%) whereas the lowest yield was 

from isolates HON and MOL grown in FeSO4 treated media (5.85%). Compared to 

other salt-treated molasses media, ethanol production was generally higher in KH2PO4 

treated media across all isolates; isolate MOL outputted ethanol yields of 6.22% 

which was much higher than the initial 5.49% obtained from untreated media. On the 

other hand FeSO4 treated media showed the least significant yield difference from the 

untreated molasses; isolate SC-1.0 yielded 7.68% (v/w) ethanol which is a slight 

increase from the 7.31% (v/w) ethanol obtained from untreated molasses. Overall, the 

results obtained alluded to a previous bioethanol production rate study using KH2PO4, 

MgSO4, MnSO4 and FeSO4 salts, albeit using mango hydrolysate as a fermentation 

medium (Somda et al., 2011). Although the ethanol yields were significantly higher 

than those obtained in the current study, the trend of yield increase in accordance to 

the salt used followed the same pattern. 

In conclusion, the study managed to achieve its objective of strain isolation from local 

sources via successful isolation and identification of six yeast samples SC-1.0, SC-

1.1, D-H, HON, MOL and GRP-4. Physiological and biochemical tests on the six 

isolates yielded the conclusion that the yeasts were of the species Saccharomyces 

cerevisiae. Analysis of the effect of mineral salts on ethanol fermentation also yielded 

the general result that the effect is largely positive and caused some improvements in 

ethanol yields. To this end, there are grounds for further studies to be conducted in 

areas such as improvement of the isolates, observing the effects of other salts on the 

fermentation as well as using other fermentation media. Scale-up studies could also be 

conducted, as the experiment was performed in laboratory settings.  
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Appendix 

Nitrate reagent: 

 Solution A, Sulfanilic acid (1gm of sulfanilic acid was dissolved in 125 ml of 5N 

acetic acid). 

 Solution B, Alpha-napthylamine (0.625 gm of α-napthaylamine dissolved in 

120ml of 5N acetic acid.) 

0.05M Acidified Potassium Dichromate solution:  

Initially a 1M stock solution was prepared by addition of 2.9418 g of solid potassium 

dichromate to 10 ml of concentrated sulphuric acid (~97%) with stirring and cooling 

until the crystals were dissolved completely. This solution was diluted to 0.05M by 

the addition of 19 ml distilled water to 1ml of the stock solution. 

Dinitrosalicylic acid (DNS): 

About 1g of DNS was dissolved in 50ml of distilled water. To this solution, 30g of 

sodium potassium tartarate tetrahydrate was added. Then 20 ml of 2 N NaOH was 

added, which turns the solution to transparent orange yellow color. The final volume 

was made to 100 ml with the distilled water. This solution was stored in an amber 

colored bottle. 

Sodium hydroxide solution: 

Solution was made by adding 4 g of sodium hydroxide pellets in 50 ml of cold water 

and made up to 1 liter with water. 

50% (w/v) potassium iodide solution: 

Solution was prepared by addition of 8.3006 g solid potassium iodide in 10ml distilled 

water. The reagent was stored in a Durham bottle 

0.1 M sodium thiosulfate solution: 

To make the solution, 15.8 g of anhydrous sodium thiosulfate was dissolved in boiled 

deionized water and make the solution up to 1 liter using a volumetric flask 
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