FPGA BASED SINGLE CHANNEL ANALYZER (SCA) USED
FOR NUCLEAR RADIATION COUNTING SYSTEM

A Thesis
Submitted By
Mohaimina Begum
ID: 10371003

In Partial Fulfillment of the
Requirements for the Degree
of

Master of Engineering in Electrical and Electronic Engineering

BRAC

UNIVERSITY

XA

Department of Electrical and Electronic Engineering
BRAC University
Dhaka-1212, Bangladesh
October 2015

Dedication

This work is dedicated to my parents

The thesis titled, “FPGA BASED SINGLE CHANNEL ANALYZER (SCA) USED
FOR NUCLEAR RADIATION COUNTING SYSTEM” submitted by Mohaimina
Begum, Roll No. 10371003, Program-M in EEE, BRAC University has been accepted as

satisfactory in partial fulfillment of the requirement for the degree of Master of

Engineering in Electrical and Electronic Engineering, M. Engg. (EEE) on

Board of Examiners

Dr. Md. Mosaddequr Rahman Chairman & Supervisor

Professor

Electrical and Electronic Engineering
BRAC University

Dhaka, Bangladesh.

Dr. Mohammed Belal Hossain Bhuian Member

Associated Professor

Electrical and Electronic Engineering
BRAC University

Dhaka, Bangladesh.

. Member (External)
Dr. A. B. M. Harun-Ur-Rashid

Professor

Electrical and Electronic Engineering
BRAC University

Dhaka, Bangladesh.

&

Professor

Electrical and Electronic Engineering
Bangladesh University of Engineering
& Technology (BUET)

Dhaka, Bangladesh.

Declaration of Originality

This is certify that this thesis titled “FPGA based Single Channel Analyzer (SCA) used for
Nuclear Radiation Counting System” submitted to the Department of EEE, BRAC University
is our original work and no part of this work has been submitted to any university or

elsewhere for the award of any academic degree.

(Author)

Mohaimina Begum

ID 10371003

M. Engg. (EEE)

Department of Electrical & Electronic Engineering
BRAC University

Bangladesh

Acknowledgement

All the appreciation to Allah, the merciful and beneficial who has enabled me to submit this

unassuming work leading to the M. Engineering Degree.

First of all 1 would like to express my sincere gratitude to my supervisor, Dr. Md. Mosaddequr
Rahman, Professor, Department of Electrical & Electronic Engineering, BRAC University,

Dhaka, for his invaluable help and steadfast support throughout the period of this research.

| am grateful to Dr. Md. Sayeed Salam, Head, Department of Electrical & Electronic
Engineering, BRAC University, Dhaka for providing me with all the facilities of this department

to carry out this work.

| thank the staff at the BRAC University, Dhaka for their support and co-operation during this

research work.

| am grateful to Director of Atomic Energy Centre, Dhaka for giving me the opportunity to carry
out my research work in the laboratory of Electronics Division and providing me with all the
necessary instruments and software for my work. | express my sincere gratitude to Engr. Anisa
Begum, Head, Electronics Division, Atomic Energy Centre, and Dhaka for her constant
guidance and help through my research work. | also express my profound gratitude to Mr.
Abdullah Al Mamun and Atiar Rahman, S.S.O. Electronics Division, Atomic Energy Centre

Dhaka for their practical help and valuable suggestions in my work.

Finally, I am indebted to my husband, parents, my daughter, son and my extended family and

friends for their great support.

Abstract

Hardware configurable Single Channel Analyzer (SCA) is designed and developed to improve
the performance and flexibility of the system compared with traditional approaches. In this
work, a new technique has been introduced for changing the window between the Upper Level
Detection (ULD) and the lower Level Detection (LLD) for SCA by a simple change in software,
without any hardware modification. To check this technique, electric pulse generated from the
detector conditioned by a preamplifier is fed to ADC through a processing circuit. When the
ADC output value is higher than the LLD and lower than the ULD, then counter will count those
values over a period of one minute and store the counting value in a register. Finally the stored
counting values are given to LCD through other necessary circuits. In addition, maximum peak
value, counts per minute and total counting value are also displayed on LCD. Associate
firmware has been developed by Xilinx ISE Design suite 9.2 using VHDL code and tested on
Xilinx Spartan 3E Starter board. This developed system may be effectively used for radiation

monitoring of human body as well as environment.

Table of Contents

Chapter

Chapter 1 Introduction

1.1 Introduction
1.2 Scope of work

1.3 Thesis Organization

Chapter 2 Nuclear Radiation & its Detection

2.1 Introduction

2.2 Radiation & its sources

2.3 Characteristics of Radiation

2.4 Radiation energy & energy distribution of some common isotopes6
2.5 Radiation Detectors

2.6 Nuclear Counting System

2.7 Different type of Nuclear Counting System

2.8 Single Channel Analyzer (SCA)

29 Conclusion

Chapter 3 FPGA and VHDL

3.1 Introduction

3.2 Whatis FPGA
3.2.1 Internal architecture of FPGA
3.2.2 Characteristics of FPGA
3.2.3 Uses of FPGA

3.3 Introduction to VHDL
3.3.1 VHDL Constructs
3.3.2 Basic VHDL Programming
3.3.3 FPGA Programming step

3.4 Conclusion

Page No.

ol

© O© o O

13
13
13
14
15
15
16
16
17
18

Chapter 4 FPGA based Single Channel Analyzer

4.1
4.2
4.3
4.4

4.5

4.6

Introduction

Design scenario for Nuclear Counting System
Setting of High Voltage to Detector

The proposed FPGA based SCA

4.4.1 Gain Amplifier and ADC

4.4.2 Discriminators

443 Counters

444 Timer

445 Display

Software Development

451 View of RTL Schematic design
45.2 Flow Diagram of SCA VHDL Code
45.3 Schematic design of SCA

45.4 Design Summery

Conclusion

Chapter 5 Results and discussion

5.1
5.2
5.3
5.4
5.5
5.6

Introduction
Performance evaluation
Experimental setup
Results

Discussion

Conclusion

Chapter 6 Conclusion and Future work

References

Appendix

A
B
C

VHDL Programming in Software Xilinx ISE design suite 9.2

Necessary Datasheet

Source code for Firmware

19
19
20
22
24
25
25
25
26
26
26
27
29
29
30

31
31
31
33
35
35

36

37

List of Figures

Figure No. & Name

2.1
2.2
2.3
2.4
2.5
2.6
2.7
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
5.3

Energy distribution of emitted source for some common isotopes

lonization process

Output pulse from detector

Configuration of measuring the radiation

Overview of SCA system

Output pulses from detector and amplifier

Pulse discrimination process in discriminator

FPGA and its internal block

Simple programmable logic block

A Slice containing two Logic Cells of Xilinx FPGA
Entity and Architecture of VHDL

View of FPGA Programming step

Block diagram of the FPGA based Nuclear Counting System
Detector Plateau measurement Curve for setting High Voltage
Block diagram of GM Counter (Model — 924)

Block diagram of FPGA based SCA System
Analog-to-Digital Conversion Interface

RTL Schematic design of SCA system

Flow diagram of VHDL code of FPGA based SCA system
Schematic designed of FPGA based SCA

Design Summery of SCA system after simulation

Block diagram of experiment setup

Total system of Nuclear Counting System

Two results are compared and shown in chart

List of Tables

Table No. & Name

Table 2.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Radiation energy of some common isotope
Specification of the developed FPGA based SCA system
Detector Plateau measurement for different voltage
Amplifier interfacing signals

ADC interfacing signals

Table 5.1 Two results are compared and shown in chart

Page No.

20

21

24

25

33

10

Introduction

1.1 Introduction

Radiation is the emission or transmission of energy in the form of waves or particles through
space or through a material medium, often categorized as either ionizing or non-ionizing
depending on the energy of the radiated particles. This thesis gives importance on the
lonizing radiation. lonizing radiation carries more than 10 eV, which is enough to ionize
atoms and molecules, and break chemical bonds. This is an important distinction due to the
large difference in harmfulness to living organisms. Common source of ionizing radiation
are radioactive materials that emit o, B or y radiation, consisting of helium nuclei, electrons
or positrons, and photons, respectively. This radiation also comes from natural sources such
as cosmic rays from the universe, the earth, as well as man-made sources (Artificial) such as
those from nuclear fuel and medical procedures. Other sources include X-rays from medical
radiography examinations, diagnostic imaging, cancer treatment (such as radiation therapy),
radiation is also used in many industries including food irradiation, nuclear reactors with
neutron fission etc. If these radiations used in a right technique then radiation is a blessing,
but without its controlled uses it is very much harmful for creatures and environment. It is
harmful when material that contains radioactive atoms is deposited on skin, clothing, or any
place where is it not desired. It is important to remember that radiation does not spread or get
"on" or "in" people; rather it is radioactive contamination that can spread. A person
contaminated with radioactive materials will be irradiated until the source of radiation (the
radioactive material) is removed. Basic control methods for external radiation is decrease
Time, increase distance and increase shielding, i.e. minimum time of exposure is to
minimize total dose, maximum distance is to source to maximize attenuation in air and

minimize exposure is by placing absorbing shield between worker and source.

Because of radiation hazards many diseases occur and in the long run leads to death.
Therefore to grow awareness in the people about radiation it is needed to develop available

facility for radiation detection and monitoring.

The nuclear radiation cannot be detected by human senses, therefore need equipment, so
called "Nuclear Counting System" to detect and measure that radiation. In nuclear counting
system, Single Channel Analyzer (SCA) is used for measuring radiation. In this work, we

attempt to develop a Field Programmable Gate Array (FPGA) based SCA system that can
11

https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Waves
https://en.wikipedia.org/wiki/Particles
https://en.wikipedia.org/wiki/Ionizing_radiation
https://en.wikipedia.org/wiki/Non-ionizing_radiation
https://en.wikipedia.org/wiki/Electron_volt
https://en.wikipedia.org/wiki/Ionize
https://en.wikipedia.org/wiki/Chemical_bond
https://en.wikipedia.org/wiki/Radioactive
https://en.wikipedia.org/wiki/Gamma_radiation
https://en.wikipedia.org/wiki/Helium_nuclei
https://en.wikipedia.org/wiki/Electrons
https://en.wikipedia.org/wiki/Positrons
https://en.wikipedia.org/wiki/Photons
https://en.wikipedia.org/wiki/Radiography

detect and measure the nuclear radiation by counting the electric pulses, which are produced
by the detector. Number of output pulses is proportional to the number of incoming
radiation. This system has a lower and an upper level discriminator and produces an output
logic pulse whenever an input pulse falls between the discriminator levels. All voltage pulses
in a specific range of discriminator can be selected and counted by counter [1] and finally

displays these counts in LCD.

Nuclear Counting Systems are employed in nuclear medicine to measure radioactivity for
various purposes such as radioimmunoassay and competitive protein binding assay of drugs,
hormones and other biologically active compounds; and for radionuclide identification,
quality control and radioactivity examines in radio pharmacy and radiochemistry. SCA is an
easy and efficient system for radiation detection and counting. The developed system can
also be used in Health Physics Division of Atomic Energy Centre, Dhaka for measuring
Gamma radiation of background, imported food samples and also vegetables, water & soil
samples of different districts of Bangladesh. In future the system can be employed in
Rooppur Nuclear Power Plant (RNPP) for environmental radiation monitoring purposes.

Many researchers have reported their design and application on FPGA based system and
SCA. A. Ezzatpanah Latifi developed design and construction of an accurate timing Single
Channel Analyzer [2]. Amitkumar Singh designed and simulated a system on FPGA based
digital multi channel analyzer for nuclear spectroscopy application [3]. Hui Tan reported the
design on single channel beta-gamma coincidence detection of radioactive xenon using
digital pulse shape analysis of phoswich detector signals [4]. From this scientific information
on the use of FPGA based system; the proposed system was focused on a new technology
applied in Nuclear Counting System. In existing SCA, hardware modification is necessary to
change window between upper level detection (ULD) and lower level detection (LLD) to
detect radiation from different radiation sources, which has less flexibility. In our proposed
design, an FPGA based SCA nuclear counting system has been completed which does not
require hardware modification to change window between ULD and LLD and can be easily
performed by software control. As the system can be made possible by a single FPGA chip,
it takes less time to modify the design and will also be cost effective but other side the
difficulties had to face in my design is unavailability of detector and another is the system
works at low range activity. Finally, in this thesis we report the design and development of
an FPGA based nuclear counting system which can make reconfigurable hardware by

software, has high precision and faster than other microcontroller based system.
12

1.2 Scope of work

We know radiation is harmful but if it is used in controlled way then it is very much useful
in different field. So the main objective of our work is to detect and monitor radiation and
grow consciousness in the people. The system is FPGA based so the hardware is
reconfigurable by software. XC3S500E FPGA of Xilinx is used in our design because we
have Xilinx SPARTAN 3E, Starter board. VHDL and Verilog are used for programming
FPGA. In our design VHDL is used for coding. The detector Model 712, LND, INC.
(Halogen GAS) which is used in this design it can perform to detect Gamma Ray (y-ray) and
Beta Ray (B-ray). Our designed system offer high precision and is portable and fast which
can effectively detect and count activity range for Gamma radiation from .01 to 1000 count
per minute (CPM). Consider low activity range from 0.2 to 1.0 Micro Sivert per Hour (uSv
h is equivalent to 20 to 100 CPM.

All types of ionizing radiation are controlled by three ways: Time, Distance and Shielding.
We have used in this thesis distance parameter for monitoring radiation. A commercial
Survey Meter (GAMMA-SCOUT) and our developed FPGA based SCA system was placed
at a fixed point and the distance of radioactive point source **’Cs was varied in cm. We also
used point source ®Co and **I for measurement radiation. We have presented data for point
source *’Cs in performance evaluation. Difficulty faced in this work, is the unavailability of
detector also during measurement of radiation at have to care of experiment time since it is
harmful for human and environment. Except for these difficulties, as our system has
flexibility to configure hardware and it can replace complex analog nuclear counting

circuitry.

Our system can be used for radionuclide identification in nuclear power plants, Health
Physics Division of different organizations etc. which may overcome the in availability of
effective nuclear counting systems in the market. Also the system will open a new era of
radionuclide characterization research in the field of nuclear medicine, radio pharmacy,

radiochemistry etc.

13

1.3 Thesis Organization

The thesis has been divided into six chapters for step by step development.
In Chapter 1, introduction, literature review and scope of work have been stated.

In Chapter 2, radiation & its sources, characteristics of radiation, its energy, radiation
detectors, nuclear counting system, different type of nuclear counting system, and details of

Single Channel Analyzer have been explained.

Chapter 3 deals with FPGA, its internal architecture, characteristics of FPGA, uses of
FPGA, introduction to VHDL, VHDL constructs, basic VHDL programming, programming

in Software Xilinx ISE design suite 9.2 and FPGA programming step have been presented.

In Chapter 4, Design scenario for nuclear counting system, specification of the developed
FPGA based SCA system, setting of high voltage to detector, detector plateau measurement
for different voltage, the proposed FPGA based SCA, gain amplifier and ADC,
discriminators, counters, timer, display, software development, view of RTL schematic
design, flow diagram of SCA VHDL code, schematic design of SCA, design summery and

software development have been described.

In Chapter 5, implementation of FPGA based single channel analyzer, experimental setup
for performance evaluation, comparison of developed FPGA based SCA system with

commercial survey meter results & its findings and discussion have been presented.

Chapter 6 concludes the work and provides directions for further work.

14

2.1 Introduction

This chapter describes theoretical consideration of the source of radiation, its characteristics,
energy distribution of common isotopes, radiation detectors, different type of nuclear

counting system and single channel analyzer etc.

2.2 Radiation & its sources

Generally ionizing radiation is called radiation. Radiation is electromagnetic wave that
propagates through matter or space. Radiation is usually classified into non-ionizing (visible
light, TV, radio wave) and ionizing radiation. lonizing radiation has the ability to knock
electrons off of atoms changing its chemical properties. When radiation enters a body, it can
deposit enough energy that can directly damage DNA. It causes much ionization of atoms in
tissues that would eventually cause damage to critical chemical bonds in the body. The effect
can be acute (happen right away such as radiation burns, sickness, nausea) or delayed (long-

term, such as cancer).

2.3 Characteristics of Radiation

Radiation is characterized by its intensity & energy. The intensity is the number of radiation
(photon) per unit time emitted by the source and absorbed by the detector. The intensity of
the radiation depends on the activity (in Currie or Becquerel) of the source. Energy is the
strength of each radiation emitted by the source. The radiation energy is characteristic to the
type of the source. For instance, the isotope *’Cs emits radiation with energy of 662 keV.
So, isotope *¥'Cs with activity of 100 Becquerel (Bq) will emit 100 radiations per second and
each radiation has strength of 662 keV. Radiation source that has activity of 100 Bg emits
approximately 100 radiations per second. The radiation intensity is random in time,
following the Gaussian or normal distribution. So, if we carry out repetitive measurements of
radiation intensity with the same condition, we will not get the same result. There will be a

fluctuation between those values [5].

15

2.4 Radiation energy & energy distribution of some common isotopes

The following table shows some common isotopes & their radiation energy distribution

which are used for calibration of nuclear counting system [5].

Table 2.1: Radiation energy of some common isotopes

Isotope Energy (keV) Relative Intensity(%)
137CS 662 85
1173 99
GOCO
1332 100
25 511 200
1274 95

The following Fig. 2.1 shows the ideal distribution of emitted radiation from **'Cs, ®Co and

22Na isotopes. With assumption that all of those isotopes have 100 Bq activity. (1 Bq equal to

1 nuclear disintegration per second).

5137 rpbl Mall
200 200 200
150 150 150
z z 2
i a B
T 100 B 100 § 100
) I . - I
50 | 50 50 I
500 1000 1500 500 1000 1500 500 1000 1500
Energy Eneragy Energy

Fig. 2.1: Energy distribution of radiation emitted from some common isotopes

2.5 Radiation Detectors

As radiation is harmful to our health, we need detectors that are capable of sensing the
presence and measuring the intensity of radiation, most common radiation detectors are
Geiger-Muller (GM) tubes which are gas-filled radiation detectors, useful, cheap and robust.

A GM tube basically detects the presence and intensity of radiation. Geiger counters which
16

use GM tube as a detector are used to detect usually gamma and beta radiation, but some

models can also detect alpha radiation.

lonizing radiation that is associated with radioactivity cannot be directly detected by human
senses. lonization is the process whereby the radiation has sufficient energy to strip electrons
away from atoms. The ionization results in the formation of free electrons and an ionized
atom that has lost some of its orbital electrons. Examples of ionizing radiation include
particles such as alpha and beta particles, and photon radiation such as x-rays and gamma

rays. Neutrons and protons can also cause ionizations [5].

The front end of every counting system is a radiation detector, which converts incoming
radiation to an electric charge. Ideally, the detector will produce an electric pulse every time
a radiation comes in, but this doesn’t happen in the real situation. Efficiency is a
terminology, which used to compare between the number of electric pulses produced by
detector and the number of incoming radiations. Some detectors have efficiency in order of
50% but other detectors have efficiency less than 10%. The most probable interaction that
occurs in the detector is the ionization process. In this process, the material absorbs radiation
energy and then one or more electrons are ejected from their orbital which is shown in Fig.
2.2.

Ejercted
Electron

Incoming
Radiation Electron

Fig. 2.2: lonization process

The number of electrons that are ejected from their orbital depends on the energy of
incoming radiation. Stronger radiation energy will eject more electrons. In order to produce

an electric pulse, those free electrons (electric charge) have to be captured and stored in a

17

capacitor. Voltage of the output pulse AV is equal to the total number of stored electrons
Ye~ divided by the capacitance C of detector as shown below, thus the pulse height is

correlated linearly to the radiation energy in counting system [5].

AV =— ... (2.1)
Incoming Radiations
B
o)
: | |
A A
Time
Output Pulses
]
o
2
[m]
>
Time

Fig. 2.3: Output pulse from detector

The shape of output pulses from detector is shown in above Fig. 2.3 which is exponential
due to discharging capacitor phenomena. The pulse height is proportional to the radiation
energy and ideally, each incoming radiation will produce an electric pulse. Sometimes it
happens that consecutive radiations come too close (due to random in time characteristic),

thus the second pulse will start on the tail of the first pulse (pile up).

There are three types of detector that most frequently used, gas filled detector, scintillation
detector and semiconductor detector. The construction of a gas filled detector is very simple,
the scintillation detector has very high efficiency, and semiconductor detectors have very

high resolution. In my project gas filled (GM) tube detector has been used [5].

2.6 Nuclear Counting System

Based on its application, there are many types of nuclear counting system in the market,

starting from very simple and compact equipment such as a survey meter, which is used for

18

radiation protection (health physics) purpose, to very complex and large scale equipment

such as nuclear reactor instrumentation and control unit [5].

N

? Counting o
‘ ' System ‘
Radiation ~—d

Souree Deteckar

/

N\

Fig. 2.4: Configuration of measuring the radiation

2.7 Different type of Nuclear Counting System

Basically, all nuclear counting systems have the same principle. When the detector is hit by a
radiation, it will convert the radiation energy to be an electronic signal and then those signals

are processed by electronic signal and finally can be displayed as an useful information.

Depending on the application, the counting systems can be roughly grouped into

e Single Channel Analyzer (SCA)
e Multi Channel Analyzer (MCA)

The measurements of radiations can be distinguished into two categories, the first is
measuring the number of radiations or intensity and the second is measuring the energy
distribution. Single Channel Analyzer (SCA) is used for measuring the number of radiations
or intensity. A MCA is used for measuring the energy distribution (energy spectrum) of
incoming radiation. The spectrum can give information about the intensity at each energy

level or on the other hand energy peaks of the incoming radiation can be determined [5].

2.8 Single Channel Analyzer (SCA) System

SCA is used for counting the number of incoming radiation at selected energy range. The
SCA has a lower and an upper level discriminator and produces an output logic pulse
whenever an input pulse falls between the discriminator levels. With this device, all voltage

pulses in a specific range can be selected and counted.

19

The measurements of radiations can be distinguished into two categories, the first is
measuring the number of radiations or intensity and the second is measuring the energy
distribution. The intensity of radiation can be measured just by counting the electric pulses,
which are produced by the detector. Number of output pulses is proportional to the number
of incoming radiation. In my project single channel analyzer system is used to measure the

number of radiations or intensity.

When radiation hits the glass window of detector of SCA, detector converts this radiation
into electric pulse and amplifier amplifies this pulse and feeds it to discriminator.
Discriminator produces TTL logic signal, when the incoming pulse falls between the
selected voltage level and counter counts this logic signal from the discriminator for certain
interval time. Single Channel Analyzer system consists of some blocks of electronic circuit

details has been described below, except the detector, as following Fig. 2.5.

[Detector C | Amplifier Discriminator N -

Counter

HVPS Timer

Fig. 2.5: Overview of SCA system

2.8.1 High Voltage Power Supply (HVPS)

HVPS is needed for polarizing the detector. Free electrons which produced by ionization
process have to be captured and stored. There must be an electric field in order to push or
attract the free electrons to the anode (positive electrode). If there is lack of electric field, the

free electrons will move randomly and cannot be captured by the anode.
2.8.2 Amplifier

Amplifier has two functions, shaping and amplifying the electric pulses from detector. The
peak of exponential pulses from detector is too sharp to be measured or distinguished and the

tail is too long. So, they have to be shaped as Gaussian pulses, which are more flat at the

20

peak and have not a so long tail in Fig. 2.6 shows the output pulses from detector and

amplifier.

The second function of amplifier is to amplify the amplitude of the pulses. Output pulses of
detector are in order of mV or even hundreds of puV, so it has to be amplified to few Volts.

The amplifier must have facility to change the gain factor of the pulse amplification [5].

Detector Dutput

o

&

LA
Time

Amplifier Output
[il]
3
A A |

Time

Fig. 2.6: Output pulses from detector and amplifier

2.8.3 Discriminator

Discriminator has a function to discriminate the analog incoming pulses, which comes from
the amplifier. The discriminator will produce a TTL logic signal, when the incoming pulse
fulfills the energy range criteria, which is defined by the user selectable lower - and upper
level shows in Fig. 2.7. Energy range between the red mark lower and upper level is called
window of SCA. Only the window voltage is acceptable for counting radiation. Then the
lower and upper levels of the discriminator are set at little bit lower and higher than that
level [5].

21

m ﬂ I

 r— I -
| T -

% I I Time

Fig. 2.7: Pulse discrimination process in discriminator [5]

2.8.4 Counters & Timer

Counters & Timer are used for counting the logic signal from the discriminator for certain
interval time (counting time). The user sets the counting time through the timer in order of

seconds, minutes or hours.

SCA mainly consists of HVPS, detector, amplifier, discriminator, counter and timer block.
Without this block some extra circuits are included in SCA design such as preamplifier, latch
and driver of LCD etc. Overall objective of this complete system is identification of ionizing

radiation.

2.9 Conclusion

In this chapter we have learnt theoretically about radiation & its background, radiation

detector and nuclear counting system which will be helpful to develop nuclear counting

system.

22

3.1 Introduction

This chapter describes about the FPGA, its internal architecture, characteristics, uses and

introduction to VHDL, its construct, FPGA programming etc.
3.2 FPGA

FPGA (Field Programmable Gate Array) devices can make reconfigurable hardware which is high
precision and faster. It is digital integrated circuit (IC) that contains configurable
(programmable) blocks of logic along with configurable (programmable) interconnects

between these blocks. Fig. 3.1 illustrates FPGA and its internal blocks.

e =R S el S

+———— Programmable

jj jj_:t */(interconnect

Programmable

|| L logic blocks
<+ /

3.1: FPGA and its Internal Block

=:
&
N
N2z
=
e
/'un
=
e
(C=3
-1
&

N

In 1984, Xilinx designed this new class of IC: field-programmable gate array (FPGA). “Field
programmable” portion of FPGA’s name refers to the fact that its programming takes place
“in the field”, which means that FPGA is configured in the laboratory. The first FPGA were
based on CMOS and used SRAM cells for configuration purposes. Early design were based
on a 3-input Look Up Table (LUT) in the Programmable Logic Block. Depending on the
way they are implemented, some FPGAs may only be programmed a single time, while
others may be programmed over and over again. Design Engineer configures (programs) this

device to perform a tremendous variety of tasks [6].

3.2.1 Internal architecture of FPGA
The core building block in a modern FPGA from Xilinx is called Logic Cell (LC). The
Spartan-3 has 4-input LUT.

23

mux
flip-flop

|-
>

—

Fig. 3.2: Simple programmable logic block

A Slice contains two Logic Cells. CLB is a single configurable logic block connected to

other CLBs using programmable interconnect. Each CLB can contain two or four slices.

Slice

Logic Cell (LC)
16x1 RAM
4-input I
LUT D
I

LUT MUX REG

Logic Cell (LC)
16x1 RAM
4-input I
LUT

LUT MUX REG

Fig. 3.3: A Slice containing two Logic Cells of Xilinx FPGA

FPGA includes relatively large chunks of embedded RAM called e-RAM or block RAM.
The capacity of the block RAM can be varied from few hundred thousand bits to several
million bits depending on the chip. The block can be used for a variety of purposes. Some
FPGAs provide embedded adder blocks, and it may include embedded MAC (Multiply and
Accumulate). Some FPGA also have in addition to RAM, Multipliers, a hard embedded
Microprocessor. All synchronous elements inside FPGA need to be driven by an outside

clock signal. A clock tree, connect the clock signal to all the registers in the CLBs [6].

3.2.2 Characteristics of FPGA

FPGAs can be specified and compared using the following:
24

Number of Logic Cells (hnumber of 4-input LUT’s and associated flip-flop), Number (and
size) of embedded RAM blocks, Number (and size) of embedded Multipliers, Number (and
size) of embedded adders, Number (and size) of MACs, Availability of hardware embedded
microprocessor cores, Number of 1/0O pins [6].

3.2.3 Uses of FPGA

As FPGA is a reconfigurable hardware and software control then it is used for various
instrument design and control system. FPGAs can contain embedded Multipliers, dedicated
arithmetic routines, large amount of on-chip RAM and with all these connected together it
can outperform the fastest DSPs. FPGASs are becoming increasingly attractive for embedded
control applications such as physical layer communications, FPGAs are used as a glue logic
that interfaces the physical layers communication chips and high level networking protocols
layers [6].

3.3 Introduction to VHDL

All the components of SCA have been designed by FPGA using VHDL, Xilinx ISE Design
suite 9.2.

VHDL means: VHDL = VHSIC Hardware Description Language & VHSIC = Very
High Speed Integrated Circuit.

VHDL was designed as a general hardware description and simulation language. It has a
very complex syntax which includes also all kind of 10 operations available on computer
systems.

VHDL used for the programming of “Field Programmable Gate Arrays” (FPGA) uses only a
subset of the complex VHDL syntax. This subset is called RTL (Register Transfer Logic).
VHDL modules using this subset only can be placed and routed into a real hardware FPGA.
It was originally sponsored by the U.S. Department of Defense and later transferred to the
IEEE (Institute of Electrical and Electronics Engineers). The language is formally defined by
IEEE Standard 1076. The standard was ratified in 1987 (referred to as VHDL 87) and
revised several times. We use a simple comparator to illustrate the selection of a VHDL
program. The description uses only logical operators and represents a gate-level

combinational circuit, which is composed of simple logic gates [7].

25

3.3.1 VHDL Constructs

Entity Architecture
Ports - 10 Pins - Constraints Signals - Components - Behavior
chip A
F=&+B
4 BF

110 ports = PINS ot

Fig. 3.4: Entity and Architecture of VHDL

3.3.2 Basic VHDL Programming

Entities
The entity describes the ports of the chip under design. The ports are the real-world pins,
which connects the FPGA to the external hardware signals.
entity Chip Name is port
(
SignalName IN/OUT /INOUT std_logic (_vector)
);
end Chip Name;
IN: An electrical signal comes from an external device into the FPGA
OUT: the FPGA drives a signal out to an external device
INOUT: the signal (data) on this line can flow in both directions.

This is mostly used to create a bus for connection to a Microprocessor.

Architectures

The architecture describes the behaviour of a certain chip. This is where we place the logic
equations and where we “program” our chip.

architecture ArchitectureName of ChipName is

-- declare internal signals and components here

begin

-- describe the chip behaviour here
26

-- using Processes and logic equations

end ArchitectureName; [7]

3.3.3 FPGA Programming step

FPGA Programming steps are as follows:

e Translates register-transfer-level (RTL) design into gate-level netlist

e Restrictions on coding style for RTL model

e Place the required logic in the CLBs

e Generate a programming file

VADL Sewree Code

enfity ledded is

o]
i st _logie_veeiar3 downta 0
- out etd_logic_vector(G downto (;

]
end;

arthtecturs ledded_arch of ledded is

begn

5 == "11071" when d="0000" else
010010 when d="0001" else:
"o

end ledded arch;

routing
resauresy FPGA

&)

FEFIFFEETIIET

=" Map, Place & Route

Netlist

Bitstream

(Generale Bitsiream

101010010101100101
DLoLlolelndoioal
0LO110100101101011
0L0101001010L01010
L00010101002L01010
110110110101001010
110100101011001011
001012001010001001
0L0101101001101001
DLLOGIL00020L0L0I0
101010100110010101

Requirements

ASIC or FPGA

Fig. 3.5: View of FPGA Programming step

All the units of SCA system has been designed by FPGA using VHDL. These units were described in

VHDL-modules and synthesized by Xilinx ISE Design suite 9.2. In VHDL designs for user

27

constraints have to mention the real location of the used hardware components. After simulation
design summery and 1/O Pin Planning RTL schematic design of the system is generated. Through
ISE iIMPACT process [Boundary Scan] is completed and finally the design has been implemented on
Xilinx Spartan-3E Starter board.

3.4 Conclusion

From this chapter we have learnt about FPGA, VHDL programming and use of Xilinx ISE
Design suite 9.2 for FPGA programming and we are going to apply this knowledge for
developing VHDL code of FPGA based SCA.

28

4.1 Introduction

This chapter explains on the different section of FPGA based nuclear counting system,

software development and schematic design after simulation.

4.2 Design Scenario for FPGA based Nuclear Counting System

Nuclear counting system is used to detect and monitor radiation level. This system includes
detector, preamplifier, High Voltage Power System (HVPS) and FPGA based SCA section.
A detector is Geiger Muller (GM) tube having a thin end window (e.g. made of mica), a high
voltage supply for the tube, a preamplifier to amplify the electrical pulses which detected by
the GM tube. Our work consists of designing and developing the part of the system enclosed
by the inner rectangle in Fig. 4.1. In this design Gain amplifier and Analog to Digital
Converter (ADC) again amplify those pulses which come from preamplifier and shape for
discriminator. Discriminator has a function to discriminate the analog incoming pulses,
which comes from the amplifier. The discriminator will also produce a TTL logic signal,
when the incoming pulse fulfills the energy range criteria, which is defined by the user
selectable lower and upper level. Counters are used for counting the logic signal from the
discriminator for certain interval time (counting time). User sets the counting time through

the timer in order of seconds, minutes or hours.

Display

Descriminator H Counter

|

Gain Amplifier &

Detector

Preamplifier

HVPS FPGA based SCA Timer

Fig. 4.1: Block diagram of the FPGA based Nuclear Counting System

29

Specifications of the developed FPGA based SCA systems are as follows.

Table 4.1 Specification of the developed FPGA based SCA system

SI. No. | Components name | Quantity Description
1. Detector (GM Tube) 1 Halogen GAS Model 712
2. HVPS 1 550 Volt
3. Preamplifier 1 From Gm counter circuit

XC3S500E FG-320Spartan-3E FPGA

4. Xilinx FPGA 1 ¢ Up to 232 user-1/0 pins
¢ 320-pin FPGA package
¢ Over 10,000 logic cells

5. ADC 1 LT1407A
Programmable-gain
6. - 1 LTC6912
amplifier
7. Clock oscillator 1 50 MHz Oscillator CLK_50MHz: (C9)
8. LCD 1 Character LCD
9. LED 8 Eight discrete LEDs

4.3 Setting of High Voltage of the Detector

High Voltage is a vital part of Nuclear Counting System. High Voltage Power Supply
(HVPS) is used for the detector (Geiger Muller Tube) which is adjusted to get better
detector performance. By plateau measurement the voltage is varied from 400 V to 600
V in step of 50 V with the source kept at a distance of 18 cm from detector. Three counts
have been taken for different voltages which are shown next page in Table 4.2. Fig. 4.2
shows and plateau measurement curve drawn using the average count per minute (CPM)
data for different voltages, taken from Table 4.2 in next page. From the table and Graph
in the next page it is shown that from 500 to 600 Volts we get higher counts 56 and 57

CPM respectively. There is very little difference between two counts. As we can get the
30

better performance (counts) at 550 volts than 600 volts so it will be set as the detector

voltage. Because at lower voltage and higher performance is better for SCA system and

will also consume low power for the system.

Table: 4.2 Detector (GM Tube) Plateau measurement for different voltage

No. of | Applied Count1 | Count2 | Count3 | Average Count per
obs. | Voltage(Vo | oy min (CPM)
: It (CPM) | (CPM)
1 400 42 47 51 46.67
2 450 46 50 59 51.67
3 500 54 58 50 54
4 550 53 59 56 56
5 600 52 56 63 57
Average Count per Minute (CPM)
70
60
56 57
= 54 . ¢
E 51.67 ¢ \
O *
o>’ 46.67
g ¢ Detector High
S Voltage 550V adjusted
)
o 40
c
>
o
@)
30 I I I I I I
300 350 400 450 500 550 600 650 700
Voltage

Fig. 4.2: GM Tube Plateau measurement curve for setting High Voltage of detector

31

As can be seen in the Fig. 4.2 at 550 volt we get best counts. Therefore in this design high
voltage is adjusted at 550 for better performance of GM Tube (Halogen GAS Model 712).

Fig. 4.3 shows the block diagram of GM Counter. Preamplifier of Nuclear Counting system
has two functions, shaping and amplifying the electric pulses from detector. The peak of
exponential pulses from detector is too sharp to be measured or distinguished and the tail is
too long. So, they have to be shaped as Gaussian pulses, which are more flat at the peak and
do not have such a long tail. In our design the output of preamplifier at Test Point (TP2)
which is 5 volt is collected from GM counter Fig.4.3 and this voltage is processed into 1.6
volt at processing circuit then fed to ADC of FPGA based SCA system.

Mono stable
GM (Tube) 0304 Multi '
Detector > Pre Amplifier vibrator
IC2
LCD
F #7 Display
TP2
9 II
High Voltage FPGA
Unit » Based SCA System

Block diagram of GM Counter (Model — 924)

4.4 The proposed FPGA based SCA system

This section present a description of the various components of the proposed FPGA based
SCA system as shown in Fig. 4.4. In this design gain amplifier and ADC are configured by
FPGA. This communication is Serial Peripheral Interface (SPI) which connects the FPGA to

32

major external devices, gain amplifier and ADC. The other components in the developed

system have been designed by FPGA using VHDL code.

as

JanuQ
aon

Jeyd

xapu|

josay y "
oﬁwm P Jajuno)
0z | N 2 M e
PIqeu3| o] Hojeuy a1l
o 10}00)0(] 14— vV ul
= 10av
as|nd Olojeuy 3¢S
«— Y
<—| {04
0z 0 le—|yoe7 le—]I8unon
NIg 9l 9L | ¥991 eug
esJ mmeJ aInuI |
JOPINIpAId [————
N} J99ed

X110

fyyuz doy

Fig. 4.4: Block diagram of FPGA based SCA system

33

SPI_MISO

L -~ Slave: LTC1407A-1 AD Converter
£ |a0_cow | | |D,:|E'1 | D:‘ll:li O, Ds|Dg | By | D | III5,|D1|,|D”|D“|D,,_,| | |Dn | I:'1||:':| D’.-l”a | D5|E';| DT| Dq | 0, |D1IJ|DI'|D'E|D1’.-| |
Spgnpaa = Wil — Vi — -171
Master il Channal 1 Channel 0
Converted data i presented with & latency of one sample:
The sampled analoqg value is converted to digial data 32 5P_SCK cycles afier assarting A0_CONV.
Sample The comverted values is then presented afier the next AD_CONV pulse. Sample
point paint
AD_CONV ___ [| T
SP1_SCK
Charval Chanml § oy Chammal

SPLMISO —((00000000008—E0000000000008

Fig. 4.5: Analog-to-Digital Conversion Interface [9]

4.4.1 Gain Amplifier and ADC

The AD_CONV signal is not a traditional SPI slave select enable. Enough SPI_SCK clock
cycles has to be provided so that the ADC leaves the SPI_MISO signal in the high-
impedance state. The ADC 3-states its data output for two clock cycles before and after each
14-bit data transfer. Table: 4.3 lists the interface signals between the FPGA and the
amplifier. The SPI_MOSI and SPI1_SCK signals are shared with other devices on the SPI
bus. The AMP_CS signal is the active-Low slave select input to the amplifier [9]. Above
Fig. 4.5 shows the details Analog-to-Digital Conversion Interface.

Table: 4.3 Amplifier interfacing signals [9]

Signal FI;iC;A Direction Description
Serial data: Master Output, Slave Input.
SPI_MOSI T4 FPGA — AD | Presents 8-bit programmable gain settings.
Active-Low chip-select. The amplifier
AMP_CS N7 | FPGA — AMP | gain is set. When signal returns High.
SPI.SCK | U16 | FPGA — AMP Clock
AMP_SHDN p7 FPGA — AMP Active-High shutdown, reset

Serial data. Echoes previous amplifier gain

AMP DOUT E18 FPGA — AMP settings. Can be ignored in most
- applications.

34

The AD_CONV, SPI_MISO, and SPI_SCK signals are the bus interface signals between the
FPGA, ADC and the gain amplifier shown in Table: 4.4. When the AD_CONYV signal goes
high, the ADC simultaneously samples both analog channels. The results of this conversion
are not presented until the next time AD_CONV is asserted, a latency of one sample. The
maxim sample rate is approximately 1.5 MHz. The ADC presents the digital representation

of the sampled analog values as a 14-bit, two’s complement binary value [9].

Table: 4.4 ADC interfacing signals [9]

Signal FPGA Direction Description
Pin
SPI_SCK ui16 FPGA — AMP Clock
AD CONV P11 FPGA — ADC Active-High shutdown, reset

Serial data: Master Input, Serial Output.
SPI MISO N10 FPGA — ADC | Presents the digital representation of the
- sample analog values as two 14-bit two’s
complement binary values.

4.4.2 Discriminator

When the ADC output value is between higher than lower threshold value Lower Level
Detection (LLD) and lower than higher threshold value Upper Level Detection (ULD), then
pulse detector gives the peak found signal to the counter to increase the count value. In this
design ULD and LLD is set LLD =800 mV and ULD = 1600 mV respectively.

4.4.3 Counter

When pulse detector finds peak, it provides a peak found signal to the counter and as a
result, count value increases. Two 16 bit counters are used in counter circuit. One of the
counters counts over a period of one minute and stores the counting value in register and

another one is used for total count.

4.4.4 Timer

Spartan 3E, Starter board includes a 50MHz oscillator with a 40% to 60% output duty cycle.
In this design 16 bit Counter is used for count pulse and data held in Latch [9].

35

4.4.5 Display

Finally the stored counting values are given to LCD through Latch and BIN to BCD counter.
In addition, maximum peak value, total counts and counts per minute are also displayed to
LCD through LCD driver circuit.

4.5 Software description

Associate firmware of the SCA system has been developed by Xilinx ISE Design suite 9.2

using VHDL code and tested on Xilinx Spartan 3E Starter board.

4.5.1 View of RTL Schematic design of FPGA based SCA system

The RTL schematic with all entities and components of SCA design is shown in the

following Fig. 4.6 is generated after simulation in VHDL at Xilinx ISE Design suite 9.2.

SCA
Btn_west ' ‘ LED(7:0)
SF_D(11:8)
AD_CONV
Clk AMP_CS
DAC_CiIr
DAC_CsS
Rot_A FPGA_INIT_B
LCD_E
LCD_RS
Rot_B LCD_RW
RS232_DTE_TXD
SF_CEO
Rot_Center SF_CEO
SPI_MOSI
SPI_SCK

SPI_MISO SPI_SS_B

B >
SCA

Fig. 4.6: RTL Schematic after simulation

36

4.5.2 Flow diagram of VHDL code of FPGA based SCA system

The next page in Fig. 4.7 shows the flow diagram of FPGA based SCA system. In VHDL
programming, the first step is to declare library. In our design IEEE, Arithmetic & Un-sign
libraries have been declared. In the Next step, entity for different ports as input, output,
signal & its type of Analog 10, Pre divider and peak detector, Counter, Latch and Bin to
BCD Counter are declared. Other devices connected to SPI bus should be disabled during
SPI communication. Only communication is done between FPGA to ADC and gain
amplifier. Then different processes for Analog 10, Pre divider, peak detector, Counter, Latch

and Bin to BCD are called within the main program.

Clock process: 50MHz clock frequency is used in Xilinx Starter board which is very fast
then it is divided into 25MHz for decreasing execution speed. 50MHz is pre divided into 1
sec for reset counter through Pre divider process. Analog 10 process: when Amplifier chip
select is low and on the clock rising edge amplifier capture data on SPI MOSI then 32 bit
digital data is transfer at ADC output. In pPeak Process, when pulse detector finds peak, it
provides a peak found signal to the counter. Counter counts the peak signals of one minute
during pCount Process to get rate of counting (CPM) and this count is hold in latch during
latch process. To get total number of pulse during on condition of system, Process Total
Count is used. For binary to BCD representation pBinBCD, Tot Count Process and finally
display on LCD pLCD Process is developed.

37

(start)
v

Library Declaration

v
/ Initialize Entity
v
Components declaration

v

Disable other devices on the SPI bus

v

Process pS3 Analog 10:

v

Process pPreDevider:

v

Process pPeak Detection:

Y

Process pCount Rate:

v

Process pLatch for CountRate:

v

Process pTotal Count:

v

Process pBinBCD TotCount:

Y
Process pLCD:

y
(End)

Fig. 4.7: Flow diagram of VHDL code of FPGA based SCA system

38

4.5.3 Schematic design of FPGA based SCA

The schematic designed of FPGA based SCA is automatically generated by VHDL at Xilinx
ISE Design suite 9.2 has been shown in Fig. 4.8

10 Marker count = 0

Fig. 4.8: Schematic designed of FPGA based SCA

4.5.4 Design Summery of SCA system
The design summery of FPGA based SCA has been automatically created after simulation.

There are three parts in design summery, 1% part is details of SCA project status, 2" is
partition summery and last part is detailed description of device utilization where total

number of flipflop, look up tables (LUT), slice and logic distribution are explained below.

39

SCA Project Status
Project File: SCAise Current State: Placed and Routed
Module Name: SCA + Errors: No Emors
Target Device: xceh0le-4igd20 +» Wamings: No Wamings
Product Version ISE5.2 + Updated: Thu Oct 16150217 2014
SCA Partition Summary
No parttion information was found.,
Device Utilization Summary

Logic Utilization Used Available Ukilization Note(s)
Number of Slice Flip Flops 620 5312 LA
Number of 4input LUTs 566 8312 10%
Logic Distribution
Number of accupied Slices 7 4,65 16%

Number of Slices containing only related logic] m 100%

Number of Slices containing urrelated logic 0 m 0%
Total Number of 4 input LUTs 1316 5312 143
Number used as logic 566
Number used 22 3 routedhu 3
Number of bonded [0Bs k) 32 13%

OB Flip Flopa g
Number of GCLKs 4 L] 16%
Numberof MULTI8X18510s | 1] 2| 5

Fig. 4.9: Design Summery of SCA system after simulation

4.6 Conclusion

In this chapter firstly all part of developed FPGA based SCA system has been described then

simulated schematic design, flow diagram of the developed VHDL code and design

summery has been presented.

40

5.1 Introduction

This chapter discusses the results obtained when the system was tested. It starts with the
signal obtained from the detector, ADC then peak detector of FPGA based SCA system and
finally displays radiation counts in LCD. The results of the developed system compared with

commercial system and also it shows the full development system.

5.2 Performance Evaluation

After every system design performance evaluation is necessary. For performance assessment
of the developed FPGA based SCA system has been compared with commercial Survey
Meter (GAMMA-SCOUT). A radioactive point source **'Cs is used for getting result.

All types of ionizing radiation are controlled by three ways: Time, Distance and Shielding.
Distance is a prime concern when dealing with gamma rays, because they can travel long
distances. The farther away people are from a radiation source, the less is their exposure. It
depends on the activity of the source and dose rate. In this work, distance parameter has been

considered for measurement.

As radiation is harmful, some care and precaution should be taken while carrying out the
experiment. After experiment the source must be kept in a well shielded container and
placed the container in a safe distance. Tongs must be used always for handling radioactive
source. In the time of experiment had to use a digital pocket dosimeter for observe personal
dose. Radiation source must be kept away from the human body as possible. For the use of
radioactive source we should follow the ALARA (As Low As Reasonably Achievable)

principal. Following the above consideration performance study has been completed.

5.3 Experimental Setup

Block diagram of hardware setup has been shown in the following Fig. 5.1. For this setup
radioactive point source Cs-137 is placed in front of detector (GM Tube) of GM Counter.
Preamplifier output 5V (at point TP2) from GM detector is processed into 1.6 V and then fed
to the input of ADC of FPGA based SCA. When the ADC output value is between LLD and

ULD then counter counts those values over a period of one minute and stores the counting

41

value in register. Finally the stored counting values are given to LCD through other

necessary circuits.

- 1.6 Violt after
Preamplifier Q/P Processing Circuit fed

(+5Volt) at TP2 totheinputof ADC of
FPGA based SCA

of GM Counter ; - ﬂ

adioactive | L1 ol 111y _Li
Source

Cu- GM PROCESSING |
17 (DETECTOR h PREAMPLIFIER ,J\/@-’l . T w— R

HIGH YOLTAGE

Fig. 5.1: Block diagram of Experiment Setup

Developed FPGA based SCA system is implemented in Xilinx Spartan 3E, Starter board has
been shown in following Fig. 5.2. Radioactive point source **'Cs (red box) is placed in front
of detector at a distance of 18 cm from the detector and this distance is varied. Developed
FPGA based SCA has been compare with commercial survey meter Gamma Spout (yellow
colour). When radiation hits the glass window of detector then detector converts this
radiation into electric pulses and gives the output of preamplifier then FPGA based SCA
system and finally provides radiation counts at LCD display.

Preamplifier output at TP2 point (5V) of GM Counter is shown in Fig. 5.2 which is fed to
the input of ADC of FPGA based SCA through processing circuit. Output from the
preamplifier is fed to ADC of FPGA based SCA through processing circuit. During the
different stages of SCA and finally radiation counts has been displayed at LCD in CPM,
Total count and Max value. Survey Meter (GAMMA-SCOUT) was placed at a fixed point

and the distance of radioactive point source *’Cs was varied in cm.

42

5.4 Results

GM Counter
Model - 924
emTe———

Fig. 5.2: Total System of Nuclear Counting System

Table: 5.1 Comparison of developed FPGA based SCA system with commercial Survey meter

Commercial Survey
No. of Di_stances meter ___ Developed % Difference Standard Deviation
1 18 056 56 57 178571
2 16 0.61 61 63 -3.27868
3. 14 0.93 93 93 0
4. 10 1.28 128 125 2.34375
5 8 1.38 138 130 5.797101 3.248905
6 6 1.68 168 165 1.785714
7 5 2.20 220 225 -2.27273
8 4 2.57 257 255 0.77821
9 3 2.90 290 300 -3.44828
10. 2 3.49 349 349 0

43

This system has been compared with other commercially system (Survey Meter GAMMA-
SCOUT) considering distance in cm and uses gamma point source (**'Cs) as demonstrated in
Fig. 5.2. The results are continuous changeable because the radiation intensity is random in
time, following the Gaussian or normal distribution. So, if we carry out repetitive
measurements of radiation intensity with the same condition, we will not get the same result.

There will be a fluctuation between those values [13]

Table: 5.1 shows the radiation counts in one minute which are collected from the two
systems, developed FPGA based SCA system and commercially available survey meter
(Gamma Scout) for different distance of the source from the detector. From observation of
table some radiation counts of commercial system is higher than developed FPGA based SCA

system and some counts is lower. Finally Standard Deviation is 3.248905

wy—— T — — T —

300 —

250 -

200~ —

150 — —

Counts Per Minute

100 -

50— =

Distance in cm

Fig. 5.3: Two results are compared and shown in chart

Fig. 5.3 shows the radiation counts obtained from two systems, the FPGA based Nuclear
Counting System and Survey Meter (GAMMA-SCOUT), in cpm. The survey meter gives
data in pSv h™ which is converted in cpm for the convenience of comparison. FPGA
system is showing almost similar result with commercial system. For fluctuating results, it

is recommended that for low range activity, average of the maximum and minimum

44

radiation count is acceptable. | have used the cubic fitting equation for the two counts in
Fig.5.3.
Y=Pl*xX3+P2*X2+P3*X+P4 ..o, 5.1

The deviation is the measurement data as obtained from the two methods is also shown in

Table 5.1 as % difference which is calculated as,

Commercial System —Develope System

9% Difference = X 100%....... 5.2

Commercial System

For most cases deviation is within 3% with a standard deviation of

Standard Deviation :\/% (A3 + A+ A3+) e, 5.3

5.5 Discussion

In this work has given attention to the design, simulation and implementation of FPGA
based Nuclear Counting System. To do this work, it is observed that radiation counts are
always changeable. Another difficulty faced in this work, is the unavailability of detector
also during measurement of radiation at have to care of experiment time since it is harmful
for human and environment. Except for these difficulties, as our design is FPGA based so
the system has flexibility to configure hardware and it can replace complex analog nuclear

counting circuitry.
5.6 Conclusion

The thesis is an implication of modern radiation monitoring system which is necessary for

environment and creatures.

45

An FPGA based Single Channel Analyze system has been developed and tested for nuclear
radiation counting. The designed FPGA based system has flexibility to configure
hardware. In traditional system, SCA design needs individual circuit for amplifier,
discriminator, counter and timer but in FPGA based system it is possible to design all these
circuits in a single system as an integrated device. This FPGA based system can replace

complex analog SCA circuitry.

Results have been compared for several times. Results of FPGA based system has been
compared with the commercial Survey Meter and their results are approximately same. A
radiation count normally varies at low range of activity. These counts are continuous
changeable because the radiation intensity is random in time, following the Gaussian or
normal distribution. So, if we carry out repetitive measurements of radiation intensity with
the same condition, we will not get the same result. So, it is recommended that at low
range of radiation count, average of the minimum and maximum count be taken. This
developed nuclear radiation (especially gamma radiation) counting system may be used for

diagnostic purposes in medical and research purpose in laboratory.

Future objective of this work is to develop detector circuitry including PC based data
acquisition system through USB port using LabVIEW. Because of radiation hazards so
many diseases occur and in the long run death. For growing awareness in the people about
radiation, it is needed to develop facility available for radiation detection and monitoring.
In order to meet the above requirements a precision, portable and fast FPGA based nuclear
counting system should be designed and developed.

46

10.
11.

12.

13.
14.

15.

16.

17.

Xilinx UG230 Spartan-3E Starter Kit Board User Guide.

A. Ezzatpanah latifil, f. Abbasi davanil**, m. Ahriaril and a. Sharghi ido2, design
and construction of an accurate timing single channel analyzer* Iranian Journal of
Science & Technology, Transaction A, Vol. 33, No. A3, Islamic Republic of Iran,
2009

Design and Simulation of FPGAs Based Digital Multi Channel Analyzer for
Nuclear Spectroscopy Application, Amitkumar Singh* S. K. Dubey M. G. Bhatia,
Department of Physics Department of Physics, India University of Mumbai, India
Ameya Centre of Robotics, Andheri, Mumbai, Volume 4, Issue 8, August 2014
ISSN: 2277 128X

Wolfgang Hennig, Hui Tan, William K Warburton, and Justin I Mclintyre, Single
Channel Beta-Gamma Coincidence Detection of Radioactive Xenon Using Digital
Pulse Shape Analysis of Phoswich Detector Signals, J. I. Mclntyre is with Pacific
Northwest National Laboratory, Richland, WA 99352, USA, November 15, 2005.
Dudi Hendriyanto Haditjahyono, Introduction to The Nuclear Counting Systems,
Education and Training Center — BATAN, October 2004

Dr. Heinz Rongen, VHDL Quick Start, Forschungszentrum Jilich Zentrallabor fiir
Elektronik, ZEL

Dr. Heinz Rongen, Introduction to FPGA, Forschungszentrum Jilich Zentrallabor
flr Elektronik, ZEL

ISE 8.2i VHDL Quick Start Tutorial

Spartan-3E completes datasheet.

Volnei A. Pedroni, Circuit Design with VHDL.
LTC2624 Quad DAC Data Sheet

PicoBlaze Based D/A Converter Control for the Spartan-3E Starter Kit (Reference
Design)

Xilinx PicoBlaze Soft Processor

Digilent, Inc. Peripheral Modules

Amplifier and A/D Converter Control for the Spartan-3E Starter Kit (Reference
Design)

For an in-depth explanation of the ISE design tools, see the ISE In-Depth Tutorial
on The Xilinx® web site at: http://www.xilinx.com/support/techsup/tutorials/

For more information about installing Xilinx® software, see the ISE Release Notes
47

18.

19.
20.

21,

22.

23.

24,

25.
26.

27.
28.

And Installation Guide at: http://www.Xxilinx.com/support/software manuals.htm.

For an in-depth explanation of the ISE design tools, see the ISE In-Depth Tutorial
on the Xilinx® web site at: http://www.Xilinx.com/support/techsup/tutorials/
G.F. Knoll, Radiation Detection and Measurement, 3rd edition, 2000.

Selected topics in nuclear electronics, a technical document issued by the
International Atomic Energy Agency, Vienna, 1986.
http://www.linear.com/pc/downloadDocument.do?navid=H0,C1,C1155,C1005,C11
56,P2 048,D2170

http://www.xilinx.com/s3estarter

http://www.xilinx.com/picoblaze

http://www.digilentinc.com/Products/Catalog.cfm?Nav1=Products&Nav2=Peripher
al&C at=Peripheral

http://www.xilinx.com/s3estarter
http://www.linear.com/pc/downloadDocument.do?navld=H0,C1,C1154,C1009,C11
21,P7 596, D5359

http://www .xilinx.com/support/techsup/tutorials/

http://www.xilinx.com/support/techsup/tutorials/

48

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/support/techsup/tutorials/
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1155,C1005,C1156,P2%20%20048,D2170
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1155,C1005,C1156,P2%20%20048,D2170
http://www.xilinx.com/s3estarter
http://www.xilinx.com/picoblaze
http://www.digilentinc.com/Products/Catalog.cfm?Nav1=Products&Nav2=Peripheral&C%20at=Peripheral
http://www.digilentinc.com/Products/Catalog.cfm?Nav1=Products&Nav2=Peripheral&C%20at=Peripheral
http://www.xilinx.com/s3estarter
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1154,C1009,C1121,P7
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1154,C1009,C1121,P7
http://www.xilinx.com/support/techsup/tutorials/

Appendix A

Programing in Software Xilinx ISE design suite 9.2
To make a program takes just a few steps

e “Getting Started”
e “Create a New Project”
e “Create an HDL Source”
e “Design Simulation”
e “Create Timing Constraints”
e “Implement Design and Verify Constraints”
e “Reimplement Design and Verify Pin Locations”

e “Download Design to the Spartan™-3 Demo Board”

Getting Started

Software Requirements

To use this tutorial, must have to install the following software:
e ISE9.2i

Hardware Requirements
To use this tutorial, must have the following hardware:

e Spartan-3E Startup Kit, containing the Spartan-3E Startup Kit Demo Board

Starting the ISE Software
To start ISE, double-click the desktop icon, or start ISE from the Start menu by
selecting and shows the following view.

wilinx ISE 8

Fig. 1: View of Xilinx ISE

Start — All Programs — Xilinx ISE 9.2i — Project Navigator

49

Accessing Help At any time during the tutorial, can access online help for

additional information about the ISE software and related tools.

To open Help, do either of the following:

* Press F1 to view Help for the specific tool or function that you have selected or
highlighted.

* Launch the ISE Help Contents from the Help menu. It contains information
about creating and maintaining your complete design flow in ISE and shows the

following window.

= Xilinx - ISE - C:Mutorial\tutorial.ise
File Edit “iew Project Source Process '-.u'-.u'inu:lcnw

[@ E = El;la @ [4] 'irt Help Topics
: x I% [E iy O ﬁl Software Manuals

wilime on the \Web »
Tukarials 3

Tip of the Day

Saoftware Updates. ..

About, .

Fig. 2: View of ISE Help Contents Xilinx ISE

ISE Help Topics
Create a New Project
Create a new ISE project which will target the FPGA device on the Spartan-3 Startup Kit
Demo board.
To create a new project:
1. Select File > New Project... The New Project Wizard appears.
2. Type tutorial in the Project Name field.
3. Enter or browse to a location (directory path) for the new project. A tutorial
Subdirectory is created automatically.
4. Verify that HDL is selected from the Top-Level Source Type list.
5. Click Next to move to the device properties page.
6. Fill in the properties in the table as shown below:
¢ Product Category: All
¢ Family: Spartan3E

50

¢ Device: XC3S500

¢ Package: FG320

¢ Speed Grade: -4

¢ Top-Level Module Type: HDL

¢ Synthesis Tool: XST (VHDL/Verilog)

¢ Simulator: ISE Simulator (VHDL/Verilog)

¢ Verify that Enable Enhanced Design Summary is selected.
Leave the default values in the remaining fields.

When the table is complete, project properties will look like the following Fig. 3.

™ New Project Wizard E|

Project Settings
Specify device and project properties.

Select the dewvice and design Flow For Ehe project

Property Mame value
Evaluation Development Board Mone Specified v
Product Categary all -
Familw Spartan3E R
Device RICSSS00E -
Package Fa3z0 £
Speed -4 w
Top-Lewvel Source Type HOL
Synthesis Tool ®3T (WHDL werilog) -
Simulator ISimn (WHDL Werilog) e
Preferred Language WHDL R
Property Specification in Project File Store all walues £
Manual Compile Order L]
YHOL Source Analysis Standard WHOL-93 v
Enable Message Filkering L]

[< Back] I ek =] [Cancel

Fig. 3: View of Xilinx ISE Project Device Properties

7. Click Next to proceed to the Create New Source window in the New Project

Wizard. At the end of the next section, new project will be complete.

Create an HDL Source

In this section, will create the top-level HDL file for design. Determine the language
that wishes to use for the tutorial. Then, continue either to the “Creating a VHDL
Source” section below, or skip to the “Creating a Verilog Source” section.

Creating a VHDL Source

Create a VHDL source file for the project as follows:

1. Click the New Source button in the New Project Wizard.
51

2. Select VHDL Module as the source type.

3. Type in the file name AND_gate.

4. Verify that the Add to project checkbox is selected.

5. Click Next.

6. Declare the ports for the counter design by filling in the port information as shown

below:

™ New Source Wizard f'5__<|

Define Module
Specify ports For module,

Entity name | AMD_gate |

Architecture name | Behawioral |

Pork Mame Direction Bus M3E L5E -
in w | []
in b |:|
¥ ES v |
in W |:|
in W |:|
in b |:|
in b |:|
in b |:|
in ~|[] 0
in b |:|
in | [] w

’ < Back, H ek = H Cancel

Fig. 4: View of port information of Xilinx ISE

Define Module

7. Click Next, then Finish in the New Source Information dialog box to complete the
new source file template.

8. Click Next, then Next, then Finish.
The source file containing the entity/architecture pair displays in the Workspace,
and the AND_gate displays in the Source tab, as shown below in Fig. 5.

52

» ISE Praject Navigator (0.61xd) - F:\AND_gate\AND_gate.xise - [AND_gate.vhd]

Fle Edt Yiew Project Sowrce Process Tools Window Layout Help _ & X
DAHS L %n0x/val 2288 20N B0 sR:Q
Desiqn #08X 1 I
B View: () ﬁl}lmp\ementatim O [simulation 2 -- Company:
-- Engi H
El Higrarchy 3 rginesn
a AND et o | 5 - Creste Date: 13:33:37 03/03/2015
— e xcasnsnue-#gazn 8 & - Design Name:
il mﬁﬁ AND_gate - Behavioral (AND_gatz.vh) 7 -- Hodule Mame: IND_gate - Behavioral
! 8 -- Project Name:
El 9 -- Target Devices:
A - ;Dnl Yerslmna:
-- t H
@ % 11 escription
12 -
- * 13 -- Dependencies:
- wl 1a -
15 -- Revision:
O 16 -- Bevizion 0.01 - File Created
P | I) HoProcesses Running)| 17 -- hdditional Comeents:
s - g
?{: Processes: AND_gate - Behavioral 19
EPﬁ Design Summary /Reporks 20 library IEEE;
Design Liities 21 wuwse IEEE.3TD_LOGIC_1164,ALL;
Eﬁ: User Constraints 22
- Synthesize - X5T 23 -- Uncomment the folloving library declaration if using
= Implement Design 24 -- aritimetic functions with Signed or Unsigned values
terierate Programriing File 25 --use IEEE.NUMERIC 5TD.ALL;
Configure Target Device 26
Analyze Design Using ChinSiope 27 -- Unconment the following library declaration if instantiating
28 -- any Eilinx primitives in this code.
29 --library UNISIN:]
4 | *
ET} Design |h Files H'D L\branes‘ ‘ AND_gate.vhd ﬂ‘ £ Design Summary DJ
Errars +08x
(4 >
Ln1Call WHOL

Fig. 5: View of New Project in ISE

53

Appendix B

Headers, and Connector less Probe Header

-pin

FX2 Expansion Header, 6

p1/191984s 90/80/20 :23eQ £80-00G 4200 |01 Gseq3| [FrUeunisUTl [Rbotouysay || ysersere v | [3SHS] [U0IoTH] [woo xutirx] [2Ul wuatibid]
15| |wionerq Sexa| Jeauny 193]
a oy Je1ue1s 3es 3LIL XUITIX [EEEL]| —_—
QW9 sioyiny S$40}d8uuo) COMMCMQXM pue 8s04TH :|33HS
99 Hasubu3 900z ‘aepz WbTIAdog *3u] jualIbIg N N N
pJeog J314e1§ 3¢ ueydedg v v 14
31ppag Uo peo oN
Y YYYY Y peounog
Bl asn
A YT $9020X SHBAIX SHBAIX Al ¥9d4 3€S A|A T x4
w 928 92Y w
g8 oTv
or e utey) uess gyLr
Qeza €zvQ
Q228 @ Q
w 128 N(m
o928 ecy
9 %8 v ger yer
el 8.0 TERS 19 % —omeo 18
Q8 ¢ oeTIT———1© ¥ HO 64
g on Iy Lt nie p— o .
g8 S —1 vad ~ Z¥|
O g +1u G = 748 - S s INUATI=EX3 | D 94
Q G BIU=CX3 NIA1T=ZRT € 2
TN QEla €V ZT0I=¢X3 ENE 4 9 5 A 9 &Y
9TUT=CX3 91 g NG g 2L BEUI=CR3 2 B
= 9 C T=, © EF — 1
ST 6 o1 o0 G £ 9 o/ S, D 2
A TAE] D 68 69 O i WeREL:; ¢ Q 1 SEUT=¢x3) 1
1T0T=2%3) 88 89 1 1pT=7x3 av ! © oy SE0T=CX3 O 0
N8 & & OTT—wurex3 9 o YEUT=CX3 O 66
80T=CXd 9% Mg st 9 &g €€0T=CXI Q 8
20T°CX3 Q8 Y O —urr=7x3 - ZEUT=CRa O 0
DB I AE en 4 Q %€ 50—
YOT=CRT Qe g g D) s QEVTexT 9 ¢
€0T=CX3 Qv C aLno . Q e 60TCxT 9 *¢
o1 WG 1IN0 € O €€ 8ZUT=cxi——1© €€
i) 8Lno g D) 2 LRI 9 %
wLNo ! Q 1€ Y0 0, I B
Yono] 1408 8ZIS (N4 D% (eTa0) % I M &
© bUTCXd]|
J4apeay Q/y pue y/Q 9 82 0] o -
ol) . — 4
© 4o E—
i w“ © 62| =T 19 ¢
N9 TN 8 s — % v
g Q¢)10) i E—
sziowe O 9 e ZT0T=CX3 3
4 9T0T=¢X3
armarar 492) Q oz L w az|
zr o © 61 v T0T=¢X3 61
" 5l Q8 €10I=¢xa .OuW"
9 A1) 2. S
g © 91 maﬂd|M 91
¥ g1 10 4:€ I DG
€ eneEJaN m v %) = 1O 1
¢ Qe gUI=cxg 9 ¢!
! Qu 0} G, R
911 Surexd 19 1
Qo eio) o o
Q¢ A I
93 erexs 198
Q¢ s 19¢
IO
osp EWII O+ 19
27 9zZIX=0uI O o [9¢
S 9 Lo «
TTIIRS 01 pe——d e

faosadoy
45peay uld 9

54

Voltage Regulators

+1/G31994g 90/80/20 i91eQ _ £80-005 %200
a Ay 4914818 3ES 3TLIL
Yu9 ioyiny sioye(nbay pue frddng ismod :13IHS

39 :488utbul

900z ‘Geez wbtihdog oug uaribig
pJeog 4934e)g 3JE ueyeds

u:L\%L\ 4neq] |

N9
[l

Ne: =2
. 290] 1613] 8937 NSA
TNg TNg = B
i 259 831 [BN[Bw
uotyonpo.d oy
umwm oN €24 st |y I _J ain wmmm 14 uex
. <
anzy l._éh_\ a0 5 aney uonianpod oy mumm o 0009d BOP8 i = e
] Ne R
B B o] O Y98 peoT oNsee 83 = s s |
STTTIIM | AA0NNIf by 3
€1 3 U
SSIHFBILT FO=SIETIn S AANS =] s EERERIEN -
HNg "9 N 23R
ZIHEILT NS
—ng 10-205262-d HI ~<2 o 8 ogn X0
i L $38 34
uonianpo.d Joj %mmm due] 4ng1| dnse1
PEST ON og1 999 asa[+53[F
GZITITN ww.m. BNGIIN
s4ore(nbay yag
= 81363 I—\
Jore [nbay ug*
inding etdril | cemsssdl e
SUBWNAISU] Sexa| iz qu_|
=
x4y et] Y84 9 1SS sy el
coTu:_uoﬁ 404 {3 e o -
peo oy - 195 g} Mmswo._.lm T o7
ZITIan fos} WAAAS T ﬁ L Z WSlagzy: W1 Loy ﬁ BIGTIN
A
WW-
»9d
TN I—\
asUag US44NY ~2D £00525dL 487 uoTIDNPOAd 404
=2 peo oN
ger NZD ingl A n1| aneer
uon3onpoJd oy 3 B1e el
peoT oN = (°%) 100" 860 283 o)
19 RO ¢
SNCIIN ol A
9dr oS 07
! TNg
£00545dL u
wSD 4daj wSn 4 m
838 560 asa o Iy 5B 53
61 x 2dZ31 o o
MM 4n1'e azr
1er a3l - YWy o] ¢4 2 o g
uotionpoJd 4oy a9n0d OFKF dneal 8sd & & Oumg
; /N 9 e 5)
peoq oN o o] HNg N a8 AN
11 10 ._.HI.—. “ @ dns
ENETIN AANS k) o ©81 saprer SN g = e D)
~.
VA 49nod htup Addns ng
sJaoye[nbay hiddng Jamog Mm%

55

FPGA Configurations Settings, Platform Flash PROM, SPI Serial Flash, JTAG

Connections

$1/9:1994g 90/80/20 i21eQ _ £480-00S5 200
a ey 4214835 365 3LIL B Jeg
>
N9 $4043ny 9yLr Pue uonieunbuoy ISEIX :LIIHS SWL_pls __91dacl vl B
@o0MH o
z TTR-AUg] Z'S 1if oL
g3 fleauiby3 986z ‘gepz WbTIAdog *aul waTIbIg peo L 55 ! [Far=nug 20 MR- .
oN T SIH0G CRR 5 i abeuorg
p4eog 491415 3E Cmus_maw 683 o S [Z50= yo01g 4adunp
ER
21qe) gsM W4041eTd PAPPAGUI BY) 4O U3PeSH 38 443IUT 9Ll , o1 § c YT
ayy ueyy Jayied uonitsod paeoq [essydrded e woay USATUP Butaq sue s IW—pg—=— © 0 1S g
s{eubts gylr ayy Uayn UTeYD ueds ay) a3afdwod 0y Japeay gylr Ziid S 2o —v g ° 0 f57
8yl UO QQL PUE IOL U93MIag Pa[eISUT 99 1snw ¥201q buriioys Y Ao N "
isaloN ey e > s 910S 91daZl N9
A0S ‘005108 :1dS
rol el pel
&) d 1230 | 48D 2o b2 hee
00 S U@t |4uze 3= |43s OZB OSVOZA
887 R|® | X]©
2 .3 283] 983
Bl ER)S de Z2d g-904d ZJUOR
St . TETI UonanpoUd 4oy
S0 £a 21 peo oN T300R
Foour—rg 10 00 [, Sew = Ew
- o s 30 =
Mo c P LIS o2R3R 2R
o w m A RSO RSO
2 8 4 btz s S [
a
_m 2 S anree| an1e| Antve o 2131 ENEJIN
o0 L0 ©
i mml_l.u vwlﬁlo mmlHlu N g saadunp 128185 8pol Y9d4
ThETIN Akl F G 33 i o
|ATNO 30091 404 peoT
Z2€$2S0
2 | 3g@91 uo peoq oy 232
S0 “3eeg uo peon Ly *ly | *22
de3 e [\38
d S ON ASN [R]
183 Ng@ JSIWAIJI ..vmm% Wmm%
Iy 4deg eg1 = dursH/eNgzT 01 IR
= 1101 = S MW T T ASN8/1n00/z”deT 01
282 €6l @ TR € LINZZNITOr e
9 [owE emoEeT— W @0/NIO/Z N9T701
i 5 9 73 ¢ zed e] ¢ oo SUAR AR pve EIT:ESS TN
o 7 (R N ANOU=0X INOU=OX_Zi 2Nea _ R01/1 dbel Ol fary 0-35
20 STt H100/27 N9z 101 090V TNEZTO! forg TS | eon
Tg=our—7d o0t J0H/1™deeT 01 5o TS S0
JES-ouT—5q 10! 0057 W/ 10972 Nk I I AT
L 3 4dgg
5d SW TIO00 T W/ o1 peo oN ~<n
- @H/Z" 911701 I3
59 PIOON &7 80 =39
g — — ool 8705/d11°01 =gy 1
2] 101 87159/1S0M/NE 101 fel—reiy MW -~
TG 30 3G0X BIWOR-IX (RN gL i Mot oN109/8 enau/dr 11 dl oy +8
o o |8 Aok L L B=SWI &g SHt G o}
784 Wmm% ..vmm% JSIW
nt'al anteal snre uonenbjuo)
4nt'e| Jni'e| Ant'e wnmw pue [043U0] Y9d4 8zr
8] ¢A[95 833 eregor— 1 7| 30
aot g MWM YL
50T W o b
= <
- _ _ e Zxoul 18 | gy
4300 3ES=00T JES=I0L i e TSI 19 gy
AN m H
= AAAAS
§=SWI)
§ A9pesH WUN‘LWvCH QC._.A;
ETIN TNCTIN

56

FPGA 1/0O Banks 2 and 3

$1/8:1994s

90/80/20 :21eQ _ 280-80G 4200

a A3y

4914815 3ES ITLIL

Y9 140Ny

€ pue Z sjueg 3S€IX :133HS

39 :498utbuz

900z ‘geez wbtihdog *oup uartbig
pJeog J49).4e)g§ 3£ ueyJeds

S3IP PP9T1/PBZ1/009S Usamiaq fisa 1eyy sutd Jioj o4 S3ION *

£80101

] Nwe1ol =

Z1| dve1 ol LNHVNRIT 01 fs—pga=rg
7d Ne¢1 0l IAHV/d+ 1T 01 fss—Tgg=15
= dee1 ol SHIOHI/NETT 01 s———5=g
d Ni¢1 oI CAQUL/HAOHY/dETT 01 fss—5=115
zd die1ol CAQUI/ENIOHI/NZIT 01— =S
= Nec1 0l CATHI/deIT 01 |Jr =
T @101 DITOHINITT 0! bR 50=1%
o N6110I OANIHV/dIIT 01 [~0=1%
= 9611701

= N8110I

T d81Tor

o9 2380/NZ1T 0l

3 d¢11Tol

= No11Tol

£ d911°01

>4 Ng11O0I

= dsin01 -

T Nel1 oI % NCZT 01—
= deri ol % 922101 =7

o oo A m—
wH d¢6770!

= N81oI

S d871701

=5 Ne1ToI

5§ 9410l

79| S3n/N9TTOI

T9 927101 €1dl =y

74 NS1.0I <idl

T4 957101 HdI =

79| Ne1 01 eldl Hy

73 deTo1 6dl b

7 43d0/NeTTo1 8dl |

H deor 21 |55

73 N11.01 2d1 [7¢

= d1o1 ad1 [55

7 S3un/eoT x 330/+dl ls—gznTIon
[9700 x &dl =

v 201 x [CT ==

s R £iNvE

d00 NG°C = € Jueg JOA JON

(@1> ZZG6IX - IX

UNg €)8asn - n
B11d-411d (1) 40}23UU0] YoNo| 1405 - |S
veSonsSonso G901 @1 yserserels - 4
SS-8=S= 8= ON 1) Wod as -0s
© PPN 9> 91dgzH - UoY
(1) 40323uu0] ZXJ 9SOATH ~ ZX4
6T9=35 25N BIg=35 I8N (b) 19U Y3 -3
(T1) 48348Au0d y/Qg - J60
8T9=35 Ton B8I9=-35 TSN 11y 4ay11duy uteg - duy
(IT) 49348AU0] Q/¥ - QY
ZT5=35 @5N ZT5=35 950
L L L
2R 52 2R
AN AT T
enedan
280101
214~ 45D sTI ¢19/85n/d92 71701 €7109/10/NS11°01
8TY-4 =T 819/1SN/NGZ1 01 23109/20/dS11°01
6T4-14 =t €19/2sn/dse ol SIX109/€0/NETT01
R A AN #14139/¥0/dE17_01
vl Jewsdve1ol £11109/90/N2 1101
eTd ¢e9/NezI 0l Z1I199/£0/d2171701
e1d €evsdezT ol
rar: IR % N1z1701
0CY-JX 77| decr ol % 41271701
129-J%73 £ 43dn/NsT170I %-38n/N9101
229-7% 7T 4611701 % d9770I
£2U-T% = N81170I % 01
ANDT=T9 q d8117o!
0= 711 Nerol =
TTO= s dernol NEZTTdI
ST=790 e Ne1To! dez17dI
1709 5 d671°0I NZ17dI
NOHS=dWy 74 Ne1Tor dZ117dI
SJT=dWy 7 d¢ol A30/NTIdI
= 5q Ns1 oI dirdl
RIS 5 ds1701 N§1dI
X [= =] Nv1ToI dg87_dI
OXI= = dv10! N1 d1
1OXI= 51| 33dn/901 dendI
QUXI= 7 g1 % bdl
ai= ad €01 * £dI
= 5 S0/¢01 2dl
oTOR= s 43dn/i01 1d1

ZANGE

NE'E = ¢ dueg Joj 220

57

Power Supply Decoupling

$1/611934s 90/80/28)80 —

£80-005 %200

a Ay

4914818 3E€S ATLIL

U9 :4043nY burdnodeg 4enod 3S€IX :L3IHS

39 :488u1buz

980z ‘sgez Wbrihdog *oup uaTIbIg
pJeog 4914e15 3£ ueyJedg

UMdR101
LINIJON
serl navel sl sl il soil il il sl | soalsalsalialialialvalial e
a[* KG_ P3a] (Z45] IPAR] AR B2 wfu_%a_mws_ 69 TI[Fo 13]E5 1D[29 131913 %G_mma_mma_ sk
CNIJInN LINIJON
INIJON
LINIJON
XNEAIN
el navel sl sl soil soil soil il sl s sonlsonlsalialialialialial e
i) g oms_ N a] ol o3 6] A Sl L) @ma_m:u_m:u_ 2+ TI[oF D[GH D[P+ 13 m:o_N:u_fu_@:u_ s
SNCIIN XNLYAIN
XNY23N
XNYAAN
eed[* 81D mms_wma_mms_za_mma_ Nma_ﬁms @m_u_mNG_mNG_ oy
HA0-SNZTIN 020N ©
020N
serl neval, s sl sl sl sl wadwalalialea] | gl B0 g
X 2
2237 921D mNSTNS_mNS_NNS_ma_ Y4%] m:u_m:u_m:u_o:u_ eTlf 0800 =
ENETIN & ooon
ol DL Dbl m e
H 3
SId[T +11D m:u_N:u_:a_a:u_mas_ 80132610 BG_QG_EG_ i iAo
009N
ENETIN & oo
e B P P e o P A - ¥
Bdr B y
R eed[* zeid aa_asa_ mmu_ mmu_ mmu_ 963] 662 Ymu_ mmu_ Nmu_ oy O &
9 o
Tu% = o0oon
Ya0-gneIan [aN9/dMd
123198
LWDOQ O\—

UNT

58

XC2C64A Cool Runner-1l1 CPLD

+1/081:3984sg

90/80/20 i3ieQ £80-00S 200

a Ay

4914815 3ES ITLIL

YUg 404Ny

07dJ $9323X :L33HS

29 :498utbul

900z ‘Geez b1ihdog *oup uaTIbIg
pJeog 491415 3£ ueyJedg

TNY
2160) G 0 S
@ @ @
5§ 5 &
o1dr 2 X E erol =
21201 | ML
2429/01201 [———=—p 57
A"y T 57 1ol 1499/80201 [rr—————"spr%
mﬁuq:lm,émc.,l_m] ol ORI B0) [y UATI=IX GATIT=IX
’ & 101 20201 o N30 1a0=0X N3~U 1a0-0X
= Twor 50201 [————a1aT=%
T @01 2ee01 Mt
IO | 2@+0I 18201 MWW
oTOR=Ox g 'erol 121
dS9/ETI0N [Ak
= sieor Z519/21101 = WW-
eIy *1e0l €s19/11101 [Tt
IR ¢1€0l 2519/@1101 TR
mmi 11E0I 1519/60101 [e
coo= - @101 €0101 f5 S
- o 90€01 20101 |
4 (X +$9320X Z
= eocor 10101 [5
& zocol
- = Tecor ML ~
ool ¢ =
5§ § gy 2 Ll
2 9 < SHL —
9 9 ¢ D a1
* * (9] [
N [(3] x
N S s
o\ o1 o1
42y | 4ueT[4uzy | duat 4uzy | 4ue1
€8 q_Mm ﬂﬂw Dn_ﬂm ﬂl 62 W_Mm _q_l
ENETIN ENETIN
4uzp | duet
22135210

59

Linear Technology ADC and DAC

+1/114884s 90/80/20 "mumD— £480-00S #20Q
a A9y 493148315 3E€S 3TLIL
YWg 404Ny S48}43AU0J Y/Q PUe O/Y :13IHS ' oy
99 1433utbu3 900z ‘s@ez WbT4hdog *oul yualIbIg
pJeog J491Je)g 3¢ uey.eds 2
1231 - STl
@ 043RN &
4 o
UIMo—J8y 7 oon & it
R =t —goIFEn
JIM0J90 £ OLnon 9434 Iy
e 5
0090 g 8Lon S gYIIan
gLnon u1l —
gino Jeu] _ a/sa MH ulc&c S
UNg Q1 71 ©0s S dm_m 5 &
uq.uq|<s>|.|._, 108 Hﬁm
P W— seTd —_—
speo on %mmm %umm $2923L1 Jo
To TN
T0S
uus X L
- ante 232
o =
speo oN %Mnm %mww €612 A6
ENETTN
ENETIN
(uteyo jo pua je aderd)
uonIeUTW S| -
UtuaAdYy] %2500s ‘108 :1dS
TRD
L a1
% 532 =< "
S, 81 s v
1% 2 9231 nig|4n
ant°g|4ner L
[ON9Y < ON9T »3m
; a7 S @613 mma_« V39
NIN 8100 fer—— g 4dazg ~
@
ONIN Y10 fer—gHg Hwnwwzmmm BT TNUJ=U9
- IS
NURS—aWg___ g NoHs i}
So=awg 9§ J1/S0 ~oHY ouS
- 0 < +8HD
|1 Yivg * 1noa
U0-awe
SSRAIR T2
OSSN NN NN
Sl e feg 1-3SUIZ0+ 1017
ENETTN

#2$400s“10S :1dS

A25400S“10S :1dS

60

Intel Strata Flash Parallel NOR Flash Memory and Micron DDR SDRAM

$1/21:3984s

90/80/20 i31eQ

£80-00S %200

g A3y

4914818 3ES 3LIL

YUg 104Ny

yserieielig pue yyas daa :L33HS

39 :i488u1bU3

900z ‘g@az wbrahdoy -dup juaribig
pJeog 43)J4e1)g 3£ ueyJedsg

$1 1884s U0 GZ-919TUPINIPLH Yy ‘BZII 403 FJoMmau uoneuw.4a] :3LON

Z J9UUMYT00] XUT[IX

UNI
4dsg Ln_mm_ 4dsg| Jdsg
$120 28_ 2123 1122

SENTIaN

butdnosag 43un

96d0S1-€r95248C uNg
P24} S 1 9
[oXo)o) mwm b -
7z ——57550-15
52l ¢ G564 [p = s MM -
130 %) 0
m (22 T750-US
9IT=35 v 920 o IzE Ue=
= = #3M 1] v o= = - Wan) k] —
JT=35 G 30 2 8 S H/U0TT=us 27} a1 N 23 a7 3NI-US
J0=35 |] o= d/WTT 2 L‘va 3 = +3D
52 o= St = Y
SIS=35 Ty SIS e PO 4/S00FIS oy S001 e B3 ES
00 ol 74 U= 4/800r=us [ovs & 2
0US £} [34 29— 9C ol dag=
TS = 10 o = — H/G10 5100
= 5 89 157 8= /%100 100
E0=35 o7 Mo 69 157 = u/e1g gia
FU=35 Iz mm @H“M B = 4/210 wmw
SU=35 S| 21 9= 4/110
5035 57 Nm m“m £ o= /010 M%D
Z0-35 = 4] o= /600
80=35 vyl S0 el U= /800 ond
= 29 o1 ow 2 o= S moo
T0-35 69 STg- /900
m:c-uu T 1o I M\m.. sod
ZT0=35 Y 20 8 5§ /%0 oo
€T0-35 7y €W Y [5§ /€00 €00
$T0=35 og 71 ey [—57g=0X d/20 e
ST0-35 79 W Mwm £ U=0X d/10 : Mmm_
1 g=0X 4/000
dg-3S 91 unu_m: Sce mwm 0g U-JX H_ H1QUZE Yo N ccccc
5 888 S5 UI-CX SZ-919THITNSF LW [=i=E=F=1=]
00000
— T [Y= N=N= N~}
LN
GZhTIan
=<0 oSY
WL 20 URY
N auerfaugy U2y |uz |4ugy |auzy |4ucy U2y |ugy [4uzy
momw_mw NM_I Smw_msmw_ﬂo Nq_mls NM_I SNM_@ Nq_ols Nﬂwm Q_Mm ﬂl 28 _ﬂwm _M_Mm ﬂl
ENETTN ’ ENETIN yaa-gneaan y JUU=GNeIanN

61

Buttons, Switches, Rotary Encoder and Character LCD

+1/€1:3984s

90/80/20 2180 £80-00S %200

a A3y 49148315 3€S 37LIL
UWg 404Ny SQI [eJauag pue (J7 :L33HS
99 :4eautbuz 988z ‘se@z WbTJAdoy *dul walIbIg
pJeog 43)J4e1g 3£ ueyJedsg ans
L)
=<0 MAA
(>3 19510 | s YYVV TT0=35
oL
T > < = MW TTO=-35
] a6E 951d
W BU-35
on oSl @eg
MW BU-35
+GT
Emen) 3
METTTT A
ETIN gIINIT SETUTT su s
= 8
NSO I o
ASH 7
2%
1@ AupT %S_
43poou3 heioy/uoringysng 9123 m_S_ .
MGUTT N.m.ma% TS
fietdsta @
TNg S
™ a6E
eal rA=ht.| - loers
™ 26€ o o
:3_ 15T L2 o
S 26€
+——— —W—3wr=xa L o
By RLg) 0 J
26€ 0.0 TFTS
—&—W——wr=xa H.EON o
£ql 45
= 26€ 3
——W—rox3 u Sl
Ha mmwm 5937 —=
1< WW SI0T=2X3 s e <
m/ﬁ4 261 _ITG_“
& w..m.wq e HIMOS ens
k= g’ —
] Gl TS
L W t—o
207 Pt X R
ENETIN
sQ31 suolng
EERR G

62

Appendix C

VHDL code for Firmware of SCA

Sun Mar 01 12:25:39 2015

SCA.vhd
ak
2
3 library IEEE;
4 use IEEE.STD_LOGIC_1164.ALL;
5 use IEEE.STD_LOGIC_ARITH.ALL;
6 use IEEE.STD_LOGIC_UNSIGNED.ALL;
7
8
9 entity SCA is
10 Port (Clk : in STD_LOGIC;
11 Btn_west: in STD_LOGIC;
12 LED: out STD_LOGIC_VECTOR (7 downto 0);
13
14 Rot_A: STD_LOGIC; —-—-This pins for generate Gausian pulse
with Rotary SW
15 Rot_B: STD_LOGIC;
16 Rot_Center: STD_LOGIC;
17
18 RS232_DTE_TXD out STD_LOGIC; -- For RS232 12 bit serial data out
19
20 SPI_MOSI : OUT std_logic; ——-This pins for comunucate with ADC and
DAC chip
21 SPI_MISO : in std_logic;
22 SPI_SCK : OUT std_logic;
23 DAC_CsS : OUT std_logic;
24 DAC_Clr : OUT std_logic;
25 AMP_CS : out std_logic;
26 AD_CONV : out std_logic:
2%
28 SPI_SS_B : out std_logic; ———— This pins for Enable ADC and DAC
29 SF_CEO : out std_logic;
30 FPGA_INIT_B out std_logic;
31
32 SF_D : out STD_LOGIC_VECTOR (11 downto 8); —-—for LCD data in
33 LCD_E : out STD_LOGIC; ——for LCD Enable
34 LCD_RS : out STD_ LOGIC; ——for LCD Reset
35 LCD_RW : out STD_LOGIC; ——for LCD Read/Write
36 SF_CEO : out STD_LOGIC
37
38)i
39
40 end SCA;
41
42
43 architecture Behavioral of SCA is
44
45 Component Counter Ena_Ovl is ——— Declear componet
46 Generic (bits positive := 4; max : positive := 9);
47 port (
48 Clk z in std_logic;
49 Reset : in std_logic := '0';
50 Enable : in std_logic := 'l1';
o35) Overflow : out std_logic;
52 Cnt : out std_logic_vector (bits-1 downto 0));
$3 end component;
54
55 component S3E_AnalogIO

63

Sun Mar 01 12:25:39 2015

SCA.vhd
56 port (
57 Clk IN std_logic;
58 SPI_MOSI : OUT std_logic;
59 SPI_MISO in std_logic;
60 SPI_SCK : OUT std_logic;
61 DAC _Cs : OUT std_logic;
62 DAC Clr : OUT std_logic;
63 AMP_CS ¢ out std_logic;
64 AD_CONV out std_logic;
65
66 TickAnalogIO out std _logic; -- Give signal with New ADC
value
67 Dac_A IN std logic_vector (11 downto 0) := x"000";
68 Dac_B IN std logic_vector (11 downto 0) := x"000";
69 Dac_C IN std logic_vector (11 downto 0) := x"000";
70 Dac_D IN std logic_vector (11 downto 0) := x"000";
Tl Adc_A out std_logic_vector (13 downto 0);
72 Adc_B out std_logic_vector (13 downto 0));
73 end component;
74
74
76 Component lcd_driver ---LCD Driver
77 PORT (Clk ¢ IN STD_LOGIC;
78 rs ¢ OUT STD_LOGIC;
79 w : OuUT STD_LOGIC;
80 enable : OUT STD_LOGIC;
81 lcd_data ¢ OUT STD_LOGIC_VECTOR (3 DOWNTO 0);
82
83 index : OUT std_logic_vector (7 downto 0);
84 char IN std_logic_vector (7 downto 0)
85)i
86 end component;
87
88
89 Component Binlé_Bcd5 -- Componet to
convert 16 bit Binary to 5 digit BCD
90 PORT (Clk IN STD_LOGIC;
91 BinIN IN std logic_vector (15 downto 0);
92 BcdOut : OUT std_logic_vector (19 downto 0));
93 end component;
94
95
96 Component GaussianPulse is -- Component for
Gaussian pulse generator
97 port (CLK in std_logic;
98 ROT_A IN STD_LOGIC;
99 ROT_B IN STD_LOGIC;
100 ROT_CENTER IN STD_LOGIC;
101 Enable in std_logic;
102 Data % ot std_logic_vector (11 downto 0));
103 end component;
104
105 Component RS232 is
106 Port (CLK : in STD_LOGIC;
107 DATA in STD_LOGIC_VECTOR (7 downto 0);
108 START : in STD_LOGIC;
109 BUSY out STD_LOGIC;

64

SCA.vhd Sun Mar 01 12:25:39 2015

110 TXD : out STD_LOGIC);

111 end component;

112

113

114

115

116 Type EventType is (IDEL,S1,S2,S3,54);

117 Signal sState : EventType;

118

119 Signal LLD: std logic_vector (7 downto 0) := x"40";

120 Signal ULD: std_logic_vector (7 downto 0) := x"80";

121 Signal MAX: std_logic_vector (7 downto 0);

122 Signal ADCA: std logic_vector (13 downto 0);

123 Signal sADC_A : std_logic_vector (7 downto 0);

124 Signal NewADC, sPeekFound : std_logic;

125

126 Signal Sec: std_logic;

127 Signal Min: std_logici-------———-—-

128

129 Signal CountRate, CountRateout, totCount, MAX16: std logic vector (15 downto
0)7

130

131 Signal BCDCountRate, BCDTotCount, BCDMAX :std_logic_vector (19 downto 0);

132

133 Signal Index : Std_logic_vector (7 downto 0); --- Signal slect LCD writing
place

134 Signal ASCII : Std_logic_vector (7 downto 0); --- Send ASCII letter to LCD

135

136 Signal Gausepulse : std logic_vector (11 downto 0);

137

138

139 begin

140

141 SF_CEO <= '1';

142

143 SPI_SS B <= 'l';

144 SF_CEO <= '1';

145 FPGA_INIT B <= 'l';

146

147

148

149 pS3AnalogIO: S3E_AnalogIO ---Component for S3E Analog IO
process

150 port map (

151 Clk => Clk,

152 SPI_MOSI => SPI_MOSI,

153 SPI_MISO => SPI_MISO,

154 SPI_SCK => SPI_SCK,

155 DAC_CS => DAC_CS,

156 DAC Clr => DAC Clr,

157 AMP _CS =>AMP_CS,

158 AD_CONV => AD CONV,

159

160 TickAnalogIO => NewADC,

161 Dac_A => Gausepulse,

162 --Dac_B =>

163 --Dac_C =>

Page 3

65

Sun Mar 01 12:25:39 2015

SCA.vhd

164 --Dac_D =>

165 Adc_A => ADCA);

166 --Adc_B =>

167

168 SADC_A <= ADCA (13 downto 6);

169 LED <= Max;

170

171

172 pPreDevider: Counter_Ena_Ovl ---Component for Pre Divider to
generate seconds

173 Generic map (bits =>32, max => 50000000) --- sClock for 18

174 --Generic map (bits =>32, max => 300000000) --- sClock for 1M

175 port map (Clk => Clk,

176 Reset =>btn_west, --- '0',

1797, Enable => '1"',

178 Overflow => Sec);

179

L80! s s o i e e e e own

181 pPreDeviderMin: Counter Ena_ Ovl --- Component for Pre Divider to
generate minutes

182 Generic map (bits =>8, max => 120) --- sClock for 1S

183 --Generic map (bits =>32, max => 300000000) --- sClock for 1M

184 port map (Clk => Clk,

185 Reset => '0',

186 Enable => sec,

187 Overflow => Min);

188

189

190

e D e e e e T

192

193

194

195 pPeekDetector: process(Clk) --— Process for detect peak

196 begin

197 if rising_edge (Clk) then

198 case sState is

199 when IDEL => sPeekFound <= '0';

200 sState <= 81;

201

202 when S1 => sPeekFound <= '0'; -- search for Event Start

203 if (sADC_A > LLD)and (NewADC = 'l')then

204 max <= sADC_A;

205 sState <= S2;

206 end if;

207

208 when S2 => sPeekFound <= '0'; -- Follow the signal curve

209 if (sADC_A > max) and (NewADC = 'l') then

210 max <= sADC_A; --Assign pulse ADC value to MAX
until it reach Max

211 end if;

212

213 1L (sADC_A < LLD) and (NewADC = 'l') then

214 sState <= S3; -- Retern to S3 when pulse faling
down below LLD

215 end if;

216

Page 4

66

SCA.vhd Sun Mar 01 12:25:39 2015

217

218 when s3 => if (MAX < ULD) then -- After pulse falling down below
LLD check that pulse below ULD

219 sPeekFound <= 'l1';

220 else

221 sPeekFound <= '0';

222 end if;

223 sState <= S54;

224

225 when 5S4 sPeekFound <= '0';

226 sState <= IDEL;

227

228 when others => sState <= IDEL;

229 end case;

230 end if;

231 end process;

232

233 pCountRate: Counter Ena Ovl ---Component for count rate

234 Generic map (bits =>16, max => 65536)

235 port map (Clk => Clk,

236 Reset => Min, —-——-————-—mmmmmmmmmmm

237 Enable => sPeekFound,

238 --Overflow => ,

239 Cnt => CountRate); --- This will gives # 0f sPeekFound
in one Sec

I
Vv

240

241

242

243 pLatchforCountRate: process (Clk)

244 begin

245 If rising_edge(Clk) then

246 If (Min='l') then

247 CountRateout <= CountRate;
248 End if;

249 End if;

250 end process;

251

252 pTotalCount: Counter Ena_Ovl ---Component for total count
253 Generic map (bits =>16, max => 65536) --- sClock for 1S
254 port map (Clk => Clk,

255 Reset => Btn_west,
256 Enable => sPeekFound,
297 --Overflow => ,

258 Cnt => TotCount);

259

260

261

262 pLed: lcd_driver ---Component for LCD Driver
263 port map (Clk => Clk,

264 rs => LCD_RS,
265 rw => LCD_RW,
266 enable => LCD_E,

267 lcd_data=> SF_D,

268

269 index => Index,
270 char => ASCII);
271

Page 5

67

Sun Mar 01 12:25:39 2015

_ SCA.vhd

272

273 pBinBcdCountRate: Binlé6_Bcd5 ---Component for BIN to BCD for Count
Rate

274 port map (Clk => CLK,

275 BinIN => CountRateout,

276 BcdOut => BCDCountRate);

297

278 pBinBcdTotCount: Binl6é_Bcd5 -—-Component for BIN to BCD for Total
Count

279 port map (Clk => CLK,

280 BinIN => TotCount,

281 BcdOut => BCDtotCount);

282

283 pBinBcdTotMAX: Binlé_BcdS ---Component for BIN to BCD for pulse
MAX

284 port map (Clk => CLK,

285 BinIN => MAX16,

286 BcdOut => BCDMAX);

287

288 MAX16 <= x"00" & MAX; -- 8 bit Pulse MAX value assignto 16 bit MAX value

289

290 with Index select

291 ASCII <= conv_std_logic_vector (67,8) when x"06", --1. Char 'C'

292 conv_std_logic_vector (67,8) when x"46", --1. Char 'C'

293 conv_std_logic_vector (112,8) when x"47", --1. Char 'p'

294 conv_std_logic_vector (109,8) when x"48", --1. Char 'm'

295 conv_std_logic_vector (77,8) when x"08", --1. Char 'M'

296 conv_std_logic_vector (97,8) when x"09", --1. Char 'a'

297 conv_std_logic_vector (120,8) when x"0a", =--1. Char 'x'

298

299 "001l1l" & BCDtotCount(19 downto 16) when x"00",

300 "001l1l" & BCDtotCount(15 downto 12) when xz"01",

301 "0011" & BCDtotCount(11 downto 8) when x"02",

302 "0011l" & BCDtotCount(7 downto 4) when x"03",

303 "0011l" & BCDtotCount(3 downto 0) when x"04",

304

305 --"0011" & BCDMAX(19 downto 16) when x"O0b",

306 "001l1l"™ & BCDMAX(15 downto 12) when x"0c",

307 "0011" & BCDMAX(11 downto 8) when x"0d",

308 "0011"™ & BCDMAX(7 downto 4) when x"0e",

309 "0011" & BCDMAX(3 downto 0) when x"0f",

310

311 "0011l" & BCDCountRate(19 downto 16) when x"40",

312 "0011l" & BCDCountRate(15 downto 12) when x"41",

313 "001l1l" & BCDCountRate(11 downto 8) when x"42",

314 "0011l" & BCDCountRate(7 downto 4) when x"43",

315 "001l1l" & BCDCountRate(3 downto 0) when x"44",

316

317 "00000000" when OTHERS;

318

319 pGauss: GaussianPulse

320 port map (Clk => Clk,

321 ROT_A => ROT_A,

322 ROT_B => ROT_B,

323 ROT_CENTER => ROT_Center,

324 Enable => NewADC,

325 Data => Gausepulse);

Page 6

68

SCA.vhd

Sun Mar 01 12:25:39 2015

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

PRs232:

end Behavioral;

RS232
Port map

(

CLK
DATA
START
--BUS
TXD

=> Clk,

=> CountRateout (10 downto 3),
=> Sec,

Y =>,

=> RS232_DTE_TXD) ;

69

S3E_AnalogIO.vhd

VHDL Code of ADC and DAC

Sun Mar 01 12:51:55 2015

WO 0s WwNE

56

== Spartan—-3E Kit: Analog IO Component
- DAC component: LTC2624 4 channel, 12 bit DAC
- ADC component: LTC1407 2 channel, 14 bit ADC

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_ LOGIC_UNSIGNED.ALL;

—— component S3E_AnalogIO port (

== Clk : IN std logic;
== SPI_MOSI : OUT std_logic;

== SPI_MISO ¢ dn std logie:

= SPI_SCK : OUT :std_logic;

s DAC_Cs : OUT std_logic;

e DAC_Clr : OUT std_logic;

— AMP_CS : out std _logic;

Al AD_ CONV : out std_logic;

== TickAnalogIO: out std _logic;

== Dac_A IN std_logic_vector (11 downto 0) := x"000";
== Dac_B : IN std_logic_vector (11 downto 0) := x"000";
- Dac_C 5 IN std_logic_vector (11 downto 0) = x"DO0O";
<= Dac_D : IN std logic_vector (11l downto 0) := x"000";
= Adc_A : out std_logic_vector (13 downto 0);

= Adc_B : out std_logic_vector (13 downto 0)):

—-—end component;

—-—Please also connect:

-- SPI_SS B <= ¥a.v;

== BF CED L= WL
—== FPGA: INIT B g=s NPT g

entity S3E_AnalogIO is

port (

Clk : IN std_logic:’
SPI_MOSI : OUT std_logic;
SPI_MISO : in std_logic;
SPI_SCK : OUT std_logic;
DAC_Cs : OUT std_logic;
DAC_Clr : OUT std _logic:
AMP_CS : out std_logic;
AD_CONV : out std_logic;

TickAnalogIO: out std_logic;

Dac_A : 1IN std_logic_vector (11 downto 0) := x"000";
Dac_B : IN std logic_wvector (11 downto 0) := x"000";
Dac_C : IN std_logic_vector (11l downto 0) := x"000";
Dac_D : IN std_logic_vector (11l downto 0) := x"000";
Adc_A : out std logic_vector (13 downto 0):;

Adc_B : out std_logic_vector (13 downto O0)

):
end S3E_AnalogIO;

70

~ S3E_AnalogIO.vhd

Sun Mar 01 12:51:55 2015

58
59
60
6l
62

architecture Behav of S3E_AnalogIO is

type is (so, s1, s2, 83,

sl1l1i, siz2,

EVENT_TYPE
s13, s14, s15,
63 sle, sl17, sl18,

s19, s

s27, s28, s29, s30, s31);
64
65
€6
67
68
69
70
71
72
73
74
5
76
¥
78
T9
80
81
82
83
84
85
86

signal sDacState EVENT_TYPE;

signal Clk2 std_logic;

signal sData std_logic_vector (31 downto

begin

pelk2: process (Clk)
begin
if rising_edge (Clk)
Clk2 <= not Clk2;
end if;

end process;

then

DAC_Clr Tty

pDAC: process (Clk2, sDacState)

constant kDacA : downto

immediately
constant
constant

constant

std_logic_vector (7

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
A 1

downto
downto
downto

kDacB
kDacC
kDacD

std_logic_vector (7
std_logic_vector (7
std_logic_vector (7
constant downto

kAmpD std_logic_vector (7

variable bitnr

variable

integer;
integer;

begin
if rising edge (Clk2)
then
case sDacState is
when SO => Dac_CS <=

AMP_CS
AD_CONV <
SPI_SCK <=
SPI_MOSI <=
sDacState

-- DAC_A
when S1 => <=
bitnr

sData

Dac_Cs '0';

L

sS4,

20,

0);

0)
0)
0)
0)

0)

’

s5, se, s7, s8, s9, slio0,

s21, s22, sS23, s24, s25, s2e,

"00110000"; -- update

= "00110001";
= "00110010";

= "00110011";

"00010001";

11

'0';

'0';
'0';

<= S1;

-- Prepare

0;
<= "00000000" & kDacA & Dac_A &

71

S3E AnalogIO.vhd Sun Mar 01 12:51:56 2015

"0000";

112 sDacState <= S2;

113

114 when S2 => Dac_CS <= '0'; -— LOOP: set Data

115 SPI_SCK <= 1'0';

116 SPI_MOSI <= sData(31);

1317 sData <= sDhata (30 downto 0) & '0';

118 sDacState <= s3;

119

120 when S3 => SPI_SCK <= 'l';

121 bitnr := bitnr +1;

122 if (bitnr < 32) then —— Set Clock

123 sDacState <= S2;

124 else

125 sDacState <= S4;

126 end if;

L2

128 when S4 => Dac_CS <= '1%; ~= 0K

129 SPI_SCK <= '0';

130 sDacState <= S85;

131

132 == DAC B —— oo

133 when S5 => Dac_Cs <= '0';z == PEepare

134 bitnr = 0;

135 sData <= "00000000" & kDacB & Dac B &
"0000"; -

136 sDacState <= S6;

137

138 when S6 => Dac_Cs <= '0'; -- LOOP: set Data

139 SPI_SCK <= '0';

140 SPI_MOSI <= sData(31);

141 sData <= sData (30 downto 0) & '0';

142 sDacState <= s7;

143

144 when 87 => SPI_SCK <= 'l1';

145 bitnr := bitnr +1;

146 if (bitnr < 32) then -- Set Clock

147 sDacState <= S6;

148 else

149 sDacState <= S8;

150 end if;

151

152 when S8 => Dac_Cs <= 1'% =5 {O8%

153 SPI_SCK <= '0';

154 sDacState <= S9;

155 == DAC C = m

156 when S9 => Dac_Cs <= '0'; —-- Prepare

157 bitnr := 0;

158 sData <= "00000000" & kDacC & Dac_C &
"0000";

159 sDacState <= S10;

160

161 when S10 => Dac_Cs <= '0'; -- LOOP: set Data

162 SPI_SCK <= 1'0';

1e3 SPI_MOSI <= sData(31);

72

S3E AnalogIO.vhd

Sun Mar 01 12:51:56 2015

164
165
166
167
168
169
170
171
172
173
174
175
176

177
178
179
180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

200
201
202
203
204
205

206
207
208
209
210
21011,
212
213
214
215
216

when

when

"oo00";

when

when

when

--—- Prog. Gain Amplifier

when

when

s1ll

512

s1l4

S15

sle6

=y

sData
sDacsStat

SPI_SCK <= 'l
bitnr :=
if (bitn

sD
else

sD
end if;

<=
SPI_SCK

Dac_CS

sDacstat

sDacstat

<=
SPI_SCK
SPI_MOSI
sData
sDacStat

Dac_CS

SPI_SCK <= 'l
bitnr :=
if (bitn

sDacs
else

sDacsS
end if;

Dac_CS <=
SPI_SCK

sDacstat

<= sData
s11;

(30 downto 0) & '0';

e =

1.

bitng: 1

r < 32) then
acState <= S10;

=<' Set Elock
acState <=

s12;

Ill,.
g= vQ%;

B] S

e <= S13;

Prepare

<= "00000000" & kDacD & Dac_D &

e <= S14;

IOI;
<= '0';
<= sData(31);
<= sData (30 downto 0) &
s15;

-— LOOP: set Data

o'
e <=

1.

bitnr +1;

r < 32) then
tate <= S14;

== Set Clock

tate

<= S16;

-- OK

e <= S17;

s18

i = 0;
sDacStat

<=
SPI_SCK
SPI_MOSI
i:=1i+
18 (i)
bitnr
sData
i:=

Dac_CS

-- Prepare
:= 0;
<= kAmpD & "00000000"™ &

e <= S18;

Ioll.
<= '0"';

<= sData(31);
1;

then

:= bitnr +1;
<= sData (30 downto
0;

-= LOOP: set Data

0) & '0";

73

&

S3E AnalogIO.vhd

Sun Mar 01

12:51:56 2015

2171
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
2793
272
273

sDacState <= S19;
end if;
when S19 => SPI_SCK <= 'l';
i:=1i+ 1;
if (i>1) then
if (bitnr < 8) then -— Set Clock
i = 0;
sDacState <= S18;
else
i = 0;
sDacState <= S20;
end if;
end if;
when S20 => AMP_CS &= "'E == O
SPI_SCK <= '0';
i = 3+ 1y
if (i>1) then
i = 0;
sDacState <= S21;
end if;
when S21 => AD_CONV <= 'l'; -- Prepare: ADC Convert
SPI_SCK <= '0';
sDacState <= S22;
when S22 => AD_CONV <= '1l'; == 1. €1k
SPI_SCK <= '1';
sDacState <= 523;
when S23 => AD_CONV <= 19'; ==
SPI_SCK <= '0';
bitnr := 0;
sDacState <= 524;
when $S24 => AD_CONV <= '0';
SPI_SCK <= '1';
sDacState <= S25;
when $25 => AD_CONV <= '0';
SPI_SCK <= '0';
sData <= sData (30 downto 0) & SPI_MISO;
bitnr := bitnr + 1;
if (bitnr < 33) then
sDacState <= 524;
else
sDacState <= S526;
end if;
when S26 => AD_CONV <= '0';
SPI_SCK <= '0';
Adc_A <= sData(31l) & not sData (30 downto 18);
Adc_B <= sdata(l5) & not sData (14 downto 2%

sDacState <= S27;

74

S3E AnalogIO.vhd

Sun Mar 01 12:51:56

2015

274
275

276
297
278
279
280
281
282
283

284
285
286
287
288
289
290
291
292
293
294
295

when S$27 => TickAnalogIO <=
sDacState

when S28 => TickAnalogIO <=
sDacState

when others => sDacState <=
end case;

end if;
end process;

end Behav;

'0';

S0;

75

Counter Ena Ovl.vhd

VHDL Code of Counter Enable Overflow

Sun Mar 01 13:00:52 2015

ik library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.STD_LOGIC_UNSIGNED.all;
4
5 --component Counter Ena_Ovl is
6 —-— Generic (bits: positive:=3; max: positive:= 9);
7 -— port (
8 = Clk IN std_logic;
9 = Reset in: std dogie = Y01;
10 = Enable IN sed. Yogie: w=- "1ty
o il 4 Overflow out std_logic;
12 == Cnt OUT std_logic_vector (bits-1 downto 0));
13 -—end component;
14 e
15 —-— pxx: Counter_Ena_Ovl Generic map (bits=>32, max=>50000)
16 = port map (Clk=>CLk, Cnt=>c32);
17
18
19
20 entity Counter Ena_Ovl is
24, Generic (bits : positive := 4; max positive := 9);
22 port (
23 Clk : IN std logic;
24 Reset in std logie := "0';
25 Enable IN std logic <= '"1';
26 Overflow out std_logic;
27 Cnt : OUT std_logic_vector (bits-1 downto 0));
28 end Counter Ena_Ovl;
29
30
31 architecture behav of Counter_ Ena_Ovl is
32
33 signal sCnt std_logic_vector (bits-1 downto 0);
34 signal sOvl std_logic;
35
36 begin
37
38 Cnt <= sCnt;
39 Overflow <= sOvl;
40
41 process (Clk)
42 begin
43 if rising_edge (Clk) then
44 sovl <= '0';
45 if Reset = 1 Lthen
46 sCnt <= (others=>'0");
47 elsif (Enable = 'l') then
48 if (sCnt < max) then
49 sCnt <= sCnt + 1;
50 Else
51 sCnt <= (others=>'0");
52 sovl <= 'l';
58 End if;
54 End if;
55 end if;
56 end process;
57

76

VHDL Code of LCD Driver

lcd driver.vhd Sun Mar 01 13:13:07

2015

WOdoO0s wWwN K

WWWWWOWNNNNNNNNNNRFRRERPERERP
OB WNFOOVWDJIAULWNIRFOW®OIANOD WN F O

36

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_ LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

——Component lcd driver

= PORT (Clk : IN STD_LOGIC;

== rs : OouT STD_LOGIC;

== rw : OouUT STD_LOGIC;

S enable : OuUT STD_LOGIC;

e lcd_data : OouT STD_LOGIC_VECTOR (3 DOWNTO O0) ;

- index 2 ouT std_logic_vector (7 downto 0);
== char z IN std_logic_vector (7 downto 0)
==);

——end component;

——Please also connect:

== SF. R0 o sl B

———-— Instantiation of the LCD Display driver —-—-—————————————

——pLcd: lcd_driver port map (Clk => CLK,

- rs => LCD_RS,
- rw => LCD_RW,
- enable => LCD_E,
= lcd data=> §SF D,

- index => LcdIndex,
- char => LecdChar);

=— with LcdIncex select

- LcdChar <= «¢onv_std. logiec wvecktor (&8;8) when ="00",

== conv_std_logic_vector (68,8) when x"01",
- "001l1l" & sBcdl (3 downto 0) when x"02",
2 "001ll" & sBcd2 (3 downto 0) when

= "00000000" when OTHERS;

ENTITY lcd_driver IS
PORT (Clk : IN STD_LOGIC;
rs : OuT STD_LOGIC:;
ouT STD_LOGIC;
ouT STD_LOGIC;
ouT STD_LOGIC_VECTOR (3 DOWNTO O0);

rw
enable
lcd_data

index
char

ouT std_logic_vector (7 downto 0);
IN std_logic_vector (7 downto 0)

) ;
END lcd_driver;

77

lced driver.vhd Sun Mar 01 13:13:07 2015

57 ARCHITECTURE behavioral OF lcd_driver IS

58

59 type charSTATE_TYPE is (sO, S1, s2, s3, s4, s5, sé, s7, s8, S9, sl1o0,
60 signal charstate : charSTATE_TYPE;

61

62 constant t_InstrWait : integer := 100000; -- 2 ms

63 constant t_WRPulse : integer := 10; -—. 0,2! Us: (200 1ns)
64 constant t_SetupHold : integer := 10;

€5 constant t_DatwWait : integer := 2500; —= Bk us

66

67

68 TYPE STATE_TYPE IS (init,

69 wait_for_data,

70

74 write_addrHl, write_addrH2, write_addrH3,
72 write_addrLl, write_addrL2, write_addrL3,
73 chk_busyIl,

74 chk_busyI2,

75 write_dataHl, write_dataH2, write_dataH3,
76 write_datall, write_datal2, write_datal3,
77 chk_busyD1l

78)i

79

80 SIGNAL state : STATE_TYPE := init;

81

82 signal sLcdAdr : STD_LOGIC_VECTOR (7 DOWNTO O0);
83 signal sLcdDat : STD_LOGIC_VECTOR (7 DOWNTO 0);

84 signal sLcdWR : STD_LOGIC;
85 signal sLcdRDY : STD_LOGIC;
86
87

88 SIGNAL int_addr : STD_LOGIC_VECTOR(7 DOWNTO 0);
89 SIGNAL int_data : STD_LOGIC_VECTOR(7 DOWNTO 0);
90 SIGNAL enrwrs : STD_LOGIC VECTOR(2 DOWNTO 0);
91

- e

93 BEGIN
94
95
96 pTextoOut: process (Clk)
97 variable Cnt : std_logic_vector (31 downto 0);
98 variable i : std_logic_vector (7 downto 0);
99 begin
100
101 o index <= conv_std logic_vector (i,8);
102 index <= 1i;
103
104 if rising_edge (CLK) then
105 CASE charsState IS
106 ==—= CLR
107 when SO0 => sLcdWR <= '0';

—--integer range 0 TO 40;

108 sLcdAdr <= x"01"; --
109 sLcdDat <= x"20"; --

110 if (sLcdRDY =
3 e e 8 sLcdWR
112 cnt =

lll)
<= '1l';

(others =>

1138 charState <=

Clear
Space
then

s1;

s11);

Display

1Oy

78

led driver.vhd Sun Mar 01 13:13:07 2015

114 end if;

115

116 when S1 => sLcdWR <= '0"';

117 cnt = cnt + 1 ;

118 if (cnt > conv_std_logic_vector (
100000, 16)) then -- 100.000 = 2ms

119 charsState <= 823

120 i := (others=>'0");

121 end if;

122

123) |

124 when 82 => if (char = "00000000")

125 then —— NULL CHARACTER

126 if (1 >= x"79") then

127 cnt := (others => '0');

128 charState <= sS11;

129 else

130 i:=41i+ 1;

131 charState <= 82;

132 end if;

133 else

134 sLcdWR <= '0';

135 sLcdAdr <= '1l' & 1i(6 downto 0);

=XKL} —-— the Character Location
136 sLcdDat <= char;

--Memory(i); --

conv_std_logic_vector (66,8);

137 if (sLcdRDY = '1') then

138 sLcdWR <= '1"';

139 cnt := (others => '0');

140 charstate <= S83;

141 end if;

142

143 end if;

144

145 when S3 => sLcdWR <= vQ';

146 charState <= 384;

147

148 when S4 => sLcdWR <= '0';

149 if (sLcdRDY = 'l') then

150 charState <= 82;

151 i g= X # 13z

152 end if;

153

154 -—— Wait Loop

155

156 == when S10 => if (i < 20) then

157 e i = =z"40";

158 = charState <= 82;

159 - else

160 S cnt := (others => '0');

161 s charState <= 8sl1;

162 =& end if;

163 Ay

164 when S11 => cnt := cnt + 1;

165 if (cnt > 10000000) then -- wait
200 ms : 5 updates /Sec.

79

lcd driver.vhd Sun Mar 01 13:13:08 2015

166 charState <= S0;
167 end if;
168

169 when others => charState <= S0;
170 end case;

17 end if;

172 end process;

173

174

175

176

177

178 = e
) enable <= enrwrs(2);

180 rw <= enrwrs(l);

181 rs <= enrwrs (0);

182

183 pLcdInstr:

184 process (Clk)

185 variable counter : INTEGER RANGE 0 TO 50000000 := O0;
186 begin

187 if rising_edge (Clk) THEN

188 CASE state IS

189

190 WHEN init =>

191 -- state <= wait_for_ data;

192

193 counter := counter + 1;

194 if (counter >= 500000) then == 10 ‘mS
195 counter := 0;

196 state <= wait_for_data;

197 end if;

198

199

200 ———— WAIT for new Data HERE

201

202 WHEN wait_for_data =>

203 counter := 0;

204 if (sLcdWR = '1l') then

205 int_addr <= sLcdAdr;

206 int_data <= sLcdDat;

207 state <= write_addrHl; -- chk_busyl;

208 end if;

209

210

2350 —-— Address: High NIBBLE

212 WHEN write_addrHl =>

243 counter := counter + 1;

214 IF (counter >= t_WRPulse) THEN == 2 us WR Time
215 counter := 0;

216 state <= write_addrH2;

217 END IF;

218

219 WHEN write_addrH2 =>

220 counter := counter + 1;

221 IF (counter >= t_SetupHold) THEN

222 counter := 0;

80

lcd driver.vhd

Sun

Mar 01

13:13:08 2015

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277,
278
279

state <= write_addrLl;
END IF;

—- Address LOW NIBBLE
WHEN write_addrLl =>
counter := counter + 1;
IF (counter >= t_WRPulse) THEN
counter := 0;
state <= write_addrLl2;
END IF;

WHEN write_addrL2 =>

counter := counter + 1;

IF (counter >= t_SetupHold) THEN
counter := 0;
state <= chk_busyIl;

END IF;

L= WRATT
WHEN chk_busyIl =>

counter := counter + 1;

if (counter >= t_DatWait) then
counter := 0;
if (int_addr(7) = '1l') then

state <= write_dataH2;
else
state <= chk_busyI2;

end if;

END IF;

-—— WAIT
WHEN chk_busyI2 =>

counter := counter + 1;

if (counter >= t_InstrWait) then
counter := 0;
state <= write_dataH2;

END IF;

-— DATA High NIBBLE

= WHEN write_dataHl =>

— counter := counter + 1;

e IF (counter >= t_WRPulse) THEN
== counter := 0;

== state <= write_dataH2;

==t END IF;

WHEN write_dataH2 =>
counter := counter + 1;
IF (counter >= t_WRPulse) THEN
counter := 0;
state <= write_dataH3;
END IF;

81

~led driver.vhd

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
317
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
3277
328
329
330
331
332
333
334
335
336

Sun

Mar 01 13:13:08

2015

WHEN write_dataH3 =>

counter := counter + 1;

IF (counter >= t_SetupHold) THEN
counter := 0;
state <= write_datal2;

END IF;

-— DATA Low NIBBLE

= WHEN write_datall =>

S counter := counter + 1;

= IF (counter >= t WRPulse) THEN
= counter := 0;

e state <= write_datal2;

R END IF;

WHEN write_datal2 =>
counter := counter + 1;
IF (counter >= t_WRPulse) THEN
counter := 0;
state <= write_datal3;
END IF;

WHEN write_datal3 =>

counter := counter + 1;

IF (counter >= t_SetupHold) THEN
counter := 0;
state <= chk_busyDl;

END IF;

-—— WAIT
WHEN chk_busyDl =>

counter := counter + 1;

if (counter >= t_DatWait) then -— 50 us
counter := 0;
state <= wait_for_ data; --write_dataHl;

END IF;

WHEN OTHERS => state <= init;
END CASE;
END IF;
END PROCESS;

sLcdRDY <= 'l' WHEN (state = wait_for_data) ELSE '0';

with state select
lcd_data <=
NZRTTN WHEN init,

int_addr (7 downto 4) WHEN write_addrHI1,
int_addr (7 downto 4) WHEN write_addrH2,
int_addr (3 downto 0) WHEN write_addrLl,
int_addr (3 downto 0) WHEN write_addrL2,

82

lcd driver.vhd

Sun Mar 01 13:13:08 2015

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
3e8
369
370
371

—-— ENABLE RW RS

WITH state SELECT

enrwrs <=

END behavioral;

int_data(7 downto 4) WHEN write_dataHl,
int_data (7 downto 4) WHEN write_dataH2,
int_data (7 downto 4) WHEN write_dataH3,
int_data(3 downto 0) WHEN write_datall,
int_data(3 downto 0) WHEN write_datalZ2,
int_data (3 downto 0) WHEN write_datal3,
"ZZZZ2" WHEN wait_for_data,
"zzzz" WHEN OTHERS;
"ooo" WHEN init,
"ooo" WHEN wait_for_data,
"100" WHEN write_addrHl,
w0ooY WHEN write_addrH2,
100" WHEN write_addrLl,
"ooo" WHEN write_addrL2,
"oo1i" WHEN write_dataHl, —-— LcdData:
"io1" WHEN write_dataH2, —-— output LCD Data: ENABLE
ool WHEN write_dataH3,
"oo1" WHEN write_datall, —-- LcdData:
"io01" WHEN write_datal2, —— output LCD Data: ENABLE
"oo1" WHEN write_datalL3,
"ooo" WHEN OTHERS;

]
oy

]
fun

83

VHDL Code of Bin 16 to BCD

Binlé BCDS5.vhd

Sun Mar 01 13:20:39 2015

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;

USE IEEE.STD_LOGIC ARITH.all;
USE IEEE.STD_LOGIC_UNSIGNED.all;

——Component Binlé_BcdS

= PART Clk : IN STD_LOGIC;
e BinIN : IN std_logic_vector (15 downto 0);
- BcdOut OUT std_logic_vector (19 downto 0)

—-—end component;

—-pBinBcd: Binlé_BcdS port map (Clk => CLK,

== BinIN => sBinIN,

= BcdOut => sBcdOut

ENTITY Binlé6_Bcd5 IS

PORT

(
Clk : IN STD_ LOGIC;
BinIN : IN std_logic_vector (15 downto 0)
Bcdout : OUT std_logic_vector (19 downto 0)

)

END Binlé_Bcd5;

ARCHITECTURE a OF Binlé_Bcd5 is
type TStates is (s0, sl1, s2):

subtype Nibble is std_logic_vector (3 downto 0);

type TBcd is array (0 to 4) of Nibble;
signal sBCD : TBcd;
begin

pPBinl6BCD: process (Clk)
variable State : TStates:;
variable cnt : std logic wectar
begin
if rising_edge (Clk) then
case State is
when S0 => c¢nt := (others

;

(15 downto 0);

=>

0%y

)7

)7

for i in 0 to 4 loop
sBcd (1)

end loop:;
State :=

when S1 => c¢nt := cnt + 1;

sl;

<= x"0";

if (cnt < BinIN)

if

(sBcd (0)
sBcd (0)
else
sBcd (0)

then

< 9)
sBcd (0)

<= x"0";

84

Binlé BCDS5.vhd

Sun Mar 01 13:20:39 2015

58
59
60
61
62
63
64
65
66
67
68
69
70
7L
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97 END a;
98
99

if (sBcd(l) < 9) then
sBecd (1) <= sBcd(

else

sBcd (1) <= x"0";

if (sBcd(2) < 9)
sBcd (2) <= sBcd(2) + 1;

else

sBed (2) <= ="

if (sBecd(3) <
sBcd(3) <=
else
sBcd (3) <=

if (sBcd(4

sBcd (4)
else
sBcd (4)
end if;
end if;
end if;
end if;
end if;
else
State := S2;
end if;
when S2 => for i in 0 to 4 loop
BcdOut (1i*4+3 downto i*4)
end loop;
State := S0;
when others => State := SO0;

end case;

end if;
end process;

1)y = 13

then

o";

9) then
sBed (3) + 1;

=20 ;

) < 9) then
<= sBcd(4) +

<= x"Q";

<= sBcd(i):

85

Code of Rotary Counter

Rotary Counter.vhd

Sun Mar 01 13:27:50 2015

& library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.STD_LOGIC_ARITH.ALL;

4 use IEEE.STD LOGIC_UNSIGNED.ALL;

5

6

G, entity Rotary Counter is

8 Generic (bits Integer := 8):

9 Port (CLK in STD_LOGIC;

10 ROT_A : in STD_LOGIC;

11 ROT_B : in STD_LOGIC;

12 ROT_CENTER : in STD_LOGIC;

13 COUNTER : out STD_LOGIC VECTOR (bits -1 downto 0));
14 end Rotary_Counter;

15

16

17

18

19 architecture Behavioral of Rotary Counter is
20
21 component Monoflop port (
22 Clk : IN std logic; -- System Clock
23 Trigger IN std logic:
24 PULSOUT OUT std_logic);
25 end component;
26
27
28 signal rst : STD_LOGIC;
29 signal sROT_A : STD_LOGIC;

30 signal sROT_B : STD_LOGIC;

31

32 signal sCount : STD_LOGIC_VECTOR (bits -1 downto 0);
33 signal sROT : STD_LOGIC _VECTOR (1 downto 0);

34

35 type tstates is (stateO, statel, state2, state3, stated, state5, stated);
36 signal State: tstates;

3%

38

39 BEgIn: e

40

41 rst <= ROT_CENTER;

42

43

44 MFl: Monoflop port map (Clk => CLK, Trigger => ROT_A, PULSOUT => sROT_A);
45 MF2: Monoflop port map (Clk => CLK, Trigger => ROT_B, PULSOUT => sROT_B);
46

47 SROT (0) <= ROT_A or sROT_A;

48 sROT (1) <= ROT_B or sROT_B;

49

50 process (clk, rst)

51 begin

52 if rst='l' then

53 state <= stateO;

54 sCount<= (others => '0');

55 elsif rising_edge(Clk) then

56 case state is

57,

86

_Rotary_Counter.vhd Sun Mar 01

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
15
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
a7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

13:27:50 2015

when state0 =>

if srROt = "11" then
state <= stateO;
elsif sROt = "Ol1" then
state <= statel;
else
state <= stated;
end if;

when statel =>

if sROt = "01" then
state <= statel;
elsif sROt = "00" then
state <= state2;
else
state <= stateO;
end if;

when state2 =>

if sROt = "00" then
state <= state2;
elsif sROt = "10" then
state <= state3;
else
state <= statel;
end if;

when state3 =>

if sROt = "10" then
state <= state3;
elsif sROt = "11" then

state <= stateO;
sCount <= sCount + 1;
else
state <= state2;
end if;

when stated4d =>

if sROt = "10" then
state <= stated;
elsif sROt = "00" then
state <= stateb;
else
state <= stateO;
end if;

when state5 =>

if sROt = "00" then
state <= state5;
elsif sROt = "O1" then
state <= state6;
else
state <= stated;
end if;

when state6 =>
if sROt = "0Ol" then

87

Rotary Counter.vhd

Sun Mar 01 13:27:50 2015

11I5
116
117
118
119
120
122
122
123
124
125
126
127,
128
129
130
L3
132
133
134
135

state <= state6;
elsif sROt = "11" then

state <= stateO;

sCount <= sCount - 1;

else
state <= state5;
end if;
when others => state <= stateO;
end case;

end if;
end process;

COUNTER <= sCount;

end Behavioral;

88

monoflop.vhd Sun Mar 01 13:30

129 2015

ik

[=o e e) UG, B S UV I A}

0

11
12
13
14
15
16
A7
18
19
20
21
22
23
24
295
26
27
28
29
30
31
32
33
34
35,
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57,

= Spartan-3E Kit: Analog IO Component
- DAC component: LTC2624 4 channel, 12 bit DAC
- ADC component: LTC1407 2 channel, 14 bit ADC

library IEEE;
use IEEE.std logic_l1l64.all;
use IEEE.STD LOGIC_UNSIGNED.all;

entity Monoflop is

port (
Clk : IN std logic;
Trigger : IN std logic;
PULSOUT i OuT std_logic

);
end Monoflop;

architecture behav of Monoflop is

signal TriggerF : std_logic;

signal SReset : std logic;

signal PORes : std logic;

signal nPO : std_logic;

signal IQ : std_logic_vector (16 downto 0);

signal Cnt : std_logic_vector (16 downto 0);
begin

PULSOUT <= TriggerF;

nPO <= not TriggerkF;

IQ <= cnt;
COUNTERP: process (Clk, nPO)

begin
if nPO='1l' then
cnt <= "000000000000000Q00";

elsif rising edge(Clk) then
cnt <= cnt + 1;
end if;
end process;

-— Einfangen des Triggers
CATCHTRIGP: process (SReset,Trigger)
begin
if SReset='l' then
TriggerF <= '0';
elsif rising_edge(Trigger) then
TriggerF <= 'l1';
end if;
end process;

-— Counter Ausgang Clk synchronisieren
SYNCCOUNTP: process (Clk, SReset)
begin
if SReset='l' then

89

monoflop.vhd

Sun Mar 01 13

:30:29 2015

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

PORes <= '0';
elsif rising edge(Clk) then
PORes <= IQ(16);
end if;
end process;

-- Mono Reset zurlicksetzen
RESMONOP: process (Clk)
begin
if rising edge(Clk) then
SReset <= PORes;
end if;
end process;

end behav;

90

Pining User Constrains File

S3E_Pining.ucf Sun Mar 01 13:34:31 2015

K HEHAHAHARHHAHSHEHAHHHGHAHEH ARG HAHA SR AR RSB H B RS

2 ### SPARTAN-3E STARTER KIT BOARD CONSTRAINTS FILE

3! HEHHAHHHHBHAHEHHHAHBH AR AH ARG HH ARG HAH BB RS

4 #

5 # in PROCESSES / Implement Design (Right CLick) / Properties: Allow unmatched LOC

constraints

(3 #

7

8 # ==== Clock inputs (CLK) ====

9 NET "CLK" LOC = "C9" | IOSTANDARD = LVCMOS33 ;

10 #NET "CLK" PERIOD = 20.0ns HIGH 40%;

[

12

18 NET "CLK_AUX" LOC = "B8" | IOSTANDARD = LVCMOS33 ;

14 NET "CLK_SMA" LOC = "Al0" | IOSTANDARD = LVCMOS33 ;

15

16

37

18 # ==== Discrete LEDs (LED) ====

19 # These are shared connections with the FX2 connector
20 NET "LED<O>" LOC = "Fl2" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
271 NET "LED<1>" LOC = "E1l2" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
22 NET "LED<2>" LOC = "El1" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
23 NET "LED<23>" LOC = "F11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
24 NET "LED<4>" LOC = "Cl1" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE 8 ;
25 NET "LED<5>" LOC = "D11" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
26 NET "LED<6>" LOC = "E9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
27 NET "LED<7>" LOC = "F9" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8 ;
28

29 # ==== Digital-to-Analog Converter (DAC) ====

30 # some connections shared with SPI Flash, DAC, ADC, and AMP

31 NET "DAC_CLR" LOC = "pP8" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
32 NET "DAC_CS" LOC = "N8" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 8 ;
33

34 # ==== Analog-to-Digital Converter (ADC) ====

35 # some connections shared with SPI Flash, DAC, ADC, and AMP

36 NET "AD_CONV" LOC = "P1ll" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 6 ;
37

38 # ==== Programmable Gain Amplifier (AMP) ====

39 # some connections shared with SPI Flash, DAC, ADC, and AMP

40 NET "AMP_CS" LOC = "N7" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 6 ;
41 NET "AMP_DOUT" LOC = "E18" | IOSTANDARD = LVCMOS33 ;

42 NET "AMP_SHDN" LOC = "P7" | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 6 ;
43

44 # ==== Pushbuttons (BTN) ====

45 #NET "BTN_EAST" LOC = "H13" | IOSTANDARD = LVTTL | PULLDOWN ;

46 #NET "BTN_NORTH" LOC = "V4" | IOSTANDARD = LVTTL | PULLDOWN ;

47 #NET "BTN_SOUTH" LOC = "K17" | IOSTANDARD = LVTTL | PULLDOWN ;

48 NET "BTN WEST" LOC = "D18" | IOSTANDARD = LVTTL | PULLDOWN ;

49

91

S3E Pining.ucf

Sun Mar 01 13:34:31 2015

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
<l
312
313
314
315
316
337
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
3395
336
337,
338
339
340
341

NET "SD_LDM" LOC = "J2" | IOSTANDARD = SSTL2_I ;
NET "SD_LDQS" LOC = "L&" | IOSTANDARD = SSTL2_ I ;
NET "SD_RAS" LOC = "Cl" | IOSTANDARD = SSTL2_I ;
NET "SD_UDM" LOC = "J1" | IOSTANDARD = SSTL2_I ;
NET "SD_UDQS" LOC = "G3" | IOSTANDARD = SSTL2_ I ;
NET "SD_WE" LOC = "D1" | IOSTANDARD = SSTL2 I ;

Path to allow connection to top DCM connection
NET "SD _CK_FB" LOC = "BS" | IOSTANDARD = LVCMOS33 ;

Prohibit VREF pins
CONFIG PROHIBIT = D2;
CONFIG PROHIBIT = G4;
CONFIG PROHIBIT = J6;
CONFIG PROHIBIT = L5;
CONFIG PROHIBIT = R4;

==== Intel StrataFlash Parallel NOR Flash (SF) ====
NET "SF_A<0>" LOC = "H17" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "J13" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "Jl2" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
SF LOC = "J14" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "J15" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
E LOC = "Jl6" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "J17" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "K14" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
S F LOC = "K15" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
S F LOC = "K12" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
33 LOC = "K13" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "L15" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "Ll&é" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "T18" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
F LOC = "R18" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
SF A<1S5 LOC = "T17" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF_A<lé>" LOC = "Ul8" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF_A<1l7>" LOC = "T1lé" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF_A<18>" LOC = "Ul5" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF_A<19>" LOC = "V15" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
SF 0 LOC = "T12" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
SFE LOC = "v13" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
SE LocC = "v12" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
S F LOC = "N11" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
33 >" LOC = "All" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF_BYTE" LOC = "C17" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF_CEO" LOC = "Dl&é" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<1>" LOC = "P10" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF_D<2>" LOC = "R10" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF _D<3>" LOC = "V9" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<4>" LOC = "U9" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<5>" LOC = "R9" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<é&é>" LOC = "M9" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<7>" LOC = "N9" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<8>" LOC = "R15" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW
NET "SF D<9>" LOC = "R16" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW

Ne N N Ne Ne N N Se N Ne

i Ne W W URE DN SEF KB W NN N Ve GNb OWGE NG

92

S3E_Pining.ucf

Sun Mar 01 13:34:31 2015

342 NET "SF_D<10>"
343 NET "SF_D<11>"
344 NET "SF_D<12>"
345 NET "SF_D<13>"
346 NET "SF_D<14>"
347 NET "SF_D<15>"

348 NET "SF_OE" LOC =

349 NET "SF_STS" LOC =

350 NET "SF_WE" LOC =
351

352

353 Xilinx CPLD
354 CMD<0>" LOC
355 _CMD<1>" LOC
356 C_CPLD_EN"
357 > _D<0>" LOC
358 D<1>" LOC
359 C: D<2>" T.OC
360 TRIG" LOC
361 > _GCKO" LOC

362 NET "G
363

CLK10" LOC

wppL7m
"M15"
"M16"

npgn
nRg"

npgn

cLE™ i
wp1g"
L o iy L

(xc) =
= vp1
= "Nl
LOC =

"Gle"
wplg
wpl7e
"R17"
wlEn

weor |

® |l

0

"B1O"

IOSTANDARD = LVCMOS33
IOSTANDARD LVCMOS33
IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33 |
IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33 |
| IOSTANDARD = LVTTL
| IOSTANDARD = LVTTL
| IOSTANDARD = LVTTL
IOSTANDARD = LVTTL |
IOSTANDARD = LVTTL |
IOSTANDARD = LVTTL |
IOSTANDARD = LVCMOS33
IOSTANDARD = LVCMOS33
OSTANDARD = LVCMOS33 |

4 | SLEW = SLOW ;
= 4 | SLEW = SLOW ;

4 | SLEW = SLOW ;
| SLEW = SLOW ;
| SLEW = SLOW ;
| SLEW = SLOW ;
SLEW = SLOW ;

I
— b b

'~

4 | SLEW = SLOW ;

| SLEW = SLOW ;
| SLEW = SLOW ;
| SLEW = SLOW ;

SLEW = SLOW ;

|
SLEW = SLOW ;

= 4
4 |

93

